xref: /linux/drivers/pwm/core.c (revision b58b13f156c00c2457035b7071eaaac105fe6836)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/idr.h>
12 #include <linux/of.h>
13 #include <linux/pwm.h>
14 #include <linux/list.h>
15 #include <linux/mutex.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/device.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 
22 #include <dt-bindings/pwm/pwm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/pwm.h>
26 
27 static DEFINE_MUTEX(pwm_lookup_lock);
28 static LIST_HEAD(pwm_lookup_list);
29 
30 /* protects access to pwm_chips */
31 static DEFINE_MUTEX(pwm_lock);
32 
33 static DEFINE_IDR(pwm_chips);
34 
35 static struct pwm_chip *pwmchip_find_by_name(const char *name)
36 {
37 	struct pwm_chip *chip;
38 	unsigned long id, tmp;
39 
40 	if (!name)
41 		return NULL;
42 
43 	mutex_lock(&pwm_lock);
44 
45 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
46 		const char *chip_name = dev_name(chip->dev);
47 
48 		if (chip_name && strcmp(chip_name, name) == 0) {
49 			mutex_unlock(&pwm_lock);
50 			return chip;
51 		}
52 	}
53 
54 	mutex_unlock(&pwm_lock);
55 
56 	return NULL;
57 }
58 
59 static int pwm_device_request(struct pwm_device *pwm, const char *label)
60 {
61 	int err;
62 	struct pwm_chip *chip = pwm->chip;
63 	const struct pwm_ops *ops = chip->ops;
64 
65 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
66 		return -EBUSY;
67 
68 	if (!try_module_get(chip->owner))
69 		return -ENODEV;
70 
71 	if (ops->request) {
72 		err = ops->request(chip, pwm);
73 		if (err) {
74 			module_put(chip->owner);
75 			return err;
76 		}
77 	}
78 
79 	if (ops->get_state) {
80 		/*
81 		 * Zero-initialize state because most drivers are unaware of
82 		 * .usage_power. The other members of state are supposed to be
83 		 * set by lowlevel drivers. We still initialize the whole
84 		 * structure for simplicity even though this might paper over
85 		 * faulty implementations of .get_state().
86 		 */
87 		struct pwm_state state = { 0, };
88 
89 		err = ops->get_state(chip, pwm, &state);
90 		trace_pwm_get(pwm, &state, err);
91 
92 		if (!err)
93 			pwm->state = state;
94 
95 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
96 			pwm->last = pwm->state;
97 	}
98 
99 	set_bit(PWMF_REQUESTED, &pwm->flags);
100 	pwm->label = label;
101 
102 	return 0;
103 }
104 
105 struct pwm_device *
106 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
107 {
108 	struct pwm_device *pwm;
109 
110 	if (chip->of_pwm_n_cells < 2)
111 		return ERR_PTR(-EINVAL);
112 
113 	/* flags in the third cell are optional */
114 	if (args->args_count < 2)
115 		return ERR_PTR(-EINVAL);
116 
117 	if (args->args[0] >= chip->npwm)
118 		return ERR_PTR(-EINVAL);
119 
120 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
121 	if (IS_ERR(pwm))
122 		return pwm;
123 
124 	pwm->args.period = args->args[1];
125 	pwm->args.polarity = PWM_POLARITY_NORMAL;
126 
127 	if (chip->of_pwm_n_cells >= 3) {
128 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
129 			pwm->args.polarity = PWM_POLARITY_INVERSED;
130 	}
131 
132 	return pwm;
133 }
134 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
135 
136 struct pwm_device *
137 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
138 {
139 	struct pwm_device *pwm;
140 
141 	if (chip->of_pwm_n_cells < 1)
142 		return ERR_PTR(-EINVAL);
143 
144 	/* validate that one cell is specified, optionally with flags */
145 	if (args->args_count != 1 && args->args_count != 2)
146 		return ERR_PTR(-EINVAL);
147 
148 	pwm = pwm_request_from_chip(chip, 0, NULL);
149 	if (IS_ERR(pwm))
150 		return pwm;
151 
152 	pwm->args.period = args->args[0];
153 	pwm->args.polarity = PWM_POLARITY_NORMAL;
154 
