xref: /linux/drivers/pwm/core.c (revision af1f459233d4edeef634f559539e7f4b64cb1d25)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/pwm.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 
31 /* protects access to pwm_chips and allocated_pwms */
32 static DEFINE_MUTEX(pwm_lock);
33 
34 static LIST_HEAD(pwm_chips);
35 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
36 
37 /* Called with pwm_lock held */
38 static int alloc_pwms(unsigned int count)
39 {
40 	unsigned int start;
41 
42 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
43 					   count, 0);
44 
45 	if (start + count > MAX_PWMS)
46 		return -ENOSPC;
47 
48 	bitmap_set(allocated_pwms, start, count);
49 
50 	return start;
51 }
52 
53 /* Called with pwm_lock held */
54 static void free_pwms(struct pwm_chip *chip)
55 {
56 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
57 
58 	kfree(chip->pwms);
59 	chip->pwms = NULL;
60 }
61 
62 static struct pwm_chip *pwmchip_find_by_name(const char *name)
63 {
64 	struct pwm_chip *chip;
65 
66 	if (!name)
67 		return NULL;
68 
69 	mutex_lock(&pwm_lock);
70 
71 	list_for_each_entry(chip, &pwm_chips, list) {
72 		const char *chip_name = dev_name(chip->dev);
73 
74 		if (chip_name && strcmp(chip_name, name) == 0) {
75 			mutex_unlock(&pwm_lock);
76 			return chip;
77 		}
78 	}
79 
80 	mutex_unlock(&pwm_lock);
81 
82 	return NULL;
83 }
84 
85 static int pwm_device_request(struct pwm_device *pwm, const char *label)
86 {
87 	int err;
88 
89 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
90 		return -EBUSY;
91 
92 	if (!try_module_get(pwm->chip->ops->owner))
93 		return -ENODEV;
94 
95 	if (pwm->chip->ops->request) {
96 		err = pwm->chip->ops->request(pwm->chip, pwm);
97 		if (err) {
98 			module_put(pwm->chip->ops->owner);
99 			return err;
100 		}
101 	}
102 
103 	if (pwm->chip->ops->get_state) {
104 		/*
105 		 * Zero-initialize state because most drivers are unaware of
106 		 * .usage_power. The other members of state are supposed to be
107 		 * set by lowlevel drivers. We still initialize the whole
108 		 * structure for simplicity even though this might paper over
109 		 * faulty implementations of .get_state().
110 		 */
111 		struct pwm_state state = { 0, };
112 
113 		err = pwm->chip->ops->get_state(pwm->chip, pwm, &state);
114 		trace_pwm_get(pwm, &state, err);
115 
116 		if (!err)
117 			pwm->state = state;
118 
119 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
120 			pwm->last = pwm->state;
121 	}
122 
123 	set_bit(PWMF_REQUESTED, &pwm->flags);
124 	pwm->label = label;
125 
126 	return 0;
127 }
128 
129 struct pwm_device *
130 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
131 {
132 	struct pwm_device *pwm;
133 
134 	if (chip->of_pwm_n_cells < 2)
135 		return ERR_PTR(-EINVAL);
136 
137 	/* flags in the third cell are optional */
138 	if (args->args_count < 2)
139 		return ERR_PTR(-EINVAL);
140 
141 	if (args->args[0] >= chip->npwm)
142 		return ERR_PTR(-EINVAL);
143 
144 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
145 	if (IS_ERR(pwm))
146 		return pwm;
147 
148 	pwm->args.period = args->args[1];
149 	pwm->args.polarity = PWM_POLARITY_NORMAL;
150 
151 	if (chip->of_pwm_n_cells >= 3) {
152 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
153 			pwm->args.polarity = PWM_POLARITY_INVERSED;
154 	}
155 
156 	return pwm;
157 }
158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159 
160 struct pwm_device *
161 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
162 {
163 	struct pwm_device *pwm;
164 
165 	if (chip->of_pwm_n_cells < 1)
166 		return ERR_PTR(-EINVAL);
