xref: /linux/drivers/pwm/core.c (revision fbf46565c67c626849c7ce2a326972d3008d2a91)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 
31 /* protects access to pwm_chips, allocated_pwms, and pwm_tree */
32 static DEFINE_MUTEX(pwm_lock);
33 
34 static LIST_HEAD(pwm_chips);
35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36 static RADIX_TREE(pwm_tree, GFP_KERNEL);
37 
38 static struct pwm_device *pwm_to_device(unsigned int pwm)
39 {
40 	return radix_tree_lookup(&pwm_tree, pwm);
41 }
42 
43 /* Called with pwm_lock held */
44 static int alloc_pwms(unsigned int count)
45 {
46 	unsigned int start;
47 
48 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
49 					   count, 0);
50 
51 	if (start + count > MAX_PWMS)
52 		return -ENOSPC;
53 
54 	bitmap_set(allocated_pwms, start, count);
55 
56 	return start;
57 }
58 
59 /* Called with pwm_lock held */
60 static void free_pwms(struct pwm_chip *chip)
61 {
62 	unsigned int i;
63 
64 	for (i = 0; i < chip->npwm; i++) {
65 		struct pwm_device *pwm = &chip->pwms[i];
66 
67 		radix_tree_delete(&pwm_tree, pwm->pwm);
68 	}
69 
70 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71 
72 	kfree(chip->pwms);
73 	chip->pwms = NULL;
74 }
75 
76 static struct pwm_chip *pwmchip_find_by_name(const char *name)
77 {
78 	struct pwm_chip *chip;
79 
80 	if (!name)
81 		return NULL;
82 
83 	mutex_lock(&pwm_lock);
84 
85 	list_for_each_entry(chip, &pwm_chips, list) {
86 		const char *chip_name = dev_name(chip->dev);
87 
88 		if (chip_name && strcmp(chip_name, name) == 0) {
89 			mutex_unlock(&pwm_lock);
90 			return chip;
91 		}
92 	}
93 
94 	mutex_unlock(&pwm_lock);
95 
96 	return NULL;
97 }
98 
99 static int pwm_device_request(struct pwm_device *pwm, const char *label)
100 {
101 	int err;
102 
103 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 		return -EBUSY;
105 
106 	if (!try_module_get(pwm->chip->ops->owner))
107 		return -ENODEV;
108 
109 	if (pwm->chip->ops->request) {
110 		err = pwm->chip->ops->request(pwm->chip, pwm);
111 		if (err) {
112 			module_put(pwm->chip->ops->owner);
113 			return err;
114 		}
115 	}
116 
117 	if (pwm->chip->ops->get_state) {
118 		struct pwm_state state;
119 
120 		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
121 		trace_pwm_get(pwm, &state, err);
122 
123 		if (!err)
124 			pwm->state = state;
125 
126 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
127 			pwm->last = pwm->state;
128 	}
129 
130 	set_bit(PWMF_REQUESTED, &pwm->flags);
131 	pwm->label = label;
132 
133 	return 0;
134 }
135 
136 struct pwm_device *
137 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
138 {
139 	struct pwm_device *pwm;
140 
141 	if (pc->of_pwm_n_cells < 2)
142 		return ERR_PTR(-EINVAL);
143 
144 	/* flags in the third cell are optional */
145 	if (args->args_count < 2)
146 		return ERR_PTR(-EINVAL);
147 
148 	if (args->args[0] >= pc->npwm)
149 		return ERR_PTR(-EINVAL);
150 
151 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
152 	if (IS_ERR(pwm))
153 		return pwm;
154 
155 	pwm->args.period = args->args[1];
156 	pwm->args.polarity = PWM_POLARITY_NORMAL;
157 
158 	if (pc->of_pwm_n_cells >= 3) {
159 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
160 			pwm->args.polarity = PWM_POLARITY_INVERSED;
161 	}
162 
163 	return pwm;
164 }
165 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
166 
167 struct pwm_device *
168 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
169 {
170 	struct pwm_device *pwm;
171 
172 	if (pc->of_pwm_n_cells < 1)
173 		return ERR_PTR(-EINVAL);
174 
175 	/* validate that one cell is specified, optionally with flags */
176 	if (args->args_count != 1 && args->args_count != 2)
