xref: /linux/drivers/pwm/core.c (revision b61104e7a6349bd2c2b3e2fb3260d87f15eda8f4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #include <uapi/linux/pwm.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/pwm.h>
30 
31 #define PWM_MINOR_COUNT 256
32 
33 /* protects access to pwm_chips */
34 static DEFINE_MUTEX(pwm_lock);
35 
36 static DEFINE_IDR(pwm_chips);
37 
38 static void pwmchip_lock(struct pwm_chip *chip)
39 {
40 	if (chip->atomic)
41 		spin_lock(&chip->atomic_lock);
42 	else
43 		mutex_lock(&chip->nonatomic_lock);
44 }
45 
46 static void pwmchip_unlock(struct pwm_chip *chip)
47 {
48 	if (chip->atomic)
49 		spin_unlock(&chip->atomic_lock);
50 	else
51 		mutex_unlock(&chip->nonatomic_lock);
52 }
53 
54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
55 
56 static bool pwm_wf_valid(const struct pwm_waveform *wf)
57 {
58 	/*
59 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
60 	 * some space for future extensions. One possibility is to simplify
61 	 * representing waveforms with inverted polarity using negative values
62 	 * somehow.
63 	 */
64 	if (wf->period_length_ns > S64_MAX)
65 		return false;
66 
67 	if (wf->duty_length_ns > wf->period_length_ns)
68 		return false;
69 
70 	/*
71 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
72 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
73 	 */
74 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
75 		return false;
76 
77 	return true;
78 }
79 
80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
81 {
82 	if (wf->period_length_ns) {
83 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
84 			*state = (struct pwm_state){
85 				.enabled = true,
86 				.polarity = PWM_POLARITY_NORMAL,
87 				.period = wf->period_length_ns,
88 				.duty_cycle = wf->duty_length_ns,
89 			};
90 		else
91 			*state = (struct pwm_state){
92 				.enabled = true,
93 				.polarity = PWM_POLARITY_INVERSED,
94 				.period = wf->period_length_ns,
95 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
96 			};
97 	} else {
98 		*state = (struct pwm_state){
99 			.enabled = false,
100 		};
101 	}
102 }
103 
104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
105 {
106 	if (state->enabled) {
107 		if (state->polarity == PWM_POLARITY_NORMAL)
108 			*wf = (struct pwm_waveform){
109 				.period_length_ns = state->period,
110 				.duty_length_ns = state->duty_cycle,
111 				.duty_offset_ns = 0,
112 			};
113 		else
114 			*wf = (struct pwm_waveform){
115 				.period_length_ns = state->period,
116 				.duty_length_ns = state->period - state->duty_cycle,
117 				.duty_offset_ns = state->duty_cycle,
118 			};
119 	} else {
120 		*wf = (struct pwm_waveform){
121 			.period_length_ns = 0,
122 		};
123 	}
124 }
125 
126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
127 {
128 	if (a->period_length_ns > b->period_length_ns)
129 		return 1;
130 
131 	if (a->period_length_ns < b->period_length_ns)
132 		return -1;
133 
134 	if (a->duty_length_ns > b->duty_length_ns)
135 		return 1;
136 
137 	if (a->duty_length_ns < b->duty_length_ns)
138 		return -1;
139 
140 	if (a->duty_offset_ns > b->duty_offset_ns)
141 		return 1;
142 
143 	if (a->duty_offset_ns < b->duty_offset_ns)
144 		return -1;
145 
146 	return 0;
147 }
148 
149 static bool pwm_check_rounding(const struct pwm_waveform *wf,
150 			       const struct pwm_waveform *wf_rounded)
151 {
152 	if (!wf->period_length_ns)
153 		return true;
154 
155 	if (wf->period_length_ns < wf_rounded->period_length_ns)
156 		return false;
157 
158 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
159 		return false;
160 
161 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
162 		return false;
163 
164 	return true;
165 }
166 
167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
168 				     const struct pwm_waveform *wf, void *wfhw)
169 {
170 	const struct pwm_ops *ops = chip->ops;
171 	int ret;
172 
173 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
174 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
175 
176 	return ret;
177 }
178 
179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
180 				       const void *wfhw, struct pwm_waveform *wf)
181 {
182 	const struct pwm_ops *ops = chip->ops;
183 	int ret;
184 
185 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
186 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
187 
188 	return ret;
189 }
190 
191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
192 {
193 	const struct pwm_ops *ops = chip->ops;
194 	int ret;
195 
196 	ret = ops->read_waveform(chip, pwm, wfhw);
197 	trace_pwm_read_waveform(pwm, wfhw, ret);
198 
199 	return ret;
200 }
201 
202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
203 {
204 	const struct pwm_ops *ops = chip->ops;
205 	int ret;
206 
207 	ret = ops->write_waveform(chip, pwm, wfhw);
208 	trace_pwm_write_waveform(pwm, wfhw, ret);
209 
210 	return ret;
211 }
212 
213 /**
214  * pwm_round_waveform_might_sleep - Query hardware capabilities
215  * Cannot be used in atomic context.
216  * @pwm: PWM device
217  * @wf: waveform to round and output parameter
218  *
219  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
220  * because hardware only supports coarse period resolution or no duty_offset.
221  * This function returns the actually implemented waveform if you pass @wf to
222  * pwm_set_waveform_might_sleep() now.
223  *
224  * Note however that the world doesn't stop turning when you call it, so when
225  * doing::
226  *
227  *   pwm_round_waveform_might_sleep(mypwm, &wf);
228  *   pwm_set_waveform_might_sleep(mypwm, &wf, true);
229  *
230  * the latter might fail, e.g. because an input clock changed its rate between
231  * these two calls and the waveform determined by
232  * pwm_round_waveform_might_sleep() cannot be implemented any more.
233  *
234  * Usually all values passed in @wf are rounded down to the nearest possible
235  * value (in the order period_length_ns, duty_length_ns and then
236  * duty_offset_ns). Only if this isn't possible, a value might grow. See the
237  * documentation for pwm_set_waveform_might_sleep() for a more formal
238  * description.
239  *
240  * Returns: 0 on success, 1 if at least one value had to be rounded up or a
241  * negative errno.
242  * Context: May sleep.
243  */
244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
245 {
246 	struct pwm_chip *chip = pwm->chip;
247 	const struct pwm_ops *ops = chip->ops;
248 	struct pwm_waveform wf_req = *wf;
249 	char wfhw[PWM_WFHWSIZE];
250 	int ret_tohw, ret_fromhw;
251 
252 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
253 
254 	if (!pwmchip_supports_waveform(chip))
255 		return -EOPNOTSUPP;
256 
257 	if (!pwm_wf_valid(wf))
258 		return -EINVAL;
259 
260 	guard(pwmchip)(chip);
261 
262 	if (!chip->operational)
263 		return -ENODEV;
264 
265 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
266 	if (ret_tohw < 0)
267 		return ret_tohw;
268 
269 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
270 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
271 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
272 
273 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
274 	if (ret_fromhw < 0)
275 		return ret_fromhw;
276 
277 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
278 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
279 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_fromhw);
280 
281 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
282 	    (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf))
283 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
284 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
285 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw);
286 
287 	return ret_tohw;
288 }
289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
290 
291 /**
292  * pwm_get_waveform_might_sleep - Query hardware about current configuration
293  * Cannot be used in atomic context.
294  * @pwm: PWM device
295  * @wf: output parameter
296  *
297  * Stores the current configuration of the PWM in @wf. Note this is the
298  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
299  *
300  * Returns: 0 on success or a negative errno
301  * Context: May sleep.
302  */
303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
304 {
305 	struct pwm_chip *chip = pwm->chip;
306 	const struct pwm_ops *ops = chip->ops;
307 	char wfhw[PWM_WFHWSIZE];
308 	int err;
309 
310 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
311 
312 	if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
313 		return -EOPNOTSUPP;
314 
315 	guard(pwmchip)(chip);
316 
317 	if (!chip->operational)
318 		return -ENODEV;
319 
320 	err = __pwm_read_waveform(chip, pwm, &wfhw);
321 	if (err)
322 		return err;
323 
324 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
325 }
326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
327 
328 /* Called with the pwmchip lock held */
329 static int __pwm_set_waveform(struct pwm_device *pwm,
330 			      const struct pwm_waveform *wf,
331 			      bool exact)
332 {
333 	struct pwm_chip *chip = pwm->chip;
334 	const struct pwm_ops *ops = chip->ops;
335 	char wfhw[PWM_WFHWSIZE];
336 	struct pwm_waveform wf_rounded;
337 	int err, ret_tohw;
338 
339 	BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
340 
341 	if (!pwmchip_supports_waveform(chip))
342 		return -EOPNOTSUPP;
343 
344 	if (!pwm_wf_valid(wf))
345 		return -EINVAL;
346 
347 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
348 	if (ret_tohw < 0)
349 		return ret_tohw;
350 
351 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
352 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
353 		if (err)
354 			return err;
355 
356 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded))
357 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n",
358 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
359 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw);
360 
361 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
362 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
363 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
364 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
365 
366 			return 1;
367 		}
368 	}
369 
370 	err = __pwm_write_waveform(chip, pwm, &wfhw);
371 	if (err)
372 		return err;
373 
374 	/* update .state */
375 	pwm_wf2state(wf, &pwm->state);
376 
377 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
378 		struct pwm_waveform wf_set;
379 
380 		err = __pwm_read_waveform(chip, pwm, &wfhw);
381 		if (err)
382 			/* maybe ignore? */
383 			return err;
384 
385 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
386 		if (err)
387 			/* maybe ignore? */
388 			return err;
389 
390 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
391 			dev_err(&chip->dev,
392 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
393 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
394 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
395 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
396 	}
397 
398 	return ret_tohw;
399 }
400 
401 /**
402  * pwm_set_waveform_might_sleep - Apply a new waveform
403  * Cannot be used in atomic context.
