xref: /linux/drivers/pwm/pwm-imx-tpm.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2018-2019 NXP.
4  *
5  * Limitations:
6  * - The TPM counter and period counter are shared between
7  *   multiple channels, so all channels should use same period
8  *   settings.
9  * - Changes to polarity cannot be latched at the time of the
10  *   next period start.
11  * - Changing period and duty cycle together isn't atomic,
12  *   with the wrong timing it might happen that a period is
13  *   produced with old duty cycle but new period settings.
14  */
15 
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pwm.h>
26 #include <linux/slab.h>
27 
28 #define PWM_IMX_TPM_PARAM	0x4
29 #define PWM_IMX_TPM_GLOBAL	0x8
30 #define PWM_IMX_TPM_SC		0x10
31 #define PWM_IMX_TPM_CNT		0x14
32 #define PWM_IMX_TPM_MOD		0x18
33 #define PWM_IMX_TPM_CnSC(n)	(0x20 + (n) * 0x8)
34 #define PWM_IMX_TPM_CnV(n)	(0x24 + (n) * 0x8)
35 
36 #define PWM_IMX_TPM_PARAM_CHAN			GENMASK(7, 0)
37 
38 #define PWM_IMX_TPM_SC_PS			GENMASK(2, 0)
39 #define PWM_IMX_TPM_SC_CMOD			GENMASK(4, 3)
40 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK	FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
41 #define PWM_IMX_TPM_SC_CPWMS			BIT(5)
42 
43 #define PWM_IMX_TPM_CnSC_CHF	BIT(7)
44 #define PWM_IMX_TPM_CnSC_MSB	BIT(5)
45 #define PWM_IMX_TPM_CnSC_MSA	BIT(4)
46 
47 /*
48  * The reference manual describes this field as two separate bits. The
49  * semantic of the two bits isn't orthogonal though, so they are treated
50  * together as a 2-bit field here.
51  */
52 #define PWM_IMX_TPM_CnSC_ELS	GENMASK(3, 2)
53 #define PWM_IMX_TPM_CnSC_ELS_INVERSED	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
54 #define PWM_IMX_TPM_CnSC_ELS_NORMAL	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
55 
56 
57 #define PWM_IMX_TPM_MOD_WIDTH	16
58 #define PWM_IMX_TPM_MOD_MOD	GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
59 
60 struct imx_tpm_pwm_chip {
61 	struct clk *clk;
62 	void __iomem *base;
63 	struct mutex lock;
64 	u32 user_count;
65 	u32 enable_count;
66 	u32 real_period;
67 };
68 
69 struct imx_tpm_pwm_param {
70 	u8 prescale;
71 	u32 mod;
72 	u32 val;
73 };
74 
75 static inline struct imx_tpm_pwm_chip *
76 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
77 {
78 	return pwmchip_get_drvdata(chip);
79 }
80 
81 /*
82  * This function determines for a given pwm_state *state that a consumer
83  * might request the pwm_state *real_state that eventually is implemented
84  * by the hardware and the necessary register values (in *p) to achieve
85  * this.
86  */
87 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
88 				   struct imx_tpm_pwm_param *p,
89 				   struct pwm_state *real_state,
90 				   const struct pwm_state *state)
91 {
92 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
93 	u32 rate, prescale, period_count, clock_unit;
94 	u64 tmp;
95 
96 	rate = clk_get_rate(tpm->clk);
97 	tmp = (u64)state->period * rate;
98 	clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
99 	if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
100 		prescale = 0;
101 	else
102 		prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
103 
104 	if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
105 		return -ERANGE;
106 	p->prescale = prescale;
107 
108 	period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
109 	if (period_count == 0)
110 		return -EINVAL;
111 	p->mod = period_count - 1;
112 
113 	/* calculate real period HW can support */
114 	tmp = (u64)period_count << prescale;
115 	tmp *= NSEC_PER_SEC;
116 	real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
117 
118 	/*
119 	 * if eventually the PWM output is inactive, either
120 	 * duty cycle is 0 or status is disabled, need to
121 	 * make sure the output pin is inactive.