167 
168 	/* validate that one cell is specified, optionally with flags */
169 	if (args->args_count != 1 && args->args_count != 2)
170 		return ERR_PTR(-EINVAL);
171 
172 	pwm = pwm_request_from_chip(chip, 0, NULL);
173 	if (IS_ERR(pwm))
174 		return pwm;
175 
176 	pwm->args.period = args->args[0];
177 	pwm->args.polarity = PWM_POLARITY_NORMAL;
178 
179 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
180 		pwm->args.polarity = PWM_POLARITY_INVERSED;
181 
182 	return pwm;
183 }
184 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
185 
186 static void of_pwmchip_add(struct pwm_chip *chip)
187 {
188 	if (!chip->dev || !chip->dev->of_node)
189 		return;
190 
191 	if (!chip->of_xlate) {
192 		u32 pwm_cells;
193 
194 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
195 					 &pwm_cells))
196 			pwm_cells = 2;
197 
198 		chip->of_xlate = of_pwm_xlate_with_flags;
199 		chip->of_pwm_n_cells = pwm_cells;
200 	}
201 
202 	of_node_get(chip->dev->of_node);
203 }
204 
205 static void of_pwmchip_remove(struct pwm_chip *chip)
206 {
207 	if (chip->dev)
208 		of_node_put(chip->dev->of_node);
209 }
210 
211 /**
212  * pwm_set_chip_data() - set private chip data for a PWM
213  * @pwm: PWM device
214  * @data: pointer to chip-specific data
215  *
216  * Returns: 0 on success or a negative error code on failure.
217  */
218 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
219 {
220 	if (!pwm)
221 		return -EINVAL;
222 
223 	pwm->chip_data = data;
224 
225 	return 0;
226 }
227 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
228 
229 /**
230  * pwm_get_chip_data() - get private chip data for a PWM
231  * @pwm: PWM device
232  *
233  * Returns: A pointer to the chip-private data for the PWM device.
234  */
235 void *pwm_get_chip_data(struct pwm_device *pwm)
236 {
237 	return pwm ? pwm->chip_data : NULL;
238 }
239 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
240 
241 static bool pwm_ops_check(const struct pwm_chip *chip)
242 {
243 	const struct pwm_ops *ops = chip->ops;
244 
245 	if (!ops->apply)
246 		return false;
247 
248 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
249 		dev_warn(chip->dev,
250 			 "Please implement the .get_state() callback\n");
251 
252 	return true;
253 }
254 
255 /**
256  * pwmchip_add() - register a new PWM chip
257  * @chip: the PWM chip to add
258  *
259  * Register a new PWM chip.
260  *
261  * Returns: 0 on success or a negative error code on failure.
262  */
263 int pwmchip_add(struct pwm_chip *chip)
264 {
265 	struct pwm_device *pwm;
266 	unsigned int i;
267 	int ret;
268 
269 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
270 		return -EINVAL;
271 
272 	if (!pwm_ops_check(chip))
273 		return -EINVAL;
274 
275 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
276 	if (!chip->pwms)
277 		return -ENOMEM;
278 
279 	mutex_lock(&pwm_lock);
280 
281 	ret = alloc_pwms(chip->npwm);
282 	if (ret < 0) {
283 		mutex_unlock(&pwm_lock);
284 		kfree(chip->pwms);
285 		return ret;
286 	}
287 
288 	chip->base = ret;
289 
290 	for (i = 0; i < chip->npwm; i++) {
291 		pwm = &chip->pwms[i];
292 
293 		pwm->chip = chip;
294 		pwm->pwm = chip->base + i;
295 		pwm->hwpwm = i;
296 	}
297 
298 	list_add(&chip->list, &pwm_chips);
299 
300 	mutex_unlock(&pwm_lock);
301 
302 	if (IS_ENABLED(CONFIG_OF))
303 		of_pwmchip_add(chip);
304 
305 	pwmchip_sysfs_export(chip);
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(pwmchip_add);
310 
311 /**
312  * pwmchip_remove() - remove a PWM chip
313  * @chip: the PWM chip to remove
314  *
315  * Removes a PWM chip.