404  * @pwm: PWM device
405  * @wf: The waveform to apply
406  * @exact: If true no rounding is allowed
407  *
408  * Typically a requested waveform cannot be implemented exactly, e.g. because
409  * you requested .period_length_ns = 100 ns, but the hardware can only set
410  * periods that are a multiple of 8.5 ns. With that hardware passing @exact =
411  * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM.
412  * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not
413  * bigger than the requested value).
414  * Note that even with @exact = true, some rounding by less than 1 ns is
415  * possible/needed. In the above example requesting .period_length_ns = 94 and
416  * @exact = true, you get the hardware configured with period = 93.5 ns.
417  *
418  * Let C be the set of possible hardware configurations for a given PWM device,
419  * consisting of tuples (p, d, o) where p is the period length, d is the duty
420  * length and o the duty offset.
421  *
422  * The following algorithm is implemented to pick the hardware setting
423  * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false::
424  *
425  *   p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) })
426  *   d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) })
427  *   o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) })
428  *
429  * In words: The chosen period length is the maximal possible period length not
430  * bigger than the requested period length and if that doesn't exist, the
431  * minimal period length. The chosen duty length is the maximal possible duty
432  * length that is compatible with the chosen period length and isn't bigger than
433  * the requested duty length. Again if such a value doesn't exist, the minimal
434  * duty length compatible with the chosen period is picked. After that the duty
435  * offset compatible with the chosen period and duty length is chosen in the
436  * same way.
437  *
438  * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not
439  * being possible (if @exact), or a different negative errno on failure.
440  * Context: May sleep.
441  */
442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
443 				 const struct pwm_waveform *wf, bool exact)
444 {
445 	struct pwm_chip *chip = pwm->chip;
446 	int err;
447 
448 	might_sleep();
449 
450 	guard(pwmchip)(chip);
451 
452 	if (!chip->operational)
453 		return -ENODEV;
454 
455 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
456 		/*
457 		 * Catch any drivers that have been marked as atomic but
458 		 * that will sleep anyway.
459 		 */
460 		non_block_start();
461 		err = __pwm_set_waveform(pwm, wf, exact);
462 		non_block_end();
463 	} else {
464 		err = __pwm_set_waveform(pwm, wf, exact);
465 	}
466 
467 	/*
468 	 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also
469 	 * make sure that -EDOM is only returned in exactly that case. Note that
470 	 * __pwm_set_waveform() should never return -EDOM which justifies the
471 	 * unlikely().
472 	 */
473 	if (unlikely(err == -EDOM))
474 		err = -EINVAL;
475 	else if (exact && err == 1)
476 		err = -EDOM;
477 	else if (err == 1)
478 		err = 0;
479 
480 	return err;
481 }
482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
483 
484 static void pwm_apply_debug(struct pwm_device *pwm,
485 			    const struct pwm_state *state)
486 {
487 	struct pwm_state *last = &pwm->last;
488 	struct pwm_chip *chip = pwm->chip;
489 	struct pwm_state s1 = { 0 }, s2 = { 0 };
490 	int err;
491 
492 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
493 		return;
494 
495 	/* No reasonable diagnosis possible without .get_state() */
496 	if (!chip->ops->get_state)
497 		return;
498 
499 	/*
500 	 * If a disabled PWM was requested the result is unspecified, so nothing
501 	 * to check.
502 	 */
503 	if (!state->enabled)
504 		return;
505 
506 	/*
507 	 * *state was just applied. Read out the hardware state and do some
508 	 * checks.
509 	 */
510 
511 	err = chip->ops->get_state(chip, pwm, &s1);
512 	trace_pwm_get(pwm, &s1, err);
513 	if (err)
514 		/* If that failed there isn't much to debug */
515 		return;
516 
517 	/*
518 	 * If the PWM was disabled that's maybe strange but there is nothing
519 	 * that can be sensibly checked then. So return early.
520 	 */
521 	if (!s1.enabled)
522 		return;
523 
524 	/*
525 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
526 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
527 	 * Undo this inversion and fixup for further tests.
528 	 */
529 	if (s1.polarity != state->polarity) {
530 		s2.polarity = state->polarity;
531 		s2.duty_cycle = s1.period - s1.duty_cycle;
532 		s2.period = s1.period;
533 		s2.enabled = true;
534 	} else {
535 		s2 = s1;
536 	}
537 
538 	if (s2.polarity != state->polarity &&
539 	    s2.duty_cycle < s2.period)
540 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
541 
542 	if (last->polarity == state->polarity &&
543 	    last->period > s2.period &&
544 	    last->period <= state->period)
545 		dev_warn(pwmchip_parent(chip),
546 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
547 			 state->period, s2.period, last->period);
548 
549 	/*
550 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
551 	 * flat line doesn't have a characteristic period.
552 	 */
553 	if (state->period < s2.period && s2.duty_cycle)
554 		dev_warn(pwmchip_parent(chip),
555 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
556 			 state->period, s2.period);
557 
558 	if (last->polarity == state->polarity &&
559 	    last->period == s2.period &&
560 	    last->duty_cycle > s2.duty_cycle &&
561 	    last->duty_cycle <= state->duty_cycle)
562 		dev_warn(pwmchip_parent(chip),
563 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
564 			 state->duty_cycle, state->period,
565 			 s2.duty_cycle, s2.period,
566 			 last->duty_cycle, last->period);
567 
568 	if (state->duty_cycle < s2.duty_cycle)
569 		dev_warn(pwmchip_parent(chip),
570 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
571 			 state->duty_cycle, state->period,
572 			 s2.duty_cycle, s2.period);
573 
574 	/* reapply the state that the driver reported being configured. */
575 	err = chip->ops->apply(chip, pwm, &s1);
576 	trace_pwm_apply(pwm, &s1, err);
577 	if (err) {
578 		*last = s1;
579 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
580 		return;
581 	}
582 
583 	*last = (struct pwm_state){ 0 };
584 	err = chip->ops->get_state(chip, pwm, last);
585 	trace_pwm_get(pwm, last, err);
586 	if (err)
587 		return;
588 
589 	/* reapplication of the current state should give an exact match */
590 	if (s1.enabled != last->enabled ||
591 	    s1.polarity != last->polarity ||
592 	    (s1.enabled && s1.period != last->period) ||
593 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
594 		dev_err(pwmchip_parent(chip),
595 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
596 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
597 			last->enabled, last->polarity, last->duty_cycle,
598 			last->period);
599 	}
600 }
601 
602 static bool pwm_state_valid(const struct pwm_state *state)
603 {
604 	/*
605 	 * For a disabled state all other state description is irrelevant and
606 	 * and supposed to be ignored. So also ignore any strange values and
607 	 * consider the state ok.
608 	 */
609 	if (!state->enabled)
610 		return true;
611 
612 	if (!state->period)
613 		return false;
614 
615 	if (state->duty_cycle > state->period)
616 		return false;
617 
618 	return true;
619 }
620 
621 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
622 {
623 	struct pwm_chip *chip;
624 	const struct pwm_ops *ops;
625 	int err;
626 
627 	if (!pwm || !state)
628 		return -EINVAL;
629 
630 	if (!pwm_state_valid(state)) {
631 		/*
632 		 * Allow to transition from one invalid state to another.
633 		 * This ensures that you can e.g. change the polarity while
634 		 * the period is zero. (This happens on stm32 when the hardware
635 		 * is in its poweron default state.) This greatly simplifies
636 		 * working with the sysfs API where you can only change one
637 		 * parameter at a time.
638 		 */
639 		if (!pwm_state_valid(&pwm->state)) {
640 			pwm->state = *state;
641 			return 0;
642 		}
643 
644 		return -EINVAL;
645 	}
646 
647 	chip = pwm->chip;
648 	ops = chip->ops;
649 
650 	if (state->period == pwm->state.period &&
651 	    state->duty_cycle == pwm->state.duty_cycle &&
652 	    state->polarity == pwm->state.polarity &&
653 	    state->enabled == pwm->state.enabled &&
654 	    state->usage_power == pwm->state.usage_power)
655 		return 0;
656 
657 	if (pwmchip_supports_waveform(chip)) {
658 		struct pwm_waveform wf;
659 		char wfhw[PWM_WFHWSIZE];
660 
661 		BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
662 
663 		pwm_state2wf(state, &wf);
664 
665 		/*
666 		 * The rounding is wrong here for states with inverted polarity.
667 		 * While .apply() rounds down duty_cycle (which represents the
668 		 * time from the start of the period to the inner edge),
669 		 * .round_waveform_tohw() rounds down the time the PWM is high.
670 		 * Can be fixed if the need arises, until reported otherwise
671 		 * let's assume that consumers don't care.
672 		 */
673 
674 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
675 		if (err) {
676 			if (err > 0)
677 				/*
678 				 * This signals an invalid request, typically
679 				 * the requested period (or duty_offset) is
680 				 * smaller than possible with the hardware.
681 				 */
682 				return -EINVAL;
683 
684 			return err;
685 		}
686 
687 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
688 			struct pwm_waveform wf_rounded;
689 
690 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
691 			if (err)
692 				return err;
693 
694 			if (!pwm_check_rounding(&wf, &wf_rounded))
695 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
696 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
697 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
698 		}
699 
700 		err = __pwm_write_waveform(chip, pwm, &wfhw);
701 		if (err)
702 			return err;
703 
704 		pwm->state = *state;
705 
706 	} else {
707 		err = ops->apply(chip, pwm, state);
708 		trace_pwm_apply(pwm, state, err);
709 		if (err)
710 			return err;
711 
712 		pwm->state = *state;
713 
714 		/*
715 		 * only do this after pwm->state was applied as some
716 		 * implementations of .get_state() depend on this
717 		 */
718 		pwm_apply_debug(pwm, state);
719 	}
720 
721 	return 0;
722 }
723 
724 /**
725  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
726  * Cannot be used in atomic context.
