1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * corePWM driver for Microchip "soft" FPGA IP cores. 4 * 5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. 6 * Author: Conor Dooley <conor.dooley@microchip.com> 7 * Documentation: 8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb 9 * 10 * Limitations: 11 * - If the IP block is configured without "shadow registers", all register 12 * writes will take effect immediately, causing glitches on the output. 13 * If shadow registers *are* enabled, setting the "SYNC_UPDATE" register 14 * notifies the core that it needs to update the registers defining the 15 * waveform from the contents of the "shadow registers". Otherwise, changes 16 * will take effective immediately, even for those channels. 17 * As setting the period/duty cycle takes 4 register writes, there is a window 18 * in which this races against the start of a new period. 19 * - The IP block has no concept of a duty cycle, only rising/falling edges of 20 * the waveform. Unfortunately, if the rising & falling edges registers have 21 * the same value written to them the IP block will do whichever of a rising 22 * or a falling edge is possible. I.E. a 50% waveform at twice the requested 23 * period. Therefore to get a 0% waveform, the output is set the max high/low 24 * time depending on polarity. 25 * If the duty cycle is 0%, and the requested period is less than the 26 * available period resolution, this will manifest as a ~100% waveform (with 27 * some output glitches) rather than 50%. 28 * - The PWM period is set for the whole IP block not per channel. The driver 29 * will only change the period if no other PWM output is enabled. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/delay.h> 34 #include <linux/err.h> 35 #include <linux/io.h> 36 #include <linux/ktime.h> 37 #include <linux/math.h> 38 #include <linux/module.h> 39 #include <linux/of.h> 40 #include <linux/platform_device.h> 41 #include <linux/pwm.h> 42 43 #define MCHPCOREPWM_PRESCALE_MAX 0xff 44 #define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe 45 #define MCHPCOREPWM_PERIOD_MAX 0xff00 46 47 #define MCHPCOREPWM_PRESCALE 0x00 48 #define MCHPCOREPWM_PERIOD 0x04 49 #define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ 50 #define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ 51 #define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ 52 #define MCHPCOREPWM_SYNC_UPD 0xe4 53 #define MCHPCOREPWM_TIMEOUT_MS 100u 54 55 struct mchp_core_pwm_chip { 56 struct clk *clk; 57 void __iomem *base; 58 ktime_t update_timestamp; 59 u32 sync_update_mask; 60 u16 channel_enabled; 61 }; 62 63 static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) 64 { 65 return pwmchip_get_drvdata(chip); 66 } 67 68 static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, 69 bool enable, u64 period) 70 { 71 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 72 u8 channel_enable, reg_offset, shift; 73 74 /* 75 * There are two adjacent 8 bit control regs, the lower reg controls 76 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg 77 * and if so, offset by the bus width. 78 */ 79 reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); 80 shift = pwm->hwpwm & 7; 81 82 channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); 83 channel_enable &= ~(1 << shift); 84 channel_enable |= (enable << shift); 85 86 writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); 87 mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); 88 mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; 89 90 /* 91 * The updated values will not appear on the bus until they have been 92 * applied to the waveform at the beginning of the next period. 93 * This is a NO-OP if the channel does not have shadow registers. 94 */ 95 if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) 96 mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); 97 } 98 99 static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, 100 unsigned int channel) 101 { 102 /* 103 * If a shadow register is used for this PWM channel, and iff there is 104 * a pending update to the waveform, we must wait for it to be applied 105 * before attempting to read its state. Reading the registers yields 106 * the currently implemented settings & the new ones are only readable 107 * once the current period has ended. 108 */ 109 110 if (mchp_core_pwm->sync_update_mask & (1 << channel)) { 111 ktime_t current_time = ktime_get(); 112 s64 remaining_ns; 113 u32 delay_us; 114 115 remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, 116 current_time)); 117 118 /* 119 * If the update has gone through, don't bother waiting for 120 * obvious reasons. Otherwise wait around for an appropriate 121 * amount of time for the update to go through. 122 */ 123 if (remaining_ns <= 0) 124 return; 125 126 delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); 127 fsleep(delay_us); 128 } 129 } 130 131 static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, 132 u8 prescale, u8 period_steps) 133 { 134 u64 duty_steps, tmp; 135 136 /* 137 * Calculate the duty cycle in multiples of the prescaled period: 138 * duty_steps = duty_in_ns / step_in_ns 139 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate 140 * The code below is rearranged slightly to only divide once. 141 */ 142 tmp = (((u64)prescale) + 1) * NSEC_PER_SEC; 143 duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); 144 145 return duty_steps; 146 } 147 148 static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, 149 const struct pwm_state *state, u64 duty_steps, 150 u16 period_steps) 151 { 152 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 153 u8 posedge, negedge; 154 u8 first_edge = 0, second_edge = duty_steps; 155 156 /* 157 * Setting posedge == negedge doesn't yield a constant output, 158 * so that's an unsuitable setting to model duty_steps = 0. 