177 		return ERR_PTR(-EINVAL);
178 
179 	pwm = pwm_request_from_chip(pc, 0, NULL);
180 	if (IS_ERR(pwm))
181 		return pwm;
182 
183 	pwm->args.period = args->args[0];
184 	pwm->args.polarity = PWM_POLARITY_NORMAL;
185 
186 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
187 		pwm->args.polarity = PWM_POLARITY_INVERSED;
188 
189 	return pwm;
190 }
191 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
192 
193 static void of_pwmchip_add(struct pwm_chip *chip)
194 {
195 	if (!chip->dev || !chip->dev->of_node)
196 		return;
197 
198 	if (!chip->of_xlate) {
199 		u32 pwm_cells;
200 
201 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
202 					 &pwm_cells))
203 			pwm_cells = 2;
204 
205 		chip->of_xlate = of_pwm_xlate_with_flags;
206 		chip->of_pwm_n_cells = pwm_cells;
207 	}
208 
209 	of_node_get(chip->dev->of_node);
210 }
211 
212 static void of_pwmchip_remove(struct pwm_chip *chip)
213 {
214 	if (chip->dev)
215 		of_node_put(chip->dev->of_node);
216 }
217 
218 /**
219  * pwm_set_chip_data() - set private chip data for a PWM
220  * @pwm: PWM device
221  * @data: pointer to chip-specific data
222  *
223  * Returns: 0 on success or a negative error code on failure.
224  */
225 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
226 {
227 	if (!pwm)
228 		return -EINVAL;
229 
230 	pwm->chip_data = data;
231 
232 	return 0;
233 }
234 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
235 
236 /**
237  * pwm_get_chip_data() - get private chip data for a PWM
238  * @pwm: PWM device
239  *
240  * Returns: A pointer to the chip-private data for the PWM device.
241  */
242 void *pwm_get_chip_data(struct pwm_device *pwm)
243 {
244 	return pwm ? pwm->chip_data : NULL;
245 }
246 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
247 
248 static bool pwm_ops_check(const struct pwm_chip *chip)
249 {
250 	const struct pwm_ops *ops = chip->ops;
251 
252 	if (!ops->apply)
253 		return false;
254 
255 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256 		dev_warn(chip->dev,
257 			 "Please implement the .get_state() callback\n");
258 
259 	return true;
260 }
261 
262 /**
263  * pwmchip_add() - register a new PWM chip
264  * @chip: the PWM chip to add
265  *
266  * Register a new PWM chip.
267  *
268  * Returns: 0 on success or a negative error code on failure.
269  */
270 int pwmchip_add(struct pwm_chip *chip)
271 {
272 	struct pwm_device *pwm;
273 	unsigned int i;
274 	int ret;
275 
276 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
277 		return -EINVAL;
278 
279 	if (!pwm_ops_check(chip))
280 		return -EINVAL;
281 
282 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
283 	if (!chip->pwms)
284 		return -ENOMEM;
285 
286 	mutex_lock(&pwm_lock);
287 
288 	ret = alloc_pwms(chip->npwm);
289 	if (ret < 0) {
290 		mutex_unlock(&pwm_lock);
291 		kfree(chip->pwms);
292 		return ret;
293 	}
294 
295 	chip->base = ret;
296 
297 	for (i = 0; i < chip->npwm; i++) {
298 		pwm = &chip->pwms[i];
299 
300 		pwm->chip = chip;
301 		pwm->pwm = chip->base + i;
302 		pwm->hwpwm = i;
303 
304 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
305 	}
306 
307 	list_add(&chip->list, &pwm_chips);
308 
309 	mutex_unlock(&pwm_lock);
310 
311 	if (IS_ENABLED(CONFIG_OF))
312 		of_pwmchip_add(chip);
313 
314 	pwmchip_sysfs_export(chip);
315 
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(pwmchip_add);
319 
320 /**
321  * pwmchip_remove() - remove a PWM chip
322  * @chip: the PWM chip to remove
323  *
324  * Removes a PWM chip. This function may return busy if the PWM chip provides
325  * a PWM device that is still requested.
326  *
327  * Returns: 0 on success or a negative error code on failure.