316  */
317 void pwmchip_remove(struct pwm_chip *chip)
318 {
319 	pwmchip_sysfs_unexport(chip);
320 
321 	if (IS_ENABLED(CONFIG_OF))
322 		of_pwmchip_remove(chip);
323 
324 	mutex_lock(&pwm_lock);
325 
326 	list_del_init(&chip->list);
327 
328 	free_pwms(chip);
329 
330 	mutex_unlock(&pwm_lock);
331 }
332 EXPORT_SYMBOL_GPL(pwmchip_remove);
333 
334 static void devm_pwmchip_remove(void *data)
335 {
336 	struct pwm_chip *chip = data;
337 
338 	pwmchip_remove(chip);
339 }
340 
341 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
342 {
343 	int ret;
344 
345 	ret = pwmchip_add(chip);
346 	if (ret)
347 		return ret;
348 
349 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
350 }
351 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
352 
353 /**
354  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
355  * @chip: PWM chip
356  * @index: per-chip index of the PWM to request
357  * @label: a literal description string of this PWM
358  *
359  * Returns: A pointer to the PWM device at the given index of the given PWM
360  * chip. A negative error code is returned if the index is not valid for the
361  * specified PWM chip or if the PWM device cannot be requested.
362  */
363 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
364 					 unsigned int index,
365 					 const char *label)
366 {
367 	struct pwm_device *pwm;
368 	int err;
369 
370 	if (!chip || index >= chip->npwm)
371 		return ERR_PTR(-EINVAL);
372 
373 	mutex_lock(&pwm_lock);
374 	pwm = &chip->pwms[index];
375 
376 	err = pwm_device_request(pwm, label);
377 	if (err < 0)
378 		pwm = ERR_PTR(err);
379 
380 	mutex_unlock(&pwm_lock);
381 	return pwm;
382 }
383 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
384 
385 static void pwm_apply_state_debug(struct pwm_device *pwm,
386 				  const struct pwm_state *state)
387 {
388 	struct pwm_state *last = &pwm->last;
389 	struct pwm_chip *chip = pwm->chip;
390 	struct pwm_state s1 = { 0 }, s2 = { 0 };
391 	int err;
392 
393 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
394 		return;
395 
396 	/* No reasonable diagnosis possible without .get_state() */
397 	if (!chip->ops->get_state)
398 		return;
399 
400 	/*
401 	 * *state was just applied. Read out the hardware state and do some
402 	 * checks.
403 	 */
404 
405 	err = chip->ops->get_state(chip, pwm, &s1);
406 	trace_pwm_get(pwm, &s1, err);
407 	if (err)
408 		/* If that failed there isn't much to debug */
409 		return;
410 
411 	/*
412 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
413 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
414 	 * Undo this inversion and fixup for further tests.
415 	 */
416 	if (s1.enabled && s1.polarity != state->polarity) {
417 		s2.polarity = state->polarity;
418 		s2.duty_cycle = s1.period - s1.duty_cycle;
419 		s2.period = s1.period;
420 		s2.enabled = s1.enabled;
421 	} else {
422 		s2 = s1;
423 	}
424 
425 	if (s2.polarity != state->polarity &&
426 	    state->duty_cycle < state->period)
427 		dev_warn(chip->dev, ".apply ignored .polarity\n");
428 
429 	if (state->enabled &&
430 	    last->polarity == state->polarity &&
431 	    last->period > s2.period &&
432 	    last->period <= state->period)
433 		dev_warn(chip->dev,
434 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
435 			 state->period, s2.period, last->period);
436 
437 	if (state->enabled && state->period < s2.period)
438 		dev_warn(chip->dev,
439 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
440 			 state->period, s2.period);
441 
442 	if (state->enabled &&
443 	    last->polarity == state->polarity &&
444 	    last->period == s2.period &&
445 	    last->duty_cycle > s2.duty_cycle &&
446 	    last->duty_cycle <= state->duty_cycle)
447 		dev_warn(chip->dev,
448 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
449 			 state->duty_cycle, state->period,
450 			 s2.duty_cycle, s2.period,
451 			 last->duty_cycle, last->period);
452 
453 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
454 		dev_warn(chip->dev,
455 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