727  * @pwm: PWM device
728  * @state: new state to apply
729  *
730  * Returns: 0 on success, or a negative errno
731  * Context: May sleep.
732  */
733 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
734 {
735 	int err;
736 	struct pwm_chip *chip = pwm->chip;
737 
738 	/*
739 	 * Some lowlevel driver's implementations of .apply() make use of
740 	 * mutexes, also with some drivers only returning when the new
741 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
742 	 * is a bad idea. So make it explicit that calling this function might
743 	 * sleep.
744 	 */
745 	might_sleep();
746 
747 	guard(pwmchip)(chip);
748 
749 	if (!chip->operational)
750 		return -ENODEV;
751 
752 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
753 		/*
754 		 * Catch any drivers that have been marked as atomic but
755 		 * that will sleep anyway.
756 		 */
757 		non_block_start();
758 		err = __pwm_apply(pwm, state);
759 		non_block_end();
760 	} else {
761 		err = __pwm_apply(pwm, state);
762 	}
763 
764 	return err;
765 }
766 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
767 
768 /**
769  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
770  * Not all PWM devices support this function, check with pwm_might_sleep().
771  * @pwm: PWM device
772  * @state: new state to apply
773  *
774  * Returns: 0 on success, or a negative errno
775  * Context: Any
776  */
777 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
778 {
779 	struct pwm_chip *chip = pwm->chip;
780 
781 	WARN_ONCE(!chip->atomic,
782 		  "sleeping PWM driver used in atomic context\n");
783 
784 	guard(pwmchip)(chip);
785 
786 	if (!chip->operational)
787 		return -ENODEV;
788 
789 	return __pwm_apply(pwm, state);
790 }
791 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
792 
793 /**
794  * pwm_get_state_hw() - get the current PWM state from hardware
795  * @pwm: PWM device
796  * @state: state to fill with the current PWM state
797  *
798  * Similar to pwm_get_state() but reads the current PWM state from hardware
799  * instead of the requested state.
800  *
801  * Returns: 0 on success or a negative error code on failure.
802  * Context: May sleep.
803  */
804 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
805 {
806 	struct pwm_chip *chip = pwm->chip;
807 	const struct pwm_ops *ops = chip->ops;
808 	int ret = -EOPNOTSUPP;
809 
810 	might_sleep();
811 
812 	guard(pwmchip)(chip);
813 
814 	if (!chip->operational)
815 		return -ENODEV;
816 
817 	if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
818 		char wfhw[PWM_WFHWSIZE];
819 		struct pwm_waveform wf;
820 
821 		BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw);
822 
823 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
824 		if (ret)
825 			return ret;
826 
827 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
828 		if (ret)
829 			return ret;
830 
831 		pwm_wf2state(&wf, state);
832 
833 	} else if (ops->get_state) {
834 		ret = ops->get_state(chip, pwm, state);
835 		trace_pwm_get(pwm, state, ret);
836 	}
837 
838 	return ret;
839 }
840 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
841 
842 /**
843  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
844  * @pwm: PWM device
845  *
846  * This function will adjust the PWM config to the PWM arguments provided
847  * by the DT or PWM lookup table. This is particularly useful to adapt
848  * the bootloader config to the Linux one.
849  *
850  * Returns: 0 on success or a negative error code on failure.
851  * Context: May sleep.
852  */
853 int pwm_adjust_config(struct pwm_device *pwm)
854 {
855 	struct pwm_state state;
856 	struct pwm_args pargs;
857 
858 	pwm_get_args(pwm, &pargs);
859 	pwm_get_state(pwm, &state);
860 
861 	/*
862 	 * If the current period is zero it means that either the PWM driver
863 	 * does not support initial state retrieval or the PWM has not yet
864 	 * been configured.
865 	 *
866 	 * In either case, we setup the new period and polarity, and assign a
867 	 * duty cycle of 0.
868 	 */
869 	if (!state.period) {
870 		state.duty_cycle = 0;
871 		state.period = pargs.period;
872 		state.polarity = pargs.polarity;
873 
874 		return pwm_apply_might_sleep(pwm, &state);
875 	}
876 
877 	/*
878 	 * Adjust the PWM duty cycle/period based on the period value provided
879 	 * in PWM args.
880 	 */
881 	if (pargs.period != state.period) {
882 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
883 
884 		do_div(dutycycle, state.period);
885 		state.duty_cycle = dutycycle;
886 		state.period = pargs.period;
887 	}
888 
889 	/*
890 	 * If the polarity changed, we should also change the duty cycle.
891 	 */
892 	if (pargs.polarity != state.polarity) {
893 		state.polarity = pargs.polarity;
894 		state.duty_cycle = state.period - state.duty_cycle;
895 	}
896 
897 	return pwm_apply_might_sleep(pwm, &state);
898 }
899 EXPORT_SYMBOL_GPL(pwm_adjust_config);
900 
901 /**
902  * pwm_capture() - capture and report a PWM signal
903  * @pwm: PWM device
904  * @result: structure to fill with capture result
905  * @timeout: time to wait, in milliseconds, before giving up on capture
906  *
907  * Returns: 0 on success or a negative error code on failure.
908  */
909 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
910 		       unsigned long timeout)
911 {
912 	struct pwm_chip *chip = pwm->chip;
913 	const struct pwm_ops *ops = chip->ops;
914 
915 	if (!ops->capture)
916 		return -ENOSYS;
917 
918 	/*
919 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
920 	 * and you're interested to speed it up, please convince yourself it's
921 	 * really not needed, test and then suggest a patch on the mailing list.
922 	 */
923 	guard(mutex)(&pwm_lock);
924 
925 	guard(pwmchip)(chip);
926 
927 	if (!chip->operational)
928 		return -ENODEV;
929 
930 	return ops->capture(chip, pwm, result, timeout);
931 }
932 
933 static struct pwm_chip *pwmchip_find_by_name(const char *name)
934 {
935 	struct pwm_chip *chip;
936 	unsigned long id, tmp;
937 
938 	if (!name)
939 		return NULL;
940 
941 	guard(mutex)(&pwm_lock);
942 
943 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
944 		if (device_match_name(pwmchip_parent(chip), name))
945 			return chip;
946 	}
947 
948 	return NULL;
949 }
950 
951 static int pwm_device_request(struct pwm_device *pwm, const char *label)
952 {
953 	int err;
954 	struct pwm_chip *chip = pwm->chip;
955 	const struct pwm_ops *ops = chip->ops;
956 
957 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
958 		return -EBUSY;
959 
960 	/*
961 	 * This function is called while holding pwm_lock. As .operational only
962 	 * changes while holding this lock, checking it here without holding the
963 	 * chip lock is fine.
964 	 */
965 	if (!chip->operational)
966 		return -ENODEV;
967 
968 	if (!try_module_get(chip->owner))
969 		return -ENODEV;
970 
971 	if (!get_device(&chip->dev)) {
972 		err = -ENODEV;
973 		goto err_get_device;
974 	}
975 
976 	if (ops->request) {
977 		err = ops->request(chip, pwm);
978 		if (err) {
979 			put_device(&chip->dev);
980 err_get_device:
981 			module_put(chip->owner);
982 			return err;
983 		}
984 	}
985 
986 	if (ops->read_waveform || ops->get_state) {
987 		/*
988 		 * Zero-initialize state because most drivers are unaware of
989 		 * .usage_power. The other members of state are supposed to be
990 		 * set by lowlevel drivers. We still initialize the whole
991 		 * structure for simplicity even though this might paper over
992 		 * faulty implementations of .get_state().
993 		 */
994 		struct pwm_state state = { 0, };
995 
996 		err = pwm_get_state_hw(pwm, &state);
997 		if (!err)
998 			pwm->state = state;
999 
1000 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
1001 			pwm->last = pwm->state;
1002 	}
1003 
1004 	set_bit(PWMF_REQUESTED, &pwm->flags);
1005 	pwm->label = label;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
1012  * @chip: PWM chip
1013  * @index: per-chip index of the PWM to request
1014  * @label: a literal description string of this PWM
1015  *
1016  * Returns: A pointer to the PWM device at the given index of the given PWM
1017  * chip. A negative error code is returned if the index is not valid for the
1018  * specified PWM chip or if the PWM device cannot be requested.
1019  */
1020 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
1021 						unsigned int index,
1022 						const char *label)
1023 {
1024 	struct pwm_device *pwm;
1025 	int err;
1026 
1027 	if (!chip || index >= chip->npwm)
1028 		return ERR_PTR(-EINVAL);
1029 
1030 	guard(mutex)(&pwm_lock);
1031 
1032 	pwm = &chip->pwms[index];
1033 
1034 	err = pwm_device_request(pwm, label);
1035 	if (err < 0)
1036 		return ERR_PTR(err);
1037 
1038 	return pwm;
1039 }
1040 
1041 struct pwm_device *
1042 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
1043 {
1044 	struct pwm_device *pwm;
1045 
1046 	/* period in the second cell and flags in the third cell are optional */
1047 	if (args->args_count < 1)
1048 		return ERR_PTR(-EINVAL);
1049 
1050 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
1051 	if (IS_ERR(pwm))
1052 		return pwm;
1053 
1054 	if (args->args_count > 1)
1055 		pwm->args.period = args->args[1];
1056 
1057 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1058 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
1059 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1060 
1061 	return pwm;
1062 }
1063 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1064 
1065 /*
1066  * This callback is used for PXA PWM chips that only have a single PWM line.
1067  * For such chips you could argue that passing the line number (i.e. the first
1068  * parameter in the common case) is useless as it's always zero. So compared to
1069  * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1070  * the default period and the second are flags.
1071  *
1072  * Note that if #pwm-cells = <3>, the semantic is the same as for
1073  * of_pwm_xlate_with_flags() to allow converting the affected driver to
1074  * #pwm-cells = <3> without breaking the legacy binding.
1075  *
1076  * Don't use for new drivers.
