1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #define DEFAULT_SYMBOL_NAMESPACE "PWM" 10 11 #include <linux/acpi.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/of.h> 15 #include <linux/pwm.h> 16 #include <linux/list.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include <dt-bindings/pwm/pwm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/pwm.h> 28 29 /* protects access to pwm_chips */ 30 static DEFINE_MUTEX(pwm_lock); 31 32 static DEFINE_IDR(pwm_chips); 33 34 static void pwmchip_lock(struct pwm_chip *chip) 35 { 36 if (chip->atomic) 37 spin_lock(&chip->atomic_lock); 38 else 39 mutex_lock(&chip->nonatomic_lock); 40 } 41 42 static void pwmchip_unlock(struct pwm_chip *chip) 43 { 44 if (chip->atomic) 45 spin_unlock(&chip->atomic_lock); 46 else 47 mutex_unlock(&chip->nonatomic_lock); 48 } 49 50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) 51 52 static bool pwm_wf_valid(const struct pwm_waveform *wf) 53 { 54 /* 55 * For now restrict waveforms to period_length_ns <= S64_MAX to provide 56 * some space for future extensions. One possibility is to simplify 57 * representing waveforms with inverted polarity using negative values 58 * somehow. 59 */ 60 if (wf->period_length_ns > S64_MAX) 61 return false; 62 63 if (wf->duty_length_ns > wf->period_length_ns) 64 return false; 65 66 /* 67 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart 68 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. 69 */ 70 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) 71 return false; 72 73 return true; 74 } 75 76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) 77 { 78 if (wf->period_length_ns) { 79 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) 80 *state = (struct pwm_state){ 81 .enabled = true, 82 .polarity = PWM_POLARITY_NORMAL, 83 .period = wf->period_length_ns, 84 .duty_cycle = wf->duty_length_ns, 85 }; 86 else 87 *state = (struct pwm_state){ 88 .enabled = true, 89 .polarity = PWM_POLARITY_INVERSED, 90 .period = wf->period_length_ns, 91 .duty_cycle = wf->period_length_ns - wf->duty_length_ns, 92 }; 93 } else { 94 *state = (struct pwm_state){ 95 .enabled = false, 96 }; 97 } 98 } 99 100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) 101 { 102 if (state->enabled) { 103 if (state->polarity == PWM_POLARITY_NORMAL) 104 *wf = (struct pwm_waveform){ 105 .period_length_ns = state->period, 106 .duty_length_ns = state->duty_cycle, 107 .duty_offset_ns = 0, 108 }; 109 else 110 *wf = (struct pwm_waveform){ 111 .period_length_ns = state->period, 112 .duty_length_ns = state->period - state->duty_cycle, 113 .duty_offset_ns = state->duty_cycle, 114 }; 115 } else { 116 *wf = (struct pwm_waveform){ 117 .period_length_ns = 0, 118 }; 119 } 120 } 121 122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) 123 { 124 if (a->period_length_ns > b->period_length_ns) 125 return 1; 126 127 if (a->period_length_ns < b->period_length_ns) 128 return -1; 129 130 if (a->duty_length_ns > b->duty_length_ns) 131 return 1; 132 133 if (a->duty_length_ns < b->duty_length_ns) 134 return -1; 135 136 if (a->duty_offset_ns > b->duty_offset_ns) 137 return 1; 138 139 if (a->duty_offset_ns < b->duty_offset_ns) 140 return -1; 141 142 return 0; 143 } 144 145 static bool pwm_check_rounding(const struct pwm_waveform *wf, 146 const struct pwm_waveform *wf_rounded) 147 { 148 if (!wf->period_length_ns) 149 return true; 150 151 if (wf->period_length_ns < wf_rounded->period_length_ns) 152 return false; 153 154 if (wf->duty_length_ns < wf_rounded->duty_length_ns) 155 return false; 156 157 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) 158 return false; 159 160 return true; 161 } 162 163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, 164 const struct pwm_waveform *wf, void *wfhw) 165 { 166 const struct pwm_ops *ops = chip->ops; 167 int ret; 168 169 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); 170 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); 171 172 return ret; 173 } 174 175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, 176 const void *wfhw, struct pwm_waveform *wf) 177 { 178 const struct pwm_ops *ops = chip->ops; 179 int ret; 180 181 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); 182 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); 183 184 return ret; 185 } 186 187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) 188 { 189 const struct pwm_ops *ops = chip->ops; 190 int ret; 191 192 ret = ops->read_waveform(chip, pwm, wfhw); 193 trace_pwm_read_waveform(pwm, wfhw, ret); 194 195 return ret; 196 } 197 198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) 199 { 200 const struct pwm_ops *ops = chip->ops; 201 int ret; 202 203 ret = ops->write_waveform(chip, pwm, wfhw); 204 trace_pwm_write_waveform(pwm, wfhw, ret); 205 206 return ret; 207 } 208 209 #define WFHWSIZE 20 210 211 /** 212 * pwm_round_waveform_might_sleep - Query hardware capabilities 213 * Cannot be used in atomic context. 214 * @pwm: PWM device 215 * @wf: waveform to round and output parameter 216 * 217 * Typically a given waveform cannot be implemented exactly by hardware, e.g. 218 * because hardware only supports coarse period resolution or no duty_offset. 219 * This function returns the actually implemented waveform if you pass wf to 220 * pwm_set_waveform_might_sleep now. 221 * 222 * Note however that the world doesn't stop turning when you call it, so when 223 * doing 224 * 225 * pwm_round_waveform_might_sleep(mypwm, &wf); 226 * pwm_set_waveform_might_sleep(mypwm, &wf, true); 227 * 228 * the latter might fail, e.g. because an input clock changed its rate between 229 * these two calls and the waveform determined by 230 * pwm_round_waveform_might_sleep() cannot be implemented any more. 231 * 232 * Returns 0 on success, 1 if there is no valid hardware configuration matching 233 * the input waveform under the PWM rounding rules or a negative errno. 234 */ 235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 236 { 237 struct pwm_chip *chip = pwm->chip; 238 const struct pwm_ops *ops = chip->ops; 239 struct pwm_waveform wf_req = *wf; 240 char wfhw[WFHWSIZE]; 241 int ret_tohw, ret_fromhw; 242 243 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 244 245 if (!pwm_wf_valid(wf)) 246 return -EINVAL; 247 248 guard(pwmchip)(chip); 249 250 if (!chip->operational) 251 return -ENODEV; 252 253 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); 254 if (ret_tohw < 0) 255 return ret_tohw; 256 257 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) 258 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", 259 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 260 261 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); 262 if (ret_fromhw < 0) 263 return ret_fromhw; 264 265 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) 266 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", 267 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 268 269 if (IS_ENABLED(CONFIG_PWM_DEBUG) && 270 ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf)) 271 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 272 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, 273 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); 274 275 return ret_tohw; 276 } 277 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); 278 279 /** 280 * pwm_get_waveform_might_sleep - Query hardware about current configuration 281 * Cannot be used in atomic context. 