155 	if (args->args_count == 2 && args->args[1] & PWM_POLARITY_INVERTED)
156 		pwm->args.polarity = PWM_POLARITY_INVERSED;
157 
158 	return pwm;
159 }
160 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
161 
162 static void of_pwmchip_add(struct pwm_chip *chip)
163 {
164 	if (!chip->dev || !chip->dev->of_node)
165 		return;
166 
167 	if (!chip->of_xlate) {
168 		u32 pwm_cells;
169 
170 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
171 					 &pwm_cells))
172 			pwm_cells = 2;
173 
174 		chip->of_xlate = of_pwm_xlate_with_flags;
175 		chip->of_pwm_n_cells = pwm_cells;
176 	}
177 
178 	of_node_get(chip->dev->of_node);
179 }
180 
181 static void of_pwmchip_remove(struct pwm_chip *chip)
182 {
183 	if (chip->dev)
184 		of_node_put(chip->dev->of_node);
185 }
186 
187 static bool pwm_ops_check(const struct pwm_chip *chip)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 
191 	if (!ops->apply)
192 		return false;
193 
194 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
195 		dev_warn(chip->dev,
196 			 "Please implement the .get_state() callback\n");
197 
198 	return true;
199 }
200 
201 /**
202  * __pwmchip_add() - register a new PWM chip
203  * @chip: the PWM chip to add
204  * @owner: reference to the module providing the chip.
205  *
206  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
207  * pwmchip_add wrapper to do this right.
208  *
209  * Returns: 0 on success or a negative error code on failure.
210  */
211 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
212 {
213 	unsigned int i;
214 	int ret;
215 
216 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
217 		return -EINVAL;
218 
219 	if (!pwm_ops_check(chip))
220 		return -EINVAL;
221 
222 	chip->owner = owner;
223 
224 	chip->pwms = kcalloc(chip->npwm, sizeof(*chip->pwms), GFP_KERNEL);
225 	if (!chip->pwms)
226 		return -ENOMEM;
227 
228 	mutex_lock(&pwm_lock);
229 
230 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
231 	if (ret < 0) {
232 		mutex_unlock(&pwm_lock);
233 		kfree(chip->pwms);
234 		return ret;
235 	}
236 
237 	chip->id = ret;
238 
239 	for (i = 0; i < chip->npwm; i++) {
240 		struct pwm_device *pwm = &chip->pwms[i];
241 
242 		pwm->chip = chip;
243 		pwm->hwpwm = i;
244 	}
245 
246 	mutex_unlock(&pwm_lock);
247 
248 	if (IS_ENABLED(CONFIG_OF))
249 		of_pwmchip_add(chip);
250 
251 	pwmchip_sysfs_export(chip);
252 
253 	return 0;
254 }
255 EXPORT_SYMBOL_GPL(__pwmchip_add);
256 
257 /**
258  * pwmchip_remove() - remove a PWM chip
259  * @chip: the PWM chip to remove
260  *
261  * Removes a PWM chip.
262  */
263 void pwmchip_remove(struct pwm_chip *chip)
264 {
265 	pwmchip_sysfs_unexport(chip);
266 
267 	if (IS_ENABLED(CONFIG_OF))
268 		of_pwmchip_remove(chip);
269 
270 	mutex_lock(&pwm_lock);
271 
272 	idr_remove(&pwm_chips, chip->id);
273 
274 	mutex_unlock(&pwm_lock);
275 
276 	kfree(chip->pwms);
277 }
278 EXPORT_SYMBOL_GPL(pwmchip_remove);
279 
280 static void devm_pwmchip_remove(void *data)
281 {
282 	struct pwm_chip *chip = data;
283 
284 	pwmchip_remove(chip);
285 }
286 
287 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
288 {
289 	int ret;
290 
291 	ret = __pwmchip_add(chip, owner);
292 	if (ret)
293 		return ret;
294 
295 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
296 }
297 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
298 
299 /**
300  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
301  * @chip: PWM chip
302  * @index: per-chip index of the PWM to request
303  * @label: a literal description string of this PWM
304  *
305  * Returns: A pointer to the PWM device at the given index of the given PWM
306  * chip. A negative error code is returned if the index is not valid for the
307  * specified PWM chip or if the PWM device cannot be requested.