1077  */
1078 struct pwm_device *
1079 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1080 {
1081 	struct pwm_device *pwm;
1082 
1083 	if (args->args_count >= 3)
1084 		return of_pwm_xlate_with_flags(chip, args);
1085 
1086 	pwm = pwm_request_from_chip(chip, 0, NULL);
1087 	if (IS_ERR(pwm))
1088 		return pwm;
1089 
1090 	if (args->args_count > 0)
1091 		pwm->args.period = args->args[0];
1092 
1093 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1094 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1095 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1096 
1097 	return pwm;
1098 }
1099 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1100 
1101 struct pwm_export {
1102 	struct device pwm_dev;
1103 	struct pwm_device *pwm;
1104 	struct mutex lock;
1105 	struct pwm_state suspend;
1106 };
1107 
1108 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1109 {
1110 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1111 }
1112 
1113 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1114 {
1115 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1116 }
1117 
1118 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1119 {
1120 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1121 
1122 	return export->pwm;
1123 }
1124 
1125 static ssize_t period_show(struct device *pwm_dev,
1126 			   struct device_attribute *attr,
1127 			   char *buf)
1128 {
1129 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1130 	struct pwm_state state;
1131 
1132 	pwm_get_state(pwm, &state);
1133 
1134 	return sysfs_emit(buf, "%llu\n", state.period);
1135 }
1136 
1137 static ssize_t period_store(struct device *pwm_dev,
1138 			    struct device_attribute *attr,
1139 			    const char *buf, size_t size)
1140 {
1141 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1142 	struct pwm_device *pwm = export->pwm;
1143 	struct pwm_state state;
1144 	u64 val;
1145 	int ret;
1146 
1147 	ret = kstrtou64(buf, 0, &val);
1148 	if (ret)
1149 		return ret;
1150 
1151 	guard(mutex)(&export->lock);
1152 
1153 	pwm_get_state(pwm, &state);
1154 	state.period = val;
1155 	ret = pwm_apply_might_sleep(pwm, &state);
1156 
1157 	return ret ? : size;
1158 }
1159 
1160 static ssize_t duty_cycle_show(struct device *pwm_dev,
1161 			       struct device_attribute *attr,
1162 			       char *buf)
1163 {
1164 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1165 	struct pwm_state state;
1166 
1167 	pwm_get_state(pwm, &state);
1168 
1169 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1170 }
1171 
1172 static ssize_t duty_cycle_store(struct device *pwm_dev,
1173 				struct device_attribute *attr,
1174 				const char *buf, size_t size)
1175 {
1176 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1177 	struct pwm_device *pwm = export->pwm;
1178 	struct pwm_state state;
1179 	u64 val;
1180 	int ret;
1181 
1182 	ret = kstrtou64(buf, 0, &val);
1183 	if (ret)
1184 		return ret;
1185 
1186 	guard(mutex)(&export->lock);
1187 
1188 	pwm_get_state(pwm, &state);
1189 	state.duty_cycle = val;
1190 	ret = pwm_apply_might_sleep(pwm, &state);
1191 
1192 	return ret ? : size;
1193 }
1194 
1195 static ssize_t enable_show(struct device *pwm_dev,
1196 			   struct device_attribute *attr,
1197 			   char *buf)
1198 {
1199 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1200 	struct pwm_state state;
1201 
1202 	pwm_get_state(pwm, &state);
1203 
1204 	return sysfs_emit(buf, "%d\n", state.enabled);
1205 }
1206 
1207 static ssize_t enable_store(struct device *pwm_dev,
1208 			    struct device_attribute *attr,
1209 			    const char *buf, size_t size)
1210 {
1211 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1212 	struct pwm_device *pwm = export->pwm;
1213 	struct pwm_state state;
1214 	int val, ret;
1215 
1216 	ret = kstrtoint(buf, 0, &val);
1217 	if (ret)
1218 		return ret;
1219 
1220 	guard(mutex)(&export->lock);
1221 
1222 	pwm_get_state(pwm, &state);
1223 
1224 	switch (val) {
1225 	case 0:
1226 		state.enabled = false;
1227 		break;
1228 	case 1:
1229 		state.enabled = true;
1230 		break;
1231 	default:
1232 		return -EINVAL;
1233 	}
1234 
1235 	ret = pwm_apply_might_sleep(pwm, &state);
1236 
1237 	return ret ? : size;
1238 }
1239 
1240 static ssize_t polarity_show(struct device *pwm_dev,
1241 			     struct device_attribute *attr,
1242 			     char *buf)
1243 {
1244 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1245 	const char *polarity = "unknown";
1246 	struct pwm_state state;
1247 
1248 	pwm_get_state(pwm, &state);
1249 
1250 	switch (state.polarity) {
1251 	case PWM_POLARITY_NORMAL:
1252 		polarity = "normal";
1253 		break;
1254 
1255 	case PWM_POLARITY_INVERSED:
1256 		polarity = "inversed";
1257 		break;
1258 	}
1259 
1260 	return sysfs_emit(buf, "%s\n", polarity);
1261 }
1262 
1263 static ssize_t polarity_store(struct device *pwm_dev,
1264 			      struct device_attribute *attr,
1265 			      const char *buf, size_t size)
1266 {
1267 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1268 	struct pwm_device *pwm = export->pwm;
1269 	enum pwm_polarity polarity;
1270 	struct pwm_state state;
1271 	int ret;
1272 
1273 	if (sysfs_streq(buf, "normal"))
1274 		polarity = PWM_POLARITY_NORMAL;
1275 	else if (sysfs_streq(buf, "inversed"))
1276 		polarity = PWM_POLARITY_INVERSED;
1277 	else
1278 		return -EINVAL;
1279 
1280 	guard(mutex)(&export->lock);
1281 
1282 	pwm_get_state(pwm, &state);
1283 	state.polarity = polarity;
1284 	ret = pwm_apply_might_sleep(pwm, &state);
1285 
1286 	return ret ? : size;
1287 }
1288 
1289 static ssize_t capture_show(struct device *pwm_dev,
1290 			    struct device_attribute *attr,
1291 			    char *buf)
1292 {
1293 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1294 	struct pwm_capture result;
1295 	int ret;
1296 
1297 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1298 	if (ret)
1299 		return ret;
1300 
1301 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1302 }
1303 
1304 static DEVICE_ATTR_RW(period);
1305 static DEVICE_ATTR_RW(duty_cycle);
1306 static DEVICE_ATTR_RW(enable);
1307 static DEVICE_ATTR_RW(polarity);
1308 static DEVICE_ATTR_RO(capture);
1309 
1310 static struct attribute *pwm_attrs[] = {
1311 	&dev_attr_period.attr,
1312 	&dev_attr_duty_cycle.attr,
1313 	&dev_attr_enable.attr,
1314 	&dev_attr_polarity.attr,
1315 	&dev_attr_capture.attr,
1316 	NULL
1317 };
1318 ATTRIBUTE_GROUPS(pwm);
1319 
1320 static void pwm_export_release(struct device *pwm_dev)
1321 {
1322 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1323 
1324 	kfree(export);
1325 }
1326 
1327 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1328 {
1329 	struct pwm_export *export;
1330 	char *pwm_prop[2];
1331 	int ret;
1332 
1333 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1334 		return -EBUSY;
1335 
1336 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1337 	if (!export) {
1338 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1339 		return -ENOMEM;
1340 	}
1341 
1342 	export->pwm = pwm;
1343 	mutex_init(&export->lock);
1344 
1345 	export->pwm_dev.release = pwm_export_release;
1346 	export->pwm_dev.parent = pwmchip_dev;
1347 	export->pwm_dev.devt = MKDEV(0, 0);
1348 	export->pwm_dev.groups = pwm_groups;
1349 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1350 
1351 	ret = device_register(&export->pwm_dev);
1352 	if (ret) {
1353 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1354 		put_device(&export->pwm_dev);
1355 		export = NULL;
1356 		return ret;
1357 	}
1358 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1359 	pwm_prop[1] = NULL;
1360 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1361 	kfree(pwm_prop[0]);
1362 
1363 	return 0;
1364 }
1365 
1366 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1367 {
1368 	return pwm_from_dev(pwm_dev) == data;
1369 }
1370 
1371 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1372 {
1373 	struct device *pwm_dev;
1374 	char *pwm_prop[2];
1375 
1376 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1377 		return -ENODEV;
1378 
1379 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1380 	if (!pwm_dev)
1381 		return -ENODEV;
1382 
1383 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1384 	pwm_prop[1] = NULL;
1385 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1386 	kfree(pwm_prop[0]);
1387 
1388 	/* for device_find_child() */
1389 	put_device(pwm_dev);
1390 	device_unregister(pwm_dev);
1391 	pwm_put(pwm);
1392 
1393 	return 0;
1394 }
1395 
1396 static ssize_t export_store(struct device *pwmchip_dev,
1397 			    struct device_attribute *attr,
1398 			    const char *buf, size_t len)
1399 {
1400 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1401 	struct pwm_device *pwm;
1402 	unsigned int hwpwm;
1403 	int ret;
1404 
1405 	ret = kstrtouint(buf, 0, &hwpwm);
1406 	if (ret < 0)
1407 		return ret;
1408 
1409 	if (hwpwm >= chip->npwm)
1410 		return -ENODEV;
1411 
1412 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1413 	if (IS_ERR(pwm))
1414 		return PTR_ERR(pwm);
1415 
1416 	ret = pwm_export_child(pwmchip_dev, pwm);
1417 	if (ret < 0)
1418 		pwm_put(pwm);
1419 
1420 	return ret ? : len;
1421 }
1422 static DEVICE_ATTR_WO(export);
1423 
1424 static ssize_t unexport_store(struct device *pwmchip_dev,
1425 			      struct device_attribute *attr,
1426 			      const char *buf, size_t len)
1427 {
1428 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1429 	unsigned int hwpwm;
1430 	int ret;
1431 
1432 	ret = kstrtouint(buf, 0, &hwpwm);
1433 	if (ret < 0)
1434 		return ret;