282 * @pwm: PWM device 283 * @wf: output parameter 284 * 285 * Stores the current configuration of the PWM in @wf. Note this is the 286 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. 287 */ 288 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 289 { 290 struct pwm_chip *chip = pwm->chip; 291 const struct pwm_ops *ops = chip->ops; 292 char wfhw[WFHWSIZE]; 293 int err; 294 295 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 296 297 guard(pwmchip)(chip); 298 299 if (!chip->operational) 300 return -ENODEV; 301 302 err = __pwm_read_waveform(chip, pwm, &wfhw); 303 if (err) 304 return err; 305 306 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); 307 } 308 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); 309 310 /* Called with the pwmchip lock held */ 311 static int __pwm_set_waveform(struct pwm_device *pwm, 312 const struct pwm_waveform *wf, 313 bool exact) 314 { 315 struct pwm_chip *chip = pwm->chip; 316 const struct pwm_ops *ops = chip->ops; 317 char wfhw[WFHWSIZE]; 318 struct pwm_waveform wf_rounded; 319 int err; 320 321 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 322 323 if (!pwm_wf_valid(wf)) 324 return -EINVAL; 325 326 err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); 327 if (err) 328 return err; 329 330 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { 331 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 332 if (err) 333 return err; 334 335 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded)) 336 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 337 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 338 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 339 340 if (exact && pwmwfcmp(wf, &wf_rounded)) { 341 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", 342 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 343 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 344 345 return 1; 346 } 347 } 348 349 err = __pwm_write_waveform(chip, pwm, &wfhw); 350 if (err) 351 return err; 352 353 /* update .state */ 354 pwm_wf2state(wf, &pwm->state); 355 356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { 357 struct pwm_waveform wf_set; 358 359 err = __pwm_read_waveform(chip, pwm, &wfhw); 360 if (err) 361 /* maybe ignore? */ 362 return err; 363 364 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); 365 if (err) 366 /* maybe ignore? */ 367 return err; 368 369 if (pwmwfcmp(&wf_set, &wf_rounded) != 0) 370 dev_err(&chip->dev, 371 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", 372 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 373 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, 374 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); 375 } 376 return 0; 377 } 378 379 /** 380 * pwm_set_waveform_might_sleep - Apply a new waveform 381 * Cannot be used in atomic context. 382 * @pwm: PWM device 383 * @wf: The waveform to apply 384 * @exact: If true no rounding is allowed 385 * 386 * Typically a requested waveform cannot be implemented exactly, e.g. because 387 * you requested .period_length_ns = 100 ns, but the hardware can only set 388 * periods that are a multiple of 8.5 ns. With that hardware passing exact = 389 * true results in pwm_set_waveform_might_sleep() failing and returning 1. If 390 * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger 391 * than the requested value). 392 * Note that even with exact = true, some rounding by less than 1 is 393 * possible/needed. In the above example requesting .period_length_ns = 94 and 394 * exact = true, you get the hardware configured with period = 93.5 ns. 395 */ 396 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, 397 const struct pwm_waveform *wf, bool exact) 398 { 399 struct pwm_chip *chip = pwm->chip; 400 int err; 401 402 might_sleep(); 403 404 guard(pwmchip)(chip); 405 406 if (!chip->operational) 407 return -ENODEV; 408 409 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 410 /* 411 * Catch any drivers that have been marked as atomic but 412 * that will sleep anyway. 413 */ 414 non_block_start(); 415 err = __pwm_set_waveform(pwm, wf, exact); 416 non_block_end(); 417 } else { 418 err = __pwm_set_waveform(pwm, wf, exact); 419 } 420 421 return err; 422 } 423 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); 424 425 static void pwm_apply_debug(struct pwm_device *pwm, 426 const struct pwm_state *state) 427 { 428 struct pwm_state *last = &pwm->last; 429 struct pwm_chip *chip = pwm->chip; 430 struct pwm_state s1 = { 0 }, s2 = { 0 }; 431 int err; 432 433 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 434 return; 435 436 /* No reasonable diagnosis possible without .get_state() */ 437 if (!chip->ops->get_state) 438 return; 439 440 /* 441 * *state was just applied. Read out the hardware state and do some 442 * checks. 443 */ 444 445 err = chip->ops->get_state(chip, pwm, &s1); 446 trace_pwm_get(pwm, &s1, err); 447 if (err) 448 /* If that failed there isn't much to debug */ 449 return; 450 451 /* 452 * The lowlevel driver either ignored .polarity (which is a bug) or as 453 * best effort inverted .polarity and fixed .duty_cycle respectively. 454 * Undo this inversion and fixup for further tests. 455 */ 456 if (s1.enabled && s1.polarity != state->polarity) { 457 s2.polarity = state->polarity; 458 s2.duty_cycle = s1.period - s1.duty_cycle; 459 s2.period = s1.period; 460 s2.enabled = s1.enabled; 461 } else { 462 s2 = s1; 463 } 464 465 if (s2.polarity != state->polarity && 466 state->duty_cycle < state->period) 467 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); 468 469 if (state->enabled && s2.enabled && 470 last->polarity == state->polarity && 471 last->period > s2.period && 472 last->period <= state->period) 473 dev_warn(pwmchip_parent(chip), 474 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 475 state->period, s2.period, last->period); 476 477 /* 478 * Rounding period up is fine only if duty_cycle is 0 then, because a 479 * flat line doesn't have a characteristic period. 