456 			 state->duty_cycle, state->period,
457 			 s2.duty_cycle, s2.period);
458 
459 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
460 		dev_warn(chip->dev,
461 			 "requested disabled, but yielded enabled with duty > 0\n");
462 
463 	/* reapply the state that the driver reported being configured. */
464 	err = chip->ops->apply(chip, pwm, &s1);
465 	trace_pwm_apply(pwm, &s1, err);
466 	if (err) {
467 		*last = s1;
468 		dev_err(chip->dev, "failed to reapply current setting\n");
469 		return;
470 	}
471 
472 	*last = (struct pwm_state){ 0 };
473 	err = chip->ops->get_state(chip, pwm, last);
474 	trace_pwm_get(pwm, last, err);
475 	if (err)
476 		return;
477 
478 	/* reapplication of the current state should give an exact match */
479 	if (s1.enabled != last->enabled ||
480 	    s1.polarity != last->polarity ||
481 	    (s1.enabled && s1.period != last->period) ||
482 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
483 		dev_err(chip->dev,
484 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
485 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
486 			last->enabled, last->polarity, last->duty_cycle,
487 			last->period);
488 	}
489 }
490 
491 /**
492  * pwm_apply_state() - atomically apply a new state to a PWM device
493  * @pwm: PWM device
494  * @state: new state to apply
495  */
496 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
497 {
498 	struct pwm_chip *chip;
499 	int err;
500 
501 	/*
502 	 * Some lowlevel driver's implementations of .apply() make use of
503 	 * mutexes, also with some drivers only returning when the new
504 	 * configuration is active calling pwm_apply_state() from atomic context
505 	 * is a bad idea. So make it explicit that calling this function might
506 	 * sleep.
507 	 */
508 	might_sleep();
509 
510 	if (!pwm || !state || !state->period ||
511 	    state->duty_cycle > state->period)
512 		return -EINVAL;
513 
514 	chip = pwm->chip;
515 
516 	if (state->period == pwm->state.period &&
517 	    state->duty_cycle == pwm->state.duty_cycle &&
518 	    state->polarity == pwm->state.polarity &&
519 	    state->enabled == pwm->state.enabled &&
520 	    state->usage_power == pwm->state.usage_power)
521 		return 0;
522 
523 	err = chip->ops->apply(chip, pwm, state);
524 	trace_pwm_apply(pwm, state, err);
525 	if (err)
526 		return err;
527 
528 	pwm->state = *state;
529 
530 	/*
531 	 * only do this after pwm->state was applied as some
532 	 * implementations of .get_state depend on this
533 	 */
534 	pwm_apply_state_debug(pwm, state);
535 
536 	return 0;
537 }
538 EXPORT_SYMBOL_GPL(pwm_apply_state);
539 
540 /**
541  * pwm_capture() - capture and report a PWM signal
542  * @pwm: PWM device
543  * @result: structure to fill with capture result
544  * @timeout: time to wait, in milliseconds, before giving up on capture
545  *
546  * Returns: 0 on success or a negative error code on failure.
547  */
548 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
549 		unsigned long timeout)
550 {
551 	int err;
552 
553 	if (!pwm || !pwm->chip->ops)
554 		return -EINVAL;
555 
556 	if (!pwm->chip->ops->capture)
557 		return -ENOSYS;
558 
559 	mutex_lock(&pwm_lock);
560 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
561 	mutex_unlock(&pwm_lock);
562 
563 	return err;
564 }
565 EXPORT_SYMBOL_GPL(pwm_capture);
566 
567 /**
568  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
569  * @pwm: PWM device
570  *
571  * This function will adjust the PWM config to the PWM arguments provided
572  * by the DT or PWM lookup table. This is particularly useful to adapt
573  * the bootloader config to the Linux one.
574  */
575 int pwm_adjust_config(struct pwm_device *pwm)
576 {
577 	struct pwm_state state;
578 	struct pwm_args pargs;
579 
580 	pwm_get_args(pwm, &pargs);
581 	pwm_get_state(pwm, &state);
582 
583 	/*
584 	 * If the current period is zero it means that either the PWM driver
585 	 * does not support initial state retrieval or the PWM has not yet
586 	 * been configured.
