1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * corePWM driver for Microchip "soft" FPGA IP cores. 4 * 5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. 6 * Author: Conor Dooley <conor.dooley@microchip.com> 7 * Documentation: 8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb 9 * 10 * Limitations: 11 * - If the IP block is configured without "shadow registers", all register 12 * writes will take effect immediately, causing glitches on the output. 13 * If shadow registers *are* enabled, setting the "SYNC_UPDATE" register 14 * notifies the core that it needs to update the registers defining the 15 * waveform from the contents of the "shadow registers". Otherwise, changes 16 * will take effective immediately, even for those channels. 17 * As setting the period/duty cycle takes 4 register writes, there is a window 18 * in which this races against the start of a new period. 19 * - The IP block has no concept of a duty cycle, only rising/falling edges of 20 * the waveform. Unfortunately, if the rising & falling edges registers have 21 * the same value written to them the IP block will do whichever of a rising 22 * or a falling edge is possible. I.E. a 50% waveform at twice the requested 23 * period. Therefore to get a 0% waveform, the output is set the max high/low 24 * time depending on polarity. 25 * If the duty cycle is 0%, and the requested period is less than the 26 * available period resolution, this will manifest as a ~100% waveform (with 27 * some output glitches) rather than 50%. 28 * - The PWM period is set for the whole IP block not per channel. The driver 29 * will only change the period if no other PWM output is enabled. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/delay.h> 34 #include <linux/err.h> 35 #include <linux/io.h> 36 #include <linux/ktime.h> 37 #include <linux/math.h> 38 #include <linux/module.h> 39 #include <linux/mutex.h> 40 #include <linux/of.h> 41 #include <linux/platform_device.h> 42 #include <linux/pwm.h> 43 44 #define MCHPCOREPWM_PRESCALE_MAX 0xff 45 #define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe 46 #define MCHPCOREPWM_PERIOD_MAX 0xff00 47 48 #define MCHPCOREPWM_PRESCALE 0x00 49 #define MCHPCOREPWM_PERIOD 0x04 50 #define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ 51 #define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ 52 #define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ 53 #define MCHPCOREPWM_SYNC_UPD 0xe4 54 #define MCHPCOREPWM_TIMEOUT_MS 100u 55 56 struct mchp_core_pwm_chip { 57 struct clk *clk; 58 void __iomem *base; 59 struct mutex lock; /* protects the shared period */ 60 ktime_t update_timestamp; 61 u32 sync_update_mask; 62 u16 channel_enabled; 63 }; 64 65 static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) 66 { 67 return pwmchip_get_drvdata(chip); 68 } 69 70 static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, 71 bool enable, u64 period) 72 { 73 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 74 u8 channel_enable, reg_offset, shift; 75 76 /* 77 * There are two adjacent 8 bit control regs, the lower reg controls 78 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg 79 * and if so, offset by the bus width. 80 */ 81 reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); 82 shift = pwm->hwpwm & 7; 83 84 channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); 85 channel_enable &= ~(1 << shift); 86 channel_enable |= (enable << shift); 87 88 writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); 89 mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); 90 mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; 91 92 /* 93 * The updated values will not appear on the bus until they have been 94 * applied to the waveform at the beginning of the next period. 95 * This is a NO-OP if the channel does not have shadow registers. 96 */ 97 if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) 98 mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); 99 } 100 101 static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, 102 unsigned int channel) 103 { 104 /* 105 * If a shadow register is used for this PWM channel, and iff there is 106 * a pending update to the waveform, we must wait for it to be applied 107 * before attempting to read its state. Reading the registers yields 108 * the currently implemented settings & the new ones are only readable 109 * once the current period has ended. 110 */ 111 112 if (mchp_core_pwm->sync_update_mask & (1 << channel)) { 113 ktime_t current_time = ktime_get(); 114 s64 remaining_ns; 115 u32 delay_us; 116 117 remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, 118 current_time)); 119 120 /* 121 * If the update has gone through, don't bother waiting for 122 * obvious reasons. Otherwise wait around for an appropriate 123 * amount of time for the update to go through. 124 */ 125 if (remaining_ns <= 0) 126 return; 127 128 delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); 129 fsleep(delay_us); 130 } 131 } 132 133 static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, 134 u8 prescale, u8 period_steps) 135 { 136 u64 duty_steps, tmp; 137 138 /* 139 * Calculate the duty cycle in multiples of the prescaled period: 140 * duty_steps = duty_in_ns / step_in_ns 141 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate 142 * The code below is rearranged slightly to only divide once. 143 */ 144 tmp = (((u64)prescale) + 1) * NSEC_PER_SEC; 145 duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); 146 147 return duty_steps; 148 } 149 150 static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, 151 const struct pwm_state *state, u64 duty_steps, 152 u16 period_steps) 153 { 154 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 155 u8 posedge, negedge; 156 u8 first_edge = 0, second_edge = duty_steps; 157 158 /* 159 * Setting posedge == negedge doesn't yield a constant output, 160 * so that's an unsuitable setting to model duty_steps = 0. 