480 */ 481 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle) 482 dev_warn(pwmchip_parent(chip), 483 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 484 state->period, s2.period); 485 486 if (state->enabled && 487 last->polarity == state->polarity && 488 last->period == s2.period && 489 last->duty_cycle > s2.duty_cycle && 490 last->duty_cycle <= state->duty_cycle) 491 dev_warn(pwmchip_parent(chip), 492 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 493 state->duty_cycle, state->period, 494 s2.duty_cycle, s2.period, 495 last->duty_cycle, last->period); 496 497 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle) 498 dev_warn(pwmchip_parent(chip), 499 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 500 state->duty_cycle, state->period, 501 s2.duty_cycle, s2.period); 502 503 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 504 dev_warn(pwmchip_parent(chip), 505 "requested disabled, but yielded enabled with duty > 0\n"); 506 507 /* reapply the state that the driver reported being configured. */ 508 err = chip->ops->apply(chip, pwm, &s1); 509 trace_pwm_apply(pwm, &s1, err); 510 if (err) { 511 *last = s1; 512 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); 513 return; 514 } 515 516 *last = (struct pwm_state){ 0 }; 517 err = chip->ops->get_state(chip, pwm, last); 518 trace_pwm_get(pwm, last, err); 519 if (err) 520 return; 521 522 /* reapplication of the current state should give an exact match */ 523 if (s1.enabled != last->enabled || 524 s1.polarity != last->polarity || 525 (s1.enabled && s1.period != last->period) || 526 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 527 dev_err(pwmchip_parent(chip), 528 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 529 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 530 last->enabled, last->polarity, last->duty_cycle, 531 last->period); 532 } 533 } 534 535 static bool pwm_state_valid(const struct pwm_state *state) 536 { 537 /* 538 * For a disabled state all other state description is irrelevant and 539 * and supposed to be ignored. So also ignore any strange values and 540 * consider the state ok. 541 */ 542 if (state->enabled) 543 return true; 544 545 if (!state->period) 546 return false; 547 548 if (state->duty_cycle > state->period) 549 return false; 550 551 return true; 552 } 553 554 /** 555 * __pwm_apply() - atomically apply a new state to a PWM device 556 * @pwm: PWM device 557 * @state: new state to apply 558 */ 559 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 560 { 561 struct pwm_chip *chip; 562 const struct pwm_ops *ops; 563 int err; 564 565 if (!pwm || !state) 566 return -EINVAL; 567 568 if (!pwm_state_valid(state)) { 569 /* 570 * Allow to transition from one invalid state to another. 571 * This ensures that you can e.g. change the polarity while 572 * the period is zero. (This happens on stm32 when the hardware 573 * is in its poweron default state.) This greatly simplifies 574 * working with the sysfs API where you can only change one 575 * parameter at a time. 576 */ 577 if (!pwm_state_valid(&pwm->state)) { 578 pwm->state = *state; 579 return 0; 580 } 581 582 return -EINVAL; 583 } 584 585 chip = pwm->chip; 586 ops = chip->ops; 587 588 if (state->period == pwm->state.period && 589 state->duty_cycle == pwm->state.duty_cycle && 590 state->polarity == pwm->state.polarity && 591 state->enabled == pwm->state.enabled && 592 state->usage_power == pwm->state.usage_power) 593 return 0; 594 595 if (ops->write_waveform) { 596 struct pwm_waveform wf; 597 char wfhw[WFHWSIZE]; 598 599 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 600 601 pwm_state2wf(state, &wf); 602 603 /* 604 * The rounding is wrong here for states with inverted polarity. 605 * While .apply() rounds down duty_cycle (which represents the 606 * time from the start of the period to the inner edge), 607 * .round_waveform_tohw() rounds down the time the PWM is high. 608 * Can be fixed if the need arises, until reported otherwise 609 * let's assume that consumers don't care. 610 */ 611 612 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); 613 if (err) { 614 if (err > 0) 615 /* 616 * This signals an invalid request, typically 617 * the requested period (or duty_offset) is 618 * smaller than possible with the hardware. 619 */ 620 return -EINVAL; 621 622 return err; 623 } 624 625 if (IS_ENABLED(CONFIG_PWM_DEBUG)) { 626 struct pwm_waveform wf_rounded; 627 628 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 629 if (err) 630 return err; 631 632 if (!pwm_check_rounding(&wf, &wf_rounded)) 633 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 634 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, 635 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 636 } 637 638 err = __pwm_write_waveform(chip, pwm, &wfhw); 639 if (err) 640 return err; 641 642 pwm->state = *state; 643 644 } else { 645 err = ops->apply(chip, pwm, state); 646 trace_pwm_apply(pwm, state, err); 647 if (err) 648 return err; 649 650 pwm->state = *state; 651 652 /* 653 * only do this after pwm->state was applied as some 654 * implementations of .get_state() depend on this 655 */ 656 pwm_apply_debug(pwm, state); 657 } 658 659 return 0; 660 } 661 662 /** 663 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 664 * Cannot be used in atomic context. 665 * @pwm: PWM device 666 * @state: new state to apply 667 */ 668 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 669 { 670 int err; 671 struct pwm_chip *chip = pwm->chip; 672 673 /* 674 * Some lowlevel driver's implementations of .apply() make use of 675 * mutexes, also with some drivers only returning when the new 676 * configuration is active calling pwm_apply_might_sleep() from atomic context 677 * is a bad idea. So make it explicit that calling this function might 678 * sleep. 679 */ 680 might_sleep(); 681 682 guard(pwmchip)(chip); 683 684 if (!chip->operational) 685 return -ENODEV; 686 687 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 688 /* 689 * Catch any drivers that have been marked as atomic but 690 * that will sleep anyway. 691 */ 692 non_block_start(); 693 err = __pwm_apply(pwm, state); 694 non_block_end(); 695 } else { 696 err = __pwm_apply(pwm, state); 697 } 698 699 return err; 700 } 701 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 702 703 /** 704 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 705 * Not all PWM devices support this function, check with pwm_might_sleep(). 