308  */
309 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
310 					 unsigned int index,
311 					 const char *label)
312 {
313 	struct pwm_device *pwm;
314 	int err;
315 
316 	if (!chip || index >= chip->npwm)
317 		return ERR_PTR(-EINVAL);
318 
319 	mutex_lock(&pwm_lock);
320 	pwm = &chip->pwms[index];
321 
322 	err = pwm_device_request(pwm, label);
323 	if (err < 0)
324 		pwm = ERR_PTR(err);
325 
326 	mutex_unlock(&pwm_lock);
327 	return pwm;
328 }
329 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
330 
331 static void pwm_apply_debug(struct pwm_device *pwm,
332 			    const struct pwm_state *state)
333 {
334 	struct pwm_state *last = &pwm->last;
335 	struct pwm_chip *chip = pwm->chip;
336 	struct pwm_state s1 = { 0 }, s2 = { 0 };
337 	int err;
338 
339 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
340 		return;
341 
342 	/* No reasonable diagnosis possible without .get_state() */
343 	if (!chip->ops->get_state)
344 		return;
345 
346 	/*
347 	 * *state was just applied. Read out the hardware state and do some
348 	 * checks.
349 	 */
350 
351 	err = chip->ops->get_state(chip, pwm, &s1);
352 	trace_pwm_get(pwm, &s1, err);
353 	if (err)
354 		/* If that failed there isn't much to debug */
355 		return;
356 
357 	/*
358 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
359 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
360 	 * Undo this inversion and fixup for further tests.
361 	 */
362 	if (s1.enabled && s1.polarity != state->polarity) {
363 		s2.polarity = state->polarity;
364 		s2.duty_cycle = s1.period - s1.duty_cycle;
365 		s2.period = s1.period;
366 		s2.enabled = s1.enabled;
367 	} else {
368 		s2 = s1;
369 	}
370 
371 	if (s2.polarity != state->polarity &&
372 	    state->duty_cycle < state->period)
373 		dev_warn(chip->dev, ".apply ignored .polarity\n");
374 
375 	if (state->enabled &&
376 	    last->polarity == state->polarity &&
377 	    last->period > s2.period &&
378 	    last->period <= state->period)
379 		dev_warn(chip->dev,
380 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
381 			 state->period, s2.period, last->period);
382 
383 	if (state->enabled && state->period < s2.period)
384 		dev_warn(chip->dev,
385 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
386 			 state->period, s2.period);
387 
388 	if (state->enabled &&
389 	    last->polarity == state->polarity &&
390 	    last->period == s2.period &&
391 	    last->duty_cycle > s2.duty_cycle &&
392 	    last->duty_cycle <= state->duty_cycle)
393 		dev_warn(chip->dev,
394 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
395 			 state->duty_cycle, state->period,
396 			 s2.duty_cycle, s2.period,
397 			 last->duty_cycle, last->period);
398 
399 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
400 		dev_warn(chip->dev,
401 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
402 			 state->duty_cycle, state->period,
403 			 s2.duty_cycle, s2.period);
404 
405 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
406 		dev_warn(chip->dev,
407 			 "requested disabled, but yielded enabled with duty > 0\n");
408 
409 	/* reapply the state that the driver reported being configured. */
410 	err = chip->ops->apply(chip, pwm, &s1);
411 	trace_pwm_apply(pwm, &s1, err);
412 	if (err) {
413 		*last = s1;
414 		dev_err(chip->dev, "failed to reapply current setting\n");
415 		return;
416 	}
417 
418 	*last = (struct pwm_state){ 0 };
419 	err = chip->ops->get_state(chip, pwm, last);
420 	trace_pwm_get(pwm, last, err);
421 	if (err)
422 		return;
423 
424 	/* reapplication of the current state should give an exact match */
425 	if (s1.enabled != last->enabled ||
426 	    s1.polarity != last->polarity ||
427 	    (s1.enabled && s1.period != last->period) ||
428 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
429 		dev_err(chip->dev,
430 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
431 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
