xref: /linux/drivers/pwm/core.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(unsigned int count)
41 {
42 	unsigned int start;
43 
44 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 					   count, 0);
46 
47 	if (start + count > MAX_PWMS)
48 		return -ENOSPC;
49 
50 	return start;
51 }
52 
53 static void free_pwms(struct pwm_chip *chip)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < chip->npwm; i++) {
58 		struct pwm_device *pwm = &chip->pwms[i];
59 
60 		radix_tree_delete(&pwm_tree, pwm->pwm);
61 	}
62 
63 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64 
65 	kfree(chip->pwms);
66 	chip->pwms = NULL;
67 }
68 
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 	struct pwm_chip *chip;
72 
73 	if (!name)
74 		return NULL;
75 
76 	mutex_lock(&pwm_lock);
77 
78 	list_for_each_entry(chip, &pwm_chips, list) {
79 		const char *chip_name = dev_name(chip->dev);
80 
81 		if (chip_name && strcmp(chip_name, name) == 0) {
82 			mutex_unlock(&pwm_lock);
83 			return chip;
84 		}
85 	}
86 
87 	mutex_unlock(&pwm_lock);
88 
89 	return NULL;
90 }
91 
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 	int err;
95 
96 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 		return -EBUSY;
98 
99 	if (!try_module_get(pwm->chip->ops->owner))
100 		return -ENODEV;
101 
102 	if (pwm->chip->ops->request) {
103 		err = pwm->chip->ops->request(pwm->chip, pwm);
104 		if (err) {
105 			module_put(pwm->chip->ops->owner);
106 			return err;
107 		}
108 	}
109 
110 	if (pwm->chip->ops->get_state) {
111 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 		trace_pwm_get(pwm, &pwm->state);
113 
114 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 			pwm->last = pwm->state;
116 	}
117 
118 	set_bit(PWMF_REQUESTED, &pwm->flags);
119 	pwm->label = label;
120 
121 	return 0;
122 }
123 
124 struct pwm_device *
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 	struct pwm_device *pwm;
128 
129 	if (pc->of_pwm_n_cells < 2)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (pc->of_pwm_n_cells >= 3) {
147 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 			pwm->args.polarity = PWM_POLARITY_INVERSED;
149 	}
150 
151 	return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154 
155 static void of_pwmchip_add(struct pwm_chip *chip)
156 {
157 	if (!chip->dev || !chip->dev->of_node)
158 		return;
159 
160 	if (!chip->of_xlate) {
161 		u32 pwm_cells;
162 
163 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
164 					 &pwm_cells))
165 			pwm_cells = 2;
166 
167 		chip->of_xlate = of_pwm_xlate_with_flags;
168 		chip->of_pwm_n_cells = pwm_cells;
169 	}
170 
171 	of_node_get(chip->dev->of_node);
172 }
173 
174 static void of_pwmchip_remove(struct pwm_chip *chip)
175 {
176 	if (chip->dev)
177 		of_node_put(chip->dev->of_node);
178 }
179 
180 /**
181  * pwm_set_chip_data() - set private chip data for a PWM
182  * @pwm: PWM device
183  * @data: pointer to chip-specific data
184  *
185  * Returns: 0 on success or a negative error code on failure.
186  */
187 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
188 {
189 	if (!pwm)
190 		return -EINVAL;
191 
192 	pwm->chip_data = data;
193 
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
197 
198 /**
199  * pwm_get_chip_data() - get private chip data for a PWM
200  * @pwm: PWM device
201  *
202  * Returns: A pointer to the chip-private data for the PWM device.
203  */
204 void *pwm_get_chip_data(struct pwm_device *pwm)
205 {
206 	return pwm ? pwm->chip_data : NULL;
207 }
208 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
209 
210 static bool pwm_ops_check(const struct pwm_chip *chip)
211 {
212 
213 	const struct pwm_ops *ops = chip->ops;
214 
215 	/* driver supports legacy, non-atomic operation */
216 	if (ops->config && ops->enable && ops->disable) {
217 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
218 			dev_warn(chip->dev,
219 				 "Driver needs updating to atomic API\n");
220 
221 		return true;
222 	}
223 
224 	if (!ops->apply)
225 		return false;
226 
227 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
228 		dev_warn(chip->dev,
229 			 "Please implement the .get_state() callback\n");
230 
231 	return true;
232 }
233 
234 /**
235  * pwmchip_add() - register a new PWM chip
236  * @chip: the PWM chip to add
237  *
238  * Register a new PWM chip.
