xref: /linux/drivers/pwm/core.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define MAX_PWMS 1024
24 
25 static DEFINE_MUTEX(pwm_lookup_lock);
26 static LIST_HEAD(pwm_lookup_list);
27 static DEFINE_MUTEX(pwm_lock);
28 static LIST_HEAD(pwm_chips);
29 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
30 static RADIX_TREE(pwm_tree, GFP_KERNEL);
31 
32 static struct pwm_device *pwm_to_device(unsigned int pwm)
33 {
34 	return radix_tree_lookup(&pwm_tree, pwm);
35 }
36 
37 static int alloc_pwms(int pwm, unsigned int count)
38 {
39 	unsigned int from = 0;
40 	unsigned int start;
41 
42 	if (pwm >= MAX_PWMS)
43 		return -EINVAL;
44 
45 	if (pwm >= 0)
46 		from = pwm;
47 
48 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
49 					   count, 0);
50 
51 	if (pwm >= 0 && start != pwm)
52 		return -EEXIST;
53 
54 	if (start + count > MAX_PWMS)
55 		return -ENOSPC;
56 
57 	return start;
58 }
59 
60 static void free_pwms(struct pwm_chip *chip)
61 {
62 	unsigned int i;
63 
64 	for (i = 0; i < chip->npwm; i++) {
65 		struct pwm_device *pwm = &chip->pwms[i];
66 
67 		radix_tree_delete(&pwm_tree, pwm->pwm);
68 	}
69 
70 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71 
72 	kfree(chip->pwms);
73 	chip->pwms = NULL;
74 }
75 
76 static struct pwm_chip *pwmchip_find_by_name(const char *name)
77 {
78 	struct pwm_chip *chip;
79 
80 	if (!name)
81 		return NULL;
82 
83 	mutex_lock(&pwm_lock);
84 
85 	list_for_each_entry(chip, &pwm_chips, list) {
86 		const char *chip_name = dev_name(chip->dev);
87 
88 		if (chip_name && strcmp(chip_name, name) == 0) {
89 			mutex_unlock(&pwm_lock);
90 			return chip;
91 		}
92 	}
93 
94 	mutex_unlock(&pwm_lock);
95 
96 	return NULL;
97 }
98 
99 static int pwm_device_request(struct pwm_device *pwm, const char *label)
100 {
101 	int err;
102 
103 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 		return -EBUSY;
105 
106 	if (!try_module_get(pwm->chip->ops->owner))
107 		return -ENODEV;
108 
109 	if (pwm->chip->ops->request) {
110 		err = pwm->chip->ops->request(pwm->chip, pwm);
111 		if (err) {
112 			module_put(pwm->chip->ops->owner);
113 			return err;
114 		}
115 	}
116 
117 	set_bit(PWMF_REQUESTED, &pwm->flags);
118 	pwm->label = label;
119 
120 	return 0;
121 }
122 
123 struct pwm_device *
124 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
125 {
126 	struct pwm_device *pwm;
127 
128 	/* check, whether the driver supports a third cell for flags */
129 	if (pc->of_pwm_n_cells < 3)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
147 		pwm->args.polarity = PWM_POLARITY_INVERSED;
148 
149 	return pwm;
150 }
151 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
152 
153 static struct pwm_device *
154 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
155 {
156 	struct pwm_device *pwm;
157 
158 	/* sanity check driver support */
159 	if (pc->of_pwm_n_cells < 2)
160 		return ERR_PTR(-EINVAL);
161 
162 	/* all cells are required */
163 	if (args->args_count != pc->of_pwm_n_cells)
164 		return ERR_PTR(-EINVAL);
165 
166 	if (args->args[0] >= pc->npwm)
167 		return ERR_PTR(-EINVAL);
168 
169 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
170 	if (IS_ERR(pwm))
171 		return pwm;
172 
173 	pwm->args.period = args->args[1];
174 
175 	return pwm;
176 }
177 
178 static void of_pwmchip_add(struct pwm_chip *chip)
179 {
180 	if (!chip->dev || !chip->dev->of_node)
181 		return;
182 
183 	if (!chip->of_xlate) {
184 		chip->of_xlate = of_pwm_simple_xlate;
185 		chip->of_pwm_n_cells = 2;
186 	}
187 
188 	of_node_get(chip->dev->of_node);
189 }
190 
191 static void of_pwmchip_remove(struct pwm_chip *chip)
192 {
193 	if (chip->dev)
194 		of_node_put(chip->dev->of_node);
195 }
196 
197 /**
198  * pwm_set_chip_data() - set private chip data for a PWM
199  * @pwm: PWM device
200  * @data: pointer to chip-specific data
201  *
202  * Returns: 0 on success or a negative error code on failure.