432 			last->enabled, last->polarity, last->duty_cycle,
433 			last->period);
434 	}
435 }
436 
437 /**
438  * __pwm_apply() - atomically apply a new state to a PWM device
439  * @pwm: PWM device
440  * @state: new state to apply
441  */
442 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
443 {
444 	struct pwm_chip *chip;
445 	int err;
446 
447 	if (!pwm || !state || !state->period ||
448 	    state->duty_cycle > state->period)
449 		return -EINVAL;
450 
451 	chip = pwm->chip;
452 
453 	if (state->period == pwm->state.period &&
454 	    state->duty_cycle == pwm->state.duty_cycle &&
455 	    state->polarity == pwm->state.polarity &&
456 	    state->enabled == pwm->state.enabled &&
457 	    state->usage_power == pwm->state.usage_power)
458 		return 0;
459 
460 	err = chip->ops->apply(chip, pwm, state);
461 	trace_pwm_apply(pwm, state, err);
462 	if (err)
463 		return err;
464 
465 	pwm->state = *state;
466 
467 	/*
468 	 * only do this after pwm->state was applied as some
469 	 * implementations of .get_state depend on this
470 	 */
471 	pwm_apply_debug(pwm, state);
472 
473 	return 0;
474 }
475 
476 /**
477  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
478  * Cannot be used in atomic context.
479  * @pwm: PWM device
480  * @state: new state to apply
481  */
482 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
483 {
484 	int err;
485 
486 	/*
487 	 * Some lowlevel driver's implementations of .apply() make use of
488 	 * mutexes, also with some drivers only returning when the new
489 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
490 	 * is a bad idea. So make it explicit that calling this function might
491 	 * sleep.
492 	 */
493 	might_sleep();
494 
495 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
496 		/*
497 		 * Catch any drivers that have been marked as atomic but
498 		 * that will sleep anyway.
499 		 */
500 		non_block_start();
501 		err = __pwm_apply(pwm, state);
502 		non_block_end();
503 	} else {
504 		err = __pwm_apply(pwm, state);
505 	}
506 
507 	return err;
508 }
509 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
510 
511 /**
512  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
513  * Not all PWM devices support this function, check with pwm_might_sleep().
514  * @pwm: PWM device
515  * @state: new state to apply
516  */
517 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
518 {
519 	WARN_ONCE(!pwm->chip->atomic,
520 		  "sleeping PWM driver used in atomic context\n");
521 
522 	return __pwm_apply(pwm, state);
523 }
524 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
525 
526 /**
527  * pwm_capture() - capture and report a PWM signal
528  * @pwm: PWM device
529  * @result: structure to fill with capture result
530  * @timeout: time to wait, in milliseconds, before giving up on capture
531  *
532  * Returns: 0 on success or a negative error code on failure.
533  */
534 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
535 		unsigned long timeout)
536 {
537 	int err;
538 
539 	if (!pwm || !pwm->chip->ops)
540 		return -EINVAL;
541 
542 	if (!pwm->chip->ops->capture)
543 		return -ENOSYS;
544 
545 	mutex_lock(&pwm_lock);
546 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
547 	mutex_unlock(&pwm_lock);
548 
549 	return err;
550 }
551 EXPORT_SYMBOL_GPL(pwm_capture);
552 
553 /**
554  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
555  * @pwm: PWM device
556  *
557  * This function will adjust the PWM config to the PWM arguments provided
558  * by the DT or PWM lookup table. This is particularly useful to adapt
559  * the bootloader config to the Linux one.
560  */
561 int pwm_adjust_config(struct pwm_device *pwm)
562 {
563 	struct pwm_state state;
564 	struct pwm_args pargs;
565 
566 	pwm_get_args(pwm, &pargs);
567 	pwm_get_state(pwm, &state);
568 
569 	/*
570 	 * If the current period is zero it means that either the PWM driver
571 	 * does not support initial state retrieval or the PWM has not yet
572 	 * been configured.