239  *
240  * Returns: 0 on success or a negative error code on failure.
241  */
242 int pwmchip_add(struct pwm_chip *chip)
243 {
244 	struct pwm_device *pwm;
245 	unsigned int i;
246 	int ret;
247 
248 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
249 		return -EINVAL;
250 
251 	if (!pwm_ops_check(chip))
252 		return -EINVAL;
253 
254 	mutex_lock(&pwm_lock);
255 
256 	ret = alloc_pwms(chip->npwm);
257 	if (ret < 0)
258 		goto out;
259 
260 	chip->base = ret;
261 
262 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
263 	if (!chip->pwms) {
264 		ret = -ENOMEM;
265 		goto out;
266 	}
267 
268 	for (i = 0; i < chip->npwm; i++) {
269 		pwm = &chip->pwms[i];
270 
271 		pwm->chip = chip;
272 		pwm->pwm = chip->base + i;
273 		pwm->hwpwm = i;
274 
275 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
276 	}
277 
278 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
279 
280 	INIT_LIST_HEAD(&chip->list);
281 	list_add(&chip->list, &pwm_chips);
282 
283 	ret = 0;
284 
285 	if (IS_ENABLED(CONFIG_OF))
286 		of_pwmchip_add(chip);
287 
288 out:
289 	mutex_unlock(&pwm_lock);
290 
291 	if (!ret)
292 		pwmchip_sysfs_export(chip);
293 
294 	return ret;
295 }
296 EXPORT_SYMBOL_GPL(pwmchip_add);
297 
298 /**
299  * pwmchip_remove() - remove a PWM chip
300  * @chip: the PWM chip to remove
301  *
302  * Removes a PWM chip. This function may return busy if the PWM chip provides
303  * a PWM device that is still requested.
304  *
305  * Returns: 0 on success or a negative error code on failure.
306  */
307 int pwmchip_remove(struct pwm_chip *chip)
308 {
309 	pwmchip_sysfs_unexport(chip);
310 
311 	mutex_lock(&pwm_lock);
312 
313 	list_del_init(&chip->list);
314 
315 	if (IS_ENABLED(CONFIG_OF))
316 		of_pwmchip_remove(chip);
317 
318 	free_pwms(chip);
319 
320 	mutex_unlock(&pwm_lock);
321 
322 	return 0;
323 }
324 EXPORT_SYMBOL_GPL(pwmchip_remove);
325 
326 static void devm_pwmchip_remove(void *data)
327 {
328 	struct pwm_chip *chip = data;
329 
330 	pwmchip_remove(chip);
331 }
332 
333 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
334 {
335 	int ret;
336 
337 	ret = pwmchip_add(chip);
338 	if (ret)
339 		return ret;
340 
341 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
342 }
343 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
344 
345 /**
346  * pwm_request() - request a PWM device
347  * @pwm: global PWM device index
348  * @label: PWM device label
349  *
350  * This function is deprecated, use pwm_get() instead.
351  *
352  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
353  * failure.
354  */
355 struct pwm_device *pwm_request(int pwm, const char *label)
356 {
357 	struct pwm_device *dev;
358 	int err;
359 
360 	if (pwm < 0 || pwm >= MAX_PWMS)
361 		return ERR_PTR(-EINVAL);
362 
363 	mutex_lock(&pwm_lock);
364 
365 	dev = pwm_to_device(pwm);
366 	if (!dev) {
367 		dev = ERR_PTR(-EPROBE_DEFER);
368 		goto out;
369 	}
370 
371 	err = pwm_device_request(dev, label);
372 	if (err < 0)
373 		dev = ERR_PTR(err);
374 
375 out:
376 	mutex_unlock(&pwm_lock);
377 
378 	return dev;
379 }
380 EXPORT_SYMBOL_GPL(pwm_request);
381 
382 /**
383  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
384  * @chip: PWM chip
385  * @index: per-chip index of the PWM to request
386  * @label: a literal description string of this PWM
387  *
388  * Returns: A pointer to the PWM device at the given index of the given PWM
389  * chip. A negative error code is returned if the index is not valid for the
390  * specified PWM chip or if the PWM device cannot be requested.
