1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/module.h> 11 #include <linux/idr.h> 12 #include <linux/of.h> 13 #include <linux/pwm.h> 14 #include <linux/list.h> 15 #include <linux/mutex.h> 16 #include <linux/err.h> 17 #include <linux/slab.h> 18 #include <linux/device.h> 19 #include <linux/debugfs.h> 20 #include <linux/seq_file.h> 21 22 #include <dt-bindings/pwm/pwm.h> 23 24 #define CREATE_TRACE_POINTS 25 #include <trace/events/pwm.h> 26 27 static DEFINE_MUTEX(pwm_lookup_lock); 28 static LIST_HEAD(pwm_lookup_list); 29 30 /* protects access to pwm_chips */ 31 static DEFINE_MUTEX(pwm_lock); 32 33 static DEFINE_IDR(pwm_chips); 34 35 static struct pwm_chip *pwmchip_find_by_name(const char *name) 36 { 37 struct pwm_chip *chip; 38 unsigned long id, tmp; 39 40 if (!name) 41 return NULL; 42 43 mutex_lock(&pwm_lock); 44 45 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 46 const char *chip_name = dev_name(chip->dev); 47 48 if (chip_name && strcmp(chip_name, name) == 0) { 49 mutex_unlock(&pwm_lock); 50 return chip; 51 } 52 } 53 54 mutex_unlock(&pwm_lock); 55 56 return NULL; 57 } 58 59 static int pwm_device_request(struct pwm_device *pwm, const char *label) 60 { 61 int err; 62 struct pwm_chip *chip = pwm->chip; 63 const struct pwm_ops *ops = chip->ops; 64 65 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 66 return -EBUSY; 67 68 if (!try_module_get(chip->owner)) 69 return -ENODEV; 70 71 if (ops->request) { 72 err = ops->request(chip, pwm); 73 if (err) { 74 module_put(chip->owner); 75 return err; 76 } 77 } 78 79 if (ops->get_state) { 80 /* 81 * Zero-initialize state because most drivers are unaware of 82 * .usage_power. The other members of state are supposed to be 83 * set by lowlevel drivers. We still initialize the whole 84 * structure for simplicity even though this might paper over 85 * faulty implementations of .get_state(). 86 */ 87 struct pwm_state state = { 0, }; 88 89 err = ops->get_state(chip, pwm, &state); 90 trace_pwm_get(pwm, &state, err); 91 92 if (!err) 93 pwm->state = state; 94 95 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 96 pwm->last = pwm->state; 97 } 98 99 set_bit(PWMF_REQUESTED, &pwm->flags); 100 pwm->label = label; 101 102 return 0; 103 } 104 105 struct pwm_device * 106 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 107 { 108 struct pwm_device *pwm; 109 110 if (chip->of_pwm_n_cells < 2) 111 return ERR_PTR(-EINVAL); 112 113 /* flags in the third cell are optional */ 114 if (args->args_count < 2) 115 return ERR_PTR(-EINVAL); 116 117 if (args->args[0] >= chip->npwm) 118 return ERR_PTR(-EINVAL); 119 120 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 121 if (IS_ERR(pwm)) 122 return pwm; 123 124 pwm->args.period = args->args[1]; 125 pwm->args.polarity = PWM_POLARITY_NORMAL; 126 127 if (chip->of_pwm_n_cells >= 3) { 128 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 129 pwm->args.polarity = PWM_POLARITY_INVERSED; 130 } 131 132 return pwm; 133 } 134 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 135 136 struct pwm_device * 137 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 138 { 139 struct pwm_device *pwm; 140 141 if (chip->of_pwm_n_cells < 1) 142 return ERR_PTR(-EINVAL); 143 144 /* validate that one cell is specified, optionally with flags */ 145 if (args->args_count != 1 && args->args_count != 2) 146 return ERR_PTR(-EINVAL); 147 148 pwm = pwm_request_from_chip(chip, 0, NULL); 149 if (IS_ERR(pwm)) 150 return pwm; 151 152 pwm->args.period = args->args[0]; 153 pwm->args.polarity = PWM_POLARITY_NORMAL; 154 155 if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED) 156 pwm->args.polarity = PWM_POLARITY_INVERSED; 157 158 return pwm; 159 } 160 