706 * @pwm: PWM device 707 * @state: new state to apply 708 */ 709 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 710 { 711 struct pwm_chip *chip = pwm->chip; 712 713 WARN_ONCE(!chip->atomic, 714 "sleeping PWM driver used in atomic context\n"); 715 716 guard(pwmchip)(chip); 717 718 if (!chip->operational) 719 return -ENODEV; 720 721 return __pwm_apply(pwm, state); 722 } 723 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 724 725 /** 726 * pwm_get_state_hw() - get the current PWM state from hardware 727 * @pwm: PWM device 728 * @state: state to fill with the current PWM state 729 * 730 * Similar to pwm_get_state() but reads the current PWM state from hardware 731 * instead of the requested state. 732 * 733 * Returns: 0 on success or a negative error code on failure. 734 * Context: May sleep. 735 */ 736 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 737 { 738 struct pwm_chip *chip = pwm->chip; 739 const struct pwm_ops *ops = chip->ops; 740 int ret = -EOPNOTSUPP; 741 742 might_sleep(); 743 744 guard(pwmchip)(chip); 745 746 if (!chip->operational) 747 return -ENODEV; 748 749 if (ops->read_waveform) { 750 char wfhw[WFHWSIZE]; 751 struct pwm_waveform wf; 752 753 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 754 755 ret = __pwm_read_waveform(chip, pwm, &wfhw); 756 if (ret) 757 return ret; 758 759 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); 760 if (ret) 761 return ret; 762 763 pwm_wf2state(&wf, state); 764 765 } else if (ops->get_state) { 766 ret = ops->get_state(chip, pwm, state); 767 trace_pwm_get(pwm, state, ret); 768 } 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(pwm_get_state_hw); 773 774 /** 775 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 776 * @pwm: PWM device 777 * 778 * This function will adjust the PWM config to the PWM arguments provided 779 * by the DT or PWM lookup table. This is particularly useful to adapt 780 * the bootloader config to the Linux one. 781 */ 782 int pwm_adjust_config(struct pwm_device *pwm) 783 { 784 struct pwm_state state; 785 struct pwm_args pargs; 786 787 pwm_get_args(pwm, &pargs); 788 pwm_get_state(pwm, &state); 789 790 /* 791 * If the current period is zero it means that either the PWM driver 792 * does not support initial state retrieval or the PWM has not yet 793 * been configured. 794 * 795 * In either case, we setup the new period and polarity, and assign a 796 * duty cycle of 0. 797 */ 798 if (!state.period) { 799 state.duty_cycle = 0; 800 state.period = pargs.period; 801 state.polarity = pargs.polarity; 802 803 return pwm_apply_might_sleep(pwm, &state); 804 } 805 806 /* 807 * Adjust the PWM duty cycle/period based on the period value provided 808 * in PWM args. 809 */ 810 if (pargs.period != state.period) { 811 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 812 813 do_div(dutycycle, state.period); 814 state.duty_cycle = dutycycle; 815 state.period = pargs.period; 816 } 817 818 /* 819 * If the polarity changed, we should also change the duty cycle. 820 */ 821 if (pargs.polarity != state.polarity) { 822 state.polarity = pargs.polarity; 823 state.duty_cycle = state.period - state.duty_cycle; 824 } 825 826 return pwm_apply_might_sleep(pwm, &state); 827 } 828 EXPORT_SYMBOL_GPL(pwm_adjust_config); 829 830 /** 831 * pwm_capture() - capture and report a PWM signal 832 * @pwm: PWM device 833 * @result: structure to fill with capture result 834 * @timeout: time to wait, in milliseconds, before giving up on capture 835 * 836 * Returns: 0 on success or a negative error code on failure. 837 */ 838 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 839 unsigned long timeout) 840 { 841 struct pwm_chip *chip = pwm->chip; 842 const struct pwm_ops *ops = chip->ops; 843 844 if (!ops->capture) 845 return -ENOSYS; 846 847 /* 848 * Holding the pwm_lock is probably not needed. If you use pwm_capture() 849 * and you're interested to speed it up, please convince yourself it's 850 * really not needed, test and then suggest a patch on the mailing list. 851 */ 852 guard(mutex)(&pwm_lock); 853 854 guard(pwmchip)(chip); 855 856 if (!chip->operational) 857 return -ENODEV; 858 859 return ops->capture(chip, pwm, result, timeout); 860 } 861 862 static struct pwm_chip *pwmchip_find_by_name(const char *name) 863 { 864 struct pwm_chip *chip; 865 unsigned long id, tmp; 866 867 if (!name) 868 return NULL; 869 870 guard(mutex)(&pwm_lock); 871 872 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 873 if (device_match_name(pwmchip_parent(chip), name)) 874 return chip; 875 } 876 877 return NULL; 878 } 879 880 static int pwm_device_request(struct pwm_device *pwm, const char *label) 881 { 882 int err; 883 struct pwm_chip *chip = pwm->chip; 884 const struct pwm_ops *ops = chip->ops; 885 886 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 887 return -EBUSY; 888 889 /* 890 * This function is called while holding pwm_lock. As .operational only 891 * changes while holding this lock, checking it here without holding the 892 * chip lock is fine. 893 */ 894 if (!chip->operational) 895 return -ENODEV; 896 897 if (!try_module_get(chip->owner)) 898 return -ENODEV; 899 900 if (!get_device(&chip->dev)) { 901 err = -ENODEV; 902 goto err_get_device; 903 } 904 905 if (ops->request) { 906 err = ops->request(chip, pwm); 907 if (err) { 908 put_device(&chip->dev); 909 err_get_device: 910 module_put(chip->owner); 911 return err; 912 } 913 } 914 915 if (ops->read_waveform || ops->get_state) { 916 /* 917 * Zero-initialize state because most drivers are unaware of 918 * .usage_power. The other members of state are supposed to be 919 * set by lowlevel drivers. We still initialize the whole 920 * structure for simplicity even though this might paper over 921 * faulty implementations of .get_state(). 922 */ 923 struct pwm_state state = { 0, }; 924 925 err = pwm_get_state_hw(pwm, &state); 926 if (!err) 927 pwm->state = state; 928 929 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 930 pwm->last = pwm->state; 931 } 932 933 set_bit(PWMF_REQUESTED, &pwm->flags); 934 pwm->label = label; 935 936 return 0; 937 } 938 939 /** 940 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 941 * @chip: PWM chip 942 * @index: per-chip index of the PWM to request 943 * @label: a literal description string of this PWM 944 * 945 * Returns: A pointer to the PWM device at the given index of the given PWM 946 * chip. A negative error code is returned if the index is not valid for the 947 * specified PWM chip or if the PWM device cannot be requested. 