587 	 *
588 	 * In either case, we setup the new period and polarity, and assign a
589 	 * duty cycle of 0.
590 	 */
591 	if (!state.period) {
592 		state.duty_cycle = 0;
593 		state.period = pargs.period;
594 		state.polarity = pargs.polarity;
595 
596 		return pwm_apply_state(pwm, &state);
597 	}
598 
599 	/*
600 	 * Adjust the PWM duty cycle/period based on the period value provided
601 	 * in PWM args.
602 	 */
603 	if (pargs.period != state.period) {
604 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
605 
606 		do_div(dutycycle, state.period);
607 		state.duty_cycle = dutycycle;
608 		state.period = pargs.period;
609 	}
610 
611 	/*
612 	 * If the polarity changed, we should also change the duty cycle.
613 	 */
614 	if (pargs.polarity != state.polarity) {
615 		state.polarity = pargs.polarity;
616 		state.duty_cycle = state.period - state.duty_cycle;
617 	}
618 
619 	return pwm_apply_state(pwm, &state);
620 }
621 EXPORT_SYMBOL_GPL(pwm_adjust_config);
622 
623 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
624 {
625 	struct pwm_chip *chip;
626 
627 	mutex_lock(&pwm_lock);
628 
629 	list_for_each_entry(chip, &pwm_chips, list)
630 		if (chip->dev && device_match_fwnode(chip->dev, fwnode)) {
631 			mutex_unlock(&pwm_lock);
632 			return chip;
633 		}
634 
635 	mutex_unlock(&pwm_lock);
636 
637 	return ERR_PTR(-EPROBE_DEFER);
638 }
639 
640 static struct device_link *pwm_device_link_add(struct device *dev,
641 					       struct pwm_device *pwm)
642 {
643 	struct device_link *dl;
644 
645 	if (!dev) {
646 		/*
647 		 * No device for the PWM consumer has been provided. It may
648 		 * impact the PM sequence ordering: the PWM supplier may get
649 		 * suspended before the consumer.
650 		 */
651 		dev_warn(pwm->chip->dev,
652 			 "No consumer device specified to create a link to\n");
653 		return NULL;
654 	}
655 
656 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
657 	if (!dl) {
658 		dev_err(dev, "failed to create device link to %s\n",
659 			dev_name(pwm->chip->dev));
660 		return ERR_PTR(-EINVAL);
661 	}
662 
663 	return dl;
664 }
665 
666 /**
667  * of_pwm_get() - request a PWM via the PWM framework
668  * @dev: device for PWM consumer
669  * @np: device node to get the PWM from
670  * @con_id: consumer name
671  *
672  * Returns the PWM device parsed from the phandle and index specified in the
673  * "pwms" property of a device tree node or a negative error-code on failure.
674  * Values parsed from the device tree are stored in the returned PWM device
675  * object.
676  *
677  * If con_id is NULL, the first PWM device listed in the "pwms" property will
678  * be requested. Otherwise the "pwm-names" property is used to do a reverse
679  * lookup of the PWM index. This also means that the "pwm-names" property
680  * becomes mandatory for devices that look up the PWM device via the con_id
681  * parameter.
682  *
683  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
684  * error code on failure.
685  */
686 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
687 				     const char *con_id)
688 {
689 	struct pwm_device *pwm = NULL;
690 	struct of_phandle_args args;
691 	struct device_link *dl;
692 	struct pwm_chip *chip;
693 	int index = 0;
694 	int err;
695 
696 	if (con_id) {
697 		index = of_property_match_string(np, "pwm-names", con_id);
698 		if (index < 0)
699 			return ERR_PTR(index);
700 	}
701 
702 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
703 					 &args);
704 	if (err) {
705 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
706 		return ERR_PTR(err);
707 	}
708 
709 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
710 	if (IS_ERR(chip)) {
711 		if (PTR_ERR(chip) != -EPROBE_DEFER)
712 			pr_err("%s(): PWM chip not found\n", __func__);
713 
714 		pwm = ERR_CAST(chip);
715 		goto put;
716 	}
717 
718 	pwm = chip->of_xlate(chip, &args);
719 	if (IS_ERR(pwm))
720 		goto put;
721 
722 	dl = pwm_device_link_add(dev, pwm);
723 	if (IS_ERR(dl)) {
724 		/* of_xlate ended up calling pwm_request_from_chip() */
725 		pwm_put(pwm);
726 		pwm = ERR_CAST(dl);
727 		goto put;
728 	}
729 
730 	/*
731 	 * If a consumer name was not given, try to look it up from the
732 	 * "pwm-names" property if it exists. Otherwise use the name of
733 	 * the user device node.