203  */
204 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
205 {
206 	if (!pwm)
207 		return -EINVAL;
208 
209 	pwm->chip_data = data;
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
214 
215 /**
216  * pwm_get_chip_data() - get private chip data for a PWM
217  * @pwm: PWM device
218  *
219  * Returns: A pointer to the chip-private data for the PWM device.
220  */
221 void *pwm_get_chip_data(struct pwm_device *pwm)
222 {
223 	return pwm ? pwm->chip_data : NULL;
224 }
225 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
226 
227 static bool pwm_ops_check(const struct pwm_ops *ops)
228 {
229 	/* driver supports legacy, non-atomic operation */
230 	if (ops->config && ops->enable && ops->disable)
231 		return true;
232 
233 	/* driver supports atomic operation */
234 	if (ops->apply)
235 		return true;
236 
237 	return false;
238 }
239 
240 /**
241  * pwmchip_add_with_polarity() - register a new PWM chip
242  * @chip: the PWM chip to add
243  * @polarity: initial polarity of PWM channels
244  *
245  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
246  * will be used. The initial polarity for all channels is specified by the
247  * @polarity parameter.
248  *
249  * Returns: 0 on success or a negative error code on failure.
250  */
251 int pwmchip_add_with_polarity(struct pwm_chip *chip,
252 			      enum pwm_polarity polarity)
253 {
254 	struct pwm_device *pwm;
255 	unsigned int i;
256 	int ret;
257 
258 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
259 		return -EINVAL;
260 
261 	if (!pwm_ops_check(chip->ops))
262 		return -EINVAL;
263 
264 	mutex_lock(&pwm_lock);
265 
266 	ret = alloc_pwms(chip->base, chip->npwm);
267 	if (ret < 0)
268 		goto out;
269 
270 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
271 	if (!chip->pwms) {
272 		ret = -ENOMEM;
273 		goto out;
274 	}
275 
276 	chip->base = ret;
277 
278 	for (i = 0; i < chip->npwm; i++) {
279 		pwm = &chip->pwms[i];
280 
281 		pwm->chip = chip;
282 		pwm->pwm = chip->base + i;
283 		pwm->hwpwm = i;
284 		pwm->state.polarity = polarity;
285 
286 		if (chip->ops->get_state)
287 			chip->ops->get_state(chip, pwm, &pwm->state);
288 
289 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
290 	}
291 
292 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
293 
294 	INIT_LIST_HEAD(&chip->list);
295 	list_add(&chip->list, &pwm_chips);
296 
297 	ret = 0;
298 
299 	if (IS_ENABLED(CONFIG_OF))
300 		of_pwmchip_add(chip);
301 
302 out:
303 	mutex_unlock(&pwm_lock);
304 
305 	if (!ret)
306 		pwmchip_sysfs_export(chip);
307 
308 	return ret;
309 }
310 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
311 
312 /**
313  * pwmchip_add() - register a new PWM chip
314  * @chip: the PWM chip to add
315  *
316  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
317  * will be used. The initial polarity for all channels is normal.
318  *
319  * Returns: 0 on success or a negative error code on failure.
320  */
321 int pwmchip_add(struct pwm_chip *chip)
322 {
323 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
324 }
325 EXPORT_SYMBOL_GPL(pwmchip_add);
326 
327 /**
328  * pwmchip_remove() - remove a PWM chip
329  * @chip: the PWM chip to remove
330  *
331  * Removes a PWM chip. This function may return busy if the PWM chip provides
332  * a PWM device that is still requested.
333  *
334  * Returns: 0 on success or a negative error code on failure.