391  */
392 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
393 					 unsigned int index,
394 					 const char *label)
395 {
396 	struct pwm_device *pwm;
397 	int err;
398 
399 	if (!chip || index >= chip->npwm)
400 		return ERR_PTR(-EINVAL);
401 
402 	mutex_lock(&pwm_lock);
403 	pwm = &chip->pwms[index];
404 
405 	err = pwm_device_request(pwm, label);
406 	if (err < 0)
407 		pwm = ERR_PTR(err);
408 
409 	mutex_unlock(&pwm_lock);
410 	return pwm;
411 }
412 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
413 
414 /**
415  * pwm_free() - free a PWM device
416  * @pwm: PWM device
417  *
418  * This function is deprecated, use pwm_put() instead.
419  */
420 void pwm_free(struct pwm_device *pwm)
421 {
422 	pwm_put(pwm);
423 }
424 EXPORT_SYMBOL_GPL(pwm_free);
425 
426 static void pwm_apply_state_debug(struct pwm_device *pwm,
427 				  const struct pwm_state *state)
428 {
429 	struct pwm_state *last = &pwm->last;
430 	struct pwm_chip *chip = pwm->chip;
431 	struct pwm_state s1, s2;
432 	int err;
433 
434 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
435 		return;
436 
437 	/* No reasonable diagnosis possible without .get_state() */
438 	if (!chip->ops->get_state)
439 		return;
440 
441 	/*
442 	 * *state was just applied. Read out the hardware state and do some
443 	 * checks.
444 	 */
445 
446 	chip->ops->get_state(chip, pwm, &s1);
447 	trace_pwm_get(pwm, &s1);
448 
449 	/*
450 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
451 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
452 	 * Undo this inversion and fixup for further tests.
453 	 */
454 	if (s1.enabled && s1.polarity != state->polarity) {
455 		s2.polarity = state->polarity;
456 		s2.duty_cycle = s1.period - s1.duty_cycle;
457 		s2.period = s1.period;
458 		s2.enabled = s1.enabled;
459 	} else {
460 		s2 = s1;
461 	}
462 
463 	if (s2.polarity != state->polarity &&
464 	    state->duty_cycle < state->period)
465 		dev_warn(chip->dev, ".apply ignored .polarity\n");
466 
467 	if (state->enabled &&
468 	    last->polarity == state->polarity &&
469 	    last->period > s2.period &&
470 	    last->period <= state->period)
471 		dev_warn(chip->dev,
472 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
473 			 state->period, s2.period, last->period);
474 
475 	if (state->enabled && state->period < s2.period)
476 		dev_warn(chip->dev,
477 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
478 			 state->period, s2.period);
479 
480 	if (state->enabled &&
481 	    last->polarity == state->polarity &&
482 	    last->period == s2.period &&
483 	    last->duty_cycle > s2.duty_cycle &&
484 	    last->duty_cycle <= state->duty_cycle)
485 		dev_warn(chip->dev,
486 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
487 			 state->duty_cycle, state->period,
488 			 s2.duty_cycle, s2.period,
489 			 last->duty_cycle, last->period);
490 
491 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
492 		dev_warn(chip->dev,
493 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
494 			 state->duty_cycle, state->period,
495 			 s2.duty_cycle, s2.period);
496 
497 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
498 		dev_warn(chip->dev,
499 			 "requested disabled, but yielded enabled with duty > 0\n");
500 
501 	/* reapply the state that the driver reported being configured. */
502 	err = chip->ops->apply(chip, pwm, &s1);
503 	if (err) {
504 		*last = s1;
505 		dev_err(chip->dev, "failed to reapply current setting\n");
506 		return;
507 	}
508 
509 	trace_pwm_apply(pwm, &s1);
510 
511 	chip->ops->get_state(chip, pwm, last);
512 	trace_pwm_get(pwm, last);
513 
514 	/* reapplication of the current state should give an exact match */
515 	if (s1.enabled != last->enabled ||
516 	    s1.polarity != last->polarity ||
517 	    (s1.enabled && s1.period != last->period) ||
518 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
519 		dev_err(chip->dev,
520 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
521 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
522 			last->enabled, last->polarity, last->duty_cycle,
523 			last->period);
524 	}
525 }
526 
527 /**
528  * pwm_apply_state() - atomically apply a new state to a PWM device
529  * @pwm: PWM device
530  * @state: new state to apply
531  */
532 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
533 {
534 	struct pwm_chip *chip;
535 	int err;
536 
537 	if (!pwm || !state || !state->period ||
538 	    state->duty_cycle > state->period)
539 		return -EINVAL;
540 
541 	chip = pwm->chip;
542 
543 	if (state->period == pwm->state.period &&
544 	    state->duty_cycle == pwm->state.duty_cycle &&
545 	    state->polarity == pwm->state.polarity &&
546 	    state->enabled == pwm->state.enabled &&
547 	    state->usage_power == pwm->state.usage_power)
548 		return 0;
549 
550 	if (chip->ops->apply) {
551 		err = chip->ops->apply(chip, pwm, state);
552 		if (err)
553 			return err;
554 
555 		trace_pwm_apply(pwm, state);
556 
557 		pwm->state = *state;
558 
559 		/*
560 		 * only do this after pwm->state was applied as some
561 		 * implementations of .get_state depend on this
562 		 */
563 		pwm_apply_state_debug(pwm, state);
564 	} else {
565 		/*
566 		 * FIXME: restore the initial state in case of error.