573 	 *
574 	 * In either case, we setup the new period and polarity, and assign a
575 	 * duty cycle of 0.
576 	 */
577 	if (!state.period) {
578 		state.duty_cycle = 0;
579 		state.period = pargs.period;
580 		state.polarity = pargs.polarity;
581 
582 		return pwm_apply_might_sleep(pwm, &state);
583 	}
584 
585 	/*
586 	 * Adjust the PWM duty cycle/period based on the period value provided
587 	 * in PWM args.
588 	 */
589 	if (pargs.period != state.period) {
590 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
591 
592 		do_div(dutycycle, state.period);
593 		state.duty_cycle = dutycycle;
594 		state.period = pargs.period;
595 	}
596 
597 	/*
598 	 * If the polarity changed, we should also change the duty cycle.
599 	 */
600 	if (pargs.polarity != state.polarity) {
601 		state.polarity = pargs.polarity;
602 		state.duty_cycle = state.period - state.duty_cycle;
603 	}
604 
605 	return pwm_apply_might_sleep(pwm, &state);
606 }
607 EXPORT_SYMBOL_GPL(pwm_adjust_config);
608 
609 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
610 {
611 	struct pwm_chip *chip;
612 	unsigned long id, tmp;
613 
614 	mutex_lock(&pwm_lock);
615 
616 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
617 		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
618 			mutex_unlock(&pwm_lock);
619 			return chip;
620 		}
621 
622 	mutex_unlock(&pwm_lock);
623 
624 	return ERR_PTR(-EPROBE_DEFER);
625 }
626 
627 static struct device_link *pwm_device_link_add(struct device *dev,
628 					       struct pwm_device *pwm)
629 {
630 	struct device_link *dl;
631 
632 	if (!dev) {
633 		/*
634 		 * No device for the PWM consumer has been provided. It may
635 		 * impact the PM sequence ordering: the PWM supplier may get
636 		 * suspended before the consumer.
637 		 */
638 		dev_warn(pwm->chip->dev,
639 			 "No consumer device specified to create a link to\n");
640 		return NULL;
641 	}
642 
643 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
644 	if (!dl) {
645 		dev_err(dev, "failed to create device link to %s\n",
646 			dev_name(pwm->chip->dev));
647 		return ERR_PTR(-EINVAL);
648 	}
649 
650 	return dl;
651 }
652 
653 /**
654  * of_pwm_get() - request a PWM via the PWM framework
655  * @dev: device for PWM consumer
656  * @np: device node to get the PWM from
657  * @con_id: consumer name
658  *
659  * Returns the PWM device parsed from the phandle and index specified in the
660  * "pwms" property of a device tree node or a negative error-code on failure.
661  * Values parsed from the device tree are stored in the returned PWM device
662  * object.
663  *
664  * If con_id is NULL, the first PWM device listed in the "pwms" property will
665  * be requested. Otherwise the "pwm-names" property is used to do a reverse
666  * lookup of the PWM index. This also means that the "pwm-names" property
667  * becomes mandatory for devices that look up the PWM device via the con_id
668  * parameter.
669  *
670  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
671  * error code on failure.
672  */
673 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
674 				     const char *con_id)
675 {
676 	struct pwm_device *pwm = NULL;
677 	struct of_phandle_args args;
678 	struct device_link *dl;
679 	struct pwm_chip *chip;
680 	int index = 0;
681 	int err;
682 
683 	if (con_id) {
684 		index = of_property_match_string(np, "pwm-names", con_id);
685 		if (index < 0)
686 			return ERR_PTR(index);
687 	}
688 
689 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
690 					 &args);
691 	if (err) {
692 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
693 		return ERR_PTR(err);
694 	}
695 
696 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
697 	if (IS_ERR(chip)) {
698 		if (PTR_ERR(chip) != -EPROBE_DEFER)
699 			pr_err("%s(): PWM chip not found\n", __func__);
700 
701 		pwm = ERR_CAST(chip);
702 		goto put;
703 	}
704 
705 	pwm = chip->of_xlate(chip, &args);
706 	if (IS_ERR(pwm))
707 		goto put;
708 
709 	dl = pwm_device_link_add(dev, pwm);
710 	if (IS_ERR(dl)) {
711 		/* of_xlate ended up calling pwm_request_from_chip() */
712 		pwm_put(pwm);
713 		pwm = ERR_CAST(dl);
714 		goto put;
715 	}
716 
717 	/*
718 	 * If a consumer name was not given, try to look it up from the
719 	 * "pwm-names" property if it exists. Otherwise use the name of
720 	 * the user device node.
