xref: /linux/drivers/pwm/core.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Generic pwmlib implementation
3  *
4  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
5  * Copyright (C) 2011-2012 Avionic Design GmbH
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2, or (at your option)
10  *  any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; see the file COPYING.  If not, write to
19  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/pwm.h>
24 #include <linux/radix-tree.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/device.h>
30 #include <linux/debugfs.h>
31 #include <linux/seq_file.h>
32 
33 #include <dt-bindings/pwm/pwm.h>
34 
35 #define MAX_PWMS 1024
36 
37 static DEFINE_MUTEX(pwm_lookup_lock);
38 static LIST_HEAD(pwm_lookup_list);
39 static DEFINE_MUTEX(pwm_lock);
40 static LIST_HEAD(pwm_chips);
41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
42 static RADIX_TREE(pwm_tree, GFP_KERNEL);
43 
44 static struct pwm_device *pwm_to_device(unsigned int pwm)
45 {
46 	return radix_tree_lookup(&pwm_tree, pwm);
47 }
48 
49 static int alloc_pwms(int pwm, unsigned int count)
50 {
51 	unsigned int from = 0;
52 	unsigned int start;
53 
54 	if (pwm >= MAX_PWMS)
55 		return -EINVAL;
56 
57 	if (pwm >= 0)
58 		from = pwm;
59 
60 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
61 					   count, 0);
62 
63 	if (pwm >= 0 && start != pwm)
64 		return -EEXIST;
65 
66 	if (start + count > MAX_PWMS)
67 		return -ENOSPC;
68 
69 	return start;
70 }
71 
72 static void free_pwms(struct pwm_chip *chip)
73 {
74 	unsigned int i;
75 
76 	for (i = 0; i < chip->npwm; i++) {
77 		struct pwm_device *pwm = &chip->pwms[i];
78 		radix_tree_delete(&pwm_tree, pwm->pwm);
79 	}
80 
81 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
82 
83 	kfree(chip->pwms);
84 	chip->pwms = NULL;
85 }
86 
87 static struct pwm_chip *pwmchip_find_by_name(const char *name)
88 {
89 	struct pwm_chip *chip;
90 
91 	if (!name)
92 		return NULL;
93 
94 	mutex_lock(&pwm_lock);
95 
96 	list_for_each_entry(chip, &pwm_chips, list) {
97 		const char *chip_name = dev_name(chip->dev);
98 
99 		if (chip_name && strcmp(chip_name, name) == 0) {
100 			mutex_unlock(&pwm_lock);
101 			return chip;
102 		}
103 	}
104 
105 	mutex_unlock(&pwm_lock);
106 
107 	return NULL;
108 }
109 
110 static int pwm_device_request(struct pwm_device *pwm, const char *label)
111 {
112 	int err;
113 
114 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
115 		return -EBUSY;
116 
117 	if (!try_module_get(pwm->chip->ops->owner))
118 		return -ENODEV;
119 
120 	if (pwm->chip->ops->request) {
121 		err = pwm->chip->ops->request(pwm->chip, pwm);
122 		if (err) {
123 			module_put(pwm->chip->ops->owner);
124 			return err;
125 		}
126 	}
127 
128 	set_bit(PWMF_REQUESTED, &pwm->flags);
129 	pwm->label = label;
130 
131 	return 0;
132 }
133 
134 struct pwm_device *
135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136 {
137 	struct pwm_device *pwm;
138 
139 	if (pc->of_pwm_n_cells < 3)
140 		return ERR_PTR(-EINVAL);
141 
142 	if (args->args[0] >= pc->npwm)
143 		return ERR_PTR(-EINVAL);
144 
145 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
146 	if (IS_ERR(pwm))
147 		return pwm;
148 
149 	pwm_set_period(pwm, args->args[1]);
150 
151 	if (args->args[2] & PWM_POLARITY_INVERTED)
152 		pwm_set_polarity(pwm, PWM_POLARITY_INVERSED);
153 	else
154 		pwm_set_polarity(pwm, PWM_POLARITY_NORMAL);
155 
156 	return pwm;
157 }
158 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159 
160 static struct pwm_device *