161 * In that case set the unwanted edge to a value that never 162 * triggers. 163 */ 164 if (duty_steps == 0) 165 first_edge = period_steps + 1; 166 167 if (state->polarity == PWM_POLARITY_INVERSED) { 168 negedge = first_edge; 169 posedge = second_edge; 170 } else { 171 posedge = first_edge; 172 negedge = second_edge; 173 } 174 175 /* 176 * Set the sync bit which ensures that periods that already started are 177 * completed unaltered. At each counter reset event the values are 178 * updated from the shadow registers. 179 */ 180 writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); 181 writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); 182 } 183 184 static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, 185 u16 *prescale, u16 *period_steps) 186 { 187 u64 tmp; 188 189 /* 190 * Calculate the period cycles and prescale values. 191 * The registers are each 8 bits wide & multiplied to compute the period 192 * using the formula: 193 * (prescale + 1) * (period_steps + 1) 194 * period = ------------------------------------- 195 * clk_rate 196 * so the maximum period that can be generated is 0x10000 times the 197 * period of the input clock. 198 * However, due to the design of the "hardware", it is not possible to 199 * attain a 100% duty cycle if the full range of period_steps is used. 200 * Therefore period_steps is restricted to 0xfe and the maximum multiple 201 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 202 * 203 * The prescale and period_steps registers operate similarly to 204 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that 205 * in the register plus one. 206 * It's therefore not possible to set a period lower than 1/clk_rate, so 207 * if tmp is 0, abort. Without aborting, we will set a period that is 208 * greater than that requested and, more importantly, will trigger the 209 * neg-/pos-edge issue described in the limitations. 210 */ 211 tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); 212 if (tmp >= MCHPCOREPWM_PERIOD_MAX) { 213 *prescale = MCHPCOREPWM_PRESCALE_MAX; 214 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; 215 216 return 0; 217 } 218 219 /* 220 * There are multiple strategies that could be used to choose the 221 * prescale & period_steps values. 222 * Here the idea is to pick values so that the selection of duty cycles 223 * is as finegrain as possible, while also keeping the period less than 224 * that requested. 225 * 226 * A simple way to satisfy the first condition is to always set 227 * period_steps to its maximum value. This neatly also satisfies the 228 * second condition too, since using the maximum value of period_steps 229 * to calculate prescale actually calculates its upper bound. 230 * Integer division will ensure a round down, so the period will thereby 231 * always be less than that requested. 232 * 233 * The downside of this approach is a significant degree of inaccuracy, 234 * especially as tmp approaches integer multiples of 235 * MCHPCOREPWM_PERIOD_STEPS_MAX. 236 * 237 * As we must produce a period less than that requested, and for the 238 * sake of creating a simple algorithm, disallow small values of tmp 239 * that would need special handling. 240 */ 241 if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1) 242 return -EINVAL; 243 244 /* 245 * This "optimal" value for prescale is be calculated using the maximum 246 * permitted value of period_steps, 0xfe. 247 * 248 * period * clk_rate 249 * prescale = ------------------------- - 1 250 * NSEC_PER_SEC * (0xfe + 1) 251 * 252 * 253 * period * clk_rate 254 * ------------------- was precomputed as `tmp` 255 * NSEC_PER_SEC 256 */ 257 *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; 258 259 /* 260 * period_steps can be computed from prescale: 261 * period * clk_rate 262 * period_steps = ----------------------------- - 1 263 * NSEC_PER_SEC * (prescale + 1) 264 * 265 * However, in this approximation, we simply use the maximum value that 266 * was used to compute prescale. 267 */ 268 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; 269 270 return 0; 271 } 272 273 static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, 274 const struct pwm_state *state) 275 { 276 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 277 bool period_locked; 278 unsigned long clk_rate; 279 u64 duty_steps; 280 u16 prescale, period_steps; 281 int ret; 282 283 if (!state->enabled) { 284 mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); 285 return 0; 286 } 287 288 /* 289 * If clk_rate is too big, the following multiplication might overflow. 290 * However this is implausible, as the fabric of current FPGAs cannot 291 * provide clocks at a rate high enough. 292 */ 293 clk_rate = clk_get_rate(mchp_core_pwm->clk); 294 if (clk_rate >= NSEC_PER_SEC) 295 return -EINVAL; 296 297 ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); 298 if (ret) 299 return ret; 300 301 /* 302 * If the only thing that has changed is the duty cycle or the polarity, 303 * we can shortcut the calculations and just compute/apply the new duty 304 * cycle pos & neg edges 305 * As all the channels share the same period, do not allow it to be 306 * changed if any other channels are enabled. 307 * If the period is locked, it may not be possible to use a period 308 * less than that requested. In that case, we just abort. 