xref: /linux/drivers/pwm/pwm-microchip-core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * corePWM driver for Microchip "soft" FPGA IP cores.
4  *
5  * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
6  * Author: Conor Dooley <conor.dooley@microchip.com>
7  * Documentation:
8  * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
9  *
10  * Limitations:
11  * - If the IP block is configured without "shadow registers", all register
12  *   writes will take effect immediately, causing glitches on the output.
13  *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
14  *   notifies the core that it needs to update the registers defining the
15  *   waveform from the contents of the "shadow registers". Otherwise, changes
16  *   will take effective immediately, even for those channels.
17  *   As setting the period/duty cycle takes 4 register writes, there is a window
18  *   in which this races against the start of a new period.
19  * - The IP block has no concept of a duty cycle, only rising/falling edges of
20  *   the waveform. Unfortunately, if the rising & falling edges registers have
21  *   the same value written to them the IP block will do whichever of a rising
22  *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
23  *   period. Therefore to get a 0% waveform, the output is set the max high/low
24  *   time depending on polarity.
25  *   If the duty cycle is 0%, and the requested period is less than the
26  *   available period resolution, this will manifest as a ~100% waveform (with
27  *   some output glitches) rather than 50%.
28  * - The PWM period is set for the whole IP block not per channel. The driver
29  *   will only change the period if no other PWM output is enabled.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/delay.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/ktime.h>
37 #include <linux/math.h>
38 #include <linux/module.h>
39 #include <linux/mutex.h>
40 #include <linux/of.h>
41 #include <linux/platform_device.h>
42 #include <linux/pwm.h>
43 
44 #define MCHPCOREPWM_PRESCALE_MAX	0xff
45 #define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
46 #define MCHPCOREPWM_PERIOD_MAX		0xff00
47 
48 #define MCHPCOREPWM_PRESCALE	0x00
49 #define MCHPCOREPWM_PERIOD	0x04
50 #define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
51 #define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
52 #define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
53 #define MCHPCOREPWM_SYNC_UPD	0xe4
54 #define MCHPCOREPWM_TIMEOUT_MS	100u
55 
56 struct mchp_core_pwm_chip {
57 	struct clk *clk;
58 	void __iomem *base;
59 	struct mutex lock; /* protects the shared period */
60 	ktime_t update_timestamp;
61 	u32 sync_update_mask;
62 	u16 channel_enabled;
63 };
64 
65 static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
66 {
67 	return pwmchip_get_drvdata(chip);
68 }
69 
70 static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
71 				 bool enable, u64 period)
72 {
73 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
74 	u8 channel_enable, reg_offset, shift;
75 
76 	/*
77 	 * There are two adjacent 8 bit control regs, the lower reg controls
78 	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
79 	 * and if so, offset by the bus width.
80 	 */
81 	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
82 	shift = pwm->hwpwm & 7;
83 
84 	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
85 	channel_enable &= ~(1 << shift);
86 	channel_enable |= (enable << shift);
87 
88 	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
89 	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
90 	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
91 
92 	/*
93 	 * The updated values will not appear on the bus until they have been
94 	 * applied to the waveform at the beginning of the next period.
95 	 * This is a NO-OP if the channel does not have shadow registers.
96 	 */
97 	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
98 		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
99 }
100 
101 static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
102 					       unsigned int channel)
103 {
104 	/*
105 	 * If a shadow register is used for this PWM channel, and iff there is
106 	 * a pending update to the waveform, we must wait for it to be applied
107 	 * before attempting to read its state. Reading the registers yields
108 	 * the currently implemented settings & the new ones are only readable
109 	 * once the current period has ended.
110 	 */
111 
112 	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
113 		ktime_t current_time = ktime_get();
114 		s64 remaining_ns;
115 		u32 delay_us;
116 
117 		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
118 						     current_time));
119 
120 		/*
121 		 * If the update has gone through, don't bother waiting for
122 		 * obvious reasons. Otherwise wait around for an appropriate
123 		 * amount of time for the update to go through.