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 161 162 static void of_pwmchip_add(struct pwm_chip *chip) 163 { 164 if (!chip->dev || !chip->dev->of_node) 165 return; 166 167 if (!chip->of_xlate) { 168 u32 pwm_cells; 169 170 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells", 171 &pwm_cells)) 172 pwm_cells = 2; 173 174 chip->of_xlate = of_pwm_xlate_with_flags; 175 chip->of_pwm_n_cells = pwm_cells; 176 } 177 178 of_node_get(chip->dev->of_node); 179 } 180 181 static void of_pwmchip_remove(struct pwm_chip *chip) 182 { 183 if (chip->dev) 184 of_node_put(chip->dev->of_node); 185 } 186 187 static bool pwm_ops_check(const struct pwm_chip *chip) 188 { 189 const struct pwm_ops *ops = chip->ops; 190 191 if (!ops->apply) 192 return false; 193 194 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 195 dev_warn(chip->dev, 196 "Please implement the .get_state() callback\n"); 197 198 return true; 199 } 200 201 /** 202 * __pwmchip_add() - register a new PWM chip 203 * @chip: the PWM chip to add 204 * @owner: reference to the module providing the chip. 205 * 206 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 207 * pwmchip_add wrapper to do this right. 208 * 209 * Returns: 0 on success or a negative error code on failure. 210 */ 211 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 212 { 213 unsigned int i; 214 int ret; 215 216 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 217 return -EINVAL; 218 219 if (!pwm_ops_check(chip)) 220 return -EINVAL; 221 222 chip->owner = owner; 223 224 chip->pwms = kcalloc(chip->npwm, sizeof(*chip->pwms), GFP_KERNEL); 225 if (!chip->pwms) 226 return -ENOMEM; 227 228 mutex_lock(&pwm_lock); 229 230 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 231 if (ret < 0) { 232 mutex_unlock(&pwm_lock); 233 kfree(chip->pwms); 234 return ret; 235 } 236 237 chip->id = ret; 238 239 for (i = 0; i < chip->npwm; i++) { 240 struct pwm_device *pwm = &chip->pwms[i]; 241 242 pwm->chip = chip; 243 pwm->hwpwm = i; 244 } 245 246 mutex_unlock(&pwm_lock); 247 248 if (IS_ENABLED(CONFIG_OF)) 249 of_pwmchip_add(chip); 250 251 pwmchip_sysfs_export(chip); 252 253 return 0; 254 } 255 EXPORT_SYMBOL_GPL(__pwmchip_add); 256 257 /** 258 * pwmchip_remove() - remove a PWM chip 259 * @chip: the PWM chip to remove 260 * 261 * Removes a PWM chip. 262 */ 263 void pwmchip_remove(struct pwm_chip *chip) 264 { 265 pwmchip_sysfs_unexport(chip); 266 267 if (IS_ENABLED(CONFIG_OF)) 268 of_pwmchip_remove(chip); 269 270 mutex_lock(&pwm_lock); 271 272 idr_remove(&pwm_chips, chip->id); 273 274 mutex_unlock(&pwm_lock); 275 276 kfree(chip->pwms); 277 } 278 EXPORT_SYMBOL_GPL(pwmchip_remove); 279 280 static void devm_pwmchip_remove(void *data) 281 { 282 struct pwm_chip *chip = data; 283 284 pwmchip_remove(chip); 285 } 286 287 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 288 { 289 int ret; 290 291 ret = __pwmchip_add(chip, owner); 292 if (ret) 293 return ret; 294 295 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 296 } 297 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 298 299 /** 300 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 301 * @chip: PWM chip 302 * @index: per-chip index of the PWM to request 303 * @label: a literal description string of this PWM 304 * 305 * Returns: A pointer to the PWM device at the given index of the given PWM 306 * chip. A negative error code is returned if the index is not valid for the 307 * specified PWM chip or if the PWM device cannot be requested. 