734 	 */
735 	if (!con_id) {
736 		err = of_property_read_string_index(np, "pwm-names", index,
737 						    &con_id);
738 		if (err < 0)
739 			con_id = np->name;
740 	}
741 
742 	pwm->label = con_id;
743 
744 put:
745 	of_node_put(args.np);
746 
747 	return pwm;
748 }
749 
750 /**
751  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
752  * @fwnode: firmware node to get the "pwms" property from
753  *
754  * Returns the PWM device parsed from the fwnode and index specified in the
755  * "pwms" property or a negative error-code on failure.
756  * Values parsed from the device tree are stored in the returned PWM device
757  * object.
758  *
759  * This is analogous to of_pwm_get() except con_id is not yet supported.
760  * ACPI entries must look like
761  * Package () {"pwms", Package ()
762  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
763  *
764  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
765  * error code on failure.
766  */
767 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
768 {
769 	struct pwm_device *pwm;
770 	struct fwnode_reference_args args;
771 	struct pwm_chip *chip;
772 	int ret;
773 
774 	memset(&args, 0, sizeof(args));
775 
776 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
777 	if (ret < 0)
778 		return ERR_PTR(ret);
779 
780 	if (args.nargs < 2)
781 		return ERR_PTR(-EPROTO);
782 
783 	chip = fwnode_to_pwmchip(args.fwnode);
784 	if (IS_ERR(chip))
785 		return ERR_CAST(chip);
786 
787 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
788 	if (IS_ERR(pwm))
789 		return pwm;
790 
791 	pwm->args.period = args.args[1];
792 	pwm->args.polarity = PWM_POLARITY_NORMAL;
793 
794 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
795 		pwm->args.polarity = PWM_POLARITY_INVERSED;
796 
797 	return pwm;
798 }
799 
800 /**
801  * pwm_add_table() - register PWM device consumers
802  * @table: array of consumers to register
803  * @num: number of consumers in table
804  */
805 void pwm_add_table(struct pwm_lookup *table, size_t num)
806 {
807 	mutex_lock(&pwm_lookup_lock);
808 
809 	while (num--) {
810 		list_add_tail(&table->list, &pwm_lookup_list);
811 		table++;
812 	}
813 
814 	mutex_unlock(&pwm_lookup_lock);
815 }
816 
817 /**
818  * pwm_remove_table() - unregister PWM device consumers
819  * @table: array of consumers to unregister
820  * @num: number of consumers in table
821  */
822 void pwm_remove_table(struct pwm_lookup *table, size_t num)
823 {
824 	mutex_lock(&pwm_lookup_lock);
825 
826 	while (num--) {
827 		list_del(&table->list);
828 		table++;
829 	}
830 
831 	mutex_unlock(&pwm_lookup_lock);
832 }
833 
834 /**
835  * pwm_get() - look up and request a PWM device
836  * @dev: device for PWM consumer
837  * @con_id: consumer name
838  *
839  * Lookup is first attempted using DT. If the device was not instantiated from
840  * a device tree, a PWM chip and a relative index is looked up via a table
841  * supplied by board setup code (see pwm_add_table()).
842  *
843  * Once a PWM chip has been found the specified PWM device will be requested
844  * and is ready to be used.
845  *
846  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
847  * error code on failure.