1435 
1436 	if (hwpwm >= chip->npwm)
1437 		return -ENODEV;
1438 
1439 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1440 
1441 	return ret ? : len;
1442 }
1443 static DEVICE_ATTR_WO(unexport);
1444 
1445 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1446 			 char *buf)
1447 {
1448 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1449 
1450 	return sysfs_emit(buf, "%u\n", chip->npwm);
1451 }
1452 static DEVICE_ATTR_RO(npwm);
1453 
1454 static struct attribute *pwm_chip_attrs[] = {
1455 	&dev_attr_export.attr,
1456 	&dev_attr_unexport.attr,
1457 	&dev_attr_npwm.attr,
1458 	NULL,
1459 };
1460 ATTRIBUTE_GROUPS(pwm_chip);
1461 
1462 /* takes export->lock on success */
1463 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1464 					      struct pwm_device *pwm,
1465 					      struct pwm_state *state)
1466 {
1467 	struct device *pwm_dev;
1468 	struct pwm_export *export;
1469 
1470 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1471 		return NULL;
1472 
1473 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1474 	if (!pwm_dev)
1475 		return NULL;
1476 
1477 	export = pwmexport_from_dev(pwm_dev);
1478 	put_device(pwm_dev);	/* for device_find_child() */
1479 
1480 	mutex_lock(&export->lock);
1481 	pwm_get_state(pwm, state);
1482 
1483 	return export;
1484 }
1485 
1486 static int pwm_class_apply_state(struct pwm_export *export,
1487 				 struct pwm_device *pwm,
1488 				 struct pwm_state *state)
1489 {
1490 	int ret = pwm_apply_might_sleep(pwm, state);
1491 
1492 	/* release lock taken in pwm_class_get_state */
1493 	mutex_unlock(&export->lock);
1494 
1495 	return ret;
1496 }
1497 
1498 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1499 {
1500 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1501 	unsigned int i;
1502 	int ret = 0;
1503 
1504 	for (i = 0; i < npwm; i++) {
1505 		struct pwm_device *pwm = &chip->pwms[i];
1506 		struct pwm_state state;
1507 		struct pwm_export *export;
1508 
1509 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1510 		if (!export)
1511 			continue;
1512 
1513 		/* If pwmchip was not enabled before suspend, do nothing. */
1514 		if (!export->suspend.enabled) {
1515 			/* release lock taken in pwm_class_get_state */
1516 			mutex_unlock(&export->lock);
1517 			continue;
1518 		}
1519 
1520 		state.enabled = export->suspend.enabled;
1521 		ret = pwm_class_apply_state(export, pwm, &state);
1522 		if (ret < 0)
1523 			break;
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 static int pwm_class_suspend(struct device *pwmchip_dev)
1530 {
1531 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1532 	unsigned int i;
1533 	int ret = 0;
1534 
1535 	for (i = 0; i < chip->npwm; i++) {
1536 		struct pwm_device *pwm = &chip->pwms[i];
1537 		struct pwm_state state;
1538 		struct pwm_export *export;
1539 
1540 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1541 		if (!export)
1542 			continue;
1543 
1544 		/*
1545 		 * If pwmchip was not enabled before suspend, save
1546 		 * state for resume time and do nothing else.
1547 		 */
1548 		export->suspend = state;
1549 		if (!state.enabled) {
1550 			/* release lock taken in pwm_class_get_state */
1551 			mutex_unlock(&export->lock);
1552 			continue;
1553 		}
1554 
1555 		state.enabled = false;
1556 		ret = pwm_class_apply_state(export, pwm, &state);
1557 		if (ret < 0) {
1558 			/*
1559 			 * roll back the PWM devices that were disabled by
1560 			 * this suspend function.
1561 			 */
1562 			pwm_class_resume_npwm(pwmchip_dev, i);
1563 			break;
1564 		}
1565 	}
1566 
1567 	return ret;
1568 }
1569 
1570 static int pwm_class_resume(struct device *pwmchip_dev)
1571 {
1572 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1573 
1574 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1575 }
1576 
1577 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1578 
1579 static struct class pwm_class = {
1580 	.name = "pwm",
1581 	.dev_groups = pwm_chip_groups,
1582 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1583 };
1584 
1585 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1586 {
1587 	unsigned int i;
1588 
1589 	for (i = 0; i < chip->npwm; i++) {
1590 		struct pwm_device *pwm = &chip->pwms[i];
1591 
1592 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1593 			pwm_unexport_child(&chip->dev, pwm);
1594 	}
1595 }
1596 
1597 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1598 
1599 static void *pwmchip_priv(struct pwm_chip *chip)
1600 {
1601 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1602 }
1603 
1604 /* This is the counterpart to pwmchip_alloc() */
1605 void pwmchip_put(struct pwm_chip *chip)
1606 {
1607 	put_device(&chip->dev);
1608 }
1609 EXPORT_SYMBOL_GPL(pwmchip_put);
1610 
1611 void pwmchip_release(struct device *pwmchip_dev)
1612 {
1613 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1614 
1615 	kfree(chip);
1616 }
1617 EXPORT_SYMBOL_GPL(pwmchip_release);
1618 
1619 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1620 {
1621 	struct pwm_chip *chip;
1622 	struct device *pwmchip_dev;
1623 	size_t alloc_size;
1624 	unsigned int i;
1625 
1626 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1627 			      sizeof_priv);
1628 
1629 	chip = kzalloc(alloc_size, GFP_KERNEL);
1630 	if (!chip)
1631 		return ERR_PTR(-ENOMEM);
1632 
1633 	chip->npwm = npwm;
1634 	chip->uses_pwmchip_alloc = true;
1635 	chip->operational = false;
1636 
1637 	pwmchip_dev = &chip->dev;
1638 	device_initialize(pwmchip_dev);
1639 	pwmchip_dev->class = &pwm_class;
1640 	pwmchip_dev->parent = parent;
1641 	pwmchip_dev->release = pwmchip_release;
1642 
1643 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1644 
1645 	for (i = 0; i < chip->npwm; i++) {
1646 		struct pwm_device *pwm = &chip->pwms[i];
1647 		pwm->chip = chip;
1648 		pwm->hwpwm = i;
1649 	}
1650 
1651 	return chip;
1652 }
1653 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1654 
1655 static void devm_pwmchip_put(void *data)
1656 {
1657 	struct pwm_chip *chip = data;
1658 
1659 	pwmchip_put(chip);
1660 }
1661 
1662 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1663 {
1664 	struct pwm_chip *chip;
1665 	int ret;
1666 
1667 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1668 	if (IS_ERR(chip))
1669 		return chip;
1670 
1671 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1672 	if (ret)
1673 		return ERR_PTR(ret);
1674 
1675 	return chip;
1676 }
1677 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1678 
1679 static void of_pwmchip_add(struct pwm_chip *chip)
1680 {
1681 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1682 		return;
1683 
1684 	if (!chip->of_xlate)
1685 		chip->of_xlate = of_pwm_xlate_with_flags;
1686 
1687 	of_node_get(pwmchip_parent(chip)->of_node);
1688 }
1689 
1690 static void of_pwmchip_remove(struct pwm_chip *chip)
1691 {
1692 	if (pwmchip_parent(chip))
1693 		of_node_put(pwmchip_parent(chip)->of_node);
1694 }
1695 
1696 static bool pwm_ops_check(const struct pwm_chip *chip)
1697 {
1698 	const struct pwm_ops *ops = chip->ops;
1699 
1700 	if (ops->write_waveform) {
1701 		if (!ops->round_waveform_tohw ||
1702 		    !ops->round_waveform_fromhw ||
1703 		    !ops->write_waveform)
1704 			return false;
1705 
1706 		if (PWM_WFHWSIZE < ops->sizeof_wfhw) {
1707 			dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1708 			return false;
1709 		}
1710 	} else {
1711 		if (!ops->apply)
1712 			return false;
1713 
1714 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1715 			dev_warn(pwmchip_parent(chip),
1716 				 "Please implement the .get_state() callback\n");
1717 	}
1718 
1719 	return true;
1720 }
1721 
1722 static struct device_link *pwm_device_link_add(struct device *dev,
1723 					       struct pwm_device *pwm)
1724 {
1725 	struct device_link *dl;
1726 
1727 	if (!dev) {
1728 		/*
1729 		 * No device for the PWM consumer has been provided. It may
1730 		 * impact the PM sequence ordering: the PWM supplier may get
1731 		 * suspended before the consumer.
1732 		 */
1733 		dev_warn(pwmchip_parent(pwm->chip),
1734 			 "No consumer device specified to create a link to\n");
1735 		return NULL;
1736 	}
1737 
1738 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1739 	if (!dl) {
1740 		dev_err(dev, "failed to create device link to %s\n",
1741 			dev_name(pwmchip_parent(pwm->chip)));
1742 		return ERR_PTR(-EINVAL);
1743 	}
1744 
1745 	return dl;
1746 }
1747 
1748 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1749 {
1750 	struct pwm_chip *chip;
1751 	unsigned long id, tmp;
1752 
1753 	guard(mutex)(&pwm_lock);
1754 
1755 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1756 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1757 			return chip;
1758 
1759 	return ERR_PTR(-EPROBE_DEFER);
1760 }
1761 
1762 /**
1763  * of_pwm_get() - request a PWM via the PWM framework
1764  * @dev: device for PWM consumer
1765  * @np: device node to get the PWM from
1766  * @con_id: consumer name
1767  *
1768  * Returns the PWM device parsed from the phandle and index specified in the
1769  * "pwms" property of a device tree node or a negative error-code on failure.
1770  * Values parsed from the device tree are stored in the returned PWM device
1771  * object.
1772  *
1773  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1774  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1775  * lookup of the PWM index. This also means that the "pwm-names" property
1776  * becomes mandatory for devices that look up the PWM device via the con_id
1777  * parameter.