328  */
329 void pwmchip_remove(struct pwm_chip *chip)
330 {
331 	pwmchip_sysfs_unexport(chip);
332 
333 	mutex_lock(&pwm_lock);
334 
335 	list_del_init(&chip->list);
336 
337 	if (IS_ENABLED(CONFIG_OF))
338 		of_pwmchip_remove(chip);
339 
340 	free_pwms(chip);
341 
342 	mutex_unlock(&pwm_lock);
343 }
344 EXPORT_SYMBOL_GPL(pwmchip_remove);
345 
346 static void devm_pwmchip_remove(void *data)
347 {
348 	struct pwm_chip *chip = data;
349 
350 	pwmchip_remove(chip);
351 }
352 
353 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
354 {
355 	int ret;
356 
357 	ret = pwmchip_add(chip);
358 	if (ret)
359 		return ret;
360 
361 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
362 }
363 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
364 
365 /**
366  * pwm_request() - request a PWM device
367  * @pwm: global PWM device index
368  * @label: PWM device label
369  *
370  * This function is deprecated, use pwm_get() instead.
371  *
372  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
373  * failure.
374  */
375 struct pwm_device *pwm_request(int pwm, const char *label)
376 {
377 	struct pwm_device *dev;
378 	int err;
379 
380 	if (pwm < 0 || pwm >= MAX_PWMS)
381 		return ERR_PTR(-EINVAL);
382 
383 	mutex_lock(&pwm_lock);
384 
385 	dev = pwm_to_device(pwm);
386 	if (!dev) {
387 		dev = ERR_PTR(-EPROBE_DEFER);
388 		goto out;
389 	}
390 
391 	err = pwm_device_request(dev, label);
392 	if (err < 0)
393 		dev = ERR_PTR(err);
394 
395 out:
396 	mutex_unlock(&pwm_lock);
397 
398 	return dev;
399 }
400 EXPORT_SYMBOL_GPL(pwm_request);
401 
402 /**
403  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
404  * @chip: PWM chip
405  * @index: per-chip index of the PWM to request
406  * @label: a literal description string of this PWM
407  *
408  * Returns: A pointer to the PWM device at the given index of the given PWM
409  * chip. A negative error code is returned if the index is not valid for the
410  * specified PWM chip or if the PWM device cannot be requested.
411  */
412 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
413 					 unsigned int index,
414 					 const char *label)
415 {
416 	struct pwm_device *pwm;
417 	int err;
418 
419 	if (!chip || index >= chip->npwm)
420 		return ERR_PTR(-EINVAL);
421 
422 	mutex_lock(&pwm_lock);
423 	pwm = &chip->pwms[index];
424 
425 	err = pwm_device_request(pwm, label);
426 	if (err < 0)
427 		pwm = ERR_PTR(err);
428 
429 	mutex_unlock(&pwm_lock);
430 	return pwm;
431 }
432 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
433 
434 /**
435  * pwm_free() - free a PWM device
436  * @pwm: PWM device
437  *
438  * This function is deprecated, use pwm_put() instead.
439  */
440 void pwm_free(struct pwm_device *pwm)
441 {
442 	pwm_put(pwm);
443 }
444 EXPORT_SYMBOL_GPL(pwm_free);
445 
446 static void pwm_apply_state_debug(struct pwm_device *pwm,
447 				  const struct pwm_state *state)
448 {
449 	struct pwm_state *last = &pwm->last;
450 	struct pwm_chip *chip = pwm->chip;
451 	struct pwm_state s1, s2;
452 	int err;
453 
454 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
455 		return;
456 
457 	/* No reasonable diagnosis possible without .get_state() */
458 	if (!chip->ops->get_state)
459 		return;
460 
461 	/*
462 	 * *state was just applied. Read out the hardware state and do some
463 	 * checks.
464 	 */
465 
466 	err = chip->ops->get_state(chip, pwm, &s1);
467 	trace_pwm_get(pwm, &s1, err);
468 	if (err)
469 		/* If that failed there isn't much to debug */
470 		return;
471 
472 	/*
473 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
474 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
475 	 * Undo this inversion and fixup for further tests.
