xref: /linux/drivers/pwm/pwm-atmel.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel Pulse Width Modulation Controller
4  *
5  * Copyright (C) 2013 Atmel Corporation
6  *		 Bo Shen <voice.shen@atmel.com>
7  *
8  * Links to reference manuals for the supported PWM chips can be found in
9  * Documentation/arm/microchip.rst.
10  *
11  * Limitations:
12  * - Periods start with the inactive level.
13  * - Hardware has to be stopped in general to update settings.
14  *
15  * Software bugs/possible improvements:
16  * - When atmel_pwm_apply() is called with state->enabled=false a change in
17  *   state->polarity isn't honored.
18  * - Instead of sleeping to wait for a completed period, the interrupt
19  *   functionality could be used.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/platform_device.h>
31 #include <linux/pwm.h>
32 #include <linux/slab.h>
33 
34 /* The following is global registers for PWM controller */
35 #define PWM_ENA			0x04
36 #define PWM_DIS			0x08
37 #define PWM_SR			0x0C
38 #define PWM_ISR			0x1C
39 /* Bit field in SR */
40 #define PWM_SR_ALL_CH_ON	0x0F
41 
42 /* The following register is PWM channel related registers */
43 #define PWM_CH_REG_OFFSET	0x200
44 #define PWM_CH_REG_SIZE		0x20
45 
46 #define PWM_CMR			0x0
47 /* Bit field in CMR */
48 #define PWM_CMR_CPOL		(1 << 9)
49 #define PWM_CMR_UPD_CDTY	(1 << 10)
50 #define PWM_CMR_CPRE_MSK	0xF
51 
52 /* The following registers for PWM v1 */
53 #define PWMV1_CDTY		0x04
54 #define PWMV1_CPRD		0x08
55 #define PWMV1_CUPD		0x10
56 
57 /* The following registers for PWM v2 */
58 #define PWMV2_CDTY		0x04
59 #define PWMV2_CDTYUPD		0x08
60 #define PWMV2_CPRD		0x0C
61 #define PWMV2_CPRDUPD		0x10
62 
63 #define PWM_MAX_PRES		10
64 
65 struct atmel_pwm_registers {
66 	u8 period;
67 	u8 period_upd;
68 	u8 duty;
69 	u8 duty_upd;
70 };
71 
72 struct atmel_pwm_config {
73 	u32 period_bits;
74 };
75 
76 struct atmel_pwm_data {
77 	struct atmel_pwm_registers regs;
78 	struct atmel_pwm_config cfg;
79 };
80 
81 struct atmel_pwm_chip {
82 	struct pwm_chip chip;
83 	struct clk *clk;
84 	void __iomem *base;
85 	const struct atmel_pwm_data *data;
86 
87 	unsigned int updated_pwms;
88 	/* ISR is cleared when read, ensure only one thread does that */
89 	struct mutex isr_lock;
90 };
91 
92 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
93 {
94 	return container_of(chip, struct atmel_pwm_chip, chip);
95 }
96 
97 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
98 				  unsigned long offset)
99 {
100 	return readl_relaxed(chip->base + offset);
101 }
102 
103 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
104 				    unsigned long offset, unsigned long val)
105 {
106 	writel_relaxed(val, chip->base + offset);
107 }
108 
109 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
110 				     unsigned int ch, unsigned long offset)
111 {
112 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
113 
114 	return atmel_pwm_readl(chip, base + offset);
115 }
116 
117 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
118 				       unsigned int ch, unsigned long offset,
119 				       unsigned long val)
120 {
121 	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
122 
123 	atmel_pwm_writel(chip, base + offset, val);
124 }
125 
126 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
127 					     unsigned long clkrate,
128 					     const struct pwm_state *state,
129 					     unsigned long *cprd, u32 *pres)
130 {
131 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
132 	unsigned long long cycles = state->period;
133 	int shift;
134 
135 	/* Calculate the period cycles and prescale value */
136 	cycles *= clkrate;
137 	do_div(cycles, NSEC_PER_SEC);
138 
139 	/*
140 	 * The register for the period length is cfg.period_bits bits wide.
141 	 * So for each bit the number of clock cycles is wider divide the input
142 	 * clock frequency by two using pres and shift cprd accordingly.