948 */ 949 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 950 unsigned int index, 951 const char *label) 952 { 953 struct pwm_device *pwm; 954 int err; 955 956 if (!chip || index >= chip->npwm) 957 return ERR_PTR(-EINVAL); 958 959 guard(mutex)(&pwm_lock); 960 961 pwm = &chip->pwms[index]; 962 963 err = pwm_device_request(pwm, label); 964 if (err < 0) 965 return ERR_PTR(err); 966 967 return pwm; 968 } 969 970 struct pwm_device * 971 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 972 { 973 struct pwm_device *pwm; 974 975 /* period in the second cell and flags in the third cell are optional */ 976 if (args->args_count < 1) 977 return ERR_PTR(-EINVAL); 978 979 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 980 if (IS_ERR(pwm)) 981 return pwm; 982 983 if (args->args_count > 1) 984 pwm->args.period = args->args[1]; 985 986 pwm->args.polarity = PWM_POLARITY_NORMAL; 987 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 988 pwm->args.polarity = PWM_POLARITY_INVERSED; 989 990 return pwm; 991 } 992 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 993 994 struct pwm_device * 995 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 996 { 997 struct pwm_device *pwm; 998 999 pwm = pwm_request_from_chip(chip, 0, NULL); 1000 if (IS_ERR(pwm)) 1001 return pwm; 1002 1003 if (args->args_count > 0) 1004 pwm->args.period = args->args[0]; 1005 1006 pwm->args.polarity = PWM_POLARITY_NORMAL; 1007 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) 1008 pwm->args.polarity = PWM_POLARITY_INVERSED; 1009 1010 return pwm; 1011 } 1012 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 1013 1014 struct pwm_export { 1015 struct device pwm_dev; 1016 struct pwm_device *pwm; 1017 struct mutex lock; 1018 struct pwm_state suspend; 1019 }; 1020 1021 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) 1022 { 1023 return container_of(pwmchip_dev, struct pwm_chip, dev); 1024 } 1025 1026 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) 1027 { 1028 return container_of(pwm_dev, struct pwm_export, pwm_dev); 1029 } 1030 1031 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) 1032 { 1033 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1034 1035 return export->pwm; 1036 } 1037 1038 static ssize_t period_show(struct device *pwm_dev, 1039 struct device_attribute *attr, 1040 char *buf) 1041 { 1042 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1043 struct pwm_state state; 1044 1045 pwm_get_state(pwm, &state); 1046 1047 return sysfs_emit(buf, "%llu\n", state.period); 1048 } 1049 1050 static ssize_t period_store(struct device *pwm_dev, 1051 struct device_attribute *attr, 1052 const char *buf, size_t size) 1053 { 1054 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1055 struct pwm_device *pwm = export->pwm; 1056 struct pwm_state state; 1057 u64 val; 1058 int ret; 1059 1060 ret = kstrtou64(buf, 0, &val); 1061 if (ret) 1062 return ret; 1063 1064 guard(mutex)(&export->lock); 1065 1066 pwm_get_state(pwm, &state); 1067 state.period = val; 1068 ret = pwm_apply_might_sleep(pwm, &state); 1069 1070 return ret ? : size; 1071 } 1072 1073 static ssize_t duty_cycle_show(struct device *pwm_dev, 1074 struct device_attribute *attr, 1075 char *buf) 1076 { 1077 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1078 struct pwm_state state; 1079 1080 pwm_get_state(pwm, &state); 1081 1082 return sysfs_emit(buf, "%llu\n", state.duty_cycle); 1083 } 1084 1085 static ssize_t duty_cycle_store(struct device *pwm_dev, 1086 struct device_attribute *attr, 1087 const char *buf, size_t size) 1088 { 1089 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1090 struct pwm_device *pwm = export->pwm; 1091 struct pwm_state state; 1092 u64 val; 1093 int ret; 1094 1095 ret = kstrtou64(buf, 0, &val); 1096 if (ret) 1097 return ret; 1098 1099 guard(mutex)(&export->lock); 1100 1101 pwm_get_state(pwm, &state); 1102 state.duty_cycle = val; 1103 ret = pwm_apply_might_sleep(pwm, &state); 1104 1105 return ret ? : size; 1106 } 1107 1108 static ssize_t enable_show(struct device *pwm_dev, 1109 struct device_attribute *attr, 1110 char *buf) 1111 { 1112 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1113 struct pwm_state state; 1114 1115 pwm_get_state(pwm, &state); 1116 1117 return sysfs_emit(buf, "%d\n", state.enabled); 1118 } 1119 1120 static ssize_t enable_store(struct device *pwm_dev, 1121 struct device_attribute *attr, 1122 const char *buf, size_t size) 1123 { 1124 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1125 struct pwm_device *pwm = export->pwm; 1126 struct pwm_state state; 1127 int val, ret; 1128 1129 ret = kstrtoint(buf, 0, &val); 1130 if (ret) 1131 return ret; 1132 1133 guard(mutex)(&export->lock); 1134 1135 pwm_get_state(pwm, &state); 1136 1137 switch (val) { 1138 case 0: 1139 state.enabled = false; 1140 break; 1141 case 1: 1142 state.enabled = true; 1143 break; 1144 default: 1145 return -EINVAL; 1146 } 1147 1148 ret = pwm_apply_might_sleep(pwm, &state); 1149 1150 return ret ? : size; 1151 } 1152 1153 static ssize_t polarity_show(struct device *pwm_dev, 1154 struct device_attribute *attr, 1155 char *buf) 1156 { 1157 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1158 const char *polarity = "unknown"; 1159 struct pwm_state state; 1160 1161 pwm_get_state(pwm, &state); 1162 1163 switch (state.polarity) { 1164 case PWM_POLARITY_NORMAL: 1165 polarity = "normal"; 1166 break; 1167 1168 case PWM_POLARITY_INVERSED: 1169 polarity = "inversed"; 1170 break; 1171 } 1172 1173 return sysfs_emit(buf, "%s\n", polarity); 1174 } 1175 1176 static ssize_t polarity_store(struct device *pwm_dev, 1177 struct device_attribute *attr, 1178 const char *buf, size_t size) 1179 { 1180 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1181 struct pwm_device *pwm = export->pwm; 1182 enum pwm_polarity polarity; 1183 struct pwm_state state; 1184 int ret; 1185 1186 if (sysfs_streq(buf, "normal")) 1187 polarity = PWM_POLARITY_NORMAL; 1188 else if (sysfs_streq(buf, "inversed")) 1189 polarity = PWM_POLARITY_INVERSED; 1190 else 1191 return -EINVAL; 1192 1193 guard(mutex)(&export->lock); 1194 1195 pwm_get_state(pwm, &state); 1196 state.polarity = polarity; 1197 ret = pwm_apply_might_sleep(pwm, &state); 1198 1199 return ret ? : size; 1200 } 1201 1202 static ssize_t capture_show(struct device *pwm_dev, 1203 struct device_attribute *attr, 1204 char *buf) 1205 { 1206 struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1207 struct pwm_capture result; 1208 int ret; 1209 1210 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); 1211 if (ret) 1212 return ret; 1213 1214 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); 1215 } 1216 1217 static DEVICE_ATTR_RW(period); 1218 static DEVICE_ATTR_RW(duty_cycle); 1219 static DEVICE_ATTR_RW(enable); 1220 static DEVICE_ATTR_RW(polarity); 1221 static DEVICE_ATTR_RO(capture); 1222 1223 static struct attribute *pwm_attrs[] = { 1224 &dev_attr_period.attr, 1225 &dev_attr_duty_cycle.attr, 1226 &dev_attr_enable.attr, 1227 &dev_attr_polarity.attr, 1228 &dev_attr_capture.attr, 1229 NULL 1230 }; 1231 ATTRIBUTE_GROUPS(pwm); 1232 1233 static void pwm_export_release(struct device *pwm_dev) 1234 { 1235 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1236 1237 kfree(export); 1238 } 1239 1240 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1241 { 1242 struct pwm_export *export; 1243 char *pwm_prop[2]; 1244 int ret; 1245 1246 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) 1247 return -EBUSY; 1248 1249 export = kzalloc(sizeof(*export), GFP_KERNEL); 1250 if (!export) { 1251 clear_bit(PWMF_EXPORTED, &pwm->flags); 1252 return -ENOMEM; 1253 } 1254 1255 export->pwm = pwm; 1256 mutex_init(&export->lock); 1257 1258 export->pwm_dev.release = pwm_export_release; 1259 export->pwm_dev.parent = pwmchip_dev; 1260 export->pwm_dev.devt = MKDEV(0, 0); 1261 export->pwm_dev.groups = pwm_groups; 1262 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); 1263 1264 ret = device_register(&export->pwm_dev); 1265 if (ret) { 1266 clear_bit(PWMF_EXPORTED, &pwm->flags); 1267 put_device(&export->pwm_dev); 1268 export = NULL; 1269 return ret; 1270 } 1271 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); 1272 pwm_prop[1] = NULL; 1273 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1274 kfree(pwm_prop[0]); 1275 1276 return 0; 1277 } 1278 1279 static int pwm_unexport_match(struct device *pwm_dev, void *data) 1280 { 1281 return pwm_from_dev(pwm_dev) == data; 1282 } 1283 1284 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1285 { 1286 struct device *pwm_dev; 1287 char *pwm_prop[2]; 1288 1289 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) 1290 return -ENODEV; 1291 1292 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1293 if (!pwm_dev) 1294 return -ENODEV; 1295 1296 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); 1297 pwm_prop[1] = NULL; 1298 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1299 kfree(pwm_prop[0]); 1300 1301 /* for device_find_child() */ 1302 put_device(pwm_dev); 1303 device_unregister(pwm_dev); 1304 pwm_put(pwm); 1305 1306 return 0; 1307 } 1308 1309 static ssize_t export_store(struct device *pwmchip_dev, 1310 struct device_attribute *attr, 1311 const char *buf, size_t len) 1312 { 1313 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1314 struct pwm_device *pwm; 1315 unsigned int hwpwm; 1316 int ret; 1317 1318 ret = kstrtouint(buf, 0, &hwpwm); 1319 if (ret < 0) 1320 return ret; 1321 1322 if (hwpwm >= chip->npwm) 1323 return -ENODEV; 1324 1325 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); 1326 if (IS_ERR(pwm)) 1327 return PTR_ERR(pwm); 1328 1329 ret = pwm_export_child(pwmchip_dev, pwm); 1330 if (ret < 0) 1331 pwm_put(pwm); 1332 1333 return ret ? : len; 1334 } 1335 static DEVICE_ATTR_WO(export); 1336 1337 static ssize_t unexport_store(struct device *pwmchip_dev, 1338 struct device_attribute *attr, 1339 const char *buf, size_t len) 1340 { 1341 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1342 unsigned int hwpwm; 1343 int ret; 1344 1345 ret = kstrtouint(buf, 0, &hwpwm); 1346 if (ret < 0) 1347 return ret; 1348 1349 if (hwpwm >= chip->npwm) 1350 return -ENODEV; 1351 1352 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); 1353 1354 return ret ? : len; 1355 } 1356 static DEVICE_ATTR_WO(unexport); 1357 1358 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, 1359 char *buf) 1360 { 1361 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1362 1363 return sysfs_emit(buf, "%u\n", chip->npwm); 1364 } 1365 static DEVICE_ATTR_RO(npwm); 1366 1367 static struct attribute *pwm_chip_attrs[] = { 1368 &dev_attr_export.attr, 1369 &dev_attr_unexport.attr, 1370 &dev_attr_npwm.attr, 1371 NULL, 1372 }; 1373 ATTRIBUTE_GROUPS(pwm_chip); 1374 1375 /* takes export->lock on success */ 1376 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, 1377 struct pwm_device *pwm, 1378 struct pwm_state *state) 1379 { 1380 struct device *pwm_dev; 1381 struct pwm_export *export; 1382 1383 if (!test_bit(PWMF_EXPORTED, &pwm->flags)) 1384 return NULL; 1385 1386 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1387 if (!pwm_dev) 1388 return NULL; 1389 1390 export = pwmexport_from_dev(pwm_dev); 1391 put_device(pwm_dev); /* for device_find_child() */ 1392 1393 mutex_lock(&export->lock); 1394 pwm_get_state(pwm, state); 1395 1396 return export; 1397 } 1398 1399 static int pwm_class_apply_state(struct pwm_export *export, 1400 struct pwm_device *pwm, 1401 struct pwm_state *state) 1402 { 1403 int ret = pwm_apply_might_sleep(pwm, state); 1404 1405 /* release lock taken in pwm_class_get_state */ 1406 mutex_unlock(&export->lock); 1407 1408 return ret; 1409 } 1410 1411 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) 1412 { 1413 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1414 unsigned int i; 1415 int ret = 0; 1416 1417 for (i = 0; i < npwm; i++) { 1418 struct pwm_device *pwm = &chip->pwms[i]; 1419 struct pwm_state state; 1420 struct pwm_export *export; 1421 1422 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1423 if (!export) 1424 continue; 1425 1426 /* If pwmchip was not enabled before suspend, do nothing. */ 1427 if (!export->suspend.enabled) { 1428 /* release lock taken in pwm_class_get_state */ 1429 mutex_unlock(&export->lock); 1430 continue; 1431 } 1432 1433 state.enabled = export->suspend.enabled; 1434 ret = pwm_class_apply_state(export, pwm, &state); 1435 if (ret < 0) 1436 break; 1437 } 1438 1439 return ret; 1440 } 1441 1442 static int pwm_class_suspend(struct device *pwmchip_dev) 1443 { 1444 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1445 unsigned int i; 1446 int ret = 0; 1447 1448 for (i = 0; i < chip->npwm; i++) { 1449 struct pwm_device *pwm = &chip->pwms[i]; 1450 struct pwm_state state; 1451 struct pwm_export *export; 1452 1453 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1454 if (!export) 1455 continue; 1456 1457 /* 1458 * If pwmchip was not enabled before suspend, save 1459 * state for resume time and do nothing else. 1460 */ 1461 export->suspend = state; 1462 if (!state.enabled) { 1463 /* release lock taken in pwm_class_get_state */ 1464 mutex_unlock(&export->lock); 1465 continue; 1466 } 1467 1468 state.enabled = false; 1469 ret = pwm_class_apply_state(export, pwm, &state); 1470 if (ret < 0) { 1471 /* 1472 * roll back the PWM devices that were disabled by 1473 * this suspend function. 