161 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
162 {
163 	struct pwm_device *pwm;
164 
165 	if (pc->of_pwm_n_cells < 2)
166 		return ERR_PTR(-EINVAL);
167 
168 	if (args->args[0] >= pc->npwm)
169 		return ERR_PTR(-EINVAL);
170 
171 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
172 	if (IS_ERR(pwm))
173 		return pwm;
174 
175 	pwm_set_period(pwm, args->args[1]);
176 
177 	return pwm;
178 }
179 
180 static void of_pwmchip_add(struct pwm_chip *chip)
181 {
182 	if (!chip->dev || !chip->dev->of_node)
183 		return;
184 
185 	if (!chip->of_xlate) {
186 		chip->of_xlate = of_pwm_simple_xlate;
187 		chip->of_pwm_n_cells = 2;
188 	}
189 
190 	of_node_get(chip->dev->of_node);
191 }
192 
193 static void of_pwmchip_remove(struct pwm_chip *chip)
194 {
195 	if (chip->dev)
196 		of_node_put(chip->dev->of_node);
197 }
198 
199 /**
200  * pwm_set_chip_data() - set private chip data for a PWM
201  * @pwm: PWM device
202  * @data: pointer to chip-specific data
203  *
204  * Returns: 0 on success or a negative error code on failure.
205  */
206 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
207 {
208 	if (!pwm)
209 		return -EINVAL;
210 
211 	pwm->chip_data = data;
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
216 
217 /**
218  * pwm_get_chip_data() - get private chip data for a PWM
219  * @pwm: PWM device
220  *
221  * Returns: A pointer to the chip-private data for the PWM device.
222  */
223 void *pwm_get_chip_data(struct pwm_device *pwm)
224 {
225 	return pwm ? pwm->chip_data : NULL;
226 }
227 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
228 
229 /**
230  * pwmchip_add_with_polarity() - register a new PWM chip
231  * @chip: the PWM chip to add
232  * @polarity: initial polarity of PWM channels
233  *
234  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
235  * will be used. The initial polarity for all channels is specified by the
236  * @polarity parameter.
237  *
238  * Returns: 0 on success or a negative error code on failure.
239  */
240 int pwmchip_add_with_polarity(struct pwm_chip *chip,
241 			      enum pwm_polarity polarity)
242 {
243 	struct pwm_device *pwm;
244 	unsigned int i;
245 	int ret;
246 
247 	if (!chip || !chip->dev || !chip->ops || !chip->ops->config ||
248 	    !chip->ops->enable || !chip->ops->disable || !chip->npwm)
249 		return -EINVAL;
250 
251 	mutex_lock(&pwm_lock);
252 
253 	ret = alloc_pwms(chip->base, chip->npwm);
254 	if (ret < 0)
255 		goto out;
256 
257 	chip->pwms = kzalloc(chip->npwm * sizeof(*pwm), GFP_KERNEL);
258 	if (!chip->pwms) {
259 		ret = -ENOMEM;
260 		goto out;
261 	}
262 
263 	chip->base = ret;
264 
265 	for (i = 0; i < chip->npwm; i++) {
266 		pwm = &chip->pwms[i];
267 
268 		pwm->chip = chip;
269 		pwm->pwm = chip->base + i;
270 		pwm->hwpwm = i;
271 		pwm->polarity = polarity;
272 		mutex_init(&pwm->lock);
273 
274 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
275 	}
276 
277 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
278 
279 	INIT_LIST_HEAD(&chip->list);
280 	list_add(&chip->list, &pwm_chips);
281 
282 	ret = 0;
283 
284 	if (IS_ENABLED(CONFIG_OF))
285 		of_pwmchip_add(chip);
286 
287 	pwmchip_sysfs_export(chip);
288 
289 out:
290 	mutex_unlock(&pwm_lock);
291 	return ret;
292 }
293 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
294 
295 /**
296  * pwmchip_add() - register a new PWM chip
297  * @chip: the PWM chip to add
298  *
299  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
300  * will be used. The initial polarity for all channels is normal.