308 */ 309 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 310 unsigned int index, 311 const char *label) 312 { 313 struct pwm_device *pwm; 314 int err; 315 316 if (!chip || index >= chip->npwm) 317 return ERR_PTR(-EINVAL); 318 319 mutex_lock(&pwm_lock); 320 pwm = &chip->pwms[index]; 321 322 err = pwm_device_request(pwm, label); 323 if (err < 0) 324 pwm = ERR_PTR(err); 325 326 mutex_unlock(&pwm_lock); 327 return pwm; 328 } 329 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 330 331 static void pwm_apply_debug(struct pwm_device *pwm, 332 const struct pwm_state *state) 333 { 334 struct pwm_state *last = &pwm->last; 335 struct pwm_chip *chip = pwm->chip; 336 struct pwm_state s1 = { 0 }, s2 = { 0 }; 337 int err; 338 339 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 340 return; 341 342 /* No reasonable diagnosis possible without .get_state() */ 343 if (!chip->ops->get_state) 344 return; 345 346 /* 347 * *state was just applied. Read out the hardware state and do some 348 * checks. 349 */ 350 351 err = chip->ops->get_state(chip, pwm, &s1); 352 trace_pwm_get(pwm, &s1, err); 353 if (err) 354 /* If that failed there isn't much to debug */ 355 return; 356 357 /* 358 * The lowlevel driver either ignored .polarity (which is a bug) or as 359 * best effort inverted .polarity and fixed .duty_cycle respectively. 360 * Undo this inversion and fixup for further tests. 361 */ 362 if (s1.enabled && s1.polarity != state->polarity) { 363 s2.polarity = state->polarity; 364 s2.duty_cycle = s1.period - s1.duty_cycle; 365 s2.period = s1.period; 366 s2.enabled = s1.enabled; 367 } else { 368 s2 = s1; 369 } 370 371 if (s2.polarity != state->polarity && 372 state->duty_cycle < state->period) 373 dev_warn(chip->dev, ".apply ignored .polarity\n"); 374 375 if (state->enabled && 376 last->polarity == state->polarity && 377 last->period > s2.period && 378 last->period <= state->period) 379 dev_warn(chip->dev, 380 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 381 state->period, s2.period, last->period); 382 383 if (state->enabled && state->period < s2.period) 384 dev_warn(chip->dev, 385 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 386 state->period, s2.period); 387 388 if (state->enabled && 389 last->polarity == state->polarity && 390 last->period == s2.period && 391 last->duty_cycle > s2.duty_cycle && 392 last->duty_cycle <= state->duty_cycle) 393 dev_warn(chip->dev, 394 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 395 state->duty_cycle, state->period, 396 s2.duty_cycle, s2.period, 397 last->duty_cycle, last->period); 398 399 if (state->enabled && state->duty_cycle < s2.duty_cycle) 400 dev_warn(chip->dev, 401 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 402 state->duty_cycle, state->period, 403 s2.duty_cycle, s2.period); 404 405 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 406 dev_warn(chip->dev, 407 "requested disabled, but yielded enabled with duty > 0\n"); 408 409 /* reapply the state that the driver reported being configured. */ 410 err = chip->ops->apply(chip, pwm, &s1); 411 trace_pwm_apply(pwm, &s1, err); 412 if (err) { 413 *last = s1; 414 dev_err(chip->dev, "failed to reapply current setting\n"); 415 return; 416 } 417 418 *last = (struct pwm_state){ 0 }; 419 err = chip->ops->get_state(chip, pwm, last); 420 trace_pwm_get(pwm, last, err); 421 if (err) 422 return; 423 424 /* reapplication of the current state should give an exact match */ 425 if (s1.enabled != last->enabled || 426 s1.polarity != last->polarity || 427 (s1.enabled && s1.period != last->period) || 428 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 429 dev_err(chip->dev, 430 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 431 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 432 last->enabled, last->polarity, last->duty_cycle, 433 last->period); 434 } 435 } 436 437 /** 438 * __pwm_apply() - atomically apply a new state to a