335  */
336 int pwmchip_remove(struct pwm_chip *chip)
337 {
338 	unsigned int i;
339 	int ret = 0;
340 
341 	pwmchip_sysfs_unexport(chip);
342 
343 	mutex_lock(&pwm_lock);
344 
345 	for (i = 0; i < chip->npwm; i++) {
346 		struct pwm_device *pwm = &chip->pwms[i];
347 
348 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
349 			ret = -EBUSY;
350 			goto out;
351 		}
352 	}
353 
354 	list_del_init(&chip->list);
355 
356 	if (IS_ENABLED(CONFIG_OF))
357 		of_pwmchip_remove(chip);
358 
359 	free_pwms(chip);
360 
361 out:
362 	mutex_unlock(&pwm_lock);
363 	return ret;
364 }
365 EXPORT_SYMBOL_GPL(pwmchip_remove);
366 
367 /**
368  * pwm_request() - request a PWM device
369  * @pwm: global PWM device index
370  * @label: PWM device label
371  *
372  * This function is deprecated, use pwm_get() instead.
373  *
374  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
375  * failure.
376  */
377 struct pwm_device *pwm_request(int pwm, const char *label)
378 {
379 	struct pwm_device *dev;
380 	int err;
381 
382 	if (pwm < 0 || pwm >= MAX_PWMS)
383 		return ERR_PTR(-EINVAL);
384 
385 	mutex_lock(&pwm_lock);
386 
387 	dev = pwm_to_device(pwm);
388 	if (!dev) {
389 		dev = ERR_PTR(-EPROBE_DEFER);
390 		goto out;
391 	}
392 
393 	err = pwm_device_request(dev, label);
394 	if (err < 0)
395 		dev = ERR_PTR(err);
396 
397 out:
398 	mutex_unlock(&pwm_lock);
399 
400 	return dev;
401 }
402 EXPORT_SYMBOL_GPL(pwm_request);
403 
404 /**
405  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
406  * @chip: PWM chip
407  * @index: per-chip index of the PWM to request
408  * @label: a literal description string of this PWM
409  *
410  * Returns: A pointer to the PWM device at the given index of the given PWM
411  * chip. A negative error code is returned if the index is not valid for the
412  * specified PWM chip or if the PWM device cannot be requested.
413  */
414 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
415 					 unsigned int index,
416 					 const char *label)
417 {
418 	struct pwm_device *pwm;
419 	int err;
420 
421 	if (!chip || index >= chip->npwm)
422 		return ERR_PTR(-EINVAL);
423 
424 	mutex_lock(&pwm_lock);
425 	pwm = &chip->pwms[index];
426 
427 	err = pwm_device_request(pwm, label);
428 	if (err < 0)
429 		pwm = ERR_PTR(err);
430 
431 	mutex_unlock(&pwm_lock);
432 	return pwm;
433 }
434 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
435 
436 /**
437  * pwm_free() - free a PWM device
438  * @pwm: PWM device
439  *
440  * This function is deprecated, use pwm_put() instead.
441  */
442 void pwm_free(struct pwm_device *pwm)
443 {
444 	pwm_put(pwm);
445 }
446 EXPORT_SYMBOL_GPL(pwm_free);
447 
448 /**
449  * pwm_apply_state() - atomically apply a new state to a PWM device
450  * @pwm: PWM device
451  * @state: new state to apply. This can be adjusted by the PWM driver
452  *	   if the requested config is not achievable, for example,
453  *	   ->duty_cycle and ->period might be approximated.
454  */
455 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
456 {
457 	int err;
458 
459 	if (!pwm || !state || !state->period ||
460 	    state->duty_cycle > state->period)
461 		return -EINVAL;
462 
463 	if (state->period == pwm->state.period &&
464 	    state->duty_cycle == pwm->state.duty_cycle &&
465 	    state->polarity == pwm->state.polarity &&
466 	    state->enabled == pwm->state.enabled)
467 		return 0;
468 
469 	if (pwm->chip->ops->apply) {
470 		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
471 		if (err)
472 			return err;
473 
474 		pwm->state = *state;
475 	} else {
476 		/*
477 		 * FIXME: restore the initial state in case of error.
478 		 */
479 		if (state->polarity != pwm->state.polarity) {
480 			if (!pwm->chip->ops->set_polarity)
481 				return -ENOTSUPP;
482 
483 			/*
484 			 * Changing the polarity of a running PWM is
485 			 * only allowed when the PWM driver implements
486 			 * ->apply().
