1 /* 2 * Copyright (C) 2014 Broadcom Corporation 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License as 6 * published by the Free Software Foundation version 2. 7 * 8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 9 * kind, whether express or implied; without even the implied warranty 10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/err.h> 17 #include <linux/io.h> 18 #include <linux/ioport.h> 19 #include <linux/math64.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/platform_device.h> 23 #include <linux/pwm.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 27 /* 28 * The Kona PWM has some unusual characteristics. Here are the main points. 29 * 30 * 1) There is no disable bit and the hardware docs advise programming a zero 31 * duty to achieve output equivalent to that of a normal disable operation. 32 * 33 * 2) Changes to prescale, duty, period, and polarity do not take effect until 34 * a subsequent rising edge of the trigger bit. 35 * 36 * 3) If the smooth bit and trigger bit are both low, the output is a constant 37 * high signal. Otherwise, the earlier waveform continues to be output. 38 * 39 * 4) If the smooth bit is set on the rising edge of the trigger bit, output 40 * will transition to the new settings on a period boundary (which could be 41 * seconds away). If the smooth bit is clear, new settings will be applied 42 * as soon as possible (the hardware always has a 400ns delay). 43 * 44 * 5) When the external clock that feeds the PWM is disabled, output is pegged 45 * high or low depending on its state at that exact instant. 46 */ 47 48 #define PWM_CONTROL_OFFSET (0x00000000) 49 #define PWM_CONTROL_SMOOTH_SHIFT(chan) (24 + (chan)) 50 #define PWM_CONTROL_TYPE_SHIFT(chan) (16 + (chan)) 51 #define PWM_CONTROL_POLARITY_SHIFT(chan) (8 + (chan)) 52 #define PWM_CONTROL_TRIGGER_SHIFT(chan) (chan) 53 54 #define PRESCALE_OFFSET (0x00000004) 55 #define PRESCALE_SHIFT(chan) ((chan) << 2) 56 #define PRESCALE_MASK(chan) (0x7 << PRESCALE_SHIFT(chan)) 57 #define PRESCALE_MIN (0x00000000) 58 #define PRESCALE_MAX (0x00000007) 59 60 #define PERIOD_COUNT_OFFSET(chan) (0x00000008 + ((chan) << 3)) 61 #define PERIOD_COUNT_MIN (0x00000002) 62 #define PERIOD_COUNT_MAX (0x00ffffff) 63 64 #define DUTY_CYCLE_HIGH_OFFSET(chan) (0x0000000c + ((chan) << 3)) 65 #define DUTY_CYCLE_HIGH_MIN (0x00000000) 66 #define DUTY_CYCLE_HIGH_MAX (0x00ffffff) 67 68 struct kona_pwmc { 69 struct pwm_chip chip; 70 void __iomem *base; 71 struct clk *clk; 72 }; 73 74 static inline struct kona_pwmc *to_kona_pwmc(struct pwm_chip *_chip) 75 { 76 return container_of(_chip, struct kona_pwmc, chip); 77 } 78 79 static void kona_pwmc_apply_settings(struct kona_pwmc *kp, unsigned int chan) 80 { 81 unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET); 82 83 /* Clear trigger bit but set smooth bit to maintain old output */ 84 value |= 1 << PWM_CONTROL_SMOOTH_SHIFT(chan); 85 value &= ~(1 << PWM_CONTROL_TRIGGER_SHIFT(chan)); 86 writel(value, kp->base + PWM_CONTROL_OFFSET); 87 88 /* Set trigger bit and clear smooth bit to apply new settings */ 89 value &= ~(1 << PWM_CONTROL_SMOOTH_SHIFT(chan)); 90 value |= 1 << PWM_CONTROL_TRIGGER_SHIFT(chan); 91 