476 	 */
477 	if (s1.enabled && s1.polarity != state->polarity) {
478 		s2.polarity = state->polarity;
479 		s2.duty_cycle = s1.period - s1.duty_cycle;
480 		s2.period = s1.period;
481 		s2.enabled = s1.enabled;
482 	} else {
483 		s2 = s1;
484 	}
485 
486 	if (s2.polarity != state->polarity &&
487 	    state->duty_cycle < state->period)
488 		dev_warn(chip->dev, ".apply ignored .polarity\n");
489 
490 	if (state->enabled &&
491 	    last->polarity == state->polarity &&
492 	    last->period > s2.period &&
493 	    last->period <= state->period)
494 		dev_warn(chip->dev,
495 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
496 			 state->period, s2.period, last->period);
497 
498 	if (state->enabled && state->period < s2.period)
499 		dev_warn(chip->dev,
500 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
501 			 state->period, s2.period);
502 
503 	if (state->enabled &&
504 	    last->polarity == state->polarity &&
505 	    last->period == s2.period &&
506 	    last->duty_cycle > s2.duty_cycle &&
507 	    last->duty_cycle <= state->duty_cycle)
508 		dev_warn(chip->dev,
509 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
510 			 state->duty_cycle, state->period,
511 			 s2.duty_cycle, s2.period,
512 			 last->duty_cycle, last->period);
513 
514 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
515 		dev_warn(chip->dev,
516 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
517 			 state->duty_cycle, state->period,
518 			 s2.duty_cycle, s2.period);
519 
520 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
521 		dev_warn(chip->dev,
522 			 "requested disabled, but yielded enabled with duty > 0\n");
523 
524 	/* reapply the state that the driver reported being configured. */
525 	err = chip->ops->apply(chip, pwm, &s1);
526 	trace_pwm_apply(pwm, &s1, err);
527 	if (err) {
528 		*last = s1;
529 		dev_err(chip->dev, "failed to reapply current setting\n");
530 		return;
531 	}
532 
533 	err = chip->ops->get_state(chip, pwm, last);
534 	trace_pwm_get(pwm, last, err);
535 	if (err)
536 		return;
537 
538 	/* reapplication of the current state should give an exact match */
539 	if (s1.enabled != last->enabled ||
540 	    s1.polarity != last->polarity ||
541 	    (s1.enabled && s1.period != last->period) ||
542 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
543 		dev_err(chip->dev,
544 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
545 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
546 			last->enabled, last->polarity, last->duty_cycle,
547 			last->period);
548 	}
549 }
550 
551 /**
552  * pwm_apply_state() - atomically apply a new state to a PWM device
553  * @pwm: PWM device
554  * @state: new state to apply
555  */
556 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
557 {
558 	struct pwm_chip *chip;
559 	int err;
560 
561 	/*
562 	 * Some lowlevel driver's implementations of .apply() make use of
563 	 * mutexes, also with some drivers only returning when the new
564 	 * configuration is active calling pwm_apply_state() from atomic context
565 	 * is a bad idea. So make it explicit that calling this function might
566 	 * sleep.
567 	 */
568 	might_sleep();
569 
570 	if (!pwm || !state || !state->period ||
571 	    state->duty_cycle > state->period)
572 		return -EINVAL;
573 
574 	chip = pwm->chip;
575 
576 	if (state->period == pwm->state.period &&
577 	    state->duty_cycle == pwm->state.duty_cycle &&
578 	    state->polarity == pwm->state.polarity &&
579 	    state->enabled == pwm->state.enabled &&
580 	    state->usage_power == pwm->state.usage_power)
581 		return 0;
582 
583 	err = chip->ops->apply(chip, pwm, state);
584 	trace_pwm_apply(pwm, state, err);
585 	if (err)
586 		return err;
587 
588 	pwm->state = *state;
589 
590 	/*
591 	 * only do this after pwm->state was applied as some
592 	 * implementations of .get_state depend on this
593 	 */
594 	pwm_apply_state_debug(pwm, state);
595 
596 	return 0;
597 }
598 EXPORT_SYMBOL_GPL(pwm_apply_state);
599 
600 /**
601  * pwm_capture() - capture and report a PWM signal
602  * @pwm: PWM device
603  * @result: structure to fill with capture result
604  * @timeout: time to wait, in milliseconds, before giving up on capture
605  *
606  * Returns: 0 on success or a negative error code on failure.