PWM device 439 * @pwm: PWM device 440 * @state: new state to apply 441 */ 442 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 443 { 444 struct pwm_chip *chip; 445 int err; 446 447 if (!pwm || !state || !state->period || 448 state->duty_cycle > state->period) 449 return -EINVAL; 450 451 chip = pwm->chip; 452 453 if (state->period == pwm->state.period && 454 state->duty_cycle == pwm->state.duty_cycle && 455 state->polarity == pwm->state.polarity && 456 state->enabled == pwm->state.enabled && 457 state->usage_power == pwm->state.usage_power) 458 return 0; 459 460 err = chip->ops->apply(chip, pwm, state); 461 trace_pwm_apply(pwm, state, err); 462 if (err) 463 return err; 464 465 pwm->state = *state; 466 467 /* 468 * only do this after pwm->state was applied as some 469 * implementations of .get_state depend on this 470 */ 471 pwm_apply_debug(pwm, state); 472 473 return 0; 474 } 475 476 /** 477 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 478 * Cannot be used in atomic context. 479 * @pwm: PWM device 480 * @state: new state to apply 481 */ 482 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 483 { 484 int err; 485 486 /* 487 * Some lowlevel driver's implementations of .apply() make use of 488 * mutexes, also with some drivers only returning when the new 489 * configuration is active calling pwm_apply_might_sleep() from atomic context 490 * is a bad idea. So make it explicit that calling this function might 491 * sleep. 492 */ 493 might_sleep(); 494 495 if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) { 496 /* 497 * Catch any drivers that have been marked as atomic but 498 * that will sleep anyway. 499 */ 500 non_block_start(); 501 err = __pwm_apply(pwm, state); 502 non_block_end(); 503 } else { 504 err = __pwm_apply(pwm, state); 505 } 506 507 return err; 508 } 509 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 510 511 /** 512 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 513 * Not all PWM devices support this function, check with pwm_might_sleep(). 514 * @pwm: PWM device 515 * @state: new state to apply 516 */ 517 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 518 { 519 WARN_ONCE(!pwm->chip->atomic, 520 "sleeping PWM driver used in atomic context\n"); 521 522 return __pwm_apply(pwm, state); 523 } 524 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 525 526 /** 527 * pwm_capture() - capture and report a PWM signal 528 * @pwm: PWM device 529 * @result: structure to fill with capture result 530 * @timeout: time to wait, in milliseconds, before giving up on capture 531 * 532 * Returns: 0 on success or a negative error code on failure. 533 */ 534 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 535 unsigned long timeout) 536 { 537 int err; 538 539 if (!pwm || !pwm->chip->ops) 540 return -EINVAL; 541 542 if (!pwm->chip->ops->capture) 543 return -ENOSYS; 544 545 mutex_lock(&pwm_lock); 546 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 547 mutex_unlock(&pwm_lock); 548 549 return err; 550 } 551 EXPORT_SYMBOL_GPL(pwm_capture); 552 553 /** 554 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 555 * @pwm: PWM device 556 * 557 * This function will adjust the PWM config to the PWM arguments provided 558 * by the DT or PWM lookup table. This is particularly useful to adapt 559 * the bootloader config to the Linux one. 560 */ 561 int pwm_adjust_config(struct pwm_device *pwm) 562 { 563 struct pwm_state state; 564 struct pwm_args pargs; 565 566 pwm_get_args(pwm, &pargs); 567 pwm_get_state(pwm, &state); 568 569 /* 570 * If the current period is zero it means that either the PWM driver 571 * does not support initial state retrieval or the PWM has not yet 572 * been configured. 