487 			 */
488 			if (pwm->state.enabled) {
489 				pwm->chip->ops->disable(pwm->chip, pwm);
490 				pwm->state.enabled = false;
491 			}
492 
493 			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
494 							   state->polarity);
495 			if (err)
496 				return err;
497 
498 			pwm->state.polarity = state->polarity;
499 		}
500 
501 		if (state->period != pwm->state.period ||
502 		    state->duty_cycle != pwm->state.duty_cycle) {
503 			err = pwm->chip->ops->config(pwm->chip, pwm,
504 						     state->duty_cycle,
505 						     state->period);
506 			if (err)
507 				return err;
508 
509 			pwm->state.duty_cycle = state->duty_cycle;
510 			pwm->state.period = state->period;
511 		}
512 
513 		if (state->enabled != pwm->state.enabled) {
514 			if (state->enabled) {
515 				err = pwm->chip->ops->enable(pwm->chip, pwm);
516 				if (err)
517 					return err;
518 			} else {
519 				pwm->chip->ops->disable(pwm->chip, pwm);
520 			}
521 
522 			pwm->state.enabled = state->enabled;
523 		}
524 	}
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(pwm_apply_state);
529 
530 /**
531  * pwm_capture() - capture and report a PWM signal
532  * @pwm: PWM device
533  * @result: structure to fill with capture result
534  * @timeout: time to wait, in milliseconds, before giving up on capture
535  *
536  * Returns: 0 on success or a negative error code on failure.
537  */
538 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
539 		unsigned long timeout)
540 {
541 	int err;
542 
543 	if (!pwm || !pwm->chip->ops)
544 		return -EINVAL;
545 
546 	if (!pwm->chip->ops->capture)
547 		return -ENOSYS;
548 
549 	mutex_lock(&pwm_lock);
550 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
551 	mutex_unlock(&pwm_lock);
552 
553 	return err;
554 }
555 EXPORT_SYMBOL_GPL(pwm_capture);
556 
557 /**
558  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
559  * @pwm: PWM device
560  *
561  * This function will adjust the PWM config to the PWM arguments provided
562  * by the DT or PWM lookup table. This is particularly useful to adapt
563  * the bootloader config to the Linux one.
564  */
565 int pwm_adjust_config(struct pwm_device *pwm)
566 {
567 	struct pwm_state state;
568 	struct pwm_args pargs;
569 
570 	pwm_get_args(pwm, &pargs);
571 	pwm_get_state(pwm, &state);
572 
573 	/*
574 	 * If the current period is zero it means that either the PWM driver
575 	 * does not support initial state retrieval or the PWM has not yet
576 	 * been configured.
577 	 *
578 	 * In either case, we setup the new period and polarity, and assign a
579 	 * duty cycle of 0.
580 	 */
581 	if (!state.period) {
582 		state.duty_cycle = 0;
583 		state.period = pargs.period;
584 		state.polarity = pargs.polarity;
585 
586 		return pwm_apply_state(pwm, &state);
587 	}
588 
589 	/*
590 	 * Adjust the PWM duty cycle/period based on the period value provided
591 	 * in PWM args.
592 	 */
593 	if (pargs.period != state.period) {
594 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
595 
596 		do_div(dutycycle, state.period);
597 		state.duty_cycle = dutycycle;
598 		state.period = pargs.period;
599 	}
600 
601 	/*
602 	 * If the polarity changed, we should also change the duty cycle.
603 	 */
604 	if (pargs.polarity != state.polarity) {
605 		state.polarity = pargs.polarity;
606 		state.duty_cycle = state.period - state.duty_cycle;
607 	}
608 
609 	return pwm_apply_state(pwm, &state);
610 }
611 EXPORT_SYMBOL_GPL(pwm_adjust_config);
612 
613 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
614 {
615 	struct pwm_chip *chip;
616 
617 	mutex_lock(&pwm_lock);
618 
619 	list_for_each_entry(chip, &pwm_chips, list)
620 		if (chip->dev && chip->dev->of_node == np) {
621 			mutex_unlock(&pwm_lock);
622 			return chip;
623 		}
624 
625 	mutex_unlock(&pwm_lock);
626 
627 	return ERR_PTR(-EPROBE_DEFER);
628 }
629 
630 static struct device_link *pwm_device_link_add(struct device *dev,
631 					       struct pwm_device *pwm)
632 {
633 	struct device_link *dl;
634 
635 	if (!dev) {
636 		/*
637 		 * No device for the PWM consumer has been provided. It may
638 		 * impact the PM sequence ordering: the PWM supplier may get
639 		 * suspended before the consumer.