301  *
302  * Returns: 0 on success or a negative error code on failure.
303  */
304 int pwmchip_add(struct pwm_chip *chip)
305 {
306 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
307 }
308 EXPORT_SYMBOL_GPL(pwmchip_add);
309 
310 /**
311  * pwmchip_remove() - remove a PWM chip
312  * @chip: the PWM chip to remove
313  *
314  * Removes a PWM chip. This function may return busy if the PWM chip provides
315  * a PWM device that is still requested.
316  *
317  * Returns: 0 on success or a negative error code on failure.
318  */
319 int pwmchip_remove(struct pwm_chip *chip)
320 {
321 	unsigned int i;
322 	int ret = 0;
323 
324 	mutex_lock(&pwm_lock);
325 
326 	for (i = 0; i < chip->npwm; i++) {
327 		struct pwm_device *pwm = &chip->pwms[i];
328 
329 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
330 			ret = -EBUSY;
331 			goto out;
332 		}
333 	}
334 
335 	list_del_init(&chip->list);
336 
337 	if (IS_ENABLED(CONFIG_OF))
338 		of_pwmchip_remove(chip);
339 
340 	free_pwms(chip);
341 
342 	pwmchip_sysfs_unexport(chip);
343 
344 out:
345 	mutex_unlock(&pwm_lock);
346 	return ret;
347 }
348 EXPORT_SYMBOL_GPL(pwmchip_remove);
349 
350 /**
351  * pwm_request() - request a PWM device
352  * @pwm: global PWM device index
353  * @label: PWM device label
354  *
355  * This function is deprecated, use pwm_get() instead.
356  *
357  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
358  * failure.
359  */
360 struct pwm_device *pwm_request(int pwm, const char *label)
361 {
362 	struct pwm_device *dev;
363 	int err;
364 
365 	if (pwm < 0 || pwm >= MAX_PWMS)
366 		return ERR_PTR(-EINVAL);
367 
368 	mutex_lock(&pwm_lock);
369 
370 	dev = pwm_to_device(pwm);
371 	if (!dev) {
372 		dev = ERR_PTR(-EPROBE_DEFER);
373 		goto out;
374 	}
375 
376 	err = pwm_device_request(dev, label);
377 	if (err < 0)
378 		dev = ERR_PTR(err);
379 
380 out:
381 	mutex_unlock(&pwm_lock);
382 
383 	return dev;
384 }
385 EXPORT_SYMBOL_GPL(pwm_request);
386 
387 /**
388  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
389  * @chip: PWM chip
390  * @index: per-chip index of the PWM to request
391  * @label: a literal description string of this PWM
392  *
393  * Returns: A pointer to the PWM device at the given index of the given PWM
394  * chip. A negative error code is returned if the index is not valid for the
395  * specified PWM chip or if the PWM device cannot be requested.
396  */
397 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
398 					 unsigned int index,
399 					 const char *label)
400 {
401 	struct pwm_device *pwm;
402 	int err;
403 
404 	if (!chip || index >= chip->npwm)
405 		return ERR_PTR(-EINVAL);
406 
407 	mutex_lock(&pwm_lock);
408 	pwm = &chip->pwms[index];
409 
410 	err = pwm_device_request(pwm, label);
411 	if (err < 0)
412 		pwm = ERR_PTR(err);
413 
414 	mutex_unlock(&pwm_lock);
415 	return pwm;
416 }
417 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
418 
419 /**
420  * pwm_free() - free a PWM device
421  * @pwm: PWM device
422  *
423  * This function is deprecated, use pwm_put() instead.
424  */
425 void pwm_free(struct pwm_device *pwm)
426 {
427 	pwm_put(pwm);
428 }
429 EXPORT_SYMBOL_GPL(pwm_free);
430 
431 /**
432  * pwm_config() - change a PWM device configuration
433  * @pwm: PWM device
434  * @duty_ns: "on" time (in nanoseconds)
435  * @period_ns: duration (in nanoseconds) of one cycle
436  *
437  * Returns: 0 on success or a negative error code on failure.