159 * In that case set the unwanted edge to a value that never 160 * triggers. 161 */ 162 if (duty_steps == 0) 163 first_edge = period_steps + 1; 164 165 if (state->polarity == PWM_POLARITY_INVERSED) { 166 negedge = first_edge; 167 posedge = second_edge; 168 } else { 169 posedge = first_edge; 170 negedge = second_edge; 171 } 172 173 /* 174 * Set the sync bit which ensures that periods that already started are 175 * completed unaltered. At each counter reset event the values are 176 * updated from the shadow registers. 177 */ 178 writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); 179 writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); 180 } 181 182 static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, 183 u16 *prescale, u16 *period_steps) 184 { 185 u64 tmp; 186 187 /* 188 * Calculate the period cycles and prescale values. 189 * The registers are each 8 bits wide & multiplied to compute the period 190 * using the formula: 191 * (prescale + 1) * (period_steps + 1) 192 * period = ------------------------------------- 193 * clk_rate 194 * so the maximum period that can be generated is 0x10000 times the 195 * period of the input clock. 196 * However, due to the design of the "hardware", it is not possible to 197 * attain a 100% duty cycle if the full range of period_steps is used. 198 * Therefore period_steps is restricted to 0xfe and the maximum multiple 199 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 200 * 201 * The prescale and period_steps registers operate similarly to 202 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that 203 * in the register plus one. 204 * It's therefore not possible to set a period lower than 1/clk_rate, so 205 * if tmp is 0, abort. Without aborting, we will set a period that is 206 * greater than that requested and, more importantly, will trigger the 207 * neg-/pos-edge issue described in the limitations. 208 */ 209 tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); 210 if (tmp >= MCHPCOREPWM_PERIOD_MAX) { 211 *prescale = MCHPCOREPWM_PRESCALE_MAX; 212 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; 213 214 return 0; 215 } 216 217 /* 218 * There are multiple strategies that could be used to choose the 219 * prescale & period_steps values. 220 * Here the idea is to pick values so that the selection of duty cycles 221 * is as finegrain as possible, while also keeping the period less than 222 * that requested. 223 * 224 * A simple way to satisfy the first condition is to always set 225 * period_steps to its maximum value. This neatly also satisfies the 226 * second condition too, since using the maximum value of period_steps 227 * to calculate prescale actually calculates its upper bound. 228 * Integer division will ensure a round down, so the period will thereby 229 * always be less than that requested. 230 * 231 * The downside of this approach is a significant degree of inaccuracy, 232 * especially as tmp approaches integer multiples of 233 * MCHPCOREPWM_PERIOD_STEPS_MAX. 234 * 235 * As we must produce a period less than that requested, and for the 236 * sake of creating a simple algorithm, disallow small values of tmp 237 * that would need special handling. 238 */ 239 if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1) 240 return -EINVAL; 241 242 /* 243 * This "optimal" value for prescale is be calculated using the maximum 244 * permitted value of period_steps, 0xfe. 245 * 246 * period * clk_rate 247 * prescale = ------------------------- - 1 248 * NSEC_PER_SEC * (0xfe + 1) 249 * 250 * 251 * period * clk_rate 252 * ------------------- was precomputed as `tmp` 253 * NSEC_PER_SEC 254 */ 255 *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; 256 257 /* 258 * period_steps can be computed from prescale: 259 * period * clk_rate 260 * period_steps = ----------------------------- - 1 261 * NSEC_PER_SEC * (prescale + 1) 262 * 263 * However, in this approximation, we simply use the maximum value that 264 * was used to compute prescale. 265 */ 266 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; 267 268 return 0; 269 } 270 271 static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, 272 const struct pwm_state *state) 273 { 274 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 275 bool period_locked; 276 unsigned long clk_rate; 277 u64 duty_steps; 278 u16 prescale, period_steps; 279 int ret; 280 281 if (!state->enabled) { 282 mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); 283 return 0; 284 } 285 286 /* 287 * If clk_rate is too big, the following multiplication might overflow. 288 * However this is implausible, as the fabric of current FPGAs cannot 289 * provide clocks at a rate high enough. 290 */ 291 clk_rate = clk_get_rate(mchp_core_pwm->clk); 292 if (clk_rate >= NSEC_PER_SEC) 293 return -EINVAL; 294 295 ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); 296 if (ret) 297 return ret; 298 299 /* 300 * If the only thing that has changed is the duty cycle or the polarity, 301 * we can shortcut the calculations and just compute/apply the new duty 302 * cycle pos & neg edges 303 * As all the channels share the same period, do not allow it to be 304 * changed if any other channels are enabled. 305 * If the period is locked, it may not be possible to use a period 306 * less than that requested. In that case, we just abort. 