848  */
849 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
850 {
851 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
852 	const char *dev_id = dev ? dev_name(dev) : NULL;
853 	struct pwm_device *pwm;
854 	struct pwm_chip *chip;
855 	struct device_link *dl;
856 	unsigned int best = 0;
857 	struct pwm_lookup *p, *chosen = NULL;
858 	unsigned int match;
859 	int err;
860 
861 	/* look up via DT first */
862 	if (is_of_node(fwnode))
863 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
864 
865 	/* then lookup via ACPI */
866 	if (is_acpi_node(fwnode)) {
867 		pwm = acpi_pwm_get(fwnode);
868 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
869 			return pwm;
870 	}
871 
872 	/*
873 	 * We look up the provider in the static table typically provided by
874 	 * board setup code. We first try to lookup the consumer device by
875 	 * name. If the consumer device was passed in as NULL or if no match
876 	 * was found, we try to find the consumer by directly looking it up
877 	 * by name.
878 	 *
879 	 * If a match is found, the provider PWM chip is looked up by name
880 	 * and a PWM device is requested using the PWM device per-chip index.
881 	 *
882 	 * The lookup algorithm was shamelessly taken from the clock
883 	 * framework:
884 	 *
885 	 * We do slightly fuzzy matching here:
886 	 *  An entry with a NULL ID is assumed to be a wildcard.
887 	 *  If an entry has a device ID, it must match
888 	 *  If an entry has a connection ID, it must match
889 	 * Then we take the most specific entry - with the following order
890 	 * of precedence: dev+con > dev only > con only.
891 	 */
892 	mutex_lock(&pwm_lookup_lock);
893 
894 	list_for_each_entry(p, &pwm_lookup_list, list) {
895 		match = 0;
896 
897 		if (p->dev_id) {
898 			if (!dev_id || strcmp(p->dev_id, dev_id))
899 				continue;
900 
901 			match += 2;
902 		}
903 
904 		if (p->con_id) {
905 			if (!con_id || strcmp(p->con_id, con_id))
906 				continue;
907 
908 			match += 1;
909 		}
910 
911 		if (match > best) {
912 			chosen = p;
913 
914 			if (match != 3)
915 				best = match;
916 			else
917 				break;
918 		}
919 	}
920 
921 	mutex_unlock(&pwm_lookup_lock);
922 
923 	if (!chosen)
924 		return ERR_PTR(-ENODEV);
925 
926 	chip = pwmchip_find_by_name(chosen->provider);
927 
928 	/*
929 	 * If the lookup entry specifies a module, load the module and retry
930 	 * the PWM chip lookup. This can be used to work around driver load
931 	 * ordering issues if driver's can't be made to properly support the
932 	 * deferred probe mechanism.
933 	 */
934 	if (!chip && chosen->module) {
935 		err = request_module(chosen->module);
936 		if (err == 0)
937 			chip = pwmchip_find_by_name(chosen->provider);
938 	}
939 
940 	if (!chip)
941 		return ERR_PTR(-EPROBE_DEFER);
942 
943 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
944 	if (IS_ERR(pwm))
945 		return pwm;
946 
947 	dl = pwm_device_link_add(dev, pwm);
948 	if (IS_ERR(dl)) {
949 		pwm_put(pwm);
950 		return ERR_CAST(dl);
951 	}
952 
953 	pwm->args.period = chosen->period;
954 	pwm->args.polarity = chosen->polarity;
955 
956 	return pwm;
957 }
958 EXPORT_SYMBOL_GPL(pwm_get);
959 
960 /**
961  * pwm_put() - release a PWM device
962  * @pwm: PWM device
963  */
964 void pwm_put(struct pwm_device *pwm)
965 {
966 	if (!pwm)
967 		return;
968 
969 	mutex_lock(&pwm_lock);
970 
971 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
972 		pr_warn("PWM device already freed\n");
973 		goto out;
974 	}
975 
976 	if (pwm->chip->ops->free)
977 		pwm->chip->ops->free(pwm->chip, pwm);
978 
979 	pwm_set_chip_data(pwm, NULL);
980 	pwm->label = NULL;
981 
982 	module_put(pwm->chip->ops->owner);
983 out:
984 	mutex_unlock(&pwm_lock);
985 }
986 EXPORT_SYMBOL_GPL(pwm_put);
987 
988 static void devm_pwm_release(void *pwm)
989 {
990 	pwm_put(pwm);
991 }
992 
993 /**
994  * devm_pwm_get() - resource managed pwm_get()
995  * @dev: device for PWM consumer
996  * @con_id: consumer name
997  *
998  * This function performs like pwm_get() but the acquired PWM device will
999  * automatically be released on driver detach.
