1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sl28cpld PWM driver
4 *
5 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
6 *
7 * There is no public datasheet available for this PWM core. But it is easy
8 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
9 * supports four distinct frequencies by selecting when to reset the counter.
10 * With the prescaler setting you can select which bit of the counter is used
11 * to reset it. This implies that the higher the frequency the less remaining
12 * bits are available for the actual counter.
13 *
14 * Let cnt[7:0] be the counter, clocked at 32kHz:
15 * +-----------+--------+--------------+-----------+---------------+
16 * | prescaler | reset | counter bits | frequency | period length |
17 * +-----------+--------+--------------+-----------+---------------+
18 * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns |
19 * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns |
20 * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns |
21 * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns |
22 * +-----------+--------+--------------+-----------+---------------+
23 *
24 * Limitations:
25 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
26 * - The hardware cannot atomically set the prescaler and the counter value,
27 * which might lead to glitches and inconsistent states if a write fails.
28 * - The counter is not reset if you switch the prescaler which leads
29 * to glitches, too.
30 * - The duty cycle will switch immediately and not after a complete cycle.
31 * - Depending on the actual implementation, disabling the PWM might have
32 * side effects. For example, if the output pin is shared with a GPIO pin
33 * it will automatically switch back to GPIO mode.
34 */
35
36 #include <linux/bitfield.h>
37 #include <linux/kernel.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/module.h>
40 #include <linux/platform_device.h>
41 #include <linux/property.h>
42 #include <linux/pwm.h>
43 #include <linux/regmap.h>
44
45 /*
46 * PWM timer block registers.
47 */
48 #define SL28CPLD_PWM_CTRL 0x00
49 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7)
50 #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0)
51 #define SL28CPLD_PWM_CYCLE 0x01
52 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0)
53
54 #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */
55 #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
56 #define SL28CPLD_PWM_PERIOD(prescaler) \
57 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
58
59 /*
60 * We calculate the duty cycle like this:
61 * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
62 *
63 * With
64 * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
65 * max_duty_cycle = 1 << (7 - prescaler)
66 * this then simplifies to:
67 * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
68 * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
69 *
70 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
71 * precision by doing the divison first.
72 */
73 #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
74 (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
75 #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
76 (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
77
78 #define sl28cpld_pwm_read(priv, reg, val) \
79 regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
80 #define sl28cpld_pwm_write(priv, reg, val) \
81 regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
82
83 struct sl28cpld_pwm {
84 struct regmap *regmap;
85 u32 offset;
86 };
87
sl28cpld_pwm_from_chip(struct pwm_chip * chip)88 static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip)
89 {
90 return pwmchip_get_drvdata(chip);
91 }
92
sl28cpld_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)93 static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
94 struct pwm_device *pwm,
95 struct pwm_state *state)
96 {
97 struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
98 unsigned int reg;
99 int prescaler;
100
101 sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®);
102
103 state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
104
105 prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
106 state->period = SL28CPLD_PWM_PERIOD(prescaler);
107
108 sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®);
109 state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
110 state->polarity = PWM_POLARITY_NORMAL;
111
112 /*
113 * Sanitize values for the PWM core. Depending on the prescaler it
114 * might happen that we calculate a duty_cycle greater than the actual
115 * period. This might happen if someone (e.g. the bootloader) sets an
116 * invalid combination of values. The behavior of the hardware is
117 * undefined in this case. But we need to report sane values back to
118 * the PWM core.
119 */
120 state->duty_cycle = min(state->duty_cycle, state->period);
121
122 return 0;
123 }
124
sl28cpld_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)125 static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
126 const struct pwm_state *state)
127 {
128 struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip);
129 unsigned int cycle, prescaler;
130 bool write_duty_cycle_first;
131 int ret;
132 u8 ctrl;
133
134 /* Polarity inversion is not supported */
135 if (state->polarity != PWM_POLARITY_NORMAL)
136 return -EINVAL;
137
138 /*
139 * Calculate the prescaler. Pick the biggest period that isn't
140 * bigger than the requested period.
141 */
142 prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
143 prescaler = order_base_2(prescaler);
144
145 if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
146 return -ERANGE;
147
148 ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
149 if (state->enabled)
150 ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
151
152 cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
153 cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
154
155 /*
156 * Work around the hardware limitation. See also above. Trap 100% duty
157 * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
158 * care about the frequency because its "all-one" in either case.
159 *
160 * We don't need to check the actual prescaler setting, because only
161 * if the prescaler is 0 we can have this particular value.
162 */
163 if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
164 ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
165 ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
166 cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
167 }
168
169 /*
170 * To avoid glitches when we switch the prescaler, we have to make sure
171 * we have a valid duty cycle for the new mode.
172 *
173 * Take the current prescaler (or the current period length) into
174 * account to decide whether we have to write the duty cycle or the new
175 * prescaler first. If the period length is decreasing we have to
176 * write the duty cycle first.
177 */
178 write_duty_cycle_first = pwm->state.period > state->period;
179
180 if (write_duty_cycle_first) {
181 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
182 if (ret)
183 return ret;
184 }
185
186 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
187 if (ret)
188 return ret;
189
190 if (!write_duty_cycle_first) {
191 ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
192 if (ret)
193 return ret;
194 }
195
196 return 0;
197 }
198
199 static const struct pwm_ops sl28cpld_pwm_ops = {
200 .apply = sl28cpld_pwm_apply,
201 .get_state = sl28cpld_pwm_get_state,
202 };
203
sl28cpld_pwm_probe(struct platform_device * pdev)204 static int sl28cpld_pwm_probe(struct platform_device *pdev)
205 {
206 struct sl28cpld_pwm *priv;
207 struct pwm_chip *chip;
208 int ret;
209
210 if (!pdev->dev.parent) {
211 dev_err(&pdev->dev, "no parent device\n");
212 return -ENODEV;
213 }
214
215 chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv));
216 if (IS_ERR(chip))
217 return PTR_ERR(chip);
218 priv = sl28cpld_pwm_from_chip(chip);
219
220 priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
221 if (!priv->regmap) {
222 dev_err(&pdev->dev, "could not get parent regmap\n");
223 return -ENODEV;
224 }
225
226 ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
227 if (ret) {
228 dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
229 ERR_PTR(ret));
230 return -EINVAL;
231 }
232
233 /* Initialize the pwm_chip structure */
234 chip->ops = &sl28cpld_pwm_ops;
235
236 ret = devm_pwmchip_add(&pdev->dev, chip);
237 if (ret) {
238 dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
239 ERR_PTR(ret));
240 return ret;
241 }
242
243 return 0;
244 }
245
246 static const struct of_device_id sl28cpld_pwm_of_match[] = {
247 { .compatible = "kontron,sl28cpld-pwm" },
248 {}
249 };
250 MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
251
252 static struct platform_driver sl28cpld_pwm_driver = {
253 .probe = sl28cpld_pwm_probe,
254 .driver = {
255 .name = "sl28cpld-pwm",
256 .of_match_table = sl28cpld_pwm_of_match,
257 },
258 };
259 module_platform_driver(sl28cpld_pwm_driver);
260
261 MODULE_DESCRIPTION("sl28cpld PWM Driver");
262 MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
263 MODULE_LICENSE("GPL");
264