xref: /linux/drivers/pwm/pwm-lpss.c (revision 547f574fd9d5e3925d47fd44decbf6ab6df94b0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Low Power Subsystem PWM controller driver
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
8  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
9  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
10  * Author: Alan Cox <alan@linux.intel.com>
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/time.h>
20 
21 #include "pwm-lpss.h"
22 
23 #define PWM				0x00000000
24 #define PWM_ENABLE			BIT(31)
25 #define PWM_SW_UPDATE			BIT(30)
26 #define PWM_BASE_UNIT_SHIFT		8
27 #define PWM_ON_TIME_DIV_MASK		0x000000ff
28 
29 /* Size of each PWM register space if multiple */
30 #define PWM_SIZE			0x400
31 
32 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
33 {
34 	return container_of(chip, struct pwm_lpss_chip, chip);
35 }
36 
37 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
38 {
39 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
40 
41 	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
42 }
43 
44 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
45 {
46 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
47 
48 	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
49 }
50 
51 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
52 {
53 	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
54 	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
55 	const unsigned int ms = 500 * USEC_PER_MSEC;
56 	u32 val;
57 	int err;
58 
59 	/*
60 	 * PWM Configuration register has SW_UPDATE bit that is set when a new
61 	 * configuration is written to the register. The bit is automatically
62 	 * cleared at the start of the next output cycle by the IP block.
63 	 *
64 	 * If one writes a new configuration to the register while it still has
65 	 * the bit enabled, PWM may freeze. That is, while one can still write
66 	 * to the register, it won't have an effect. Thus, we try to sleep long
67 	 * enough that the bit gets cleared and make sure the bit is not
68 	 * enabled while we update the configuration.
69 	 */
70 	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
71 	if (err)
72 		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
73 
74 	return err;
75 }
76 
77 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
78 {
79 	return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
80 }
81 
82 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
83 			     int duty_ns, int period_ns)
84 {
85 	unsigned long long on_time_div;
86 	unsigned long c = lpwm->info->clk_rate, base_unit_range;
87 	unsigned long long base_unit, freq = NSEC_PER_SEC;
88 	u32 ctrl;
89 
90 	do_div(freq, period_ns);
91 
92 	/*
93 	 * The equation is:
94 	 * base_unit = round(base_unit_range * freq / c)
95 	 */
96 	base_unit_range = BIT(lpwm->info->base_unit_bits);
97 	freq *= base_unit_range;
98 
99 	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
100 	/* base_unit must not be 0 and we also want to avoid overflowing it */
101 	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
102 
103 	on_time_div = 255ULL * duty_ns;
104 	do_div(on_time_div, period_ns);
105 	on_time_div = 255ULL - on_time_div;
106 
107 	ctrl = pwm_lpss_read(pwm);
108 	ctrl &= ~PWM_ON_TIME_DIV_MASK;
109 	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
110 	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
111 	ctrl |= on_time_div;
112 
113 	pwm_lpss_write(pwm, ctrl);
114 	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
115 }
116 
117 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
118 {
119 	if (cond)
120 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
121 }
122 
123 static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
124 				   struct pwm_device *pwm,
125 				   const struct pwm_state *state)
126 {
127 	int ret;
128 
129 	ret = pwm_lpss_is_updating(pwm);
130 	if (ret)
131 		return ret;
132 
133 	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
134 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
135 	ret = pwm_lpss_wait_for_update(pwm);
136 	if (ret)
137 		return ret;
138 
139 	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
140 	return 0;
141 }
142 
143 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
144 			  const struct pwm_state *state)
145 {
146 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
147 	int ret = 0;
148 
149 	if (state->enabled) {
150 		if (!pwm_is_enabled(pwm)) {
151 			pm_runtime_get_sync(chip->dev);
152 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
153 			if (ret)
154 				pm_runtime_put(chip->dev);
155 		} else {
156 			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
157 		}
158 	} else if (pwm_is_enabled(pwm)) {
159 		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
160 		pm_runtime_put(chip->dev);
161 	}
162 
163 	return ret;
164 }
165 
166 static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
167 			       struct pwm_state *state)
168 {
169 	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
170 	unsigned long base_unit_range;
171 	unsigned long long base_unit, freq, on_time_div;
172 	u32 ctrl;
173 
174 	pm_runtime_get_sync(chip->dev);
175 
176 	base_unit_range = BIT(lpwm->info->base_unit_bits);
177 
178 	ctrl = pwm_lpss_read(pwm);
179 	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
180 	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
181 
182 	freq = base_unit * lpwm->info->clk_rate;
183 	do_div(freq, base_unit_range);
184 	if (freq == 0)
185 		state->period = NSEC_PER_SEC;
186 	else
187 		state->period = NSEC_PER_SEC / (unsigned long)freq;
188 
189 	on_time_div *= state->period;
190 	do_div(on_time_div, 255);
191 	state->duty_cycle = on_time_div;
192 
193 	state->polarity = PWM_POLARITY_NORMAL;
194 	state->enabled = !!(ctrl & PWM_ENABLE);
195 
196 	pm_runtime_put(chip->dev);
197 }
198 
199 static const struct pwm_ops pwm_lpss_ops = {
200 	.apply = pwm_lpss_apply,
201 	.get_state = pwm_lpss_get_state,
202 	.owner = THIS_MODULE,
203 };
204 
205 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
206 				     const struct pwm_lpss_boardinfo *info)
207 {
208 	struct pwm_lpss_chip *lpwm;
209 	unsigned long c;
210 	int i, ret;
211 	u32 ctrl;
212 
213 	if (WARN_ON(info->npwm > MAX_PWMS))
214 		return ERR_PTR(-ENODEV);
215 
216 	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
217 	if (!lpwm)
218 		return ERR_PTR(-ENOMEM);
219 
220 	lpwm->regs = devm_ioremap_resource(dev, r);
221 	if (IS_ERR(lpwm->regs))
222 		return ERR_CAST(lpwm->regs);
223 
224 	lpwm->info = info;
225 
226 	c = lpwm->info->clk_rate;
227 	if (!c)
228 		return ERR_PTR(-EINVAL);
229 
230 	lpwm->chip.dev = dev;
231 	lpwm->chip.ops = &pwm_lpss_ops;
232 	lpwm->chip.base = -1;
233 	lpwm->chip.npwm = info->npwm;
234 
235 	ret = pwmchip_add(&lpwm->chip);
236 	if (ret) {
237 		dev_err(dev, "failed to add PWM chip: %d\n", ret);
238 		return ERR_PTR(ret);
239 	}
240 
241 	for (i = 0; i < lpwm->info->npwm; i++) {
242 		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
243 		if (ctrl & PWM_ENABLE)
244 			pm_runtime_get(dev);
245 	}
246 
247 	return lpwm;
248 }
249 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
250 
251 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
252 {
253 	int i;
254 
255 	for (i = 0; i < lpwm->info->npwm; i++) {
256 		if (pwm_is_enabled(&lpwm->chip.pwms[i]))
257 			pm_runtime_put(lpwm->chip.dev);
258 	}
259 	return pwmchip_remove(&lpwm->chip);
260 }
261 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
262 
263 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
264 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
265 MODULE_LICENSE("GPL v2");
266