124 		 */
125 		if (remaining_ns <= 0)
126 			return;
127 
128 		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
129 		fsleep(delay_us);
130 	}
131 }
132 
133 static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
134 				   u8 prescale, u8 period_steps)
135 {
136 	u64 duty_steps, tmp;
137 
138 	/*
139 	 * Calculate the duty cycle in multiples of the prescaled period:
140 	 * duty_steps = duty_in_ns / step_in_ns
141 	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
142 	 * The code below is rearranged slightly to only divide once.
143 	 */
144 	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
145 	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
146 
147 	return duty_steps;
148 }
149 
150 static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
151 				     const struct pwm_state *state, u64 duty_steps,
152 				     u16 period_steps)
153 {
154 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
155 	u8 posedge, negedge;
156 	u8 first_edge = 0, second_edge = duty_steps;
157 
158 	/*
159 	 * Setting posedge == negedge doesn't yield a constant output,
160 	 * so that's an unsuitable setting to model duty_steps = 0.
161 	 * In that case set the unwanted edge to a value that never
162 	 * triggers.
163 	 */
164 	if (duty_steps == 0)
165 		first_edge = period_steps + 1;
166 
167 	if (state->polarity == PWM_POLARITY_INVERSED) {
168 		negedge = first_edge;
169 		posedge = second_edge;
170 	} else {
171 		posedge = first_edge;
172 		negedge = second_edge;
173 	}
174 
175 	/*
176 	 * Set the sync bit which ensures that periods that already started are
177 	 * completed unaltered. At each counter reset event the values are
178 	 * updated from the shadow registers.
179 	 */
180 	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
181 	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
182 }
183 
184 static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
185 				     u16 *prescale, u16 *period_steps)
186 {
187 	u64 tmp;
188 
189 	/*
190 	 * Calculate the period cycles and prescale values.
191 	 * The registers are each 8 bits wide & multiplied to compute the period
192 	 * using the formula:
193 	 *           (prescale + 1) * (period_steps + 1)
194 	 * period = -------------------------------------
195 	 *                      clk_rate
196 	 * so the maximum period that can be generated is 0x10000 times the
197 	 * period of the input clock.
198 	 * However, due to the design of the "hardware", it is not possible to
199 	 * attain a 100% duty cycle if the full range of period_steps is used.
200 	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
201 	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
202 	 *
203 	 * The prescale and period_steps registers operate similarly to
204 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
205 	 * in the register plus one.
206 	 * It's therefore not possible to set a period lower than 1/clk_rate, so
207 	 * if tmp is 0, abort. Without aborting, we will set a period that is
208 	 * greater than that requested and, more importantly, will trigger the
209 	 * neg-/pos-edge issue described in the limitations.
210 	 */
211 	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
212 	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
213 		*prescale = MCHPCOREPWM_PRESCALE_MAX;
214 		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
215 
216 		return 0;
217 	}
218 
219 	/*
220 	 * There are multiple strategies that could be used to choose the
221 	 * prescale & period_steps values.
222 	 * Here the idea is to pick values so that the selection of duty cycles
223 	 * is as finegrain as possible, while also keeping the period less than
224 	 * that requested.
225 	 *
226 	 * A simple way to satisfy the first condition is to always set
227 	 * period_steps to its maximum value. This neatly also satisfies the
228 	 * second condition too, since using the maximum value of period_steps
229 	 * to calculate prescale actually calculates its upper bound.
230 	 * Integer division will ensure a round down, so the period will thereby
231 	 * always be less than that requested.
232 	 *
233 	 * The downside of this approach is a significant degree of inaccuracy,
234 	 * especially as tmp approaches integer multiples of
235 	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
236 	 *
237 	 * As we must produce a period less than that requested, and for the
238 	 * sake of creating a simple algorithm, disallow small values of tmp
239 	 * that would need special handling.