640 		 */
641 		dev_warn(pwm->chip->dev,
642 			 "No consumer device specified to create a link to\n");
643 		return NULL;
644 	}
645 
646 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
647 	if (!dl) {
648 		dev_err(dev, "failed to create device link to %s\n",
649 			dev_name(pwm->chip->dev));
650 		return ERR_PTR(-EINVAL);
651 	}
652 
653 	return dl;
654 }
655 
656 /**
657  * of_pwm_get() - request a PWM via the PWM framework
658  * @dev: device for PWM consumer
659  * @np: device node to get the PWM from
660  * @con_id: consumer name
661  *
662  * Returns the PWM device parsed from the phandle and index specified in the
663  * "pwms" property of a device tree node or a negative error-code on failure.
664  * Values parsed from the device tree are stored in the returned PWM device
665  * object.
666  *
667  * If con_id is NULL, the first PWM device listed in the "pwms" property will
668  * be requested. Otherwise the "pwm-names" property is used to do a reverse
669  * lookup of the PWM index. This also means that the "pwm-names" property
670  * becomes mandatory for devices that look up the PWM device via the con_id
671  * parameter.
672  *
673  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
674  * error code on failure.
675  */
676 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
677 			      const char *con_id)
678 {
679 	struct pwm_device *pwm = NULL;
680 	struct of_phandle_args args;
681 	struct device_link *dl;
682 	struct pwm_chip *pc;
683 	int index = 0;
684 	int err;
685 
686 	if (con_id) {
687 		index = of_property_match_string(np, "pwm-names", con_id);
688 		if (index < 0)
689 			return ERR_PTR(index);
690 	}
691 
692 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
693 					 &args);
694 	if (err) {
695 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
696 		return ERR_PTR(err);
697 	}
698 
699 	pc = of_node_to_pwmchip(args.np);
700 	if (IS_ERR(pc)) {
701 		if (PTR_ERR(pc) != -EPROBE_DEFER)
702 			pr_err("%s(): PWM chip not found\n", __func__);
703 
704 		pwm = ERR_CAST(pc);
705 		goto put;
706 	}
707 
708 	pwm = pc->of_xlate(pc, &args);
709 	if (IS_ERR(pwm))
710 		goto put;
711 
712 	dl = pwm_device_link_add(dev, pwm);
713 	if (IS_ERR(dl)) {
714 		/* of_xlate ended up calling pwm_request_from_chip() */
715 		pwm_free(pwm);
716 		pwm = ERR_CAST(dl);
717 		goto put;
718 	}
719 
720 	/*
721 	 * If a consumer name was not given, try to look it up from the
722 	 * "pwm-names" property if it exists. Otherwise use the name of
723 	 * the user device node.
724 	 */
725 	if (!con_id) {
726 		err = of_property_read_string_index(np, "pwm-names", index,
727 						    &con_id);
728 		if (err < 0)
729 			con_id = np->name;
730 	}
731 
732 	pwm->label = con_id;
733 
734 put:
735 	of_node_put(args.np);
736 
737 	return pwm;
738 }
739 EXPORT_SYMBOL_GPL(of_pwm_get);
740 
741 #if IS_ENABLED(CONFIG_ACPI)
742 static struct pwm_chip *device_to_pwmchip(struct device *dev)
743 {
744 	struct pwm_chip *chip;
745 
746 	mutex_lock(&pwm_lock);
747 
748 	list_for_each_entry(chip, &pwm_chips, list) {
749 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
750 
751 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
752 			mutex_unlock(&pwm_lock);
753 			return chip;
754 		}
755 	}
756 
757 	mutex_unlock(&pwm_lock);
758 
759 	return ERR_PTR(-EPROBE_DEFER);
760 }
761 #endif
762 
763 /**
764  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
765  * @fwnode: firmware node to get the "pwm" property from
766  *
767  * Returns the PWM device parsed from the fwnode and index specified in the
768  * "pwms" property or a negative error-code on failure.
769  * Values parsed from the device tree are stored in the returned PWM device
770  * object.
771  *
772  * This is analogous to of_pwm_get() except con_id is not yet supported.
773  * ACPI entries must look like
774  * Package () {"pwms", Package ()
775  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
776  *
777  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
778  * error code on failure.