438  */
439 int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
440 {
441 	int err;
442 
443 	if (!pwm || duty_ns < 0 || period_ns <= 0 || duty_ns > period_ns)
444 		return -EINVAL;
445 
446 	err = pwm->chip->ops->config(pwm->chip, pwm, duty_ns, period_ns);
447 	if (err)
448 		return err;
449 
450 	pwm->duty_cycle = duty_ns;
451 	pwm->period = period_ns;
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL_GPL(pwm_config);
456 
457 /**
458  * pwm_set_polarity() - configure the polarity of a PWM signal
459  * @pwm: PWM device
460  * @polarity: new polarity of the PWM signal
461  *
462  * Note that the polarity cannot be configured while the PWM device is
463  * enabled.
464  *
465  * Returns: 0 on success or a negative error code on failure.
466  */
467 int pwm_set_polarity(struct pwm_device *pwm, enum pwm_polarity polarity)
468 {
469 	int err;
470 
471 	if (!pwm || !pwm->chip->ops)
472 		return -EINVAL;
473 
474 	if (!pwm->chip->ops->set_polarity)
475 		return -ENOSYS;
476 
477 	mutex_lock(&pwm->lock);
478 
479 	if (pwm_is_enabled(pwm)) {
480 		err = -EBUSY;
481 		goto unlock;
482 	}
483 
484 	err = pwm->chip->ops->set_polarity(pwm->chip, pwm, polarity);
485 	if (err)
486 		goto unlock;
487 
488 	pwm->polarity = polarity;
489 
490 unlock:
491 	mutex_unlock(&pwm->lock);
492 	return err;
493 }
494 EXPORT_SYMBOL_GPL(pwm_set_polarity);
495 
496 /**
497  * pwm_enable() - start a PWM output toggling
498  * @pwm: PWM device
499  *
500  * Returns: 0 on success or a negative error code on failure.
501  */
502 int pwm_enable(struct pwm_device *pwm)
503 {
504 	int err = 0;
505 
506 	if (!pwm)
507 		return -EINVAL;
508 
509 	mutex_lock(&pwm->lock);
510 
511 	if (!test_and_set_bit(PWMF_ENABLED, &pwm->flags)) {
512 		err = pwm->chip->ops->enable(pwm->chip, pwm);
513 		if (err)
514 			clear_bit(PWMF_ENABLED, &pwm->flags);
515 	}
516 
517 	mutex_unlock(&pwm->lock);
518 
519 	return err;
520 }
521 EXPORT_SYMBOL_GPL(pwm_enable);
522 
523 /**
524  * pwm_disable() - stop a PWM output toggling
525  * @pwm: PWM device
526  */
527 void pwm_disable(struct pwm_device *pwm)
528 {
529 	if (pwm && test_and_clear_bit(PWMF_ENABLED, &pwm->flags))
530 		pwm->chip->ops->disable(pwm->chip, pwm);
531 }
532 EXPORT_SYMBOL_GPL(pwm_disable);
533 
534 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
535 {
536 	struct pwm_chip *chip;
537 
538 	mutex_lock(&pwm_lock);
539 
540 	list_for_each_entry(chip, &pwm_chips, list)
541 		if (chip->dev && chip->dev->of_node == np) {
542 			mutex_unlock(&pwm_lock);
543 			return chip;
544 		}
545 
546 	mutex_unlock(&pwm_lock);
547 
548 	return ERR_PTR(-EPROBE_DEFER);
549 }
550 
551 /**
552  * of_pwm_get() - request a PWM via the PWM framework
553  * @np: device node to get the PWM from
554  * @con_id: consumer name
555  *
556  * Returns the PWM device parsed from the phandle and index specified in the
557  * "pwms" property of a device tree node or a negative error-code on failure.
558  * Values parsed from the device tree are stored in the returned PWM device
559  * object.