567 		 */
568 		if (state->polarity != pwm->state.polarity) {
569 			if (!chip->ops->set_polarity)
570 				return -EINVAL;
571 
572 			/*
573 			 * Changing the polarity of a running PWM is
574 			 * only allowed when the PWM driver implements
575 			 * ->apply().
576 			 */
577 			if (pwm->state.enabled) {
578 				chip->ops->disable(chip, pwm);
579 				pwm->state.enabled = false;
580 			}
581 
582 			err = chip->ops->set_polarity(chip, pwm,
583 						      state->polarity);
584 			if (err)
585 				return err;
586 
587 			pwm->state.polarity = state->polarity;
588 		}
589 
590 		if (state->period != pwm->state.period ||
591 		    state->duty_cycle != pwm->state.duty_cycle) {
592 			err = chip->ops->config(pwm->chip, pwm,
593 						state->duty_cycle,
594 						state->period);
595 			if (err)
596 				return err;
597 
598 			pwm->state.duty_cycle = state->duty_cycle;
599 			pwm->state.period = state->period;
600 		}
601 
602 		if (state->enabled != pwm->state.enabled) {
603 			if (state->enabled) {
604 				err = chip->ops->enable(chip, pwm);
605 				if (err)
606 					return err;
607 			} else {
608 				chip->ops->disable(chip, pwm);
609 			}
610 
611 			pwm->state.enabled = state->enabled;
612 		}
613 	}
614 
615 	return 0;
616 }
617 EXPORT_SYMBOL_GPL(pwm_apply_state);
618 
619 /**
620  * pwm_capture() - capture and report a PWM signal
621  * @pwm: PWM device
622  * @result: structure to fill with capture result
623  * @timeout: time to wait, in milliseconds, before giving up on capture
624  *
625  * Returns: 0 on success or a negative error code on failure.
626  */
627 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
628 		unsigned long timeout)
629 {
630 	int err;
631 
632 	if (!pwm || !pwm->chip->ops)
633 		return -EINVAL;
634 
635 	if (!pwm->chip->ops->capture)
636 		return -ENOSYS;
637 
638 	mutex_lock(&pwm_lock);
639 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
640 	mutex_unlock(&pwm_lock);
641 
642 	return err;
643 }
644 EXPORT_SYMBOL_GPL(pwm_capture);
645 
646 /**
647  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
648  * @pwm: PWM device
649  *
650  * This function will adjust the PWM config to the PWM arguments provided
651  * by the DT or PWM lookup table. This is particularly useful to adapt
652  * the bootloader config to the Linux one.
653  */
654 int pwm_adjust_config(struct pwm_device *pwm)
655 {
656 	struct pwm_state state;
657 	struct pwm_args pargs;
658 
659 	pwm_get_args(pwm, &pargs);
660 	pwm_get_state(pwm, &state);
661 
662 	/*
663 	 * If the current period is zero it means that either the PWM driver
664 	 * does not support initial state retrieval or the PWM has not yet
665 	 * been configured.
666 	 *
667 	 * In either case, we setup the new period and polarity, and assign a
668 	 * duty cycle of 0.