1000  *
1001  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1002  * error code on failure.
1003  */
1004 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1005 {
1006 	struct pwm_device *pwm;
1007 	int ret;
1008 
1009 	pwm = pwm_get(dev, con_id);
1010 	if (IS_ERR(pwm))
1011 		return pwm;
1012 
1013 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1014 	if (ret)
1015 		return ERR_PTR(ret);
1016 
1017 	return pwm;
1018 }
1019 EXPORT_SYMBOL_GPL(devm_pwm_get);
1020 
1021 /**
1022  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1023  * @dev: device for PWM consumer
1024  * @fwnode: firmware node to get the PWM from
1025  * @con_id: consumer name
1026  *
1027  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1028  * acpi_pwm_get() for a detailed description.
1029  *
1030  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1031  * error code on failure.
1032  */
1033 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1034 				       struct fwnode_handle *fwnode,
1035 				       const char *con_id)
1036 {
1037 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1038 	int ret;
1039 
1040 	if (is_of_node(fwnode))
1041 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1042 	else if (is_acpi_node(fwnode))
1043 		pwm = acpi_pwm_get(fwnode);
1044 	if (IS_ERR(pwm))
1045 		return pwm;
1046 
1047 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1048 	if (ret)
1049 		return ERR_PTR(ret);
1050 
1051 	return pwm;
1052 }
1053 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1054 
1055 #ifdef CONFIG_DEBUG_FS
1056 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1057 {
1058 	unsigned int i;
1059 
1060 	for (i = 0; i < chip->npwm; i++) {
1061 		struct pwm_device *pwm = &chip->pwms[i];
1062 		struct pwm_state state;
1063 
1064 		pwm_get_state(pwm, &state);
1065 
1066 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1067 
1068 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1069 			seq_puts(s, " requested");
1070 
1071 		if (state.enabled)
1072 			seq_puts(s, " enabled");
1073 
1074 		seq_printf(s, " period: %llu ns", state.period);
1075 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1076 		seq_printf(s, " polarity: %s",
1077 			   state.polarity ? "inverse" : "normal");
1078 
1079 		if (state.usage_power)
1080 			seq_puts(s, " usage_power");
1081 
1082 		seq_puts(s, "\n");
1083 	}
1084 }
1085 
1086 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1087 {
1088 	mutex_lock(&pwm_lock);
1089 	s->private = "";
1090 
1091 	return seq_list_start(&pwm_chips, *pos);
1092 }
1093 
1094 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1095 {
1096 	s->private = "\n";
1097 
1098 	return seq_list_next(v, &pwm_chips, pos);
1099 }
1100 
1101 static void pwm_seq_stop(struct seq_file *s, void *v)
1102 {
1103 	mutex_unlock(&pwm_lock);
1104 }
1105 
1106 static int pwm_seq_show(struct seq_file *s, void *v)
1107 {
1108 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1109 
1110 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1111 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1112 		   dev_name(chip->dev), chip->npwm,
1113 		   (chip->npwm != 1) ? "s" : "");
1114 
1115 	pwm_dbg_show(chip, s);
1116 
1117 	return 0;
1118 }
1119 
1120 static const struct seq_operations pwm_debugfs_sops = {
1121 	.start = pwm_seq_start,
1122 	.next = pwm_seq_next,
1123 	.stop = pwm_seq_stop,
1124 	.show = pwm_seq_show,
1125 };
1126 
1127 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1128 
1129 static int __init pwm_debugfs_init(void)
1130 {
1131 	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1132 
1133 	return 0;
1134 }
1135 subsys_initcall(pwm_debugfs_init);
1136 #endif /* CONFIG_DEBUG_FS */
1137