560  *
561  * If con_id is NULL, the first PWM device listed in the "pwms" property will
562  * be requested. Otherwise the "pwm-names" property is used to do a reverse
563  * lookup of the PWM index. This also means that the "pwm-names" property
564  * becomes mandatory for devices that look up the PWM device via the con_id
565  * parameter.
566  *
567  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
568  * error code on failure.
569  */
570 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
571 {
572 	struct pwm_device *pwm = NULL;
573 	struct of_phandle_args args;
574 	struct pwm_chip *pc;
575 	int index = 0;
576 	int err;
577 
578 	if (con_id) {
579 		index = of_property_match_string(np, "pwm-names", con_id);
580 		if (index < 0)
581 			return ERR_PTR(index);
582 	}
583 
584 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
585 					 &args);
586 	if (err) {
587 		pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
588 		return ERR_PTR(err);
589 	}
590 
591 	pc = of_node_to_pwmchip(args.np);
592 	if (IS_ERR(pc)) {
593 		pr_debug("%s(): PWM chip not found\n", __func__);
594 		pwm = ERR_CAST(pc);
595 		goto put;
596 	}
597 
598 	if (args.args_count != pc->of_pwm_n_cells) {
599 		pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
600 			 args.np->full_name);
601 		pwm = ERR_PTR(-EINVAL);
602 		goto put;
603 	}
604 
605 	pwm = pc->of_xlate(pc, &args);
606 	if (IS_ERR(pwm))
607 		goto put;
608 
609 	/*
610 	 * If a consumer name was not given, try to look it up from the
611 	 * "pwm-names" property if it exists. Otherwise use the name of
612 	 * the user device node.
613 	 */
614 	if (!con_id) {
615 		err = of_property_read_string_index(np, "pwm-names", index,
616 						    &con_id);
617 		if (err < 0)
618 			con_id = np->name;
619 	}
620 
621 	pwm->label = con_id;
622 
623 put:
624 	of_node_put(args.np);
625 
626 	return pwm;
627 }
628 EXPORT_SYMBOL_GPL(of_pwm_get);
629 
630 /**
631  * pwm_add_table() - register PWM device consumers
632  * @table: array of consumers to register
633  * @num: number of consumers in table
634  */
635 void pwm_add_table(struct pwm_lookup *table, size_t num)
636 {
637 	mutex_lock(&pwm_lookup_lock);
638 
639 	while (num--) {
640 		list_add_tail(&table->list, &pwm_lookup_list);
641 		table++;
642 	}
643 
644 	mutex_unlock(&pwm_lookup_lock);
645 }
646 
647 /**
648  * pwm_remove_table() - unregister PWM device consumers
649  * @table: array of consumers to unregister
650  * @num: number of consumers in table
651  */
652 void pwm_remove_table(struct pwm_lookup *table, size_t num)
653 {
654 	mutex_lock(&pwm_lookup_lock);
655 
656 	while (num--) {
657 		list_del(&table->list);
658 		table++;
659 	}
660 
661 	mutex_unlock(&pwm_lookup_lock);
662 }
663 
664 /**
665  * pwm_get() - look up and request a PWM device
666  * @dev: device for PWM consumer
667  * @con_id: consumer name
668  *
669  * Lookup is first attempted using DT. If the device was not instantiated from
670  * a device tree, a PWM chip and a relative index is looked up via a table
671  * supplied by board setup code (see pwm_add_table()).
672  *
673  * Once a PWM chip has been found the specified PWM device will be requested
674  * and is ready to be used.
675  *
676  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
677  * error code on failure.
678  */
679 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
680 {
681 	struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
682 	const char *dev_id = dev ? dev_name(dev) : NULL;
683 	struct pwm_chip *chip = NULL;
684 	unsigned int best = 0;
685 	struct pwm_lookup *p, *chosen = NULL;
686 	unsigned int match;
687 
688 	/* look up via DT first */
689 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
690 		return of_pwm_get(dev->of_node, con_id);
691 
692 	/*
693 	 * We look up the provider in the static table typically provided by
694 	 * board setup code. We first try to lookup the consumer device by
695 	 * name. If the consumer device was passed in as NULL or if no match
696 	 * was found, we try to find the consumer by directly looking it up
697 	 * by name.