1474 */ 1475 pwm_class_resume_npwm(pwmchip_dev, i); 1476 break; 1477 } 1478 } 1479 1480 return ret; 1481 } 1482 1483 static int pwm_class_resume(struct device *pwmchip_dev) 1484 { 1485 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1486 1487 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); 1488 } 1489 1490 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); 1491 1492 static struct class pwm_class = { 1493 .name = "pwm", 1494 .dev_groups = pwm_chip_groups, 1495 .pm = pm_sleep_ptr(&pwm_class_pm_ops), 1496 }; 1497 1498 static void pwmchip_sysfs_unexport(struct pwm_chip *chip) 1499 { 1500 unsigned int i; 1501 1502 for (i = 0; i < chip->npwm; i++) { 1503 struct pwm_device *pwm = &chip->pwms[i]; 1504 1505 if (test_bit(PWMF_EXPORTED, &pwm->flags)) 1506 pwm_unexport_child(&chip->dev, pwm); 1507 } 1508 } 1509 1510 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN 1511 1512 static void *pwmchip_priv(struct pwm_chip *chip) 1513 { 1514 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); 1515 } 1516 1517 /* This is the counterpart to pwmchip_alloc() */ 1518 void pwmchip_put(struct pwm_chip *chip) 1519 { 1520 put_device(&chip->dev); 1521 } 1522 EXPORT_SYMBOL_GPL(pwmchip_put); 1523 1524 static void pwmchip_release(struct device *pwmchip_dev) 1525 { 1526 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1527 1528 kfree(chip); 1529 } 1530 1531 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1532 { 1533 struct pwm_chip *chip; 1534 struct device *pwmchip_dev; 1535 size_t alloc_size; 1536 unsigned int i; 1537 1538 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), 1539 sizeof_priv); 1540 1541 chip = kzalloc(alloc_size, GFP_KERNEL); 1542 if (!chip) 1543 return ERR_PTR(-ENOMEM); 1544 1545 chip->npwm = npwm; 1546 chip->uses_pwmchip_alloc = true; 1547 chip->operational = false; 1548 1549 pwmchip_dev = &chip->dev; 1550 device_initialize(pwmchip_dev); 1551 pwmchip_dev->class = &pwm_class; 1552 pwmchip_dev->parent = parent; 1553 pwmchip_dev->release = pwmchip_release; 1554 1555 pwmchip_set_drvdata(chip, pwmchip_priv(chip)); 1556 1557 for (i = 0; i < chip->npwm; i++) { 1558 struct pwm_device *pwm = &chip->pwms[i]; 1559 pwm->chip = chip; 1560 pwm->hwpwm = i; 1561 } 1562 1563 return chip; 1564 } 1565 EXPORT_SYMBOL_GPL(pwmchip_alloc); 1566 1567 static void devm_pwmchip_put(void *data) 1568 { 1569 struct pwm_chip *chip = data; 1570 1571 pwmchip_put(chip); 1572 } 1573 1574 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1575 { 1576 struct pwm_chip *chip; 1577 int ret; 1578 1579 chip = pwmchip_alloc(parent, npwm, sizeof_priv); 1580 if (IS_ERR(chip)) 1581 return chip; 1582 1583 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); 1584 if (ret) 1585 return ERR_PTR(ret); 1586 1587 return chip; 1588 } 1589 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); 1590 1591 static void of_pwmchip_add(struct pwm_chip *chip) 1592 { 1593 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) 1594 return; 1595 1596 if (!chip->of_xlate) 1597 chip->of_xlate = of_pwm_xlate_with_flags; 1598 1599 of_node_get(pwmchip_parent(chip)->of_node); 1600 } 1601 1602 static void of_pwmchip_remove(struct pwm_chip *chip) 1603 { 1604 if (pwmchip_parent(chip)) 1605 of_node_put(pwmchip_parent(chip)->of_node); 1606 } 1607 1608 static bool pwm_ops_check(const struct pwm_chip *chip) 1609 { 1610 const struct pwm_ops *ops = chip->ops; 1611 1612 if (ops->write_waveform) { 1613 if (!ops->round_waveform_tohw || 1614 !ops->round_waveform_fromhw || 1615 !ops->write_waveform) 1616 return false; 1617 1618 if (WFHWSIZE < ops->sizeof_wfhw) { 1619 dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw); 1620 return false; 1621 } 1622 } else { 1623 if (!ops->apply) 1624 return false; 1625 1626 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 1627 dev_warn(pwmchip_parent(chip), 1628 "Please implement the .get_state() callback\n"); 1629 } 1630 1631 return true; 1632 } 1633 1634 static struct device_link *pwm_device_link_add(struct device *dev, 1635 struct pwm_device *pwm) 1636 { 1637 struct device_link *dl; 1638 1639 if (!dev) { 1640 /* 1641 * No device for the PWM consumer has been provided. It may 1642 * impact the PM sequence ordering: the PWM supplier may get 1643 * suspended before the consumer. 1644 */ 1645 dev_warn(pwmchip_parent(pwm->chip), 1646 "No consumer device specified to create a link to\n"); 1647 return NULL; 1648 } 1649 1650 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); 1651 if (!dl) { 1652 dev_err(dev, "failed to create device link to %s\n", 1653 dev_name(pwmchip_parent(pwm->chip))); 1654 return ERR_PTR(-EINVAL); 1655 } 1656 1657 return dl; 1658 } 1659 1660 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 1661 { 1662 struct pwm_chip *chip; 1663 unsigned long id, tmp; 1664 1665 guard(mutex)(&pwm_lock); 1666 1667 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 1668 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) 1669 return chip; 1670 1671 return ERR_PTR(-EPROBE_DEFER); 1672 } 1673 1674 /** 1675 * of_pwm_get() - request a PWM via the PWM framework 1676 * @dev: device for PWM consumer 1677 * @np: device node to get the PWM from 1678 * @con_id: consumer name 1679 * 1680 * Returns the PWM device parsed from the phandle and index specified in the 1681 * "pwms" property of a device tree node or a negative error-code on failure. 1682 * Values parsed from the device tree are stored in the returned PWM device 1683 * object. 1684 * 1685 * If con_id is NULL, the first PWM device listed in the "pwms" property will 1686 * be requested. Otherwise the "pwm-names" property is used to do a reverse 1687 * lookup of the PWM index. This also means that the "pwm-names" property 1688 * becomes mandatory for devices that look up the PWM device via the con_id 1689 * parameter. 1690 * 1691 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1692 * error code on failure. 1693 */ 1694 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 1695 const char *con_id) 1696 { 1697 struct pwm_device *pwm = NULL; 1698 struct of_phandle_args args; 1699 struct device_link *dl; 1700 struct pwm_chip *chip; 1701 int index = 0; 1702 int err; 1703 1704 if (con_id) { 1705 index = of_property_match_string(np, "pwm-names", con_id); 1706 if (index < 0) 1707 return ERR_PTR(index); 1708 } 1709 1710 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 1711 &args); 1712 if (err) { 1713 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 1714 return ERR_PTR(err); 1715 } 1716 1717 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 1718 if (IS_ERR(chip)) { 1719 if (PTR_ERR(chip) != -EPROBE_DEFER) 1720 pr_err("%s(): PWM chip not found\n", __func__); 1721 1722 pwm = ERR_CAST(chip); 1723 goto put; 1724 } 1725 1726 pwm = chip->of_xlate(chip, &args); 1727 if (IS_ERR(pwm)) 1728 goto put; 1729 1730 dl = pwm_device_link_add(dev, pwm); 1731 if (IS_ERR(dl)) { 1732 /* of_xlate ended up calling pwm_request_from_chip() */ 1733 pwm_put(pwm); 1734 pwm = ERR_CAST(dl); 1735 goto put; 1736 } 1737 1738 /* 1739 * If a consumer name was not given, try to look it up from the 1740 * "pwm-names" property if it exists. Otherwise use the name of 1741 * the user device node. 1742 */ 1743 if (!con_id) { 1744 err = of_property_read_string_index(np, "pwm-names", index, 1745 &con_id); 1746 if (err < 0) 1747 con_id = np->name; 1748 } 1749 1750 pwm->label = con_id; 1751 1752 put: 1753 of_node_put(args.np); 1754 1755 return pwm; 1756 } 1757 1758 /** 1759 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 1760 * @fwnode: firmware node to get the "pwms" property from 1761 * 1762 * Returns the PWM device parsed from the fwnode and index specified in the 1763 * "pwms" property or a negative error-code on failure. 