573 * 574 * In either case, we setup the new period and polarity, and assign a 575 * duty cycle of 0. 576 */ 577 if (!state.period) { 578 state.duty_cycle = 0; 579 state.period = pargs.period; 580 state.polarity = pargs.polarity; 581 582 return pwm_apply_might_sleep(pwm, &state); 583 } 584 585 /* 586 * Adjust the PWM duty cycle/period based on the period value provided 587 * in PWM args. 588 */ 589 if (pargs.period != state.period) { 590 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 591 592 do_div(dutycycle, state.period); 593 state.duty_cycle = dutycycle; 594 state.period = pargs.period; 595 } 596 597 /* 598 * If the polarity changed, we should also change the duty cycle. 599 */ 600 if (pargs.polarity != state.polarity) { 601 state.polarity = pargs.polarity; 602 state.duty_cycle = state.period - state.duty_cycle; 603 } 604 605 return pwm_apply_might_sleep(pwm, &state); 606 } 607 EXPORT_SYMBOL_GPL(pwm_adjust_config); 608 609 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 610 { 611 struct pwm_chip *chip; 612 unsigned long id, tmp; 613 614 mutex_lock(&pwm_lock); 615 616 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 617 if (chip->dev && device_match_fwnode(chip->dev, fwnode)) { 618 mutex_unlock(&pwm_lock); 619 return chip; 620 } 621 622 mutex_unlock(&pwm_lock); 623 624 return ERR_PTR(-EPROBE_DEFER); 625 } 626 627 static struct device_link *pwm_device_link_add(struct device *dev, 628 struct pwm_device *pwm) 629 { 630 struct device_link *dl; 631 632 if (!dev) { 633 /* 634 * No device for the PWM consumer has been provided. It may 635 * impact the PM sequence ordering: the PWM supplier may get 636 * suspended before the consumer. 637 */ 638 dev_warn(pwm->chip->dev, 639 "No consumer device specified to create a link to\n"); 640 return NULL; 641 } 642 643 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER); 644 if (!dl) { 645 dev_err(dev, "failed to create device link to %s\n", 646 dev_name(pwm->chip->dev)); 647 return ERR_PTR(-EINVAL); 648 } 649 650 return dl; 651 } 652 653 /** 654 * of_pwm_get() - request a PWM via the PWM framework 655 * @dev: device for PWM consumer 656 * @np: device node to get the PWM from 657 * @con_id: consumer name 658 * 659 * Returns the PWM device parsed from the phandle and index specified in the 660 * "pwms" property of a device tree node or a negative error-code on failure. 661 * Values parsed from the device tree are stored in the returned PWM device 662 * object. 663 * 664 * If con_id is NULL, the first PWM device listed in the "pwms" property will 665 * be requested. Otherwise the "pwm-names" property is used to do a reverse 666 * lookup of the PWM index. This also means that the "pwm-names" property 667 * becomes mandatory for devices that look up the PWM device via the con_id 668 * parameter. 669 * 670 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 671 * error code on failure. 672 */ 673 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 674 const char *con_id) 675 { 676 struct pwm_device *pwm = NULL; 677 struct of_phandle_args args; 678 struct device_link *dl; 679 struct pwm_chip *chip; 680 int index = 0; 681 int err; 682 683 if (con_id) { 684 index = of_property_match_string(np, "pwm-names", con_id); 685 if (index < 0) 686 return ERR_PTR(index); 687 } 688 689 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 690 &args); 691 if (err) { 692 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 693 return ERR_PTR(err); 694 } 695 696 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 697 if (IS_ERR(chip)) { 698 if (PTR_ERR(chip) != -EPROBE_DEFER) 699 pr_err("%s(): PWM chip not found\n", __func__); 700 701 pwm = ERR_CAST(chip); 702 goto put; 703 } 704 705 pwm = chip->of_xlate(chip, &args); 706 if (IS_ERR(pwm)) 707 goto put; 708 709 dl = pwm_device_link_add(dev, pwm); 710 if (IS_ERR(dl)) { 711 /* of_xlate ended up calling pwm_request_from_chip() */ 712 pwm_put(pwm); 713 pwm = ERR_CAST(dl); 714 goto put; 715 } 716 717 /* 718 * If a consumer name was not given, try to look it up from the 719 * "pwm-names" property if it exists. Otherwise use the name of 720 * the user device node. 721 */ 722 if (!con_id) { 723 err = of_property_read_string_index(np, "pwm-names", index, 724 &con_id); 725 if (err < 0) 726 con_id = np->name; 727 } 728 729 pwm->label = con_id; 730 731 put: 732 of_node_put(args.np); 733 734 return pwm; 735 } 736 737 /** 738 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 739 * @fwnode: firmware node to get the "pwms" property from 740 * 741 * Returns the PWM device parsed from the fwnode and index specified in the 742 * "pwms" property or a negative error-code on failure. 743 * Values parsed from the device tree are stored in the returned PWM device 744 * object. 745 * 746 * This is analogous to of_pwm_get() except con_id is not yet supported. 747 * ACPI entries must look like 748 * Package () {"pwms", Package () 749 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 750 * 751 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 752 * error code on failure. 753 */ 754 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 755 { 756 struct pwm_device *pwm; 757 struct fwnode_reference_args args; 758 struct pwm_chip *chip; 759 int ret; 760 761 memset(&args, 0, sizeof(args)); 762 763 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 764 if (ret < 0) 765 return ERR_PTR(ret); 766 767 if (args.nargs < 2) 768 return ERR_PTR(-EPROTO); 769 770 chip = fwnode_to_pwmchip(args.fwnode); 771 if (IS_ERR(chip)) 772 return ERR_CAST(chip); 773 774 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 775 if (IS_ERR(pwm)) 776 return pwm; 777 778 pwm->args.period = args.args[1]; 779 pwm->args.polarity = PWM_POLARITY_NORMAL; 780 781 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 782 pwm->args.polarity = PWM_POLARITY_INVERSED; 783 784 return pwm; 785 } 786 787 /** 788 * pwm_add_table() - register PWM device consumers 789 * @table: array of consumers to register 790 * @num: number of consumers in table 791 */ 792 void pwm_add_table(struct pwm_lookup *table, size_t num) 793 { 794 mutex_lock(&pwm_lookup_lock); 795 796 while (num--) { 797 list_add_tail(&table->list, &pwm_lookup_list); 798 table++; 799 } 800 801 mutex_unlock(&pwm_lookup_lock); 802 } 803 804 /** 805 * pwm_remove_table() - unregister PWM device consumers 806 * @table: array of consumers to unregister 807 * @num: number of consumers in table 808 */ 809 void pwm_remove_table(struct pwm_lookup *table, size_t num) 810 { 811 mutex_lock(&pwm_lookup_lock); 812 813 while (num--) { 814 list_del(&table->list); 815 table++; 816 } 817 818 mutex_unlock(&pwm_lookup_lock); 819 } 820 821 /** 822 * pwm_get() - look up and request a PWM device 823 * @dev: device for PWM consumer 824 * @con_id: consumer name 825 * 826 * Lookup is first attempted using DT. If the device was not instantiated from 827 * a device tree, a PWM chip and a relative index is looked up via a table 828 * supplied by board setup code (see pwm_add_table()). 829 * 830 * Once a PWM chip has been found the specified PWM device will be requested 831 * and is ready to be used. 832 * 833 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 834 * error code on failure. 