143 	 */
144 	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
145 
146 	if (shift > PWM_MAX_PRES) {
147 		dev_err(chip->dev, "pres exceeds the maximum value\n");
148 		return -EINVAL;
149 	} else if (shift > 0) {
150 		*pres = shift;
151 		cycles >>= *pres;
152 	} else {
153 		*pres = 0;
154 	}
155 
156 	*cprd = cycles;
157 
158 	return 0;
159 }
160 
161 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
162 				     unsigned long clkrate, unsigned long cprd,
163 				     u32 pres, unsigned long *cdty)
164 {
165 	unsigned long long cycles = state->duty_cycle;
166 
167 	cycles *= clkrate;
168 	do_div(cycles, NSEC_PER_SEC);
169 	cycles >>= pres;
170 	*cdty = cprd - cycles;
171 }
172 
173 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
174 				  unsigned long cdty)
175 {
176 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
177 	u32 val;
178 
179 	if (atmel_pwm->data->regs.duty_upd ==
180 	    atmel_pwm->data->regs.period_upd) {
181 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
182 		val &= ~PWM_CMR_UPD_CDTY;
183 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
184 	}
185 
186 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
187 			    atmel_pwm->data->regs.duty_upd, cdty);
188 }
189 
190 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
191 				    struct pwm_device *pwm,
192 				    unsigned long cprd, unsigned long cdty)
193 {
194 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
195 
196 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
197 			    atmel_pwm->data->regs.duty, cdty);
198 	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
199 			    atmel_pwm->data->regs.period, cprd);
200 }
201 
202 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
203 			      bool disable_clk)
204 {
205 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
206 	unsigned long timeout = jiffies + 2 * HZ;
207 
208 	/*
209 	 * Wait for at least a complete period to have passed before disabling a
210 	 * channel to be sure that CDTY has been updated
211 	 */
212 	mutex_lock(&atmel_pwm->isr_lock);
213 	atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
214 
215 	while (!(atmel_pwm->updated_pwms & (1 << pwm->hwpwm)) &&
216 	       time_before(jiffies, timeout)) {
217 		usleep_range(10, 100);
218 		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
219 	}
220 
221 	mutex_unlock(&atmel_pwm->isr_lock);
222 	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
223 
224 	/*
225 	 * Wait for the PWM channel disable operation to be effective before
226 	 * stopping the clock.
227 	 */
228 	timeout = jiffies + 2 * HZ;
229 
230 	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
231 	       time_before(jiffies, timeout))
232 		usleep_range(10, 100);
233 
234 	if (disable_clk)
235 		clk_disable(atmel_pwm->clk);
236 }
237 
238 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
239 			   const struct pwm_state *state)
240 {
241 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
242 	struct pwm_state cstate;
243 	unsigned long cprd, cdty;
244 	u32 pres, val;
245 	int ret;
246 
247 	pwm_get_state(pwm, &cstate);
248 
249 	if (state->enabled) {
250 		unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
251 
252 		if (cstate.enabled &&
253 		    cstate.polarity == state->polarity &&
254 		    cstate.period == state->period) {
255 			u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
256 
257 			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
258 						  atmel_pwm->data->regs.period);
259 			pres = cmr & PWM_CMR_CPRE_MSK;
260 
261 			atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
262 			atmel_pwm_update_cdty(chip, pwm, cdty);
263 			return 0;
264 		}
265 
266 		ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
267 							&pres);
268 		if (ret) {
269 			dev_err(chip->dev,
270 				"failed to calculate cprd and prescaler\n");
271 			return ret;
272 		}
273 
274 		atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
275 
276 		if (cstate.enabled) {
277 			atmel_pwm_disable(chip, pwm, false);
278 		} else {
279 			ret = clk_enable(atmel_pwm->clk);
280 			if (ret) {
281 				dev_err(chip->dev, "failed to enable clock\n");
282 				return ret;
283 			}
284 		}
285 
286 		/* It is necessary to preserve CPOL, inside CMR */
287 		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
288 		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
289 		if (state->polarity == PWM_POLARITY_NORMAL)
290 			val &= ~PWM_CMR_CPOL;
291 		else
292 			val |= PWM_CMR_CPOL;
293 		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
294 		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
295 		mutex_lock(&atmel_pwm->isr_lock);
296 		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
297 		atmel_pwm->updated_pwms &= ~(1 << pwm->hwpwm);
298 		mutex_unlock(&atmel_pwm->isr_lock);
299 		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
300 	} else if (cstate.enabled) {
301 		atmel_pwm_disable(chip, pwm, true);