607  */
608 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
609 		unsigned long timeout)
610 {
611 	int err;
612 
613 	if (!pwm || !pwm->chip->ops)
614 		return -EINVAL;
615 
616 	if (!pwm->chip->ops->capture)
617 		return -ENOSYS;
618 
619 	mutex_lock(&pwm_lock);
620 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
621 	mutex_unlock(&pwm_lock);
622 
623 	return err;
624 }
625 EXPORT_SYMBOL_GPL(pwm_capture);
626 
627 /**
628  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
629  * @pwm: PWM device
630  *
631  * This function will adjust the PWM config to the PWM arguments provided
632  * by the DT or PWM lookup table. This is particularly useful to adapt
633  * the bootloader config to the Linux one.
634  */
635 int pwm_adjust_config(struct pwm_device *pwm)
636 {
637 	struct pwm_state state;
638 	struct pwm_args pargs;
639 
640 	pwm_get_args(pwm, &pargs);
641 	pwm_get_state(pwm, &state);
642 
643 	/*
644 	 * If the current period is zero it means that either the PWM driver
645 	 * does not support initial state retrieval or the PWM has not yet
646 	 * been configured.
647 	 *
648 	 * In either case, we setup the new period and polarity, and assign a
649 	 * duty cycle of 0.
650 	 */
651 	if (!state.period) {
652 		state.duty_cycle = 0;
653 		state.period = pargs.period;
654 		state.polarity = pargs.polarity;
655 
656 		return pwm_apply_state(pwm, &state);
657 	}
658 
659 	/*
660 	 * Adjust the PWM duty cycle/period based on the period value provided
661 	 * in PWM args.
662 	 */
663 	if (pargs.period != state.period) {
664 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
665 
666 		do_div(dutycycle, state.period);
667 		state.duty_cycle = dutycycle;
668 		state.period = pargs.period;
669 	}
670 
671 	/*
672 	 * If the polarity changed, we should also change the duty cycle.
673 	 */
674 	if (pargs.polarity != state.polarity) {
675 		state.polarity = pargs.polarity;
676 		state.duty_cycle = state.period - state.duty_cycle;
677 	}
678 
679 	return pwm_apply_state(pwm, &state);
680 }
681 EXPORT_SYMBOL_GPL(pwm_adjust_config);
682 
683 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
684 {
685 	struct pwm_chip *chip;
686 
687 	mutex_lock(&pwm_lock);
688 
689 	list_for_each_entry(chip, &pwm_chips, list)
690 		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
691 			mutex_unlock(&pwm_lock);
692 			return chip;
693 		}
694 
695 	mutex_unlock(&pwm_lock);
696 
697 	return ERR_PTR(-EPROBE_DEFER);
698 }
699 
700 static struct device_link *pwm_device_link_add(struct device *dev,
701 					       struct pwm_device *pwm)
702 {
703 	struct device_link *dl;
704 
705 	if (!dev) {
706 		/*
707 		 * No device for the PWM consumer has been provided. It may
708 		 * impact the PM sequence ordering: the PWM supplier may get
709 		 * suspended before the consumer.
710 		 */
711 		dev_warn(pwm->chip->dev,
712 			 "No consumer device specified to create a link to\n");
713 		return NULL;
714 	}
715 
716 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
717 	if (!dl) {
718 		dev_err(dev, "failed to create device link to %s\n",
719 			dev_name(pwm->chip->dev));
720 		return ERR_PTR(-EINVAL);
721 	}
722 
723 	return dl;
724 }
725 
726 /**
727  * of_pwm_get() - request a PWM via the PWM framework
728  * @dev: device for PWM consumer
729  * @np: device node to get the PWM from
730  * @con_id: consumer name
731  *
732  * Returns the PWM device parsed from the phandle and index specified in the
733  * "pwms" property of a device tree node or a negative error-code on failure.
734  * Values parsed from the device tree are stored in the returned PWM device
735  * object.
736  *
737  * If con_id is NULL, the first PWM device listed in the "pwms" property will
738  * be requested. Otherwise the "pwm-names" property is used to do a reverse
739  * lookup of the PWM index. This also means that the "pwm-names" property
740  * becomes mandatory for devices that look up the PWM device via the con_id
741  * parameter.
742  *
743  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
744  * error code on failure.
