xref: /linux/drivers/pwm/pwm-fsl-ftm.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  *  Freescale FlexTimer Module (FTM) PWM Driver
3  *
4  *  Copyright 2012-2013 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/of_address.h>
19 #include <linux/platform_device.h>
20 #include <linux/pwm.h>
21 #include <linux/slab.h>
22 
23 #define FTM_SC		0x00
24 #define FTM_SC_CLK_MASK	0x3
25 #define FTM_SC_CLK_SHIFT	3
26 #define FTM_SC_CLK(c)	(((c) + 1) << FTM_SC_CLK_SHIFT)
27 #define FTM_SC_PS_MASK	0x7
28 #define FTM_SC_PS_SHIFT	0
29 
30 #define FTM_CNT		0x04
31 #define FTM_MOD		0x08
32 
33 #define FTM_CSC_BASE	0x0C
34 #define FTM_CSC_MSB	BIT(5)
35 #define FTM_CSC_MSA	BIT(4)
36 #define FTM_CSC_ELSB	BIT(3)
37 #define FTM_CSC_ELSA	BIT(2)
38 #define FTM_CSC(_channel)	(FTM_CSC_BASE + ((_channel) * 8))
39 
40 #define FTM_CV_BASE	0x10
41 #define FTM_CV(_channel)	(FTM_CV_BASE + ((_channel) * 8))
42 
43 #define FTM_CNTIN	0x4C
44 #define FTM_STATUS	0x50
45 
46 #define FTM_MODE	0x54
47 #define FTM_MODE_FTMEN	BIT(0)
48 #define FTM_MODE_INIT	BIT(2)
49 #define FTM_MODE_PWMSYNC	BIT(3)
50 
51 #define FTM_SYNC	0x58
52 #define FTM_OUTINIT	0x5C
53 #define FTM_OUTMASK	0x60
54 #define FTM_COMBINE	0x64
55 #define FTM_DEADTIME	0x68
56 #define FTM_EXTTRIG	0x6C
57 #define FTM_POL		0x70
58 #define FTM_FMS		0x74
59 #define FTM_FILTER	0x78
60 #define FTM_FLTCTRL	0x7C
61 #define FTM_QDCTRL	0x80
62 #define FTM_CONF	0x84
63 #define FTM_FLTPOL	0x88
64 #define FTM_SYNCONF	0x8C
65 #define FTM_INVCTRL	0x90
66 #define FTM_SWOCTRL	0x94
67 #define FTM_PWMLOAD	0x98
68 
69 enum fsl_pwm_clk {
70 	FSL_PWM_CLK_SYS,
71 	FSL_PWM_CLK_FIX,
72 	FSL_PWM_CLK_EXT,
73 	FSL_PWM_CLK_CNTEN,
74 	FSL_PWM_CLK_MAX
75 };
76 
77 struct fsl_pwm_chip {
78 	struct pwm_chip chip;
79 
80 	struct mutex lock;
81 
82 	unsigned int use_count;
83 	unsigned int cnt_select;
84 	unsigned int clk_ps;
85 
86 	void __iomem *base;
87 
88 	int period_ns;
89 
90 	struct clk *clk[FSL_PWM_CLK_MAX];
91 };
92 
93 static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip)
94 {
95 	return container_of(chip, struct fsl_pwm_chip, chip);
96 }
97 
98 static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
99 {
100 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
101 
102 	return clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]);
103 }
104 
105 static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
106 {
107 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
108 
109 	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]);
110 }
111 
112 static int fsl_pwm_calculate_default_ps(struct fsl_pwm_chip *fpc,
113 					enum fsl_pwm_clk index)
114 {
115 	unsigned long sys_rate, cnt_rate;
116 	unsigned long long ratio;
117 
118 	sys_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_SYS]);
119 	if (!sys_rate)
120 		return -EINVAL;
121 
122 	cnt_rate = clk_get_rate(fpc->clk[fpc->cnt_select]);
123 	if (!cnt_rate)
124 		return -EINVAL;
125 
126 	switch (index) {
127 	case FSL_PWM_CLK_SYS:
128 		fpc->clk_ps = 1;
129 		break;
130 	case FSL_PWM_CLK_FIX:
131 		ratio = 2 * cnt_rate - 1;
132 		do_div(ratio, sys_rate);
133 		fpc->clk_ps = ratio;
134 		break;
135 	case FSL_PWM_CLK_EXT:
136 		ratio = 4 * cnt_rate - 1;
137 		do_div(ratio, sys_rate);
138 		fpc->clk_ps = ratio;
139 		break;
140 	default:
141 		return -EINVAL;
142 	}
143 
144 	return 0;
145 }
146 
147 static unsigned long fsl_pwm_calculate_cycles(struct fsl_pwm_chip *fpc,
148 					      unsigned long period_ns)
149 {
150 	unsigned long long c, c0;
151 
152 	c = clk_get_rate(fpc->clk[fpc->cnt_select]);
153 	c = c * period_ns;
154 	do_div(c, 1000000000UL);
155 
156 	do {
157 		c0 = c;
158 		do_div(c0, (1 << fpc->clk_ps));
159 		if (c0 <= 0xFFFF)
160 			return (unsigned long)c0;
161 	} while (++fpc->clk_ps < 8);
162 
163 	return 0;
164 }
165 
166 static unsigned long fsl_pwm_calculate_period_cycles(struct fsl_pwm_chip *fpc,
167 						     unsigned long period_ns,
168 						     enum fsl_pwm_clk index)
169 {
170 	int ret;
171 
172 	ret = fsl_pwm_calculate_default_ps(fpc, index);
173 	if (ret) {
174 		dev_err(fpc->chip.dev,
175 			"failed to calculate default prescaler: %d\n",
176 			ret);
177 		return 0;
178 	}
179 
180 	return fsl_pwm_calculate_cycles(fpc, period_ns);
181 }
182 
183 static unsigned long fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc,
184 					      unsigned long period_ns)
185 {
186 	enum fsl_pwm_clk m0, m1;
187 	unsigned long fix_rate, ext_rate, cycles;
188 
189 	cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns,
190 			FSL_PWM_CLK_SYS);
191 	if (cycles) {
192 		fpc->cnt_select = FSL_PWM_CLK_SYS;
193 		return cycles;
194 	}
195 
196 	fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]);
197 	ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]);
198 
199 	if (fix_rate > ext_rate) {
200 		m0 = FSL_PWM_CLK_FIX;
201 		m1 = FSL_PWM_CLK_EXT;
202 	} else {
203 		m0 = FSL_PWM_CLK_EXT;
204 		m1 = FSL_PWM_CLK_FIX;
205 	}
206 
207 	cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns, m0);
208 	if (cycles) {
209 		fpc->cnt_select = m0;
210 		return cycles;
211 	}
212 
213 	fpc->cnt_select = m1;
214 
215 	return fsl_pwm_calculate_period_cycles(fpc, period_ns, m1);
216 }
217 
218 static unsigned long fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc,
219 					    unsigned long period_ns,
220 					    unsigned long duty_ns)
221 {
222 	unsigned long long val, duty;
223 
224 	val = readl(fpc->base + FTM_MOD);
225 	duty = duty_ns * (val + 1);
226 	do_div(duty, period_ns);
227 
228 	return (unsigned long)duty;
229 }
230 
231 static int fsl_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
232 			  int duty_ns, int period_ns)
233 {
234 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
235 	u32 val, period, duty;
236 
237 	mutex_lock(&fpc->lock);
238 
239 	/*
240 	 * The Freescale FTM controller supports only a single period for
241 	 * all PWM channels, therefore incompatible changes need to be
242 	 * refused.