writel(value, kp->base + PWM_CONTROL_OFFSET); 92 } 93 94 static int kona_pwmc_config(struct pwm_chip *chip, struct pwm_device *pwm, 95 int duty_ns, int period_ns) 96 { 97 struct kona_pwmc *kp = to_kona_pwmc(chip); 98 u64 val, div, rate; 99 unsigned long prescale = PRESCALE_MIN, pc, dc; 100 unsigned int value, chan = pwm->hwpwm; 101 102 /* 103 * Find period count, duty count and prescale to suit duty_ns and 104 * period_ns. This is done according to formulas described below: 105 * 106 * period_ns = 10^9 * (PRESCALE + 1) * PC / PWM_CLK_RATE 107 * duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE 108 * 109 * PC = (PWM_CLK_RATE * period_ns) / (10^9 * (PRESCALE + 1)) 110 * DC = (PWM_CLK_RATE * duty_ns) / (10^9 * (PRESCALE + 1)) 111 */ 112 113 rate = clk_get_rate(kp->clk); 114 115 while (1) { 116 div = 1000000000; 117 div *= 1 + prescale; 118 val = rate * period_ns; 119 pc = div64_u64(val, div); 120 val = rate * duty_ns; 121 dc = div64_u64(val, div); 122 123 /* If duty_ns or period_ns are not achievable then return */ 124 if (pc < PERIOD_COUNT_MIN || dc < DUTY_CYCLE_HIGH_MIN) 125 return -EINVAL; 126 127 /* If pc and dc are in bounds, the calculation is done */ 128 if (pc <= PERIOD_COUNT_MAX && dc <= DUTY_CYCLE_HIGH_MAX) 129 break; 130 131 /* Otherwise, increase prescale and recalculate pc and dc */ 132 if (++prescale > PRESCALE_MAX) 133 return -EINVAL; 134 } 135 136 /* If the PWM channel is enabled, write the settings to the HW */ 137 if (test_bit(PWMF_ENABLED, &pwm->flags)) { 138 value = readl(kp->base + PRESCALE_OFFSET); 139 value &= ~PRESCALE_MASK(chan); 140 value |= prescale << PRESCALE_SHIFT(chan); 141 writel(value, kp->base + PRESCALE_OFFSET); 142 143 writel(pc, kp->base + PERIOD_COUNT_OFFSET(chan)); 144 145 writel(dc, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); 146 147 kona_pwmc_apply_settings(kp, chan); 148 } 149 150 return 0; 151 } 152 153 static int kona_pwmc_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, 154 enum pwm_polarity polarity) 155 { 156 struct kona_pwmc *kp = to_kona_pwmc(chip); 157 unsigned int chan = pwm->hwpwm; 158 unsigned int value; 159 int ret; 160 161 ret = clk_prepare_enable(kp->clk); 162 if (ret < 0) { 163 dev_err(chip->dev, "failed to enable clock: %d\n", ret); 164 return ret; 165 } 166 167 value = readl(kp->base + PWM_CONTROL_OFFSET); 168 169 if (polarity == PWM_POLARITY_NORMAL) 170 value |= 1 << PWM_CONTROL_POLARITY_SHIFT(chan); 171 else 172 value &= ~(1 << PWM_CONTROL_POLARITY_SHIFT(chan)); 173 174 writel(value, kp->base + PWM_CONTROL_OFFSET); 175 176 kona_pwmc_apply_settings(kp, chan); 177 178 /* Wait for waveform to settle before gating off the clock */ 179 ndelay(400); 180 181 clk_disable_unprepare(kp->clk); 182 183 return 0; 184 } 185 186 static int kona_pwmc_enable(struct pwm_chip *chip, struct pwm_device *pwm) 187 { 188 struct kona_pwmc *kp = to_kona_pwmc(chip); 189 int ret; 190 191 ret = clk_prepare_enable(kp->clk); 192 if (ret < 0) { 193 dev_err(chip->dev, "failed to enable clock: %d\n", ret); 194 return ret; 195 } 196 197 ret = kona_pwmc_config(chip, pwm, pwm->duty_cycle, pwm->period); 198 if (ret < 0) { 199 clk_disable_unprepare(kp->clk); 200 return ret; 201 } 202 203 return 0; 204 } 205 