745  */
746 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
747 				     const char *con_id)
748 {
749 	struct pwm_device *pwm = NULL;
750 	struct of_phandle_args args;
751 	struct device_link *dl;
752 	struct pwm_chip *pc;
753 	int index = 0;
754 	int err;
755 
756 	if (con_id) {
757 		index = of_property_match_string(np, "pwm-names", con_id);
758 		if (index < 0)
759 			return ERR_PTR(index);
760 	}
761 
762 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
763 					 &args);
764 	if (err) {
765 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
766 		return ERR_PTR(err);
767 	}
768 
769 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
770 	if (IS_ERR(pc)) {
771 		if (PTR_ERR(pc) != -EPROBE_DEFER)
772 			pr_err("%s(): PWM chip not found\n", __func__);
773 
774 		pwm = ERR_CAST(pc);
775 		goto put;
776 	}
777 
778 	pwm = pc->of_xlate(pc, &args);
779 	if (IS_ERR(pwm))
780 		goto put;
781 
782 	dl = pwm_device_link_add(dev, pwm);
783 	if (IS_ERR(dl)) {
784 		/* of_xlate ended up calling pwm_request_from_chip() */
785 		pwm_free(pwm);
786 		pwm = ERR_CAST(dl);
787 		goto put;
788 	}
789 
790 	/*
791 	 * If a consumer name was not given, try to look it up from the
792 	 * "pwm-names" property if it exists. Otherwise use the name of
793 	 * the user device node.
794 	 */
795 	if (!con_id) {
796 		err = of_property_read_string_index(np, "pwm-names", index,
797 						    &con_id);
798 		if (err < 0)
799 			con_id = np->name;
800 	}
801 
802 	pwm->label = con_id;
803 
804 put:
805 	of_node_put(args.np);
806 
807 	return pwm;
808 }
809 
810 /**
811  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
812  * @fwnode: firmware node to get the "pwms" property from
813  *
814  * Returns the PWM device parsed from the fwnode and index specified in the
815  * "pwms" property or a negative error-code on failure.
816  * Values parsed from the device tree are stored in the returned PWM device
817  * object.
818  *
819  * This is analogous to of_pwm_get() except con_id is not yet supported.
820  * ACPI entries must look like
821  * Package () {"pwms", Package ()
822  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
823  *
824  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
825  * error code on failure.
826  */
827 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
828 {
829 	struct pwm_device *pwm;
830 	struct fwnode_reference_args args;
831 	struct pwm_chip *chip;
832 	int ret;
833 
834 	memset(&args, 0, sizeof(args));
835 
836 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
837 	if (ret < 0)
838 		return ERR_PTR(ret);
839 
840 	if (args.nargs < 2)
841 		return ERR_PTR(-EPROTO);
842 
843 	chip = fwnode_to_pwmchip(args.fwnode);
844 	if (IS_ERR(chip))
845 		return ERR_CAST(chip);
846 
847 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
848 	if (IS_ERR(pwm))
849 		return pwm;
850 
851 	pwm->args.period = args.args[1];
852 	pwm->args.polarity = PWM_POLARITY_NORMAL;
853 
854 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
855 		pwm->args.polarity = PWM_POLARITY_INVERSED;
856 
857 	return pwm;
858 }
859 
860 /**
861  * pwm_add_table() - register PWM device consumers
862  * @table: array of consumers to register
863  * @num: number of consumers in table
864  */
865 void pwm_add_table(struct pwm_lookup *table, size_t num)
866 {
867 	mutex_lock(&pwm_lookup_lock);
868 
869 	while (num--) {
870 		list_add_tail(&table->list, &pwm_lookup_list);
871 		table++;
872 	}
873 
874 	mutex_unlock(&pwm_lookup_lock);
875 }
876 
877 /**
878  * pwm_remove_table() - unregister PWM device consumers
879  * @table: array of consumers to unregister
880  * @num: number of consumers in table
881  */
882 void pwm_remove_table(struct pwm_lookup *table, size_t num)
883 {
884 	mutex_lock(&pwm_lookup_lock);
885 
886 	while (num--) {
887 		list_del(&table->list);
888 		table++;
889 	}
890 
891 	mutex_unlock(&pwm_lookup_lock);
892 }
893 
894 /**
895  * pwm_get() - look up and request a PWM device
896  * @dev: device for PWM consumer
897  * @con_id: consumer name
898  *
899  * Lookup is first attempted using DT. If the device was not instantiated from
900  * a device tree, a PWM chip and a relative index is looked up via a table
901  * supplied by board setup code (see pwm_add_table()).