779  */
780 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
781 {
782 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
783 #if IS_ENABLED(CONFIG_ACPI)
784 	struct fwnode_reference_args args;
785 	struct acpi_device *acpi;
786 	struct pwm_chip *chip;
787 	int ret;
788 
789 	memset(&args, 0, sizeof(args));
790 
791 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
792 	if (ret < 0)
793 		return ERR_PTR(ret);
794 
795 	acpi = to_acpi_device_node(args.fwnode);
796 	if (!acpi)
797 		return ERR_PTR(-EINVAL);
798 
799 	if (args.nargs < 2)
800 		return ERR_PTR(-EPROTO);
801 
802 	chip = device_to_pwmchip(&acpi->dev);
803 	if (IS_ERR(chip))
804 		return ERR_CAST(chip);
805 
806 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
807 	if (IS_ERR(pwm))
808 		return pwm;
809 
810 	pwm->args.period = args.args[1];
811 	pwm->args.polarity = PWM_POLARITY_NORMAL;
812 
813 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
814 		pwm->args.polarity = PWM_POLARITY_INVERSED;
815 #endif
816 
817 	return pwm;
818 }
819 
820 /**
821  * pwm_add_table() - register PWM device consumers
822  * @table: array of consumers to register
823  * @num: number of consumers in table
824  */
825 void pwm_add_table(struct pwm_lookup *table, size_t num)
826 {
827 	mutex_lock(&pwm_lookup_lock);
828 
829 	while (num--) {
830 		list_add_tail(&table->list, &pwm_lookup_list);
831 		table++;
832 	}
833 
834 	mutex_unlock(&pwm_lookup_lock);
835 }
836 
837 /**
838  * pwm_remove_table() - unregister PWM device consumers
839  * @table: array of consumers to unregister
840  * @num: number of consumers in table
841  */
842 void pwm_remove_table(struct pwm_lookup *table, size_t num)
843 {
844 	mutex_lock(&pwm_lookup_lock);
845 
846 	while (num--) {
847 		list_del(&table->list);
848 		table++;
849 	}
850 
851 	mutex_unlock(&pwm_lookup_lock);
852 }
853 
854 /**
855  * pwm_get() - look up and request a PWM device
856  * @dev: device for PWM consumer
857  * @con_id: consumer name
858  *
859  * Lookup is first attempted using DT. If the device was not instantiated from
860  * a device tree, a PWM chip and a relative index is looked up via a table
861  * supplied by board setup code (see pwm_add_table()).
862  *
863  * Once a PWM chip has been found the specified PWM device will be requested
864  * and is ready to be used.
865  *
866  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
867  * error code on failure.
868  */
869 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
870 {
871 	const char *dev_id = dev ? dev_name(dev) : NULL;
872 	struct pwm_device *pwm;
873 	struct pwm_chip *chip;
874 	struct device_link *dl;
875 	unsigned int best = 0;
876 	struct pwm_lookup *p, *chosen = NULL;
877 	unsigned int match;
878 	int err;
879 
880 	/* look up via DT first */
881 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
882 		return of_pwm_get(dev, dev->of_node, con_id);
883 
884 	/* then lookup via ACPI */
885 	if (dev && is_acpi_node(dev->fwnode)) {
886 		pwm = acpi_pwm_get(dev->fwnode);
887 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
888 			return pwm;
889 	}
890 
891 	/*
892 	 * We look up the provider in the static table typically provided by
893 	 * board setup code. We first try to lookup the consumer device by
894 	 * name. If the consumer device was passed in as NULL or if no match
895 	 * was found, we try to find the consumer by directly looking it up
896 	 * by name.
897 	 *
898 	 * If a match is found, the provider PWM chip is looked up by name
899 	 * and a PWM device is requested using the PWM device per-chip index.
900 	 *
901 	 * The lookup algorithm was shamelessly taken from the clock
902 	 * framework:
903 	 *
904 	 * We do slightly fuzzy matching here:
905 	 *  An entry with a NULL ID is assumed to be a wildcard.
906 	 *  If an entry has a device ID, it must match
907 	 *  If an entry has a connection ID, it must match
908 	 * Then we take the most specific entry - with the following order
909 	 * of precedence: dev+con > dev only > con only.