721 	 */
722 	if (!con_id) {
723 		err = of_property_read_string_index(np, "pwm-names", index,
724 						    &con_id);
725 		if (err < 0)
726 			con_id = np->name;
727 	}
728 
729 	pwm->label = con_id;
730 
731 put:
732 	of_node_put(args.np);
733 
734 	return pwm;
735 }
736 
737 /**
738  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
739  * @fwnode: firmware node to get the "pwms" property from
740  *
741  * Returns the PWM device parsed from the fwnode and index specified in the
742  * "pwms" property or a negative error-code on failure.
743  * Values parsed from the device tree are stored in the returned PWM device
744  * object.
745  *
746  * This is analogous to of_pwm_get() except con_id is not yet supported.
747  * ACPI entries must look like
748  * Package () {"pwms", Package ()
749  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
750  *
751  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
752  * error code on failure.
753  */
754 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
755 {
756 	struct pwm_device *pwm;
757 	struct fwnode_reference_args args;
758 	struct pwm_chip *chip;
759 	int ret;
760 
761 	memset(&args, 0, sizeof(args));
762 
763 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
764 	if (ret < 0)
765 		return ERR_PTR(ret);
766 
767 	if (args.nargs < 2)
768 		return ERR_PTR(-EPROTO);
769 
770 	chip = fwnode_to_pwmchip(args.fwnode);
771 	if (IS_ERR(chip))
772 		return ERR_CAST(chip);
773 
774 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
775 	if (IS_ERR(pwm))
776 		return pwm;
777 
778 	pwm->args.period = args.args[1];
779 	pwm->args.polarity = PWM_POLARITY_NORMAL;
780 
781 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
782 		pwm->args.polarity = PWM_POLARITY_INVERSED;
783 
784 	return pwm;
785 }
786 
787 /**
788  * pwm_add_table() - register PWM device consumers
789  * @table: array of consumers to register
790  * @num: number of consumers in table
791  */
792 void pwm_add_table(struct pwm_lookup *table, size_t num)
793 {
794 	mutex_lock(&pwm_lookup_lock);
795 
796 	while (num--) {
797 		list_add_tail(&table->list, &pwm_lookup_list);
798 		table++;
799 	}
800 
801 	mutex_unlock(&pwm_lookup_lock);
802 }
803 
804 /**
805  * pwm_remove_table() - unregister PWM device consumers
806  * @table: array of consumers to unregister
807  * @num: number of consumers in table
808  */
809 void pwm_remove_table(struct pwm_lookup *table, size_t num)
810 {
811 	mutex_lock(&pwm_lookup_lock);
812 
813 	while (num--) {
814 		list_del(&table->list);
815 		table++;
816 	}
817 
818 	mutex_unlock(&pwm_lookup_lock);
819 }
820 
821 /**
822  * pwm_get() - look up and request a PWM device
823  * @dev: device for PWM consumer
824  * @con_id: consumer name
825  *
826  * Lookup is first attempted using DT. If the device was not instantiated from
827  * a device tree, a PWM chip and a relative index is looked up via a table
828  * supplied by board setup code (see pwm_add_table()).
829  *
830  * Once a PWM chip has been found the specified PWM device will be requested
831  * and is ready to be used.
832  *
833  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
834  * error code on failure.