902  *
903  * Once a PWM chip has been found the specified PWM device will be requested
904  * and is ready to be used.
905  *
906  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
907  * error code on failure.
908  */
909 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
910 {
911 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
912 	const char *dev_id = dev ? dev_name(dev) : NULL;
913 	struct pwm_device *pwm;
914 	struct pwm_chip *chip;
915 	struct device_link *dl;
916 	unsigned int best = 0;
917 	struct pwm_lookup *p, *chosen = NULL;
918 	unsigned int match;
919 	int err;
920 
921 	/* look up via DT first */
922 	if (is_of_node(fwnode))
923 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
924 
925 	/* then lookup via ACPI */
926 	if (is_acpi_node(fwnode)) {
927 		pwm = acpi_pwm_get(fwnode);
928 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
929 			return pwm;
930 	}
931 
932 	/*
933 	 * We look up the provider in the static table typically provided by
934 	 * board setup code. We first try to lookup the consumer device by
935 	 * name. If the consumer device was passed in as NULL or if no match
936 	 * was found, we try to find the consumer by directly looking it up
937 	 * by name.
938 	 *
939 	 * If a match is found, the provider PWM chip is looked up by name
940 	 * and a PWM device is requested using the PWM device per-chip index.
941 	 *
942 	 * The lookup algorithm was shamelessly taken from the clock
943 	 * framework:
944 	 *
945 	 * We do slightly fuzzy matching here:
946 	 *  An entry with a NULL ID is assumed to be a wildcard.
947 	 *  If an entry has a device ID, it must match
948 	 *  If an entry has a connection ID, it must match
949 	 * Then we take the most specific entry - with the following order
950 	 * of precedence: dev+con > dev only > con only.
951 	 */
952 	mutex_lock(&pwm_lookup_lock);
953 
954 	list_for_each_entry(p, &pwm_lookup_list, list) {
955 		match = 0;
956 
957 		if (p->dev_id) {
958 			if (!dev_id || strcmp(p->dev_id, dev_id))
959 				continue;
960 
961 			match += 2;
962 		}
963 
964 		if (p->con_id) {
965 			if (!con_id || strcmp(p->con_id, con_id))
966 				continue;
967 
968 			match += 1;
969 		}
970 
971 		if (match > best) {
972 			chosen = p;
973 
974 			if (match != 3)
975 				best = match;
976 			else
977 				break;
978 		}
979 	}
980 
981 	mutex_unlock(&pwm_lookup_lock);
982 
983 	if (!chosen)
984 		return ERR_PTR(-ENODEV);
985 
986 	chip = pwmchip_find_by_name(chosen->provider);
987 
988 	/*
989 	 * If the lookup entry specifies a module, load the module and retry
990 	 * the PWM chip lookup. This can be used to work around driver load
991 	 * ordering issues if driver's can't be made to properly support the
992 	 * deferred probe mechanism.
993 	 */
994 	if (!chip && chosen->module) {
995 		err = request_module(chosen->module);
996 		if (err == 0)
997 			chip = pwmchip_find_by_name(chosen->provider);
998 	}
999 
1000 	if (!chip)
1001 		return ERR_PTR(-EPROBE_DEFER);
1002 
1003 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1004 	if (IS_ERR(pwm))
1005 		return pwm;
1006 
1007 	dl = pwm_device_link_add(dev, pwm);
1008 	if (IS_ERR(dl)) {
1009 		pwm_free(pwm);
1010 		return ERR_CAST(dl);
1011 	}
1012 
1013 	pwm->args.period = chosen->period;
1014 	pwm->args.polarity = chosen->polarity;
1015 
1016 	return pwm;
1017 }
1018 EXPORT_SYMBOL_GPL(pwm_get);
1019 
1020 /**
1021  * pwm_put() - release a PWM device
1022  * @pwm: PWM device
1023  */
1024 void pwm_put(struct pwm_device *pwm)
1025 {
1026 	if (!pwm)
1027 		return;
1028 
1029 	mutex_lock(&pwm_lock);
1030 
1031 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1032 		pr_warn("PWM device already freed\n");
1033 		goto out;
1034 	}
1035 
1036 	if (pwm->chip->ops->free)
1037 		pwm->chip->ops->free(pwm->chip, pwm);
1038 
1039 	pwm_set_chip_data(pwm, NULL);
1040 	pwm->label = NULL;
1041 
1042 	module_put(pwm->chip->ops->owner);
1043 out:
1044 	mutex_unlock(&pwm_lock);
1045 }
1046 EXPORT_SYMBOL_GPL(pwm_put);
1047 
1048 static void devm_pwm_release(void *pwm)
1049 {
1050 	pwm_put(pwm);
1051 }
1052 
1053 /**
1054  * devm_pwm_get() - resource managed pwm_get()
1055  * @dev: device for PWM consumer
1056  * @con_id: consumer name
1057  *
1058  * This function performs like pwm_get() but the acquired PWM device will
1059  * automatically be released on driver detach.