698 	 *
699 	 * If a match is found, the provider PWM chip is looked up by name
700 	 * and a PWM device is requested using the PWM device per-chip index.
701 	 *
702 	 * The lookup algorithm was shamelessly taken from the clock
703 	 * framework:
704 	 *
705 	 * We do slightly fuzzy matching here:
706 	 *  An entry with a NULL ID is assumed to be a wildcard.
707 	 *  If an entry has a device ID, it must match
708 	 *  If an entry has a connection ID, it must match
709 	 * Then we take the most specific entry - with the following order
710 	 * of precedence: dev+con > dev only > con only.
711 	 */
712 	mutex_lock(&pwm_lookup_lock);
713 
714 	list_for_each_entry(p, &pwm_lookup_list, list) {
715 		match = 0;
716 
717 		if (p->dev_id) {
718 			if (!dev_id || strcmp(p->dev_id, dev_id))
719 				continue;
720 
721 			match += 2;
722 		}
723 
724 		if (p->con_id) {
725 			if (!con_id || strcmp(p->con_id, con_id))
726 				continue;
727 
728 			match += 1;
729 		}
730 
731 		if (match > best) {
732 			chosen = p;
733 
734 			if (match != 3)
735 				best = match;
736 			else
737 				break;
738 		}
739 	}
740 
741 	if (!chosen) {
742 		pwm = ERR_PTR(-ENODEV);
743 		goto out;
744 	}
745 
746 	chip = pwmchip_find_by_name(chosen->provider);
747 	if (!chip)
748 		goto out;
749 
750 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
751 	if (IS_ERR(pwm))
752 		goto out;
753 
754 	pwm_set_period(pwm, chosen->period);
755 	pwm_set_polarity(pwm, chosen->polarity);
756 
757 out:
758 	mutex_unlock(&pwm_lookup_lock);
759 	return pwm;
760 }
761 EXPORT_SYMBOL_GPL(pwm_get);
762 
763 /**
764  * pwm_put() - release a PWM device
765  * @pwm: PWM device
766  */
767 void pwm_put(struct pwm_device *pwm)
768 {
769 	if (!pwm)
770 		return;
771 
772 	mutex_lock(&pwm_lock);
773 
774 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
775 		pr_warn("PWM device already freed\n");
776 		goto out;
777 	}
778 
779 	if (pwm->chip->ops->free)
780 		pwm->chip->ops->free(pwm->chip, pwm);
781 
782 	pwm->label = NULL;
783 
784 	module_put(pwm->chip->ops->owner);
785 out:
786 	mutex_unlock(&pwm_lock);
787 }
788 EXPORT_SYMBOL_GPL(pwm_put);
789 
790 static void devm_pwm_release(struct device *dev, void *res)
791 {
792 	pwm_put(*(struct pwm_device **)res);
793 }
794 
795 /**
796  * devm_pwm_get() - resource managed pwm_get()
797  * @dev: device for PWM consumer
798  * @con_id: consumer name
799  *
800  * This function performs like pwm_get() but the acquired PWM device will
801  * automatically be released on driver detach.
802  *
803  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
804  * error code on failure.
805  */
806 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
807 {
808 	struct pwm_device **ptr, *pwm;
809 
810 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
811 	if (!ptr)
812 		return ERR_PTR(-ENOMEM);
813 
814 	pwm = pwm_get(dev, con_id);
815 	if (!IS_ERR(pwm)) {
816 		*ptr = pwm;
817 		devres_add(dev, ptr);
818 	} else {
819 		devres_free(ptr);
820 	}
821 
822 	return pwm;
823 }
824 EXPORT_SYMBOL_GPL(devm_pwm_get);
825 
826 /**
827  * devm_of_pwm_get() - resource managed of_pwm_get()
828  * @dev: device for PWM consumer
829  * @np: device node to get the PWM from
830  * @con_id: consumer name
831  *
832  * This function performs like of_pwm_get() but the acquired PWM device will
833  * automatically be released on driver detach.