122 	 */
123 	if (!state->enabled)
124 		real_state->duty_cycle = 0;
125 	else
126 		real_state->duty_cycle = state->duty_cycle;
127 
128 	tmp = (u64)p->mod * real_state->duty_cycle;
129 	p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
130 
131 	real_state->polarity = state->polarity;
132 	real_state->enabled = state->enabled;
133 
134 	return 0;
135 }
136 
137 static int pwm_imx_tpm_get_state(struct pwm_chip *chip,
138 				 struct pwm_device *pwm,
139 				 struct pwm_state *state)
140 {
141 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
142 	u32 rate, val, prescale;
143 	u64 tmp;
144 
145 	/* get period */
146 	state->period = tpm->real_period;
147 
148 	/* get duty cycle */
149 	rate = clk_get_rate(tpm->clk);
150 	val = readl(tpm->base + PWM_IMX_TPM_SC);
151 	prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
152 	tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
153 	tmp = (tmp << prescale) * NSEC_PER_SEC;
154 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
155 
156 	/* get polarity */
157 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
158 	if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
159 		state->polarity = PWM_POLARITY_INVERSED;
160 	else
161 		/*
162 		 * Assume reserved values (2b00 and 2b11) to yield
163 		 * normal polarity.
164 		 */
165 		state->polarity = PWM_POLARITY_NORMAL;
166 
167 	/* get channel status */
168 	state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
169 
170 	return 0;
171 }
172 
173 /* this function is supposed to be called with mutex hold */
174 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
175 				struct imx_tpm_pwm_param *p,
176 				struct pwm_state *state,
177 				struct pwm_device *pwm)
178 {
179 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
180 	bool period_update = false;
181 	bool duty_update = false;
182 	u32 val, cmod, cur_prescale;
183 	unsigned long timeout;
184 	struct pwm_state c;
185 
186 	if (state->period != tpm->real_period) {
187 		/*
188 		 * TPM counter is shared by multiple channels, so
189 		 * prescale and period can NOT be modified when
190 		 * there are multiple channels in use with different
191 		 * period settings.
192 		 */
193 		if (tpm->user_count > 1)
194 			return -EBUSY;
195 
196 		val = readl(tpm->base + PWM_IMX_TPM_SC);
197 		cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
198 		cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
199 		if (cmod && cur_prescale != p->prescale)
200 			return -EBUSY;
201 
202 		/* set TPM counter prescale */
203 		val &= ~PWM_IMX_TPM_SC_PS;
204 		val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
205 		writel(val, tpm->base + PWM_IMX_TPM_SC);
206 
207 		/*
208 		 * set period count:
209 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
210 		 * is updated when MOD register is written.
211 		 *
212 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
213 		 * is latched into hardware when the next period starts.
214 		 */
215 		writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
216 		tpm->real_period = state->period;
217 		period_update = true;
218 	}
219 
220 	pwm_imx_tpm_get_state(chip, pwm, &c);
221 
222 	/* polarity is NOT allowed to be changed if PWM is active */
223 	if (c.enabled && c.polarity != state->polarity)
224 		return -EBUSY;
225 
226 	if (state->duty_cycle != c.duty_cycle) {
227 		/*
228 		 * set channel value:
229 		 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
230 		 * is updated when CnV register is written.
231 		 *
232 		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
233 		 * is latched into hardware when the next period starts.
234 		 */
235 		writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
236 		duty_update = true;
237 	}
238 
239 	/* make sure MOD & CnV registers are updated */
240 	if (period_update || duty_update) {
241 		timeout = jiffies + msecs_to_jiffies(tpm->real_period /
242 						     NSEC_PER_MSEC + 1);
243 		while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
244 		       || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
245 		       != p->val) {
246 			if (time_after(jiffies, timeout))
247 				return -ETIME;
248 			cpu_relax();
249 		}
250 	}
251 
252 	/*
253 	 * polarity settings will enabled/disable output status
254 	 * immediately, so if the channel is disabled, need to
255 	 * make sure MSA/MSB/ELS are set to 0 which means channel
256 	 * disabled.
257 	 */
258 	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
259 	val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
260 		 PWM_IMX_TPM_CnSC_MSB);
261 	if (state->enabled) {
262 		/*
263 		 * set polarity (for edge-aligned PWM modes)
264 		 *
265 		 * ELS[1:0] = 2b10 yields normal polarity behaviour,
266 		 * ELS[1:0] = 2b01 yields inversed polarity.
267 		 * The other values are reserved.
268 		 */
269 		val |= PWM_IMX_TPM_CnSC_MSB;
270 		val |= (state->polarity == PWM_POLARITY_NORMAL) ?