910 	 */
911 	mutex_lock(&pwm_lookup_lock);
912 
913 	list_for_each_entry(p, &pwm_lookup_list, list) {
914 		match = 0;
915 
916 		if (p->dev_id) {
917 			if (!dev_id || strcmp(p->dev_id, dev_id))
918 				continue;
919 
920 			match += 2;
921 		}
922 
923 		if (p->con_id) {
924 			if (!con_id || strcmp(p->con_id, con_id))
925 				continue;
926 
927 			match += 1;
928 		}
929 
930 		if (match > best) {
931 			chosen = p;
932 
933 			if (match != 3)
934 				best = match;
935 			else
936 				break;
937 		}
938 	}
939 
940 	mutex_unlock(&pwm_lookup_lock);
941 
942 	if (!chosen)
943 		return ERR_PTR(-ENODEV);
944 
945 	chip = pwmchip_find_by_name(chosen->provider);
946 
947 	/*
948 	 * If the lookup entry specifies a module, load the module and retry
949 	 * the PWM chip lookup. This can be used to work around driver load
950 	 * ordering issues if driver's can't be made to properly support the
951 	 * deferred probe mechanism.
952 	 */
953 	if (!chip && chosen->module) {
954 		err = request_module(chosen->module);
955 		if (err == 0)
956 			chip = pwmchip_find_by_name(chosen->provider);
957 	}
958 
959 	if (!chip)
960 		return ERR_PTR(-EPROBE_DEFER);
961 
962 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
963 	if (IS_ERR(pwm))
964 		return pwm;
965 
966 	dl = pwm_device_link_add(dev, pwm);
967 	if (IS_ERR(dl)) {
968 		pwm_free(pwm);
969 		return ERR_CAST(dl);
970 	}
971 
972 	pwm->args.period = chosen->period;
973 	pwm->args.polarity = chosen->polarity;
974 
975 	return pwm;
976 }
977 EXPORT_SYMBOL_GPL(pwm_get);
978 
979 /**
980  * pwm_put() - release a PWM device
981  * @pwm: PWM device
982  */
983 void pwm_put(struct pwm_device *pwm)
984 {
985 	if (!pwm)
986 		return;
987 
988 	mutex_lock(&pwm_lock);
989 
990 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
991 		pr_warn("PWM device already freed\n");
992 		goto out;
993 	}
994 
995 	if (pwm->chip->ops->free)
996 		pwm->chip->ops->free(pwm->chip, pwm);
997 
998 	pwm_set_chip_data(pwm, NULL);
999 	pwm->label = NULL;
1000 
1001 	module_put(pwm->chip->ops->owner);
1002 out:
1003 	mutex_unlock(&pwm_lock);
1004 }
1005 EXPORT_SYMBOL_GPL(pwm_put);
1006 
1007 static void devm_pwm_release(struct device *dev, void *res)
1008 {
1009 	pwm_put(*(struct pwm_device **)res);
1010 }
1011 
1012 /**
1013  * devm_pwm_get() - resource managed pwm_get()
1014  * @dev: device for PWM consumer
1015  * @con_id: consumer name
1016  *
1017  * This function performs like pwm_get() but the acquired PWM device will
1018  * automatically be released on driver detach.
1019  *
1020  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1021  * error code on failure.
1022  */
1023 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1024 {
1025 	struct pwm_device **ptr, *pwm;
1026 
1027 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1028 	if (!ptr)
1029 		return ERR_PTR(-ENOMEM);
1030 
1031 	pwm = pwm_get(dev, con_id);
1032 	if (!IS_ERR(pwm)) {
1033 		*ptr = pwm;
1034 		devres_add(dev, ptr);
1035 	} else {
1036 		devres_free(ptr);
1037 	}
1038 
1039 	return pwm;
1040 }
1041 EXPORT_SYMBOL_GPL(devm_pwm_get);
1042 
1043 /**
1044  * devm_of_pwm_get() - resource managed of_pwm_get()
1045  * @dev: device for PWM consumer
1046  * @np: device node to get the PWM from
1047  * @con_id: consumer name
1048  *
1049  * This function performs like of_pwm_get() but the acquired PWM device will
1050  * automatically be released on driver detach.
1051  *
1052  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1053  * error code on failure.
1054  */
1055 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1056 				   const char *con_id)
1057 {
1058 	struct pwm_device **ptr, *pwm;
1059 
1060 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1061 	if (!ptr)
1062 		return ERR_PTR(-ENOMEM);
1063 
1064 	pwm = of_pwm_get(dev, np, con_id);
1065 	if (!IS_ERR(pwm)) {
1066 		*ptr = pwm;
1067 		devres_add(dev, ptr);
1068 	} else {
1069 		devres_free(ptr);
1070 	}
1071 
1072 	return pwm;
1073 }
1074 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1075 
1076 /**
1077  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1078  * @dev: device for PWM consumer
1079  * @fwnode: firmware node to get the PWM from
1080  * @con_id: consumer name
1081  *
1082  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1083  * acpi_pwm_get() for a detailed description.