834  *
835  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
836  * error code on failure.
837  */
838 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
839 				   const char *con_id)
840 {
841 	struct pwm_device **ptr, *pwm;
842 
843 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
844 	if (!ptr)
845 		return ERR_PTR(-ENOMEM);
846 
847 	pwm = of_pwm_get(np, con_id);
848 	if (!IS_ERR(pwm)) {
849 		*ptr = pwm;
850 		devres_add(dev, ptr);
851 	} else {
852 		devres_free(ptr);
853 	}
854 
855 	return pwm;
856 }
857 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
858 
859 static int devm_pwm_match(struct device *dev, void *res, void *data)
860 {
861 	struct pwm_device **p = res;
862 
863 	if (WARN_ON(!p || !*p))
864 		return 0;
865 
866 	return *p == data;
867 }
868 
869 /**
870  * devm_pwm_put() - resource managed pwm_put()
871  * @dev: device for PWM consumer
872  * @pwm: PWM device
873  *
874  * Release a PWM previously allocated using devm_pwm_get(). Calling this
875  * function is usually not needed because devm-allocated resources are
876  * automatically released on driver detach.
877  */
878 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
879 {
880 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
881 }
882 EXPORT_SYMBOL_GPL(devm_pwm_put);
883 
884 /**
885   * pwm_can_sleep() - report whether PWM access will sleep
886   * @pwm: PWM device
887   *
888   * Returns: True if accessing the PWM can sleep, false otherwise.
889   */
890 bool pwm_can_sleep(struct pwm_device *pwm)
891 {
892 	return pwm->chip->can_sleep;
893 }
894 EXPORT_SYMBOL_GPL(pwm_can_sleep);
895 
896 #ifdef CONFIG_DEBUG_FS
897 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
898 {
899 	unsigned int i;
900 
901 	for (i = 0; i < chip->npwm; i++) {
902 		struct pwm_device *pwm = &chip->pwms[i];
903 
904 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
905 
906 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
907 			seq_puts(s, " requested");
908 
909 		if (pwm_is_enabled(pwm))
910 			seq_puts(s, " enabled");
911 
912 		seq_puts(s, "\n");
913 	}
914 }
915 
916 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
917 {
918 	mutex_lock(&pwm_lock);
919 	s->private = "";
920 
921 	return seq_list_start(&pwm_chips, *pos);
922 }
923 
924 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
925 {
926 	s->private = "\n";
927 
928 	return seq_list_next(v, &pwm_chips, pos);
929 }
930 
931 static void pwm_seq_stop(struct seq_file *s, void *v)
932 {
933 	mutex_unlock(&pwm_lock);
934 }
935 
936 static int pwm_seq_show(struct seq_file *s, void *v)
937 {
938 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
939 
940 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
941 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
942 		   dev_name(chip->dev), chip->npwm,
943 		   (chip->npwm != 1) ? "s" : "");
944 
945 	if (chip->ops->dbg_show)
946 		chip->ops->dbg_show(chip, s);
947 	else
948 		pwm_dbg_show(chip, s);
949 
950 	return 0;
951 }
952 
953 static const struct seq_operations pwm_seq_ops = {
954 	.start = pwm_seq_start,
955 	.next = pwm_seq_next,
956 	.stop = pwm_seq_stop,
957 	.show = pwm_seq_show,
958 };
959 
960 static int pwm_seq_open(struct inode *inode, struct file *file)
961 {
962 	return seq_open(file, &pwm_seq_ops);
963 }
964 
965 static const struct file_operations pwm_debugfs_ops = {
966 	.owner = THIS_MODULE,
967 	.open = pwm_seq_open,
968 	.read = seq_read,
969 	.llseek = seq_lseek,
970 	.release = seq_release,
971 };
972 
973 static int __init pwm_debugfs_init(void)
974 {
975 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
976 			    &pwm_debugfs_ops);
977 
978 	return 0;
979 }
980 subsys_initcall(pwm_debugfs_init);
981 #endif /* CONFIG_DEBUG_FS */
982