243 	 */
244 	if (fpc->period_ns && fpc->period_ns != period_ns) {
245 		dev_err(fpc->chip.dev,
246 			"conflicting period requested for PWM %u\n",
247 			pwm->hwpwm);
248 		mutex_unlock(&fpc->lock);
249 		return -EBUSY;
250 	}
251 
252 	if (!fpc->period_ns && duty_ns) {
253 		period = fsl_pwm_calculate_period(fpc, period_ns);
254 		if (!period) {
255 			dev_err(fpc->chip.dev, "failed to calculate period\n");
256 			mutex_unlock(&fpc->lock);
257 			return -EINVAL;
258 		}
259 
260 		val = readl(fpc->base + FTM_SC);
261 		val &= ~(FTM_SC_PS_MASK << FTM_SC_PS_SHIFT);
262 		val |= fpc->clk_ps;
263 		writel(val, fpc->base + FTM_SC);
264 		writel(period - 1, fpc->base + FTM_MOD);
265 
266 		fpc->period_ns = period_ns;
267 	}
268 
269 	mutex_unlock(&fpc->lock);
270 
271 	duty = fsl_pwm_calculate_duty(fpc, period_ns, duty_ns);
272 
273 	writel(FTM_CSC_MSB | FTM_CSC_ELSB, fpc->base + FTM_CSC(pwm->hwpwm));
274 	writel(duty, fpc->base + FTM_CV(pwm->hwpwm));
275 
276 	return 0;
277 }
278 
279 static int fsl_pwm_set_polarity(struct pwm_chip *chip,
280 				struct pwm_device *pwm,
281 				enum pwm_polarity polarity)
282 {
283 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
284 	u32 val;
285 
286 	val = readl(fpc->base + FTM_POL);
287 
288 	if (polarity == PWM_POLARITY_INVERSED)
289 		val |= BIT(pwm->hwpwm);
290 	else
291 		val &= ~BIT(pwm->hwpwm);
292 
293 	writel(val, fpc->base + FTM_POL);
294 
295 	return 0;
296 }
297 
298 static int fsl_counter_clock_enable(struct fsl_pwm_chip *fpc)
299 {
300 	u32 val;
301 	int ret;
302 
303 	if (fpc->use_count != 0)
304 		return 0;
305 
306 	/* select counter clock source */
307 	val = readl(fpc->base + FTM_SC);
308 	val &= ~(FTM_SC_CLK_MASK << FTM_SC_CLK_SHIFT);
309 	val |= FTM_SC_CLK(fpc->cnt_select);
310 	writel(val, fpc->base + FTM_SC);
311 
312 	ret = clk_prepare_enable(fpc->clk[fpc->cnt_select]);
313 	if (ret)
314 		return ret;
315 
316 	ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]);
317 	if (ret) {
318 		clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
319 		return ret;
320 	}
321 
322 	fpc->use_count++;
323 
324 	return 0;
325 }
326 
327 static int fsl_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
328 {
329 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
330 	u32 val;
331 	int ret;
332 
333 	mutex_lock(&fpc->lock);
334 	val = readl(fpc->base + FTM_OUTMASK);
335 	val &= ~BIT(pwm->hwpwm);
336 	writel(val, fpc->base + FTM_OUTMASK);
337 
338 	ret = fsl_counter_clock_enable(fpc);
339 	mutex_unlock(&fpc->lock);
340 
341 	return ret;
342 }
343 
344 static void fsl_counter_clock_disable(struct fsl_pwm_chip *fpc)
345 {
346 	u32 val;
347 
348 	/*
349 	 * already disabled, do nothing
350 	 */
351 	if (fpc->use_count == 0)
352 		return;
353 
354 	/* there are still users, so can't disable yet */
355 	if (--fpc->use_count > 0)
356 		return;
357 
358 	/* no users left, disable PWM counter clock */
359 	val = readl(fpc->base + FTM_SC);
360 	val &= ~(FTM_SC_CLK_MASK << FTM_SC_CLK_SHIFT);
361 	writel(val, fpc->base + FTM_SC);
362 
363 	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]);
364 	clk_disable_unprepare(fpc->clk[fpc->cnt_select]);
365 }
366 
367 static void fsl_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
368 {
369 	struct fsl_pwm_chip *fpc = to_fsl_chip(chip);
370 	u32 val;
371 
372 	mutex_lock(&fpc->lock);
373 	val = readl(fpc->base + FTM_OUTMASK);
374 	val |= BIT(pwm->hwpwm);
375 	writel(val, fpc->base + FTM_OUTMASK);
376 
377 	fsl_counter_clock_disable(fpc);
378 
379 	val = readl(fpc->base + FTM_OUTMASK);