1778  *
1779  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1780  * error code on failure.
1781  */
1782 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1783 				     const char *con_id)
1784 {
1785 	struct pwm_device *pwm = NULL;
1786 	struct of_phandle_args args;
1787 	struct device_link *dl;
1788 	struct pwm_chip *chip;
1789 	int index = 0;
1790 	int err;
1791 
1792 	if (con_id) {
1793 		index = of_property_match_string(np, "pwm-names", con_id);
1794 		if (index < 0)
1795 			return ERR_PTR(index);
1796 	}
1797 
1798 	err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1799 	if (err) {
1800 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1801 		return ERR_PTR(err);
1802 	}
1803 
1804 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1805 	if (IS_ERR(chip)) {
1806 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1807 			pr_err("%s(): PWM chip not found\n", __func__);
1808 
1809 		pwm = ERR_CAST(chip);
1810 		goto put;
1811 	}
1812 
1813 	pwm = chip->of_xlate(chip, &args);
1814 	if (IS_ERR(pwm))
1815 		goto put;
1816 
1817 	dl = pwm_device_link_add(dev, pwm);
1818 	if (IS_ERR(dl)) {
1819 		/* of_xlate ended up calling pwm_request_from_chip() */
1820 		pwm_put(pwm);
1821 		pwm = ERR_CAST(dl);
1822 		goto put;
1823 	}
1824 
1825 	/*
1826 	 * If a consumer name was not given, try to look it up from the
1827 	 * "pwm-names" property if it exists. Otherwise use the name of
1828 	 * the user device node.
1829 	 */
1830 	if (!con_id) {
1831 		err = of_property_read_string_index(np, "pwm-names", index,
1832 						    &con_id);
1833 		if (err < 0)
1834 			con_id = np->name;
1835 	}
1836 
1837 	pwm->label = con_id;
1838 
1839 put:
1840 	of_node_put(args.np);
1841 
1842 	return pwm;
1843 }
1844 
1845 /**
1846  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1847  * @fwnode: firmware node to get the "pwms" property from
1848  *
1849  * Returns the PWM device parsed from the fwnode and index specified in the
1850  * "pwms" property or a negative error-code on failure.
1851  * Values parsed from the device tree are stored in the returned PWM device
1852  * object.
1853  *
1854  * This is analogous to of_pwm_get() except con_id is not yet supported.
1855  * ACPI entries must look like
1856  * Package () {"pwms", Package ()
1857  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1858  *
1859  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1860  * error code on failure.
1861  */
1862 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1863 {
1864 	struct pwm_device *pwm;
1865 	struct fwnode_reference_args args;
1866 	struct pwm_chip *chip;
1867 	int ret;
1868 
1869 	memset(&args, 0, sizeof(args));
1870 
1871 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1872 	if (ret < 0)
1873 		return ERR_PTR(ret);
1874 
1875 	if (args.nargs < 2)
1876 		return ERR_PTR(-EPROTO);
1877 
1878 	chip = fwnode_to_pwmchip(args.fwnode);
1879 	if (IS_ERR(chip))
1880 		return ERR_CAST(chip);
1881 
1882 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1883 	if (IS_ERR(pwm))
1884 		return pwm;
1885 
1886 	pwm->args.period = args.args[1];
1887 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1888 
1889 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1890 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1891 
1892 	return pwm;
1893 }
1894 
1895 static DEFINE_MUTEX(pwm_lookup_lock);
1896 static LIST_HEAD(pwm_lookup_list);
1897 
1898 /**
1899  * pwm_get() - look up and request a PWM device
1900  * @dev: device for PWM consumer
1901  * @con_id: consumer name
1902  *
1903  * Lookup is first attempted using DT. If the device was not instantiated from
1904  * a device tree, a PWM chip and a relative index is looked up via a table
1905  * supplied by board setup code (see pwm_add_table()).
1906  *
1907  * Once a PWM chip has been found the specified PWM device will be requested
1908  * and is ready to be used.
1909  *
1910  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1911  * error code on failure.
1912  */
1913 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1914 {
1915 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1916 	const char *dev_id = dev ? dev_name(dev) : NULL;
1917 	struct pwm_device *pwm;
1918 	struct pwm_chip *chip;
1919 	struct device_link *dl;
1920 	unsigned int best = 0;
1921 	struct pwm_lookup *p, *chosen = NULL;
1922 	unsigned int match;
1923 	int err;
1924 
1925 	/* look up via DT first */
1926 	if (is_of_node(fwnode))
1927 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1928 
1929 	/* then lookup via ACPI */
1930 	if (is_acpi_node(fwnode)) {
1931 		pwm = acpi_pwm_get(fwnode);
1932 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1933 			return pwm;
1934 	}
1935 
1936 	/*
1937 	 * We look up the provider in the static table typically provided by
1938 	 * board setup code. We first try to lookup the consumer device by
1939 	 * name. If the consumer device was passed in as NULL or if no match
1940 	 * was found, we try to find the consumer by directly looking it up
1941 	 * by name.
1942 	 *
1943 	 * If a match is found, the provider PWM chip is looked up by name
1944 	 * and a PWM device is requested using the PWM device per-chip index.
1945 	 *
1946 	 * The lookup algorithm was shamelessly taken from the clock
1947 	 * framework:
1948 	 *
1949 	 * We do slightly fuzzy matching here:
1950 	 *  An entry with a NULL ID is assumed to be a wildcard.
1951 	 *  If an entry has a device ID, it must match
1952 	 *  If an entry has a connection ID, it must match
1953 	 * Then we take the most specific entry - with the following order
1954 	 * of precedence: dev+con > dev only > con only.
1955 	 */
1956 	scoped_guard(mutex, &pwm_lookup_lock)
1957 		list_for_each_entry(p, &pwm_lookup_list, list) {
1958 			match = 0;
1959 
1960 			if (p->dev_id) {
1961 				if (!dev_id || strcmp(p->dev_id, dev_id))
1962 					continue;
1963 
1964 				match += 2;
1965 			}
1966 
1967 			if (p->con_id) {
1968 				if (!con_id || strcmp(p->con_id, con_id))
1969 					continue;
1970 
1971 				match += 1;
1972 			}
1973 
1974 			if (match > best) {
1975 				chosen = p;
1976 
1977 				if (match != 3)
1978 					best = match;
1979 				else
1980 					break;
1981 			}
1982 		}
1983 
1984 	if (!chosen)
1985 		return ERR_PTR(-ENODEV);
1986 
1987 	chip = pwmchip_find_by_name(chosen->provider);
1988 
1989 	/*
1990 	 * If the lookup entry specifies a module, load the module and retry
1991 	 * the PWM chip lookup. This can be used to work around driver load
1992 	 * ordering issues if driver's can't be made to properly support the
1993 	 * deferred probe mechanism.
1994 	 */
1995 	if (!chip && chosen->module) {
1996 		err = request_module(chosen->module);
1997 		if (err == 0)
1998 			chip = pwmchip_find_by_name(chosen->provider);
1999 	}
2000 
2001 	if (!chip)
2002 		return ERR_PTR(-EPROBE_DEFER);
2003 
2004 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
2005 	if (IS_ERR(pwm))
2006 		return pwm;
2007 
2008 	dl = pwm_device_link_add(dev, pwm);
2009 	if (IS_ERR(dl)) {
2010 		pwm_put(pwm);
2011 		return ERR_CAST(dl);
2012 	}
2013 
2014 	pwm->args.period = chosen->period;
2015 	pwm->args.polarity = chosen->polarity;
2016 
2017 	return pwm;
2018 }
2019 EXPORT_SYMBOL_GPL(pwm_get);
2020 
2021 static void __pwm_put(struct pwm_device *pwm)
2022 {
2023 	struct pwm_chip *chip = pwm->chip;
2024 
2025 	/*
2026 	 * Trigger a warning if a consumer called pwm_put() twice.
2027 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
2028 	 * pwmchip_remove(). So don't warn in this case.
2029 	 */
2030 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2031 		pr_warn("PWM device already freed\n");
2032 		return;
2033 	}
2034 
2035 	if (chip->operational && chip->ops->free)
2036 		pwm->chip->ops->free(pwm->chip, pwm);
2037 
2038 	pwm->label = NULL;
2039 
2040 	put_device(&chip->dev);
2041 
2042 	module_put(chip->owner);
2043 }
2044 
2045 /**
2046  * pwm_put() - release a PWM device
2047  * @pwm: PWM device
2048  */
2049 void pwm_put(struct pwm_device *pwm)
2050 {
2051 	if (!pwm)
2052 		return;
2053 
2054 	guard(mutex)(&pwm_lock);
2055 
2056 	__pwm_put(pwm);
2057 }
2058 EXPORT_SYMBOL_GPL(pwm_put);
2059 
2060 static void devm_pwm_release(void *pwm)
2061 {
2062 	pwm_put(pwm);
2063 }
2064 
2065 /**
2066  * devm_pwm_get() - resource managed pwm_get()
2067  * @dev: device for PWM consumer
2068  * @con_id: consumer name
2069  *
2070  * This function performs like pwm_get() but the acquired PWM device will
2071  * automatically be released on driver detach.
2072  *
2073  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2074  * error code on failure.
2075  */
2076 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2077 {
2078 	struct pwm_device *pwm;
2079 	int ret;
2080 
2081 	pwm = pwm_get(dev, con_id);
2082 	if (IS_ERR(pwm))
2083 		return pwm;
2084 
2085 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2086 	if (ret)
2087 		return ERR_PTR(ret);
2088 
2089 	return pwm;
2090 }
2091 EXPORT_SYMBOL_GPL(devm_pwm_get);
2092 
2093 /**
2094  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2095  * @dev: device for PWM consumer
2096  * @fwnode: firmware node to get the PWM from
2097  * @con_id: consumer name
2098  *
2099  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2100  * acpi_pwm_get() for a detailed description.
2101  *
2102  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2103  * error code on failure.