835  */
836 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
837 {
838 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
839 	const char *dev_id = dev ? dev_name(dev) : NULL;
840 	struct pwm_device *pwm;
841 	struct pwm_chip *chip;
842 	struct device_link *dl;
843 	unsigned int best = 0;
844 	struct pwm_lookup *p, *chosen = NULL;
845 	unsigned int match;
846 	int err;
847 
848 	/* look up via DT first */
849 	if (is_of_node(fwnode))
850 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
851 
852 	/* then lookup via ACPI */
853 	if (is_acpi_node(fwnode)) {
854 		pwm = acpi_pwm_get(fwnode);
855 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
856 			return pwm;
857 	}
858 
859 	/*
860 	 * We look up the provider in the static table typically provided by
861 	 * board setup code. We first try to lookup the consumer device by
862 	 * name. If the consumer device was passed in as NULL or if no match
863 	 * was found, we try to find the consumer by directly looking it up
864 	 * by name.
865 	 *
866 	 * If a match is found, the provider PWM chip is looked up by name
867 	 * and a PWM device is requested using the PWM device per-chip index.
868 	 *
869 	 * The lookup algorithm was shamelessly taken from the clock
870 	 * framework:
871 	 *
872 	 * We do slightly fuzzy matching here:
873 	 *  An entry with a NULL ID is assumed to be a wildcard.
874 	 *  If an entry has a device ID, it must match
875 	 *  If an entry has a connection ID, it must match
876 	 * Then we take the most specific entry - with the following order
877 	 * of precedence: dev+con > dev only > con only.
878 	 */
879 	mutex_lock(&pwm_lookup_lock);
880 
881 	list_for_each_entry(p, &pwm_lookup_list, list) {
882 		match = 0;
883 
884 		if (p->dev_id) {
885 			if (!dev_id || strcmp(p->dev_id, dev_id))
886 				continue;
887 
888 			match += 2;
889 		}
890 
891 		if (p->con_id) {
892 			if (!con_id || strcmp(p->con_id, con_id))
893 				continue;
894 
895 			match += 1;
896 		}
897 
898 		if (match > best) {
899 			chosen = p;
900 
901 			if (match != 3)
902 				best = match;
903 			else
904 				break;
905 		}
906 	}
907 
908 	mutex_unlock(&pwm_lookup_lock);
909 
910 	if (!chosen)
911 		return ERR_PTR(-ENODEV);
912 
913 	chip = pwmchip_find_by_name(chosen->provider);
914 
915 	/*
916 	 * If the lookup entry specifies a module, load the module and retry
917 	 * the PWM chip lookup. This can be used to work around driver load
918 	 * ordering issues if driver's can't be made to properly support the
919 	 * deferred probe mechanism.
920 	 */
921 	if (!chip && chosen->module) {
922 		err = request_module(chosen->module);
923 		if (err == 0)
924 			chip = pwmchip_find_by_name(chosen->provider);
925 	}
926 
927 	if (!chip)
928 		return ERR_PTR(-EPROBE_DEFER);
929 
930 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
931 	if (IS_ERR(pwm))
932 		return pwm;
933 
934 	dl = pwm_device_link_add(dev, pwm);
935 	if (IS_ERR(dl)) {
936 		pwm_put(pwm);
937 		return ERR_CAST(dl);
938 	}
939 
940 	pwm->args.period = chosen->period;
941 	pwm->args.polarity = chosen->polarity;
942 
943 	return pwm;
944 }
945 EXPORT_SYMBOL_GPL(pwm_get);
946 
947 /**
948  * pwm_put() - release a PWM device
949  * @pwm: PWM device
950  */
951 void pwm_put(struct pwm_device *pwm)
952 {
953 	if (!pwm)
954 		return;
955 
956 	mutex_lock(&pwm_lock);
957 
958 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
959 		pr_warn("PWM device already freed\n");
960 		goto out;
961 	}
962 
963 	if (pwm->chip->ops->free)
964 		pwm->chip->ops->free(pwm->chip, pwm);
965 
966 	pwm->label = NULL;
967 
968 	module_put(pwm->chip->owner);
969 out:
970 	mutex_unlock(&pwm_lock);
971 }
972 EXPORT_SYMBOL_GPL(pwm_put);
973 
974 static void devm_pwm_release(void *pwm)
975 {
976 	pwm_put(pwm);
977 }
978 
979 /**
980  * devm_pwm_get() - resource managed pwm_get()
981  * @dev: device for PWM consumer
982  * @con_id: consumer name
983  *
984  * This function performs like pwm_get() but the acquired PWM device will
985  * automatically be released on driver detach.