669 	 */
670 	if (!state.period) {
671 		state.duty_cycle = 0;
672 		state.period = pargs.period;
673 		state.polarity = pargs.polarity;
674 
675 		return pwm_apply_state(pwm, &state);
676 	}
677 
678 	/*
679 	 * Adjust the PWM duty cycle/period based on the period value provided
680 	 * in PWM args.
681 	 */
682 	if (pargs.period != state.period) {
683 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
684 
685 		do_div(dutycycle, state.period);
686 		state.duty_cycle = dutycycle;
687 		state.period = pargs.period;
688 	}
689 
690 	/*
691 	 * If the polarity changed, we should also change the duty cycle.
692 	 */
693 	if (pargs.polarity != state.polarity) {
694 		state.polarity = pargs.polarity;
695 		state.duty_cycle = state.period - state.duty_cycle;
696 	}
697 
698 	return pwm_apply_state(pwm, &state);
699 }
700 EXPORT_SYMBOL_GPL(pwm_adjust_config);
701 
702 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
703 {
704 	struct pwm_chip *chip;
705 
706 	mutex_lock(&pwm_lock);
707 
708 	list_for_each_entry(chip, &pwm_chips, list)
709 		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
710 			mutex_unlock(&pwm_lock);
711 			return chip;
712 		}
713 
714 	mutex_unlock(&pwm_lock);
715 
716 	return ERR_PTR(-EPROBE_DEFER);
717 }
718 
719 static struct device_link *pwm_device_link_add(struct device *dev,
720 					       struct pwm_device *pwm)
721 {
722 	struct device_link *dl;
723 
724 	if (!dev) {
725 		/*
726 		 * No device for the PWM consumer has been provided. It may
727 		 * impact the PM sequence ordering: the PWM supplier may get
728 		 * suspended before the consumer.
729 		 */
730 		dev_warn(pwm->chip->dev,
731 			 "No consumer device specified to create a link to\n");
732 		return NULL;
733 	}
734 
735 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
736 	if (!dl) {
737 		dev_err(dev, "failed to create device link to %s\n",
738 			dev_name(pwm->chip->dev));
739 		return ERR_PTR(-EINVAL);
740 	}
741 
742 	return dl;
743 }
744 
745 /**
746  * of_pwm_get() - request a PWM via the PWM framework
747  * @dev: device for PWM consumer
748  * @np: device node to get the PWM from
749  * @con_id: consumer name
750  *
751  * Returns the PWM device parsed from the phandle and index specified in the
752  * "pwms" property of a device tree node or a negative error-code on failure.
753  * Values parsed from the device tree are stored in the returned PWM device
754  * object.
755  *
756  * If con_id is NULL, the first PWM device listed in the "pwms" property will
757  * be requested. Otherwise the "pwm-names" property is used to do a reverse
758  * lookup of the PWM index. This also means that the "pwm-names" property
759  * becomes mandatory for devices that look up the PWM device via the con_id
760  * parameter.
761  *
762  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
763  * error code on failure.
764  */
765 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
766 			      const char *con_id)
767 {
768 	struct pwm_device *pwm = NULL;
769 	struct of_phandle_args args;
770 	struct device_link *dl;
771 	struct pwm_chip *pc;
772 	int index = 0;
773 	int err;
774 
775 	if (con_id) {
776 		index = of_property_match_string(np, "pwm-names", con_id);
777 		if (index < 0)
778 			return ERR_PTR(index);
779 	}
780 
781 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
782 					 &args);
783 	if (err) {
784 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
785 		return ERR_PTR(err);
786 	}
787 
788 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
789 	if (IS_ERR(pc)) {
790 		if (PTR_ERR(pc) != -EPROBE_DEFER)
791 			pr_err("%s(): PWM chip not found\n", __func__);
792 
793 		pwm = ERR_CAST(pc);
794 		goto put;
795 	}
796 
797 	pwm = pc->of_xlate(pc, &args);
798 	if (IS_ERR(pwm))
799 		goto put;
800 
801 	dl = pwm_device_link_add(dev, pwm);
802 	if (IS_ERR(dl)) {
803 		/* of_xlate ended up calling pwm_request_from_chip() */
804 		pwm_free(pwm);
805 		pwm = ERR_CAST(dl);
806 		goto put;
807 	}
808 
809 	/*
810 	 * If a consumer name was not given, try to look it up from the
811 	 * "pwm-names" property if it exists. Otherwise use the name of
812 	 * the user device node.