240 	 */
241 	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
242 		return -EINVAL;
243 
244 	/*
245 	 * This "optimal" value for prescale is be calculated using the maximum
246 	 * permitted value of period_steps, 0xfe.
247 	 *
248 	 *                period * clk_rate
249 	 * prescale = ------------------------- - 1
250 	 *            NSEC_PER_SEC * (0xfe + 1)
251 	 *
252 	 *
253 	 *  period * clk_rate
254 	 * ------------------- was precomputed as `tmp`
255 	 *    NSEC_PER_SEC
256 	 */
257 	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
258 
259 	/*
260 	 * period_steps can be computed from prescale:
261 	 *                      period * clk_rate
262 	 * period_steps = ----------------------------- - 1
263 	 *                NSEC_PER_SEC * (prescale + 1)
264 	 *
265 	 * However, in this approximation, we simply use the maximum value that
266 	 * was used to compute prescale.
267 	 */
268 	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
269 
270 	return 0;
271 }
272 
273 static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
274 				      const struct pwm_state *state)
275 {
276 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
277 	bool period_locked;
278 	unsigned long clk_rate;
279 	u64 duty_steps;
280 	u16 prescale, period_steps;
281 	int ret;
282 
283 	if (!state->enabled) {
284 		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
285 		return 0;
286 	}
287 
288 	/*
289 	 * If clk_rate is too big, the following multiplication might overflow.
290 	 * However this is implausible, as the fabric of current FPGAs cannot
291 	 * provide clocks at a rate high enough.
292 	 */
293 	clk_rate = clk_get_rate(mchp_core_pwm->clk);
294 	if (clk_rate >= NSEC_PER_SEC)
295 		return -EINVAL;
296 
297 	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
298 	if (ret)
299 		return ret;
300 
301 	/*
302 	 * If the only thing that has changed is the duty cycle or the polarity,
303 	 * we can shortcut the calculations and just compute/apply the new duty
304 	 * cycle pos & neg edges
305 	 * As all the channels share the same period, do not allow it to be
306 	 * changed if any other channels are enabled.
307 	 * If the period is locked, it may not be possible to use a period
308 	 * less than that requested. In that case, we just abort.
309 	 */
310 	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
311 
312 	if (period_locked) {
313 		u16 hw_prescale;
314 		u16 hw_period_steps;
315 
316 		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
317 		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
318 
319 		if ((period_steps + 1) * (prescale + 1) <
320 		    (hw_period_steps + 1) * (hw_prescale + 1))
321 			return -EINVAL;
322 
323 		/*
324 		 * It is possible that something could have set the period_steps
325 		 * register to 0xff, which would prevent us from setting a 100%
326 		 * or 0% relative duty cycle, as explained above in
327 		 * mchp_core_pwm_calc_period().
328 		 * The period is locked and we cannot change this, so we abort.
329 		 */
330 		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
331 			return -EINVAL;
332 
333 		prescale = hw_prescale;
334 		period_steps = hw_period_steps;
335 	}
336 
337 	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
338 
339 	/*
340 	 * Because the period is not per channel, it is possible that the
341 	 * requested duty cycle is longer than the period, in which case cap it
342 	 * to the period, IOW a 100% duty cycle.