380 
381 	if ((val & 0xFF) == 0xFF)
382 		fpc->period_ns = 0;
383 
384 	mutex_unlock(&fpc->lock);
385 }
386 
387 static const struct pwm_ops fsl_pwm_ops = {
388 	.request = fsl_pwm_request,
389 	.free = fsl_pwm_free,
390 	.config = fsl_pwm_config,
391 	.set_polarity = fsl_pwm_set_polarity,
392 	.enable = fsl_pwm_enable,
393 	.disable = fsl_pwm_disable,
394 	.owner = THIS_MODULE,
395 };
396 
397 static int fsl_pwm_init(struct fsl_pwm_chip *fpc)
398 {
399 	int ret;
400 
401 	ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]);
402 	if (ret)
403 		return ret;
404 
405 	writel(0x00, fpc->base + FTM_CNTIN);
406 	writel(0x00, fpc->base + FTM_OUTINIT);
407 	writel(0xFF, fpc->base + FTM_OUTMASK);
408 
409 	clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]);
410 
411 	return 0;
412 }
413 
414 static int fsl_pwm_probe(struct platform_device *pdev)
415 {
416 	struct fsl_pwm_chip *fpc;
417 	struct resource *res;
418 	int ret;
419 
420 	fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL);
421 	if (!fpc)
422 		return -ENOMEM;
423 
424 	mutex_init(&fpc->lock);
425 
426 	fpc->chip.dev = &pdev->dev;
427 
428 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
429 	fpc->base = devm_ioremap_resource(&pdev->dev, res);
430 	if (IS_ERR(fpc->base))
431 		return PTR_ERR(fpc->base);
432 
433 	fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys");
434 	if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) {
435 		dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n");
436 		return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]);
437 	}
438 
439 	fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix");
440 	if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX]))
441 		return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]);
442 
443 	fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext");
444 	if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT]))
445 		return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]);
446 
447 	fpc->clk[FSL_PWM_CLK_CNTEN] =
448 				devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en");
449 	if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]))
450 		return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]);
451 
452 	fpc->chip.ops = &fsl_pwm_ops;
453 	fpc->chip.of_xlate = of_pwm_xlate_with_flags;
454 	fpc->chip.of_pwm_n_cells = 3;
455 	fpc->chip.base = -1;
456 	fpc->chip.npwm = 8;
457 	fpc->chip.can_sleep = true;
458 
459 	ret = pwmchip_add(&fpc->chip);
460 	if (ret < 0) {
461 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
462 		return ret;
463 	}
464 
465 	platform_set_drvdata(pdev, fpc);
466 
467 	return fsl_pwm_init(fpc);
468 }
469 
470 static int fsl_pwm_remove(struct platform_device *pdev)
471 {
472 	struct fsl_pwm_chip *fpc = platform_get_drvdata(pdev);
473 
474 	return pwmchip_remove(&fpc->chip);
475 }
476 
477 static const struct of_device_id fsl_pwm_dt_ids[] = {
478 	{ .compatible = "fsl,vf610-ftm-pwm", },
479 	{ /* sentinel */ }
480 };
481 MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids);
482 
483 static struct platform_driver fsl_pwm_driver = {
484 	.driver = {
485 		.name = "fsl-ftm-pwm",
486 		.of_match_table = fsl_pwm_dt_ids,
487 	},
488 	.probe = fsl_pwm_probe,
489 	.remove = fsl_pwm_remove,
490 };
491 module_platform_driver(fsl_pwm_driver);
492 
493 MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver");
494 MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>");
495 MODULE_ALIAS("platform:fsl-ftm-pwm");
496 MODULE_LICENSE("GPL");
497