309 */ 310 period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); 311 312 if (period_locked) { 313 u16 hw_prescale; 314 u16 hw_period_steps; 315 316 hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 317 hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 318 319 if ((period_steps + 1) * (prescale + 1) < 320 (hw_period_steps + 1) * (hw_prescale + 1)) 321 return -EINVAL; 322 323 /* 324 * It is possible that something could have set the period_steps 325 * register to 0xff, which would prevent us from setting a 100% 326 * or 0% relative duty cycle, as explained above in 327 * mchp_core_pwm_calc_period(). 328 * The period is locked and we cannot change this, so we abort. 329 */ 330 if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) 331 return -EINVAL; 332 333 prescale = hw_prescale; 334 period_steps = hw_period_steps; 335 } 336 337 duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); 338 339 /* 340 * Because the period is not per channel, it is possible that the 341 * requested duty cycle is longer than the period, in which case cap it 342 * to the period, IOW a 100% duty cycle. 343 */ 344 if (duty_steps > period_steps) 345 duty_steps = period_steps + 1; 346 347 if (!period_locked) { 348 writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 349 writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 350 } 351 352 mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); 353 354 mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); 355 356 return 0; 357 } 358 359 static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 360 const struct pwm_state *state) 361 { 362 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 363 int ret; 364 365 mutex_lock(&mchp_core_pwm->lock); 366 367 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); 368 369 ret = mchp_core_pwm_apply_locked(chip, pwm, state); 370 371 mutex_unlock(&mchp_core_pwm->lock); 372 373 return ret; 374 } 375 376 static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 377 struct pwm_state *state) 378 { 379 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 380 u64 rate; 381 u16 prescale, period_steps; 382 u8 duty_steps, posedge, negedge; 383 384 mutex_lock(&mchp_core_pwm->lock); 385 386 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); 387 388 if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) 389 state->enabled = true; 390 else 391 state->enabled = false; 392 393 rate = clk_get_rate(mchp_core_pwm->clk); 394 395 /* 396 * Calculating the period: 397 * The registers are each 8 bits wide & multiplied to compute the period 398 * using the formula: 399 * (prescale + 1) * (period_steps + 1) 400 * period = ------------------------------------- 401 * clk_rate 402 * 403 * Note: 404 * The prescale and period_steps registers operate similarly to 405 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that 406 * in the register plus one. 407 */ 408 prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 409 period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 410 411 state->period = (period_steps + 1) * (prescale + 1); 412 state->period *= NSEC_PER_SEC; 413 state->period = DIV64_U64_ROUND_UP(state->period, rate); 414 415 posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); 416 negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); 417 418 mutex_unlock(&mchp_core_pwm->lock); 419 420 if (negedge == posedge) { 421 state->duty_cycle = state->period; 422 state->period *= 2; 423 } else { 424 duty_steps = abs((s16)posedge - (s16)negedge); 425 state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; 426 state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); 427 } 428 429 state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; 430 431 return 0; 432 } 433 434 static const struct pwm_ops mchp_core_pwm_ops = { 435 .apply = mchp_core_pwm_apply, 436 .get_state = mchp_core_pwm_get_state, 437 }; 438 439 static const struct of_device_id mchp_core_of_match[] = { 440 { 441 .compatible = "microchip,corepwm-rtl-v4", 442 }, 443 { /* sentinel */ } 444 }; 445 MODULE_DEVICE_TABLE(of, mchp_core_of_match); 446 447 static int mchp_core_pwm_probe(struct platform_device *pdev) 448 { 449 struct pwm_chip *chip; 450 struct mchp_core_pwm_chip *mchp_core_pwm; 451 struct resource *regs; 452 int ret; 453 454 chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm)); 455 if (IS_ERR(chip)) 456 return PTR_ERR(chip); 457 mchp_core_pwm = to_mchp_core_pwm(chip); 458 459 mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 460 if (IS_ERR(mchp_core_pwm->base)) 461 return PTR_ERR(mchp_core_pwm->base); 462 463 mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); 464 if (IS_ERR(mchp_core_pwm->clk)) 465 return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), 466 "failed to get PWM clock\n"); 467 468 if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", 469 &mchp_core_pwm->sync_update_mask)) 470 mchp_core_pwm->sync_update_mask = 0; 471 472 mutex_init(&mchp_core_pwm->lock); 473 474 chip->ops = &mchp_core_pwm_ops; 475 476 mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); 477 mchp_core_pwm->channel_enabled |= 478 readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; 479 480 /* 481 * Enable synchronous update mode for all channels for which shadow 482 * registers have been synthesised. 483 */ 484 writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); 485 mchp_core_pwm->update_timestamp = ktime_get(); 486 487 ret = devm_pwmchip_add(&pdev->dev, chip); 488 if (ret) 489 return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); 490 491 return 0; 492 } 493 494 static struct platform_driver mchp_core_pwm_driver = { 495 .driver = { 496 .name = "mchp-core-pwm", 497 .of_match_table = mchp_core_of_match, 498 }, 499 .probe = mchp_core_pwm_probe, 500 }; 501 module_platform_driver(mchp_core_pwm_driver); 502 503 MODULE_LICENSE("GPL"); 504 MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); 505 MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs"); 506