343 	 */
344 	if (duty_steps > period_steps)
345 		duty_steps = period_steps + 1;
346 
347 	if (!period_locked) {
348 		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
349 		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
350 	}
351 
352 	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
353 
354 	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
355 
356 	return 0;
357 }
358 
359 static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
360 			       const struct pwm_state *state)
361 {
362 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
363 	int ret;
364 
365 	mutex_lock(&mchp_core_pwm->lock);
366 
367 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
368 
369 	ret = mchp_core_pwm_apply_locked(chip, pwm, state);
370 
371 	mutex_unlock(&mchp_core_pwm->lock);
372 
373 	return ret;
374 }
375 
376 static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
377 				   struct pwm_state *state)
378 {
379 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
380 	u64 rate;
381 	u16 prescale, period_steps;
382 	u8 duty_steps, posedge, negedge;
383 
384 	mutex_lock(&mchp_core_pwm->lock);
385 
386 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
387 
388 	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
389 		state->enabled = true;
390 	else
391 		state->enabled = false;
392 
393 	rate = clk_get_rate(mchp_core_pwm->clk);
394 
395 	/*
396 	 * Calculating the period:
397 	 * The registers are each 8 bits wide & multiplied to compute the period
398 	 * using the formula:
399 	 *           (prescale + 1) * (period_steps + 1)
400 	 * period = -------------------------------------
401 	 *                      clk_rate
402 	 *
403 	 * Note:
404 	 * The prescale and period_steps registers operate similarly to
405 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
406 	 * in the register plus one.
407 	 */
408 	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
409 	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
410 
411 	state->period = (period_steps + 1) * (prescale + 1);
412 	state->period *= NSEC_PER_SEC;
413 	state->period = DIV64_U64_ROUND_UP(state->period, rate);
414 
415 	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
416 	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
417 
418 	mutex_unlock(&mchp_core_pwm->lock);
419 
420 	if (negedge == posedge) {
421 		state->duty_cycle = state->period;
422 		state->period *= 2;
423 	} else {
424 		duty_steps = abs((s16)posedge - (s16)negedge);
425 		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
426 		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
427 	}
428 
429 	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
430 
431 	return 0;
432 }
433 
434 static const struct pwm_ops mchp_core_pwm_ops = {
435 	.apply = mchp_core_pwm_apply,
436 	.get_state = mchp_core_pwm_get_state,
437 };
438 
439 static const struct of_device_id mchp_core_of_match[] = {
440 	{
441 		.compatible = "microchip,corepwm-rtl-v4",
442 	},
443 	{ /* sentinel */ }
444 };
445 MODULE_DEVICE_TABLE(of, mchp_core_of_match);
446 
447 static int mchp_core_pwm_probe(struct platform_device *pdev)
448 {
449 	struct pwm_chip *chip;
450 	struct mchp_core_pwm_chip *mchp_core_pwm;
451 	struct resource *regs;
452 	int ret;
453 
454 	chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm));
455 	if (IS_ERR(chip))
456 		return PTR_ERR(chip);
457 	mchp_core_pwm = to_mchp_core_pwm(chip);
458 
459 	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
460 	if (IS_ERR(mchp_core_pwm->base))
461 		return PTR_ERR(mchp_core_pwm->base);
462 
463 	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
464 	if (IS_ERR(mchp_core_pwm->clk))
465 		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
466 				     "failed to get PWM clock\n");
467 
468 	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
469 				 &mchp_core_pwm->sync_update_mask))
470 		mchp_core_pwm->sync_update_mask = 0;
471 
472 	mutex_init(&mchp_core_pwm->lock);
473 
474 	chip->ops = &mchp_core_pwm_ops;
475 
476 	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
477 	mchp_core_pwm->channel_enabled |=
478 		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
479 
480 	/*
481 	 * Enable synchronous update mode for all channels for which shadow
482 	 * registers have been synthesised.
483 	 */
484 	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
485 	mchp_core_pwm->update_timestamp = ktime_get();
486 
487 	ret = devm_pwmchip_add(&pdev->dev, chip);
488 	if (ret)
489 		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
490 
491 	return 0;
492 }
493 
494 static struct platform_driver mchp_core_pwm_driver = {
495 	.driver = {
496 		.name = "mchp-core-pwm",
497 		.of_match_table = mchp_core_of_match,
498 	},
499 	.probe = mchp_core_pwm_probe,
500 };
501 module_platform_driver(mchp_core_pwm_driver);
502 
503 MODULE_LICENSE("GPL");
504 MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
505 MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
506