1084  *
1085  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1086  * error code on failure.
1087  */
1088 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1089 				       struct fwnode_handle *fwnode,
1090 				       const char *con_id)
1091 {
1092 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1093 
1094 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1095 	if (!ptr)
1096 		return ERR_PTR(-ENOMEM);
1097 
1098 	if (is_of_node(fwnode))
1099 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1100 	else if (is_acpi_node(fwnode))
1101 		pwm = acpi_pwm_get(fwnode);
1102 
1103 	if (!IS_ERR(pwm)) {
1104 		*ptr = pwm;
1105 		devres_add(dev, ptr);
1106 	} else {
1107 		devres_free(ptr);
1108 	}
1109 
1110 	return pwm;
1111 }
1112 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1113 
1114 static int devm_pwm_match(struct device *dev, void *res, void *data)
1115 {
1116 	struct pwm_device **p = res;
1117 
1118 	if (WARN_ON(!p || !*p))
1119 		return 0;
1120 
1121 	return *p == data;
1122 }
1123 
1124 /**
1125  * devm_pwm_put() - resource managed pwm_put()
1126  * @dev: device for PWM consumer
1127  * @pwm: PWM device
1128  *
1129  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1130  * function is usually not needed because devm-allocated resources are
1131  * automatically released on driver detach.
1132  */
1133 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1134 {
1135 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1136 }
1137 EXPORT_SYMBOL_GPL(devm_pwm_put);
1138 
1139 #ifdef CONFIG_DEBUG_FS
1140 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1141 {
1142 	unsigned int i;
1143 
1144 	for (i = 0; i < chip->npwm; i++) {
1145 		struct pwm_device *pwm = &chip->pwms[i];
1146 		struct pwm_state state;
1147 
1148 		pwm_get_state(pwm, &state);
1149 
1150 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1151 
1152 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1153 			seq_puts(s, " requested");
1154 
1155 		if (state.enabled)
1156 			seq_puts(s, " enabled");
1157 
1158 		seq_printf(s, " period: %u ns", state.period);
1159 		seq_printf(s, " duty: %u ns", state.duty_cycle);
1160 		seq_printf(s, " polarity: %s",
1161 			   state.polarity ? "inverse" : "normal");
1162 
1163 		seq_puts(s, "\n");
1164 	}
1165 }
1166 
1167 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1168 {
1169 	mutex_lock(&pwm_lock);
1170 	s->private = "";
1171 
1172 	return seq_list_start(&pwm_chips, *pos);
1173 }
1174 
1175 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1176 {
1177 	s->private = "\n";
1178 
1179 	return seq_list_next(v, &pwm_chips, pos);
1180 }
1181 
1182 static void pwm_seq_stop(struct seq_file *s, void *v)
1183 {
1184 	mutex_unlock(&pwm_lock);
1185 }
1186 
1187 static int pwm_seq_show(struct seq_file *s, void *v)
1188 {
1189 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1190 
1191 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1192 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1193 		   dev_name(chip->dev), chip->npwm,
1194 		   (chip->npwm != 1) ? "s" : "");
1195 
1196 	pwm_dbg_show(chip, s);
1197 
1198 	return 0;
1199 }
1200 
1201 static const struct seq_operations pwm_seq_ops = {
1202 	.start = pwm_seq_start,
1203 	.next = pwm_seq_next,
1204 	.stop = pwm_seq_stop,
1205 	.show = pwm_seq_show,
1206 };
1207 
1208 static int pwm_seq_open(struct inode *inode, struct file *file)
1209 {
1210 	return seq_open(file, &pwm_seq_ops);
1211 }
1212 
1213 static const struct file_operations pwm_debugfs_ops = {
1214 	.owner = THIS_MODULE,
1215 	.open = pwm_seq_open,
1216 	.read = seq_read,
1217 	.llseek = seq_lseek,
1218 	.release = seq_release,
1219 };
1220 
1221 static int __init pwm_debugfs_init(void)
1222 {
1223 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1224 			    &pwm_debugfs_ops);
1225 
1226 	return 0;
1227 }
1228 subsys_initcall(pwm_debugfs_init);
1229 #endif /* CONFIG_DEBUG_FS */
1230