813 	 */
814 	if (!con_id) {
815 		err = of_property_read_string_index(np, "pwm-names", index,
816 						    &con_id);
817 		if (err < 0)
818 			con_id = np->name;
819 	}
820 
821 	pwm->label = con_id;
822 
823 put:
824 	of_node_put(args.np);
825 
826 	return pwm;
827 }
828 EXPORT_SYMBOL_GPL(of_pwm_get);
829 
830 /**
831  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
832  * @fwnode: firmware node to get the "pwms" property from
833  *
834  * Returns the PWM device parsed from the fwnode and index specified in the
835  * "pwms" property or a negative error-code on failure.
836  * Values parsed from the device tree are stored in the returned PWM device
837  * object.
838  *
839  * This is analogous to of_pwm_get() except con_id is not yet supported.
840  * ACPI entries must look like
841  * Package () {"pwms", Package ()
842  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
843  *
844  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
845  * error code on failure.
846  */
847 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
848 {
849 	struct pwm_device *pwm;
850 	struct fwnode_reference_args args;
851 	struct pwm_chip *chip;
852 	int ret;
853 
854 	memset(&args, 0, sizeof(args));
855 
856 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
857 	if (ret < 0)
858 		return ERR_PTR(ret);
859 
860 	if (args.nargs < 2)
861 		return ERR_PTR(-EPROTO);
862 
863 	chip = fwnode_to_pwmchip(args.fwnode);
864 	if (IS_ERR(chip))
865 		return ERR_CAST(chip);
866 
867 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
868 	if (IS_ERR(pwm))
869 		return pwm;
870 
871 	pwm->args.period = args.args[1];
872 	pwm->args.polarity = PWM_POLARITY_NORMAL;
873 
874 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
875 		pwm->args.polarity = PWM_POLARITY_INVERSED;
876 
877 	return pwm;
878 }
879 
880 /**
881  * pwm_add_table() - register PWM device consumers
882  * @table: array of consumers to register
883  * @num: number of consumers in table
884  */
885 void pwm_add_table(struct pwm_lookup *table, size_t num)
886 {
887 	mutex_lock(&pwm_lookup_lock);
888 
889 	while (num--) {
890 		list_add_tail(&table->list, &pwm_lookup_list);
891 		table++;
892 	}
893 
894 	mutex_unlock(&pwm_lookup_lock);
895 }
896 
897 /**
898  * pwm_remove_table() - unregister PWM device consumers
899  * @table: array of consumers to unregister
900  * @num: number of consumers in table
901  */
902 void pwm_remove_table(struct pwm_lookup *table, size_t num)
903 {
904 	mutex_lock(&pwm_lookup_lock);
905 
906 	while (num--) {
907 		list_del(&table->list);
908 		table++;
909 	}
910 
911 	mutex_unlock(&pwm_lookup_lock);
912 }
913 
914 /**
915  * pwm_get() - look up and request a PWM device
916  * @dev: device for PWM consumer
917  * @con_id: consumer name
918  *
919  * Lookup is first attempted using DT. If the device was not instantiated from
920  * a device tree, a PWM chip and a relative index is looked up via a table
921  * supplied by board setup code (see pwm_add_table()).
922  *
923  * Once a PWM chip has been found the specified PWM device will be requested
924  * and is ready to be used.
925  *
926  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
927  * error code on failure.
928  */
929 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
930 {
931 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
932 	const char *dev_id = dev ? dev_name(dev) : NULL;
933 	struct pwm_device *pwm;
934 	struct pwm_chip *chip;
935 	struct device_link *dl;
936 	unsigned int best = 0;
937 	struct pwm_lookup *p, *chosen = NULL;
938 	unsigned int match;
939 	int err;
940 
941 	/* look up via DT first */
942 	if (is_of_node(fwnode))
943 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
944 
945 	/* then lookup via ACPI */
946 	if (is_acpi_node(fwnode)) {
947 		pwm = acpi_pwm_get(fwnode);
948 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
949 			return pwm;
950 	}
951 
952 	/*
953 	 * We look up the provider in the static table typically provided by
954 	 * board setup code. We first try to lookup the consumer device by
955 	 * name. If the consumer device was passed in as NULL or if no match
956 	 * was found, we try to find the consumer by directly looking it up
957 	 * by name.