271 			PWM_IMX_TPM_CnSC_ELS_NORMAL :
272 			PWM_IMX_TPM_CnSC_ELS_INVERSED;
273 	}
274 	writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
275 
276 	/* control the counter status */
277 	if (state->enabled != c.enabled) {
278 		val = readl(tpm->base + PWM_IMX_TPM_SC);
279 		if (state->enabled) {
280 			if (++tpm->enable_count == 1)
281 				val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
282 		} else {
283 			if (--tpm->enable_count == 0)
284 				val &= ~PWM_IMX_TPM_SC_CMOD;
285 		}
286 		writel(val, tpm->base + PWM_IMX_TPM_SC);
287 	}
288 
289 	return 0;
290 }
291 
292 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
293 			     struct pwm_device *pwm,
294 			     const struct pwm_state *state)
295 {
296 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
297 	struct imx_tpm_pwm_param param;
298 	struct pwm_state real_state;
299 	int ret;
300 
301 	ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
302 	if (ret)
303 		return ret;
304 
305 	mutex_lock(&tpm->lock);
306 	ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
307 	mutex_unlock(&tpm->lock);
308 
309 	return ret;
310 }
311 
312 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
313 {
314 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
315 
316 	mutex_lock(&tpm->lock);
317 	tpm->user_count++;
318 	mutex_unlock(&tpm->lock);
319 
320 	return 0;
321 }
322 
323 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
324 {
325 	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
326 
327 	mutex_lock(&tpm->lock);
328 	tpm->user_count--;
329 	mutex_unlock(&tpm->lock);
330 }
331 
332 static const struct pwm_ops imx_tpm_pwm_ops = {
333 	.request = pwm_imx_tpm_request,
334 	.free = pwm_imx_tpm_free,
335 	.get_state = pwm_imx_tpm_get_state,
336 	.apply = pwm_imx_tpm_apply,
337 };
338 
339 static int pwm_imx_tpm_probe(struct platform_device *pdev)
340 {
341 	struct pwm_chip *chip;
342 	struct imx_tpm_pwm_chip *tpm;
343 	struct clk *clk;
344 	void __iomem *base;
345 	int ret;
346 	unsigned int npwm;
347 	u32 val;
348 
349 	base = devm_platform_ioremap_resource(pdev, 0);
350 	if (IS_ERR(base))
351 		return PTR_ERR(base);
352 
353 	clk = devm_clk_get_enabled(&pdev->dev, NULL);
354 	if (IS_ERR(clk))
355 		return dev_err_probe(&pdev->dev, PTR_ERR(clk),
356 				     "failed to get PWM clock\n");
357 
358 	/* get number of channels */
359 	val = readl(base + PWM_IMX_TPM_PARAM);
360 	npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
361 
362 	chip = devm_pwmchip_alloc(&pdev->dev, npwm, sizeof(*tpm));
363 	if (IS_ERR(chip))
364 		return PTR_ERR(chip);
365 	tpm = to_imx_tpm_pwm_chip(chip);
366 
367 	platform_set_drvdata(pdev, tpm);
368 
369 	tpm->base = base;
370 	tpm->clk = clk;
371 
372 	chip->ops = &imx_tpm_pwm_ops;
373 
374 	mutex_init(&tpm->lock);
375 
376 	ret = devm_pwmchip_add(&pdev->dev, chip);
377 	if (ret)
378 		return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
379 
380 	return 0;
381 }
382 
383 static int pwm_imx_tpm_suspend(struct device *dev)
384 {
385 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
386 	int ret;
387 
388 	if (tpm->enable_count > 0)
389 		return -EBUSY;
390 
391 	/*
392 	 * Force 'real_period' to be zero to force period update code
393 	 * can be executed after system resume back, since suspend causes
394 	 * the period related registers to become their reset values.
395 	 */
396 	tpm->real_period = 0;
397 
398 	clk_disable_unprepare(tpm->clk);
399 
400 	ret = pinctrl_pm_select_sleep_state(dev);
401 	if (ret)
402 		clk_prepare_enable(tpm->clk);
403 
404 	return ret;
405 }
406 
407 static int pwm_imx_tpm_resume(struct device *dev)
408 {
409 	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
410 	int ret = 0;
411 
412 	ret = pinctrl_pm_select_default_state(dev);
413 	if (ret)
414 		return ret;
415 
416 	ret = clk_prepare_enable(tpm->clk);
417 	if (ret) {
418 		dev_err(dev, "failed to prepare or enable clock: %d\n", ret);
419 		pinctrl_pm_select_sleep_state(dev);
420 	}
421 
422 	return ret;
423 }
424 
425 static DEFINE_SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
426 				pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
427 
428 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
429 	{ .compatible = "fsl,imx7ulp-pwm", },
430 	{ /* sentinel */ }
431 };
432 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
433 
434 static struct platform_driver imx_tpm_pwm_driver = {
435 	.driver = {
436 		.name = "imx7ulp-tpm-pwm",
437 		.of_match_table = imx_tpm_pwm_dt_ids,
438 		.pm = pm_ptr(&imx_tpm_pwm_pm),
439 	},
440 	.probe	= pwm_imx_tpm_probe,
441 };
442 module_platform_driver(imx_tpm_pwm_driver);
443 
444 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
445 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
446 MODULE_LICENSE("GPL v2");
447