xref: /linux/drivers/pwm/pwm-lpss.c (revision a48b0872e69428d3d02994dcfad3519f01def7fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/time.h>
20 
21 #include "pwm-lpss.h"
22 
23 #define PWM				0x00000000
24 #define PWM_ENABLE			BIT(31)
25 #define PWM_SW_UPDATE			BIT(30)
26 #define PWM_BASE_UNIT_SHIFT		8
27 #define PWM_ON_TIME_DIV_MASK		0x000000ff
28 
29 /* Size of each PWM register space if multiple */
30 #define PWM_SIZE			0x400
31 
32 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
33 {
34 	return container_of(chip, struct pwm_lpss_chip, chip);
35 }
36 
37 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
38 {
39 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
40 
41 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
42 }
43 
44 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
45 {
46 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
47 
48 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
49 }
50 
51 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
52 {
53 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
54 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
55 	const unsigned int ms = 500 * USEC_PER_MSEC;
56 	u32 val;
57 	int err;
58 
59 	/*
60 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
61 	 * configuration is written to the register. The bit is automatically
62 	 * cleared at the start of the next output cycle by the IP block.
63 	 *
64 	 * If one writes a new configuration to the register while it still has
65 	 * the bit enabled, PWM may freeze. That is, while one can still write
66 	 * to the register, it won't have an effect. Thus, we try to sleep long
67 	 * enough that the bit gets cleared and make sure the bit is not
68 	 * enabled while we update the configuration.
69 	 */
70 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
71 	if (err)
72 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
73 
74 	return err;
75 }
76 
77 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
78 {
79 	if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
80 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n");
81 		return -EBUSY;
82 	}
83 
84 	return 0;
85 }
86 
87 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
88 			     int duty_ns, int period_ns)
89 {
90 	unsigned long long on_time_div;
91 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
92 	unsigned long long base_unit, freq = NSEC_PER_SEC;
93 	u32 ctrl;
94 
95 	do_div(freq, period_ns);
96 
97 	/*
98 	 * The equation is:
99 	 * base_unit = round(base_unit_range * freq / c)
100 	 */
101 	base_unit_range = BIT(lpwm->info->base_unit_bits);
102 	freq *= base_unit_range;
103 
104 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
105 	/* base_unit must not be 0 and we also want to avoid overflowing it */
106 	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
107 
108 	on_time_div = 255ULL * duty_ns;
109 	do_div(on_time_div, period_ns);
110 	on_time_div = 255ULL - on_time_div;
111 
112 	ctrl = pwm_lpss_read(pwm);
113 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
114 	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
115 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
116 	ctrl |= on_time_div;
117 
118 	pwm_lpss_write(pwm, ctrl);
119 	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
120 }
121 
122 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
123 {
124 	if (cond)
125 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
126 }
127 
128 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
129 				   struct pwm_device *pwm,
130 				   const struct pwm_state *state)
131 {
132 	int ret;
133 
134 	ret = pwm_lpss_is_updating(pwm);
135 	if (ret)
136 		return ret;
137 
138 	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
139 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
140 	ret = pwm_lpss_wait_for_update(pwm);
141 	if (ret)
142 		return ret;
143 
144 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
145 	return 0;
146 }
147 
148 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
149 			  const struct pwm_state *state)
150 {
151 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
152 	int ret = 0;
153 
154 	if (state->enabled) {
155 		if (!pwm_is_enabled(pwm)) {
156 			pm_runtime_get_sync(chip->dev);
157 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
158 			if (ret)
159 				pm_runtime_put(chip->dev);
160 		} else {
161 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
162 		}
163 	} else if (pwm_is_enabled(pwm)) {
164 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
165 		pm_runtime_put(chip->dev);
166 	}
167 
168 	return ret;
169 }
170 
171 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
172 			       struct pwm_state *state)
173 {
174 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
175 	unsigned long base_unit_range;
176 	unsigned long long base_unit, freq, on_time_div;
177 	u32 ctrl;
178 
179 	pm_runtime_get_sync(chip->dev);
180 
181 	base_unit_range = BIT(lpwm->info->base_unit_bits);
182 
183 	ctrl = pwm_lpss_read(pwm);
184 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
185 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
186 
187 	freq = base_unit * lpwm->info->clk_rate;
188 	do_div(freq, base_unit_range);
189 	if (freq == 0)
190 		state->period = NSEC_PER_SEC;
191 	else
192 		state->period = NSEC_PER_SEC / (unsigned long)freq;
193 
194 	on_time_div *= state->period;
195 	do_div(on_time_div, 255);
196 	state->duty_cycle = on_time_div;
197 
198 	state->polarity = PWM_POLARITY_NORMAL;
199 	state->enabled = !!(ctrl & PWM_ENABLE);
200 
201 	pm_runtime_put(chip->dev);
202 }
203 
204 static const struct pwm_ops pwm_lpss_ops = {
205 	.apply = pwm_lpss_apply,
206 	.get_state = pwm_lpss_get_state,
207 	.owner = THIS_MODULE,
208 };
209 
210 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
211 				     const struct pwm_lpss_boardinfo *info)
212 {
213 	struct pwm_lpss_chip *lpwm;
214 	unsigned long c;
215 	int i, ret;
216 	u32 ctrl;
217 
218 	if (WARN_ON(info->npwm > MAX_PWMS))
219 		return ERR_PTR(-ENODEV);
220 
221 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
222 	if (!lpwm)
223 		return ERR_PTR(-ENOMEM);
224 
225 	lpwm->regs = devm_ioremap_resource(dev, r);
226 	if (IS_ERR(lpwm->regs))
227 		return ERR_CAST(lpwm->regs);
228 
229 	lpwm->info = info;
230 
231 	c = lpwm->info->clk_rate;
232 	if (!c)
233 		return ERR_PTR(-EINVAL);
234 
235 	lpwm->chip.dev = dev;
236 	lpwm->chip.ops = &pwm_lpss_ops;
237 	lpwm->chip.npwm = info->npwm;
238 
239 	ret = pwmchip_add(&lpwm->chip);
240 	if (ret) {
241 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
242 		return ERR_PTR(ret);
243 	}
244 
245 	for (i = 0; i < lpwm->info->npwm; i++) {
246 		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
247 		if (ctrl & PWM_ENABLE)
248 			pm_runtime_get(dev);
249 	}
250 
251 	return lpwm;
252 }
253 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
254 
255 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
256 {
257 	return pwmchip_remove(&lpwm->chip);
258 }
259 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
260 
261 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
262 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
263 MODULE_LICENSE("GPL v2");
264