958 	 *
959 	 * If a match is found, the provider PWM chip is looked up by name
960 	 * and a PWM device is requested using the PWM device per-chip index.
961 	 *
962 	 * The lookup algorithm was shamelessly taken from the clock
963 	 * framework:
964 	 *
965 	 * We do slightly fuzzy matching here:
966 	 *  An entry with a NULL ID is assumed to be a wildcard.
967 	 *  If an entry has a device ID, it must match
968 	 *  If an entry has a connection ID, it must match
969 	 * Then we take the most specific entry - with the following order
970 	 * of precedence: dev+con > dev only > con only.
971 	 */
972 	mutex_lock(&pwm_lookup_lock);
973 
974 	list_for_each_entry(p, &pwm_lookup_list, list) {
975 		match = 0;
976 
977 		if (p->dev_id) {
978 			if (!dev_id || strcmp(p->dev_id, dev_id))
979 				continue;
980 
981 			match += 2;
982 		}
983 
984 		if (p->con_id) {
985 			if (!con_id || strcmp(p->con_id, con_id))
986 				continue;
987 
988 			match += 1;
989 		}
990 
991 		if (match > best) {
992 			chosen = p;
993 
994 			if (match != 3)
995 				best = match;
996 			else
997 				break;
998 		}
999 	}
1000 
1001 	mutex_unlock(&pwm_lookup_lock);
1002 
1003 	if (!chosen)
1004 		return ERR_PTR(-ENODEV);
1005 
1006 	chip = pwmchip_find_by_name(chosen->provider);
1007 
1008 	/*
1009 	 * If the lookup entry specifies a module, load the module and retry
1010 	 * the PWM chip lookup. This can be used to work around driver load
1011 	 * ordering issues if driver's can't be made to properly support the
1012 	 * deferred probe mechanism.
1013 	 */
1014 	if (!chip && chosen->module) {
1015 		err = request_module(chosen->module);
1016 		if (err == 0)
1017 			chip = pwmchip_find_by_name(chosen->provider);
1018 	}
1019 
1020 	if (!chip)
1021 		return ERR_PTR(-EPROBE_DEFER);
1022 
1023 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1024 	if (IS_ERR(pwm))
1025 		return pwm;
1026 
1027 	dl = pwm_device_link_add(dev, pwm);
1028 	if (IS_ERR(dl)) {
1029 		pwm_free(pwm);
1030 		return ERR_CAST(dl);
1031 	}
1032 
1033 	pwm->args.period = chosen->period;
1034 	pwm->args.polarity = chosen->polarity;
1035 
1036 	return pwm;
1037 }
1038 EXPORT_SYMBOL_GPL(pwm_get);
1039 
1040 /**
1041  * pwm_put() - release a PWM device
1042  * @pwm: PWM device
1043  */
1044 void pwm_put(struct pwm_device *pwm)
1045 {
1046 	if (!pwm)
1047 		return;
1048 
1049 	mutex_lock(&pwm_lock);
1050 
1051 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1052 		pr_warn("PWM device already freed\n");
1053 		goto out;
1054 	}
1055 
1056 	if (pwm->chip->ops->free)
1057 		pwm->chip->ops->free(pwm->chip, pwm);
1058 
1059 	pwm_set_chip_data(pwm, NULL);
1060 	pwm->label = NULL;
1061 
1062 	module_put(pwm->chip->ops->owner);
1063 out:
1064 	mutex_unlock(&pwm_lock);
1065 }
1066 EXPORT_SYMBOL_GPL(pwm_put);
1067 
1068 static void devm_pwm_release(void *pwm)
1069 {
1070 	pwm_put(pwm);
1071 }
1072 
1073 /**
1074  * devm_pwm_get() - resource managed pwm_get()
1075  * @dev: device for PWM consumer
1076  * @con_id: consumer name
1077  *
1078  * This function performs like pwm_get() but the acquired PWM device will
1079  * automatically be released on driver detach.
1080  *
1081  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082  * error code on failure.