986  *
987  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
988  * error code on failure.
989  */
990 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
991 {
992 	struct pwm_device *pwm;
993 	int ret;
994 
995 	pwm = pwm_get(dev, con_id);
996 	if (IS_ERR(pwm))
997 		return pwm;
998 
999 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1000 	if (ret)
1001 		return ERR_PTR(ret);
1002 
1003 	return pwm;
1004 }
1005 EXPORT_SYMBOL_GPL(devm_pwm_get);
1006 
1007 /**
1008  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1009  * @dev: device for PWM consumer
1010  * @fwnode: firmware node to get the PWM from
1011  * @con_id: consumer name
1012  *
1013  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1014  * acpi_pwm_get() for a detailed description.
1015  *
1016  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1017  * error code on failure.
1018  */
1019 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1020 				       struct fwnode_handle *fwnode,
1021 				       const char *con_id)
1022 {
1023 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1024 	int ret;
1025 
1026 	if (is_of_node(fwnode))
1027 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1028 	else if (is_acpi_node(fwnode))
1029 		pwm = acpi_pwm_get(fwnode);
1030 	if (IS_ERR(pwm))
1031 		return pwm;
1032 
1033 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1034 	if (ret)
1035 		return ERR_PTR(ret);
1036 
1037 	return pwm;
1038 }
1039 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1040 
1041 #ifdef CONFIG_DEBUG_FS
1042 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1043 {
1044 	unsigned int i;
1045 
1046 	for (i = 0; i < chip->npwm; i++) {
1047 		struct pwm_device *pwm = &chip->pwms[i];
1048 		struct pwm_state state;
1049 
1050 		pwm_get_state(pwm, &state);
1051 
1052 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1053 
1054 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1055 			seq_puts(s, " requested");
1056 
1057 		if (state.enabled)
1058 			seq_puts(s, " enabled");
1059 
1060 		seq_printf(s, " period: %llu ns", state.period);
1061 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1062 		seq_printf(s, " polarity: %s",
1063 			   state.polarity ? "inverse" : "normal");
1064 
1065 		if (state.usage_power)
1066 			seq_puts(s, " usage_power");
1067 
1068 		seq_puts(s, "\n");
1069 	}
1070 }
1071 
1072 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1073 {
1074 	unsigned long id = *pos;
1075 	void *ret;
1076 
1077 	mutex_lock(&pwm_lock);
1078 	s->private = "";
1079 
1080 	ret = idr_get_next_ul(&pwm_chips, &id);
1081 	*pos = id;
1082 	return ret;
1083 }
1084 
1085 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1086 {
1087 	unsigned long id = *pos + 1;
1088 	void *ret;
1089 
1090 	s->private = "\n";
1091 
1092 	ret = idr_get_next_ul(&pwm_chips, &id);
1093 	*pos = id;
1094 	return ret;
1095 }
1096 
1097 static void pwm_seq_stop(struct seq_file *s, void *v)
1098 {
1099 	mutex_unlock(&pwm_lock);
1100 }
1101 
1102 static int pwm_seq_show(struct seq_file *s, void *v)
1103 {
1104 	struct pwm_chip *chip = v;
1105 
1106 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1107 		   (char *)s->private, chip->id,
1108 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1109 		   dev_name(chip->dev), chip->npwm,
1110 		   (chip->npwm != 1) ? "s" : "");
1111 
1112 	pwm_dbg_show(chip, s);
1113 
1114 	return 0;
1115 }
1116 
1117 static const struct seq_operations pwm_debugfs_sops = {
1118 	.start = pwm_seq_start,
1119 	.next = pwm_seq_next,
1120 	.stop = pwm_seq_stop,
1121 	.show = pwm_seq_show,
1122 };
1123 
1124 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1125 
1126 static int __init pwm_debugfs_init(void)
1127 {
1128 	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1129 
1130 	return 0;
1131 }
1132 subsys_initcall(pwm_debugfs_init);
1133 #endif /* CONFIG_DEBUG_FS */
1134