835 */ 836 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 837 { 838 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 839 const char *dev_id = dev ? dev_name(dev) : NULL; 840 struct pwm_device *pwm; 841 struct pwm_chip *chip; 842 struct device_link *dl; 843 unsigned int best = 0; 844 struct pwm_lookup *p, *chosen = NULL; 845 unsigned int match; 846 int err; 847 848 /* look up via DT first */ 849 if (is_of_node(fwnode)) 850 return of_pwm_get(dev, to_of_node(fwnode), con_id); 851 852 /* then lookup via ACPI */ 853 if (is_acpi_node(fwnode)) { 854 pwm = acpi_pwm_get(fwnode); 855 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 856 return pwm; 857 } 858 859 /* 860 * We look up the provider in the static table typically provided by 861 * board setup code. We first try to lookup the consumer device by 862 * name. If the consumer device was passed in as NULL or if no match 863 * was found, we try to find the consumer by directly looking it up 864 * by name. 865 * 866 * If a match is found, the provider PWM chip is looked up by name 867 * and a PWM device is requested using the PWM device per-chip index. 868 * 869 * The lookup algorithm was shamelessly taken from the clock 870 * framework: 871 * 872 * We do slightly fuzzy matching here: 873 * An entry with a NULL ID is assumed to be a wildcard. 874 * If an entry has a device ID, it must match 875 * If an entry has a connection ID, it must match 876 * Then we take the most specific entry - with the following order 877 * of precedence: dev+con > dev only > con only. 878 */ 879 mutex_lock(&pwm_lookup_lock); 880 881 list_for_each_entry(p, &pwm_lookup_list, list) { 882 match = 0; 883 884 if (p->dev_id) { 885 if (!dev_id || strcmp(p->dev_id, dev_id)) 886 continue; 887 888 match += 2; 889 } 890 891 if (p->con_id) { 892 if (!con_id || strcmp(p->con_id, con_id)) 893 continue; 894 895 match += 1; 896 } 897 898 if (match > best) { 899 chosen = p; 900 901 if (match != 3) 902 best = match; 903 else 904 break; 905 } 906 } 907 908 mutex_unlock(&pwm_lookup_lock); 909 910 if (!chosen) 911 return ERR_PTR(-ENODEV); 912 913 chip = pwmchip_find_by_name(chosen->provider); 914 915 /* 916 * If the lookup entry specifies a module, load the module and retry 917 * the PWM chip lookup. This can be used to work around driver load 918 * ordering issues if driver's can't be made to properly support the 919 * deferred probe mechanism. 920 */ 921 if (!chip && chosen->module) { 922 err = request_module(chosen->module); 923 if (err == 0) 924 chip = pwmchip_find_by_name(chosen->provider); 925 } 926 927 if (!chip) 928 return ERR_PTR(-EPROBE_DEFER); 929 930 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 931 if (IS_ERR(pwm)) 932 return pwm; 933 934 dl = pwm_device_link_add(dev, pwm); 935 if (IS_ERR(dl)) { 936 pwm_put(pwm); 937 return ERR_CAST(dl); 938 } 939 940 pwm->args.period = chosen->period; 941 pwm->args.polarity = chosen->polarity; 942 943 return pwm; 944 } 945 EXPORT_SYMBOL_GPL(pwm_get); 946 947 /** 948 * pwm_put() - release a PWM device 949 * @pwm: PWM device 950 */ 951 void pwm_put(struct pwm_device *pwm) 952 { 953 if (!pwm) 954 return; 955 956 mutex_lock(&pwm_lock); 957 958 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 959 pr_warn("PWM device already freed\n"); 960 goto out; 961 } 962 963 if (pwm->chip->ops->free) 964 pwm->chip->ops->free(pwm->chip, pwm); 965 966 pwm->label = NULL; 967 968 module_put(pwm->chip->owner); 969 out: 970 mutex_unlock(&pwm_lock); 971 } 972 EXPORT_SYMBOL_GPL(pwm_put); 973 974 static void devm_pwm_release(void *pwm) 975 { 976 pwm_put(pwm); 977 } 978 979 /** 980 * devm_pwm_get() - resource managed pwm_get() 981 * @dev: device for PWM consumer 982 * @con_id: consumer name 983 * 984 * This function performs like pwm_get() but the acquired PWM device will 985 * automatically be released on driver detach. 