1083  */
1084 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1085 {
1086 	struct pwm_device *pwm;
1087 	int ret;
1088 
1089 	pwm = pwm_get(dev, con_id);
1090 	if (IS_ERR(pwm))
1091 		return pwm;
1092 
1093 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1094 	if (ret)
1095 		return ERR_PTR(ret);
1096 
1097 	return pwm;
1098 }
1099 EXPORT_SYMBOL_GPL(devm_pwm_get);
1100 
1101 /**
1102  * devm_of_pwm_get() - resource managed of_pwm_get()
1103  * @dev: device for PWM consumer
1104  * @np: device node to get the PWM from
1105  * @con_id: consumer name
1106  *
1107  * This function performs like of_pwm_get() but the acquired PWM device will
1108  * automatically be released on driver detach.
1109  *
1110  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1111  * error code on failure.
1112  */
1113 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1114 				   const char *con_id)
1115 {
1116 	struct pwm_device *pwm;
1117 	int ret;
1118 
1119 	pwm = of_pwm_get(dev, np, con_id);
1120 	if (IS_ERR(pwm))
1121 		return pwm;
1122 
1123 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1124 	if (ret)
1125 		return ERR_PTR(ret);
1126 
1127 	return pwm;
1128 }
1129 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1130 
1131 /**
1132  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1133  * @dev: device for PWM consumer
1134  * @fwnode: firmware node to get the PWM from
1135  * @con_id: consumer name
1136  *
1137  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1138  * acpi_pwm_get() for a detailed description.
1139  *
1140  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1141  * error code on failure.
1142  */
1143 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1144 				       struct fwnode_handle *fwnode,
1145 				       const char *con_id)
1146 {
1147 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1148 	int ret;
1149 
1150 	if (is_of_node(fwnode))
1151 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1152 	else if (is_acpi_node(fwnode))
1153 		pwm = acpi_pwm_get(fwnode);
1154 	if (IS_ERR(pwm))
1155 		return pwm;
1156 
1157 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1158 	if (ret)
1159 		return ERR_PTR(ret);
1160 
1161 	return pwm;
1162 }
1163 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1164 
1165 #ifdef CONFIG_DEBUG_FS
1166 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1167 {
1168 	unsigned int i;
1169 
1170 	for (i = 0; i < chip->npwm; i++) {
1171 		struct pwm_device *pwm = &chip->pwms[i];
1172 		struct pwm_state state;
1173 
1174 		pwm_get_state(pwm, &state);
1175 
1176 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1177 
1178 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1179 			seq_puts(s, " requested");
1180 
1181 		if (state.enabled)
1182 			seq_puts(s, " enabled");
1183 
1184 		seq_printf(s, " period: %llu ns", state.period);
1185 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1186 		seq_printf(s, " polarity: %s",
1187 			   state.polarity ? "inverse" : "normal");
1188 
1189 		if (state.usage_power)
1190 			seq_puts(s, " usage_power");
1191 
1192 		seq_puts(s, "\n");
1193 	}
1194 }
1195 
1196 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1197 {
1198 	mutex_lock(&pwm_lock);
1199 	s->private = "";
1200 
1201 	return seq_list_start(&pwm_chips, *pos);
1202 }
1203 
1204 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1205 {
1206 	s->private = "\n";
1207 
1208 	return seq_list_next(v, &pwm_chips, pos);
1209 }
1210 
1211 static void pwm_seq_stop(struct seq_file *s, void *v)
1212 {
1213 	mutex_unlock(&pwm_lock);
1214 }
1215 
1216 static int pwm_seq_show(struct seq_file *s, void *v)
1217 {
1218 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1219 
1220 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1221 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1222 		   dev_name(chip->dev), chip->npwm,
1223 		   (chip->npwm != 1) ? "s" : "");
1224 
1225 	pwm_dbg_show(chip, s);
1226 
1227 	return 0;
1228 }
1229 
1230 static const struct seq_operations pwm_debugfs_sops = {
1231 	.start = pwm_seq_start,
1232 	.next = pwm_seq_next,
1233 	.stop = pwm_seq_stop,
1234 	.show = pwm_seq_show,
1235 };
1236 
1237 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1238 
1239 static int __init pwm_debugfs_init(void)
1240 {
1241 	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1242 			    &pwm_debugfs_fops);
1243 
1244 	return 0;
1245 }
1246 subsys_initcall(pwm_debugfs_init);
1247 #endif /* CONFIG_DEBUG_FS */
1248