302 	}
303 
304 	return 0;
305 }
306 
307 static void atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
308 				struct pwm_state *state)
309 {
310 	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
311 	u32 sr, cmr;
312 
313 	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
314 	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
315 
316 	if (sr & (1 << pwm->hwpwm)) {
317 		unsigned long rate = clk_get_rate(atmel_pwm->clk);
318 		u32 cdty, cprd, pres;
319 		u64 tmp;
320 
321 		pres = cmr & PWM_CMR_CPRE_MSK;
322 
323 		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
324 					  atmel_pwm->data->regs.period);
325 		tmp = (u64)cprd * NSEC_PER_SEC;
326 		tmp <<= pres;
327 		state->period = DIV64_U64_ROUND_UP(tmp, rate);
328 
329 		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
330 					  atmel_pwm->data->regs.duty);
331 		tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
332 		tmp <<= pres;
333 		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
334 
335 		state->enabled = true;
336 	} else {
337 		state->enabled = false;
338 	}
339 
340 	if (cmr & PWM_CMR_CPOL)
341 		state->polarity = PWM_POLARITY_INVERSED;
342 	else
343 		state->polarity = PWM_POLARITY_NORMAL;
344 }
345 
346 static const struct pwm_ops atmel_pwm_ops = {
347 	.apply = atmel_pwm_apply,
348 	.get_state = atmel_pwm_get_state,
349 	.owner = THIS_MODULE,
350 };
351 
352 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
353 	.regs = {
354 		.period		= PWMV1_CPRD,
355 		.period_upd	= PWMV1_CUPD,
356 		.duty		= PWMV1_CDTY,
357 		.duty_upd	= PWMV1_CUPD,
358 	},
359 	.cfg = {
360 		/* 16 bits to keep period and duty. */
361 		.period_bits	= 16,
362 	},
363 };
364 
365 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
366 	.regs = {
367 		.period		= PWMV2_CPRD,
368 		.period_upd	= PWMV2_CPRDUPD,
369 		.duty		= PWMV2_CDTY,
370 		.duty_upd	= PWMV2_CDTYUPD,
371 	},
372 	.cfg = {
373 		/* 16 bits to keep period and duty. */
374 		.period_bits	= 16,
375 	},
376 };
377 
378 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
379 	.regs = {
380 		.period		= PWMV1_CPRD,
381 		.period_upd	= PWMV1_CUPD,
382 		.duty		= PWMV1_CDTY,
383 		.duty_upd	= PWMV1_CUPD,
384 	},
385 	.cfg = {
386 		/* 32 bits to keep period and duty. */
387 		.period_bits	= 32,
388 	},
389 };
390 
391 static const struct of_device_id atmel_pwm_dt_ids[] = {
392 	{
393 		.compatible = "atmel,at91sam9rl-pwm",
394 		.data = &atmel_sam9rl_pwm_data,
395 	}, {
396 		.compatible = "atmel,sama5d3-pwm",
397 		.data = &atmel_sama5_pwm_data,
398 	}, {
399 		.compatible = "atmel,sama5d2-pwm",
400 		.data = &atmel_sama5_pwm_data,
401 	}, {
402 		.compatible = "microchip,sam9x60-pwm",
403 		.data = &mchp_sam9x60_pwm_data,
404 	}, {
405 		/* sentinel */
406 	},
407 };
408 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
409 
410 static int atmel_pwm_probe(struct platform_device *pdev)
411 {
412 	struct atmel_pwm_chip *atmel_pwm;
413 	int ret;
414 
415 	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
416 	if (!atmel_pwm)
417 		return -ENOMEM;
418 
419 	mutex_init(&atmel_pwm->isr_lock);
420 	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
421 	atmel_pwm->updated_pwms = 0;
422 
423 	atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
424 	if (IS_ERR(atmel_pwm->base))
425 		return PTR_ERR(atmel_pwm->base);
426 
427 	atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
428 	if (IS_ERR(atmel_pwm->clk))
429 		return PTR_ERR(atmel_pwm->clk);
430 
431 	ret = clk_prepare(atmel_pwm->clk);
432 	if (ret) {
433 		dev_err(&pdev->dev, "failed to prepare PWM clock\n");
434 		return ret;
435 	}
436 
437 	atmel_pwm->chip.dev = &pdev->dev;
438 	atmel_pwm->chip.ops = &atmel_pwm_ops;
439 	atmel_pwm->chip.of_xlate = of_pwm_xlate_with_flags;
440 	atmel_pwm->chip.of_pwm_n_cells = 3;
441 	atmel_pwm->chip.npwm = 4;
442 
443 	ret = pwmchip_add(&atmel_pwm->chip);
444 	if (ret < 0) {
445 		dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
446 		goto unprepare_clk;
447 	}
448 
449 	platform_set_drvdata(pdev, atmel_pwm);
450 
451 	return ret;
452 
453 unprepare_clk:
454 	clk_unprepare(atmel_pwm->clk);
455 	return ret;
456 }
457 
458 static int atmel_pwm_remove(struct platform_device *pdev)
459 {
460 	struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);
461 
462 	pwmchip_remove(&atmel_pwm->chip);
463 
464 	clk_unprepare(atmel_pwm->clk);
465 	mutex_destroy(&atmel_pwm->isr_lock);
466 
467 	return 0;
468 }
469 
470 static struct platform_driver atmel_pwm_driver = {
471 	.driver = {
472 		.name = "atmel-pwm",
473 		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
474 	},
475 	.probe = atmel_pwm_probe,
476 	.remove = atmel_pwm_remove,
477 };
478 module_platform_driver(atmel_pwm_driver);
479 
480 MODULE_ALIAS("platform:atmel-pwm");
481 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
482 MODULE_DESCRIPTION("Atmel PWM driver");
483 MODULE_LICENSE("GPL v2");
484