2104  */
2105 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2106 				       struct fwnode_handle *fwnode,
2107 				       const char *con_id)
2108 {
2109 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2110 	int ret;
2111 
2112 	if (is_of_node(fwnode))
2113 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2114 	else if (is_acpi_node(fwnode))
2115 		pwm = acpi_pwm_get(fwnode);
2116 	if (IS_ERR(pwm))
2117 		return pwm;
2118 
2119 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2120 	if (ret)
2121 		return ERR_PTR(ret);
2122 
2123 	return pwm;
2124 }
2125 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2126 
2127 struct pwm_cdev_data {
2128 	struct pwm_chip *chip;
2129 	struct pwm_device *pwm[];
2130 };
2131 
2132 static int pwm_cdev_open(struct inode *inode, struct file *file)
2133 {
2134 	struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev);
2135 	struct pwm_cdev_data *cdata;
2136 
2137 	guard(mutex)(&pwm_lock);
2138 
2139 	if (!chip->operational)
2140 		return -ENXIO;
2141 
2142 	cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL);
2143 	if (!cdata)
2144 		return -ENOMEM;
2145 
2146 	cdata->chip = chip;
2147 
2148 	file->private_data = cdata;
2149 
2150 	return nonseekable_open(inode, file);
2151 }
2152 
2153 static int pwm_cdev_release(struct inode *inode, struct file *file)
2154 {
2155 	struct pwm_cdev_data *cdata = file->private_data;
2156 	unsigned int i;
2157 
2158 	for (i = 0; i < cdata->chip->npwm; ++i) {
2159 		struct pwm_device *pwm = cdata->pwm[i];
2160 
2161 		if (pwm) {
2162 			const char *label = pwm->label;
2163 
2164 			pwm_put(cdata->pwm[i]);
2165 			kfree(label);
2166 		}
2167 	}
2168 	kfree(cdata);
2169 
2170 	return 0;
2171 }
2172 
2173 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2174 {
2175 	struct pwm_chip *chip = cdata->chip;
2176 
2177 	if (hwpwm >= chip->npwm)
2178 		return -EINVAL;
2179 
2180 	if (!cdata->pwm[hwpwm]) {
2181 		struct pwm_device *pwm = &chip->pwms[hwpwm];
2182 		const char *label;
2183 		int ret;
2184 
2185 		label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid);
2186 		if (!label)
2187 			return -ENOMEM;
2188 
2189 		ret = pwm_device_request(pwm, label);
2190 		if (ret < 0) {
2191 			kfree(label);
2192 			return ret;
2193 		}
2194 
2195 		cdata->pwm[hwpwm] = pwm;
2196 	}
2197 
2198 	return 0;
2199 }
2200 
2201 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm)
2202 {
2203 	struct pwm_chip *chip = cdata->chip;
2204 
2205 	if (hwpwm >= chip->npwm)
2206 		return -EINVAL;
2207 
2208 	if (cdata->pwm[hwpwm]) {
2209 		struct pwm_device *pwm = cdata->pwm[hwpwm];
2210 		const char *label = pwm->label;
2211 
2212 		__pwm_put(pwm);
2213 
2214 		kfree(label);
2215 
2216 		cdata->pwm[hwpwm] = NULL;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata,
2223 						     u32 hwpwm)
2224 {
2225 	struct pwm_chip *chip = cdata->chip;
2226 
2227 	if (hwpwm >= chip->npwm)
2228 		return ERR_PTR(-EINVAL);
2229 
2230 	if (cdata->pwm[hwpwm])
2231 		return cdata->pwm[hwpwm];
2232 
2233 	return ERR_PTR(-EINVAL);
2234 }
2235 
2236 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2237 {
2238 	int ret = 0;
2239 	struct pwm_cdev_data *cdata = file->private_data;
2240 	struct pwm_chip *chip = cdata->chip;
2241 
2242 	guard(mutex)(&pwm_lock);
2243 
2244 	if (!chip->operational)
2245 		return -ENODEV;
2246 
2247 	switch (cmd) {
2248 	case PWM_IOCTL_REQUEST:
2249 		{
2250 			unsigned int hwpwm = arg;
2251 
2252 			return pwm_cdev_request(cdata, hwpwm);
2253 		}
2254 
2255 	case PWM_IOCTL_FREE:
2256 		{
2257 			unsigned int hwpwm = arg;
2258 
2259 			return pwm_cdev_free(cdata, hwpwm);
2260 		}
2261 
2262 	case PWM_IOCTL_ROUNDWF:
2263 		{
2264 			struct pwmchip_waveform cwf;
2265 			struct pwm_waveform wf;
2266 			struct pwm_device *pwm;
2267 
2268 			ret = copy_from_user(&cwf,
2269 					     (struct pwmchip_waveform __user *)arg,
2270 					     sizeof(cwf));
2271 			if (ret)
2272 				return -EFAULT;
2273 
2274 			if (cwf.__pad != 0)
2275 				return -EINVAL;
2276 
2277 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2278 			if (IS_ERR(pwm))
2279 				return PTR_ERR(pwm);
2280 
2281 			wf = (struct pwm_waveform) {
2282 				.period_length_ns = cwf.period_length_ns,
2283 				.duty_length_ns = cwf.duty_length_ns,
2284 				.duty_offset_ns = cwf.duty_offset_ns,
2285 			};
2286 
2287 			ret = pwm_round_waveform_might_sleep(pwm, &wf);
2288 			if (ret < 0)
2289 				return ret;
2290 
2291 			cwf = (struct pwmchip_waveform) {
2292 				.hwpwm = cwf.hwpwm,
2293 				.period_length_ns = wf.period_length_ns,
2294 				.duty_length_ns = wf.duty_length_ns,
2295 				.duty_offset_ns = wf.duty_offset_ns,
2296 			};
2297 
2298 			return copy_to_user((struct pwmchip_waveform __user *)arg,
2299 					    &cwf, sizeof(cwf));
2300 		}
2301 
2302 	case PWM_IOCTL_GETWF:
2303 		{
2304 			struct pwmchip_waveform cwf;
2305 			struct pwm_waveform wf;
2306 			struct pwm_device *pwm;
2307 
2308 			ret = copy_from_user(&cwf,
2309 					     (struct pwmchip_waveform __user *)arg,
2310 					     sizeof(cwf));
2311 			if (ret)
2312 				return -EFAULT;
2313 
2314 			if (cwf.__pad != 0)
2315 				return -EINVAL;
2316 
2317 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2318 			if (IS_ERR(pwm))
2319 				return PTR_ERR(pwm);
2320 
2321 			ret = pwm_get_waveform_might_sleep(pwm, &wf);
2322 			if (ret)
2323 				return ret;
2324 
2325 			cwf = (struct pwmchip_waveform) {
2326 				.hwpwm = cwf.hwpwm,
2327 				.period_length_ns = wf.period_length_ns,
2328 				.duty_length_ns = wf.duty_length_ns,
2329 				.duty_offset_ns = wf.duty_offset_ns,
2330 			};
2331 
2332 			return copy_to_user((struct pwmchip_waveform __user *)arg,
2333 					    &cwf, sizeof(cwf));
2334 		}
2335 
2336 	case PWM_IOCTL_SETROUNDEDWF:
2337 	case PWM_IOCTL_SETEXACTWF:
2338 		{
2339 			struct pwmchip_waveform cwf;
2340 			struct pwm_waveform wf;
2341 			struct pwm_device *pwm;
2342 
2343 			ret = copy_from_user(&cwf,
2344 					     (struct pwmchip_waveform __user *)arg,
2345 					     sizeof(cwf));
2346 			if (ret)
2347 				return -EFAULT;
2348 
2349 			if (cwf.__pad != 0)
2350 				return -EINVAL;
2351 
2352 			wf = (struct pwm_waveform){
2353 				.period_length_ns = cwf.period_length_ns,
2354 				.duty_length_ns = cwf.duty_length_ns,
2355 				.duty_offset_ns = cwf.duty_offset_ns,
2356 			};
2357 
2358 			if (!pwm_wf_valid(&wf))
2359 				return -EINVAL;
2360 
2361 			pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm);
2362 			if (IS_ERR(pwm))
2363 				return PTR_ERR(pwm);
2364 
2365 			ret = pwm_set_waveform_might_sleep(pwm, &wf,
2366 							   cmd == PWM_IOCTL_SETEXACTWF);
2367 
2368 			/*
2369 			 * If userspace cares about rounding deviations it has
2370 			 * to check the values anyhow, so simplify handling for
2371 			 * them and don't signal uprounding. This matches the
2372 			 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0
2373 			 * in that case.
2374 			 */
2375 			if (ret == 1)
2376 				ret = 0;
2377 
2378 			return ret;
2379 		}
2380 
2381 	default:
2382 		return -ENOTTY;
2383 	}
2384 }
2385 
2386 static const struct file_operations pwm_cdev_fileops = {
2387 	.open = pwm_cdev_open,
2388 	.release = pwm_cdev_release,
2389 	.owner = THIS_MODULE,
2390 	.unlocked_ioctl = pwm_cdev_ioctl,
2391 };
2392 
2393 static dev_t pwm_devt;
2394 
2395 static int pwm_gpio_request(struct gpio_chip *gc, unsigned int offset)
2396 {
2397 	struct pwm_chip *chip = gpiochip_get_data(gc);
2398 	struct pwm_device *pwm;
2399 
2400 	pwm = pwm_request_from_chip(chip, offset, "pwm-gpio");
2401 	if (IS_ERR(pwm))
2402 		return PTR_ERR(pwm);
2403 
2404 	return 0;
2405 }
2406 
2407 static void pwm_gpio_free(struct gpio_chip *gc, unsigned int offset)
2408 {
2409 	struct pwm_chip *chip = gpiochip_get_data(gc);
2410 
2411 	pwm_put(&chip->pwms[offset]);
2412 }
2413 
2414 static int pwm_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2415 {
2416 	return GPIO_LINE_DIRECTION_OUT;
2417 }
2418 
2419 static int pwm_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
2420 {
2421 	struct pwm_chip *chip = gpiochip_get_data(gc);
2422 	struct pwm_device *pwm = &chip->pwms[offset];
2423 	int ret;
2424 	struct pwm_waveform wf = {
2425 		.period_length_ns = 1,
2426 	};
2427 
2428 	ret = pwm_round_waveform_might_sleep(pwm, &wf);
2429 	if (ret < 0)
2430 		return ret;
2431 
2432 	if (value)
2433 		wf.duty_length_ns = wf.period_length_ns;
2434 	else
2435 		wf.duty_length_ns = 0;
2436 
2437 	return pwm_set_waveform_might_sleep(pwm, &wf, true);
2438 }
2439 
2440 /**
2441  * __pwmchip_add() - register a new PWM chip
2442  * @chip: the PWM chip to add
2443  * @owner: reference to the module providing the chip.