1060  *
1061  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1062  * error code on failure.
1063  */
1064 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1065 {
1066 	struct pwm_device *pwm;
1067 	int ret;
1068 
1069 	pwm = pwm_get(dev, con_id);
1070 	if (IS_ERR(pwm))
1071 		return pwm;
1072 
1073 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1074 	if (ret)
1075 		return ERR_PTR(ret);
1076 
1077 	return pwm;
1078 }
1079 EXPORT_SYMBOL_GPL(devm_pwm_get);
1080 
1081 /**
1082  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1083  * @dev: device for PWM consumer
1084  * @fwnode: firmware node to get the PWM from
1085  * @con_id: consumer name
1086  *
1087  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1088  * acpi_pwm_get() for a detailed description.
1089  *
1090  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1091  * error code on failure.
1092  */
1093 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1094 				       struct fwnode_handle *fwnode,
1095 				       const char *con_id)
1096 {
1097 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1098 	int ret;
1099 
1100 	if (is_of_node(fwnode))
1101 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1102 	else if (is_acpi_node(fwnode))
1103 		pwm = acpi_pwm_get(fwnode);
1104 	if (IS_ERR(pwm))
1105 		return pwm;
1106 
1107 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1108 	if (ret)
1109 		return ERR_PTR(ret);
1110 
1111 	return pwm;
1112 }
1113 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114 
1115 #ifdef CONFIG_DEBUG_FS
1116 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1117 {
1118 	unsigned int i;
1119 
1120 	for (i = 0; i < chip->npwm; i++) {
1121 		struct pwm_device *pwm = &chip->pwms[i];
1122 		struct pwm_state state;
1123 
1124 		pwm_get_state(pwm, &state);
1125 
1126 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1127 
1128 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1129 			seq_puts(s, " requested");
1130 
1131 		if (state.enabled)
1132 			seq_puts(s, " enabled");
1133 
1134 		seq_printf(s, " period: %llu ns", state.period);
1135 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1136 		seq_printf(s, " polarity: %s",
1137 			   state.polarity ? "inverse" : "normal");
1138 
1139 		if (state.usage_power)
1140 			seq_puts(s, " usage_power");
1141 
1142 		seq_puts(s, "\n");
1143 	}
1144 }
1145 
1146 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1147 {
1148 	mutex_lock(&pwm_lock);
1149 	s->private = "";
1150 
1151 	return seq_list_start(&pwm_chips, *pos);
1152 }
1153 
1154 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1155 {
1156 	s->private = "\n";
1157 
1158 	return seq_list_next(v, &pwm_chips, pos);
1159 }
1160 
1161 static void pwm_seq_stop(struct seq_file *s, void *v)
1162 {
1163 	mutex_unlock(&pwm_lock);
1164 }
1165 
1166 static int pwm_seq_show(struct seq_file *s, void *v)
1167 {
1168 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1169 
1170 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1171 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1172 		   dev_name(chip->dev), chip->npwm,
1173 		   (chip->npwm != 1) ? "s" : "");
1174 
1175 	pwm_dbg_show(chip, s);
1176 
1177 	return 0;
1178 }
1179 
1180 static const struct seq_operations pwm_debugfs_sops = {
1181 	.start = pwm_seq_start,
1182 	.next = pwm_seq_next,
1183 	.stop = pwm_seq_stop,
1184 	.show = pwm_seq_show,
1185 };
1186 
1187 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1188 
1189 static int __init pwm_debugfs_init(void)
1190 {
1191 	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1192 
1193 	return 0;
1194 }
1195 subsys_initcall(pwm_debugfs_init);
1196 #endif /* CONFIG_DEBUG_FS */
1197