206 static void kona_pwmc_disable(struct pwm_chip *chip, struct pwm_device *pwm) 207 { 208 struct kona_pwmc *kp = to_kona_pwmc(chip); 209 unsigned int chan = pwm->hwpwm; 210 211 /* Simulate a disable by configuring for zero duty */ 212 writel(0, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); 213 kona_pwmc_apply_settings(kp, chan); 214 215 /* Wait for waveform to settle before gating off the clock */ 216 ndelay(400); 217 218 clk_disable_unprepare(kp->clk); 219 } 220 221 static const struct pwm_ops kona_pwm_ops = { 222 .config = kona_pwmc_config, 223 .set_polarity = kona_pwmc_set_polarity, 224 .enable = kona_pwmc_enable, 225 .disable = kona_pwmc_disable, 226 .owner = THIS_MODULE, 227 }; 228 229 static int kona_pwmc_probe(struct platform_device *pdev) 230 { 231 struct kona_pwmc *kp; 232 struct resource *res; 233 unsigned int chan; 234 unsigned int value = 0; 235 int ret = 0; 236 237 kp = devm_kzalloc(&pdev->dev, sizeof(*kp), GFP_KERNEL); 238 if (kp == NULL) 239 return -ENOMEM; 240 241 platform_set_drvdata(pdev, kp); 242 243 kp->chip.dev = &pdev->dev; 244 kp->chip.ops = &kona_pwm_ops; 245 kp->chip.base = -1; 246 kp->chip.npwm = 6; 247 kp->chip.of_xlate = of_pwm_xlate_with_flags; 248 kp->chip.of_pwm_n_cells = 3; 249 kp->chip.can_sleep = true; 250 251 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 252 kp->base = devm_ioremap_resource(&pdev->dev, res); 253 if (IS_ERR(kp->base)) 254 return PTR_ERR(kp->base); 255 256 kp->clk = devm_clk_get(&pdev->dev, NULL); 257 if (IS_ERR(kp->clk)) { 258 dev_err(&pdev->dev, "failed to get clock: %ld\n", 259 PTR_ERR(kp->clk)); 260 return PTR_ERR(kp->clk); 261 } 262 263 ret = clk_prepare_enable(kp->clk); 264 if (ret < 0) { 265 dev_err(&pdev->dev, "failed to enable clock: %d\n", ret); 266 return ret; 267 } 268 269 /* Set push/pull for all channels */ 270 for (chan = 0; chan < kp->chip.npwm; chan++) 271 value |= (1 << PWM_CONTROL_TYPE_SHIFT(chan)); 272 273 writel(value, kp->base + PWM_CONTROL_OFFSET); 274 275 clk_disable_unprepare(kp->clk); 276 277 ret = pwmchip_add_with_polarity(&kp->chip, PWM_POLARITY_INVERSED); 278 if (ret < 0) 279 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); 280 281 return ret; 282 } 283 284 static int kona_pwmc_remove(struct platform_device *pdev) 285 { 286 struct kona_pwmc *kp = platform_get_drvdata(pdev); 287 unsigned int chan; 288 289 for (chan = 0; chan < kp->chip.npwm; chan++) 290 if (test_bit(PWMF_ENABLED, &kp->chip.pwms[chan].flags)) 291 clk_disable_unprepare(kp->clk); 292 293 return pwmchip_remove(&kp->chip); 294 } 295 296 static const struct of_device_id bcm_kona_pwmc_dt[] = { 297 { .compatible = "brcm,kona-pwm" }, 298 { }, 299 }; 300 MODULE_DEVICE_TABLE(of, bcm_kona_pwmc_dt); 301 302 static struct platform_driver kona_pwmc_driver = { 303 .driver = { 304 .name = "bcm-kona-pwm", 305 .of_match_table = bcm_kona_pwmc_dt, 306 }, 307 .probe = kona_pwmc_probe, 308 .remove = kona_pwmc_remove, 309 }; 310 module_platform_driver(kona_pwmc_driver); 311 312 MODULE_AUTHOR("Broadcom Corporation <bcm-kernel-feedback-list@broadcom.com>"); 313 MODULE_AUTHOR("Tim Kryger <tkryger@broadcom.com>"); 314 MODULE_DESCRIPTION("Broadcom Kona PWM driver"); 315 MODULE_LICENSE("GPL v2"); 316