2444  *
2445  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2446  * pwmchip_add wrapper to do this right.
2447  *
2448  * Returns: 0 on success or a negative error code on failure.
2449  */
2450 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2451 {
2452 	int ret;
2453 
2454 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2455 		return -EINVAL;
2456 
2457 	/*
2458 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2459 	 * otherwise the embedded struct device might disappear too early
2460 	 * resulting in memory corruption.
2461 	 * Catch drivers that were not converted appropriately.
2462 	 */
2463 	if (!chip->uses_pwmchip_alloc)
2464 		return -EINVAL;
2465 
2466 	if (!pwm_ops_check(chip))
2467 		return -EINVAL;
2468 
2469 	chip->owner = owner;
2470 
2471 	if (chip->atomic)
2472 		spin_lock_init(&chip->atomic_lock);
2473 	else
2474 		mutex_init(&chip->nonatomic_lock);
2475 
2476 	guard(mutex)(&pwm_lock);
2477 
2478 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2479 	if (ret < 0)
2480 		return ret;
2481 
2482 	chip->id = ret;
2483 
2484 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2485 
2486 	if (IS_ENABLED(CONFIG_OF))
2487 		of_pwmchip_add(chip);
2488 
2489 	scoped_guard(pwmchip, chip)
2490 		chip->operational = true;
2491 
2492 	if (chip->ops->write_waveform) {
2493 		if (chip->id < PWM_MINOR_COUNT)
2494 			chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id);
2495 		else
2496 			dev_warn(&chip->dev, "chip id too high to create a chardev\n");
2497 	}
2498 
2499 	cdev_init(&chip->cdev, &pwm_cdev_fileops);
2500 	chip->cdev.owner = owner;
2501 
2502 	ret = cdev_device_add(&chip->cdev, &chip->dev);
2503 	if (ret)
2504 		goto err_device_add;
2505 
2506 	if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) {
2507 		struct device *parent = pwmchip_parent(chip);
2508 
2509 		chip->gpio = (typeof(chip->gpio)){
2510 			.label = dev_name(parent),
2511 			.parent = parent,
2512 			.request = pwm_gpio_request,
2513 			.free = pwm_gpio_free,
2514 			.get_direction = pwm_gpio_get_direction,
2515 			.set = pwm_gpio_set,
2516 			.base = -1,
2517 			.ngpio = chip->npwm,
2518 			.can_sleep = true,
2519 		};
2520 
2521 		ret = gpiochip_add_data(&chip->gpio, chip);
2522 		if (ret)
2523 			goto err_gpiochip_add;
2524 	}
2525 
2526 	return 0;
2527 
2528 err_gpiochip_add:
2529 
2530 	cdev_device_del(&chip->cdev, &chip->dev);
2531 err_device_add:
2532 
2533 	scoped_guard(pwmchip, chip)
2534 		chip->operational = false;
2535 
2536 	if (IS_ENABLED(CONFIG_OF))
2537 		of_pwmchip_remove(chip);
2538 
2539 	idr_remove(&pwm_chips, chip->id);
2540 
2541 	return ret;
2542 }
2543 EXPORT_SYMBOL_GPL(__pwmchip_add);
2544 
2545 /**
2546  * pwmchip_remove() - remove a PWM chip
2547  * @chip: the PWM chip to remove
2548  *
2549  * Removes a PWM chip.
2550  */
2551 void pwmchip_remove(struct pwm_chip *chip)
2552 {
2553 	if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform)
2554 		gpiochip_remove(&chip->gpio);
2555 
2556 	pwmchip_sysfs_unexport(chip);
2557 
2558 	scoped_guard(mutex, &pwm_lock) {
2559 		unsigned int i;
2560 
2561 		scoped_guard(pwmchip, chip)
2562 			chip->operational = false;
2563 
2564 		for (i = 0; i < chip->npwm; ++i) {
2565 			struct pwm_device *pwm = &chip->pwms[i];
2566 
2567 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2568 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2569 				if (pwm->chip->ops->free)
2570 					pwm->chip->ops->free(pwm->chip, pwm);
2571 			}
2572 		}
2573 
2574 		if (IS_ENABLED(CONFIG_OF))
2575 			of_pwmchip_remove(chip);
2576 
2577 		idr_remove(&pwm_chips, chip->id);
2578 	}
2579 
2580 	cdev_device_del(&chip->cdev, &chip->dev);
2581 }
2582 EXPORT_SYMBOL_GPL(pwmchip_remove);
2583 
2584 static void devm_pwmchip_remove(void *data)
2585 {
2586 	struct pwm_chip *chip = data;
2587 
2588 	pwmchip_remove(chip);
2589 }
2590 
2591 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2592 {
2593 	int ret;
2594 
2595 	ret = __pwmchip_add(chip, owner);
2596 	if (ret)
2597 		return ret;
2598 
2599 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2600 }
2601 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2602 
2603 /**
2604  * pwm_add_table() - register PWM device consumers
2605  * @table: array of consumers to register
2606  * @num: number of consumers in table
2607  */
2608 void pwm_add_table(struct pwm_lookup *table, size_t num)
2609 {
2610 	guard(mutex)(&pwm_lookup_lock);
2611 
2612 	while (num--) {
2613 		list_add_tail(&table->list, &pwm_lookup_list);
2614 		table++;
2615 	}
2616 }
2617 
2618 /**
2619  * pwm_remove_table() - unregister PWM device consumers
2620  * @table: array of consumers to unregister
2621  * @num: number of consumers in table
2622  */
2623 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2624 {
2625 	guard(mutex)(&pwm_lookup_lock);
2626 
2627 	while (num--) {
2628 		list_del(&table->list);
2629 		table++;
2630 	}
2631 }
2632 
2633 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2634 {
2635 	unsigned int i;
2636 
2637 	for (i = 0; i < chip->npwm; i++) {
2638 		struct pwm_device *pwm = &chip->pwms[i];
2639 		struct pwm_state state, hwstate;
2640 
2641 		pwm_get_state(pwm, &state);
2642 		pwm_get_state_hw(pwm, &hwstate);
2643 
2644 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2645 
2646 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2647 			seq_puts(s, " requested");
2648 
2649 		seq_puts(s, "\n");
2650 
2651 		seq_printf(s, "  requested configuration: %3sabled, %llu/%llu ns, %s polarity",
2652 			   state.enabled ? "en" : "dis", state.duty_cycle, state.period,
2653 			   state.polarity ? "inverse" : "normal");
2654 		if (state.usage_power)
2655 			seq_puts(s, ", usage_power");
2656 		seq_puts(s, "\n");
2657 
2658 		seq_printf(s, "  actual configuration:    %3sabled, %llu/%llu ns, %s polarity",
2659 			   hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period,
2660 			   hwstate.polarity ? "inverse" : "normal");
2661 
2662 		seq_puts(s, "\n");
2663 	}
2664 }
2665 
2666 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2667 {
2668 	unsigned long id = *pos;
2669 	void *ret;
2670 
2671 	mutex_lock(&pwm_lock);
2672 	s->private = "";
2673 
2674 	ret = idr_get_next_ul(&pwm_chips, &id);
2675 	*pos = id;
2676 	return ret;
2677 }
2678 
2679 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2680 {
2681 	unsigned long id = *pos + 1;
2682 	void *ret;
2683 
2684 	s->private = "\n";
2685 
2686 	ret = idr_get_next_ul(&pwm_chips, &id);
2687 	*pos = id;
2688 	return ret;
2689 }
2690 
2691 static void pwm_seq_stop(struct seq_file *s, void *v)
2692 {
2693 	mutex_unlock(&pwm_lock);
2694 }
2695 
2696 static int pwm_seq_show(struct seq_file *s, void *v)
2697 {
2698 	struct pwm_chip *chip = v;
2699 
2700 	seq_printf(s, "%s%u: %s/%s, npwm: %u\n",
2701 		   (char *)s->private, chip->id,
2702 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2703 		   dev_name(pwmchip_parent(chip)), chip->npwm);
2704 
2705 	pwm_dbg_show(chip, s);
2706 
2707 	return 0;
2708 }
2709 
2710 static const struct seq_operations pwm_debugfs_sops = {
2711 	.start = pwm_seq_start,
2712 	.next = pwm_seq_next,
2713 	.stop = pwm_seq_stop,
2714 	.show = pwm_seq_show,
2715 };
2716 
2717 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2718 
2719 static int __init pwm_init(void)
2720 {
2721 	int ret;
2722 
2723 	ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm");
2724 	if (ret) {
2725 		pr_err("Failed to initialize chrdev region for PWM usage\n");
2726 		return ret;
2727 	}
2728 
2729 	ret = class_register(&pwm_class);
2730 	if (ret) {
2731 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2732 		unregister_chrdev_region(pwm_devt, 256);
2733 		return ret;
2734 	}
2735 
2736 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2737 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2738 
2739 	return 0;
2740 }
2741 subsys_initcall(pwm_init);
2742