307 */ 308 period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); 309 310 if (period_locked) { 311 u16 hw_prescale; 312 u16 hw_period_steps; 313 314 hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 315 hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 316 317 if ((period_steps + 1) * (prescale + 1) < 318 (hw_period_steps + 1) * (hw_prescale + 1)) 319 return -EINVAL; 320 321 /* 322 * It is possible that something could have set the period_steps 323 * register to 0xff, which would prevent us from setting a 100% 324 * or 0% relative duty cycle, as explained above in 325 * mchp_core_pwm_calc_period(). 326 * The period is locked and we cannot change this, so we abort. 327 */ 328 if (hw_period_steps > MCHPCOREPWM_PERIOD_STEPS_MAX) 329 return -EINVAL; 330 331 prescale = hw_prescale; 332 period_steps = hw_period_steps; 333 } 334 335 duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); 336 337 /* 338 * Because the period is not per channel, it is possible that the 339 * requested duty cycle is longer than the period, in which case cap it 340 * to the period, IOW a 100% duty cycle. 341 */ 342 if (duty_steps > period_steps) 343 duty_steps = period_steps + 1; 344 345 if (!period_locked) { 346 writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 347 writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 348 } 349 350 mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); 351 352 mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); 353 354 return 0; 355 } 356 357 static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, 358 const struct pwm_state *state) 359 { 360 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 361 362 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); 363 364 return mchp_core_pwm_apply_locked(chip, pwm, state); 365 } 366 367 static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, 368 struct pwm_state *state) 369 { 370 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); 371 u64 rate; 372 u16 prescale, period_steps; 373 u8 duty_steps, posedge, negedge; 374 375 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); 376 377 if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) 378 state->enabled = true; 379 else 380 state->enabled = false; 381 382 rate = clk_get_rate(mchp_core_pwm->clk); 383 384 /* 385 * Calculating the period: 386 * The registers are each 8 bits wide & multiplied to compute the period 387 * using the formula: 388 * (prescale + 1) * (period_steps + 1) 389 * period = ------------------------------------- 390 * clk_rate 391 * 392 * Note: 393 * The prescale and period_steps registers operate similarly to 394 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that 395 * in the register plus one. 396 */ 397 prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); 398 period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); 399 400 state->period = (period_steps + 1) * (prescale + 1); 401 state->period *= NSEC_PER_SEC; 402 state->period = DIV64_U64_ROUND_UP(state->period, rate); 403 404 posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); 405 negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); 406 407 if (negedge == posedge) { 408 state->duty_cycle = state->period; 409 state->period *= 2; 410 } else { 411 duty_steps = abs((s16)posedge - (s16)negedge); 412 state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; 413 state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); 414 } 415 416 state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; 417 418 return 0; 419 } 420 421 static const struct pwm_ops mchp_core_pwm_ops = { 422 .apply = mchp_core_pwm_apply, 423 .get_state = mchp_core_pwm_get_state, 424 }; 425 426 static const struct of_device_id mchp_core_of_match[] = { 427 { 428 .compatible = "microchip,corepwm-rtl-v4", 429 }, 430 { /* sentinel */ } 431 }; 432 MODULE_DEVICE_TABLE(of, mchp_core_of_match); 433 434 static int mchp_core_pwm_probe(struct platform_device *pdev) 435 { 436 struct pwm_chip *chip; 437 struct mchp_core_pwm_chip *mchp_core_pwm; 438 struct resource *regs; 439 int ret; 440 441 chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm)); 442 if (IS_ERR(chip)) 443 return PTR_ERR(chip); 444 mchp_core_pwm = to_mchp_core_pwm(chip); 445 446 mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 447 if (IS_ERR(mchp_core_pwm->base)) 448 return PTR_ERR(mchp_core_pwm->base); 449 450 mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); 451 if (IS_ERR(mchp_core_pwm->clk)) 452 return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), 453 "failed to get PWM clock\n"); 454 455 if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", 456 &mchp_core_pwm->sync_update_mask)) 457 mchp_core_pwm->sync_update_mask = 0; 458 459 chip->ops = &mchp_core_pwm_ops; 460 461 mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); 462 mchp_core_pwm->channel_enabled |= 463 readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; 464 465 /* 466 * Enable synchronous update mode for all channels for which shadow 467 * registers have been synthesised. 468 */ 469 writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); 470 mchp_core_pwm->update_timestamp = ktime_get(); 471 472 ret = devm_pwmchip_add(&pdev->dev, chip); 473 if (ret) 474 return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); 475 476 return 0; 477 } 478 479 static struct platform_driver mchp_core_pwm_driver = { 480 .driver = { 481 .name = "mchp-core-pwm", 482 .of_match_table = mchp_core_of_match, 483 }, 484 .probe = mchp_core_pwm_probe, 485 }; 486 module_platform_driver(mchp_core_pwm_driver); 487 488 MODULE_LICENSE("GPL"); 489 MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); 490 MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs"); 491