986 * 987 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 988 * error code on failure. 989 */ 990 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 991 { 992 struct pwm_device *pwm; 993 int ret; 994 995 pwm = pwm_get(dev, con_id); 996 if (IS_ERR(pwm)) 997 return pwm; 998 999 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1000 if (ret) 1001 return ERR_PTR(ret); 1002 1003 return pwm; 1004 } 1005 EXPORT_SYMBOL_GPL(devm_pwm_get); 1006 1007 /** 1008 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 1009 * @dev: device for PWM consumer 1010 * @fwnode: firmware node to get the PWM from 1011 * @con_id: consumer name 1012 * 1013 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 1014 * acpi_pwm_get() for a detailed description. 1015 * 1016 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1017 * error code on failure. 1018 */ 1019 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 1020 struct fwnode_handle *fwnode, 1021 const char *con_id) 1022 { 1023 struct pwm_device *pwm = ERR_PTR(-ENODEV); 1024 int ret; 1025 1026 if (is_of_node(fwnode)) 1027 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 1028 else if (is_acpi_node(fwnode)) 1029 pwm = acpi_pwm_get(fwnode); 1030 if (IS_ERR(pwm)) 1031 return pwm; 1032 1033 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1034 if (ret) 1035 return ERR_PTR(ret); 1036 1037 return pwm; 1038 } 1039 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 1040 1041 #ifdef CONFIG_DEBUG_FS 1042 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 1043 { 1044 unsigned int i; 1045 1046 for (i = 0; i < chip->npwm; i++) { 1047 struct pwm_device *pwm = &chip->pwms[i]; 1048 struct pwm_state state; 1049 1050 pwm_get_state(pwm, &state); 1051 1052 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 1053 1054 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 1055 seq_puts(s, " requested"); 1056 1057 if (state.enabled) 1058 seq_puts(s, " enabled"); 1059 1060 seq_printf(s, " period: %llu ns", state.period); 1061 seq_printf(s, " duty: %llu ns", state.duty_cycle); 1062 seq_printf(s, " polarity: %s", 1063 state.polarity ? "inverse" : "normal"); 1064 1065 if (state.usage_power) 1066 seq_puts(s, " usage_power"); 1067 1068 seq_puts(s, "\n"); 1069 } 1070 } 1071 1072 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1073 { 1074 unsigned long id = *pos; 1075 void *ret; 1076 1077 mutex_lock(&pwm_lock); 1078 s->private = ""; 1079 1080 ret = idr_get_next_ul(&pwm_chips, &id); 1081 *pos = id; 1082 return ret; 1083 } 1084 1085 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1086 { 1087 unsigned long id = *pos + 1; 1088 void *ret; 1089 1090 s->private = "\n"; 1091 1092 ret = idr_get_next_ul(&pwm_chips, &id); 1093 *pos = id; 1094 return ret; 1095 } 1096 1097 static void pwm_seq_stop(struct seq_file *s, void *v) 1098 { 1099 mutex_unlock(&pwm_lock); 1100 } 1101 1102 static int pwm_seq_show(struct seq_file *s, void *v) 1103 { 1104 struct pwm_chip *chip = v; 1105 1106 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", 1107 (char *)s->private, chip->id, 1108 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1109 dev_name(chip->dev), chip->npwm, 1110 (chip->npwm != 1) ? "s" : ""); 1111 1112 pwm_dbg_show(chip, s); 1113 1114 return 0; 1115 } 1116 1117 static const struct seq_operations pwm_debugfs_sops = { 1118 .start = pwm_seq_start, 1119 .next = pwm_seq_next, 1120 .stop = pwm_seq_stop, 1121 .show = pwm_seq_show, 1122 }; 1123 1124 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 1125 1126 static int __init pwm_debugfs_init(void) 1127 { 1128 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 1129 1130 return 0; 1131 } 1132 subsys_initcall(pwm_debugfs_init); 1133 #endif /* CONFIG_DEBUG_FS */ 1134