1764 * Values parsed from the device tree are stored in the returned PWM device 1765 * object. 1766 * 1767 * This is analogous to of_pwm_get() except con_id is not yet supported. 1768 * ACPI entries must look like 1769 * Package () {"pwms", Package () 1770 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 1771 * 1772 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1773 * error code on failure. 1774 */ 1775 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 1776 { 1777 struct pwm_device *pwm; 1778 struct fwnode_reference_args args; 1779 struct pwm_chip *chip; 1780 int ret; 1781 1782 memset(&args, 0, sizeof(args)); 1783 1784 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 1785 if (ret < 0) 1786 return ERR_PTR(ret); 1787 1788 if (args.nargs < 2) 1789 return ERR_PTR(-EPROTO); 1790 1791 chip = fwnode_to_pwmchip(args.fwnode); 1792 if (IS_ERR(chip)) 1793 return ERR_CAST(chip); 1794 1795 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 1796 if (IS_ERR(pwm)) 1797 return pwm; 1798 1799 pwm->args.period = args.args[1]; 1800 pwm->args.polarity = PWM_POLARITY_NORMAL; 1801 1802 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 1803 pwm->args.polarity = PWM_POLARITY_INVERSED; 1804 1805 return pwm; 1806 } 1807 1808 static DEFINE_MUTEX(pwm_lookup_lock); 1809 static LIST_HEAD(pwm_lookup_list); 1810 1811 /** 1812 * pwm_get() - look up and request a PWM device 1813 * @dev: device for PWM consumer 1814 * @con_id: consumer name 1815 * 1816 * Lookup is first attempted using DT. If the device was not instantiated from 1817 * a device tree, a PWM chip and a relative index is looked up via a table 1818 * supplied by board setup code (see pwm_add_table()). 1819 * 1820 * Once a PWM chip has been found the specified PWM device will be requested 1821 * and is ready to be used. 1822 * 1823 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1824 * error code on failure. 1825 */ 1826 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 1827 { 1828 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 1829 const char *dev_id = dev ? dev_name(dev) : NULL; 1830 struct pwm_device *pwm; 1831 struct pwm_chip *chip; 1832 struct device_link *dl; 1833 unsigned int best = 0; 1834 struct pwm_lookup *p, *chosen = NULL; 1835 unsigned int match; 1836 int err; 1837 1838 /* look up via DT first */ 1839 if (is_of_node(fwnode)) 1840 return of_pwm_get(dev, to_of_node(fwnode), con_id); 1841 1842 /* then lookup via ACPI */ 1843 if (is_acpi_node(fwnode)) { 1844 pwm = acpi_pwm_get(fwnode); 1845 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1846 return pwm; 1847 } 1848 1849 /* 1850 * We look up the provider in the static table typically provided by 1851 * board setup code. We first try to lookup the consumer device by 1852 * name. If the consumer device was passed in as NULL or if no match 1853 * was found, we try to find the consumer by directly looking it up 1854 * by name. 1855 * 1856 * If a match is found, the provider PWM chip is looked up by name 1857 * and a PWM device is requested using the PWM device per-chip index. 1858 * 1859 * The lookup algorithm was shamelessly taken from the clock 1860 * framework: 1861 * 1862 * We do slightly fuzzy matching here: 1863 * An entry with a NULL ID is assumed to be a wildcard. 1864 * If an entry has a device ID, it must match 1865 * If an entry has a connection ID, it must match 1866 * Then we take the most specific entry - with the following order 1867 * of precedence: dev+con > dev only > con only. 1868 */ 1869 scoped_guard(mutex, &pwm_lookup_lock) 1870 list_for_each_entry(p, &pwm_lookup_list, list) { 1871 match = 0; 1872 1873 if (p->dev_id) { 1874 if (!dev_id || strcmp(p->dev_id, dev_id)) 1875 continue; 1876 1877 match += 2; 1878 } 1879 1880 if (p->con_id) { 1881 if (!con_id || strcmp(p->con_id, con_id)) 1882 continue; 1883 1884 match += 1; 1885 } 1886 1887 if (match > best) { 1888 chosen = p; 1889 1890 if (match != 3) 1891 best = match; 1892 else 1893 break; 1894 } 1895 } 1896 1897 if (!chosen) 1898 return ERR_PTR(-ENODEV); 1899 1900 chip = pwmchip_find_by_name(chosen->provider); 1901 1902 /* 1903 * If the lookup entry specifies a module, load the module and retry 1904 * the PWM chip lookup. This can be used to work around driver load 1905 * ordering issues if driver's can't be made to properly support the 1906 * deferred probe mechanism. 1907 */ 1908 if (!chip && chosen->module) { 1909 err = request_module(chosen->module); 1910 if (err == 0) 1911 chip = pwmchip_find_by_name(chosen->provider); 1912 } 1913 1914 if (!chip) 1915 return ERR_PTR(-EPROBE_DEFER); 1916 1917 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 1918 if (IS_ERR(pwm)) 1919 return pwm; 1920 1921 dl = pwm_device_link_add(dev, pwm); 1922 if (IS_ERR(dl)) { 1923 pwm_put(pwm); 1924 return ERR_CAST(dl); 1925 } 1926 1927 pwm->args.period = chosen->period; 1928 pwm->args.polarity = chosen->polarity; 1929 1930 return pwm; 1931 } 1932 EXPORT_SYMBOL_GPL(pwm_get); 1933 1934 /** 1935 * pwm_put() - release a PWM device 1936 * @pwm: PWM device 1937 */ 1938 void pwm_put(struct pwm_device *pwm) 1939 { 1940 struct pwm_chip *chip; 1941 1942 if (!pwm) 1943 return; 1944 1945 chip = pwm->chip; 1946 1947 guard(mutex)(&pwm_lock); 1948 1949 /* 1950 * Trigger a warning if a consumer called pwm_put() twice. 1951 * If the chip isn't operational, PWMF_REQUESTED was already cleared in 1952 * pwmchip_remove(). So don't warn in this case. 1953 */ 1954 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 1955 pr_warn("PWM device already freed\n"); 1956 return; 1957 } 1958 1959 if (chip->operational && chip->ops->free) 1960 pwm->chip->ops->free(pwm->chip, pwm); 1961 1962 pwm->label = NULL; 1963 1964 put_device(&chip->dev); 1965 1966 module_put(chip->owner); 1967 } 1968 EXPORT_SYMBOL_GPL(pwm_put); 1969 1970 static void devm_pwm_release(void *pwm) 1971 { 1972 pwm_put(pwm); 1973 } 1974 1975 /** 1976 * devm_pwm_get() - resource managed pwm_get() 1977 * @dev: device for PWM consumer 1978 * @con_id: consumer name 1979 * 1980 * This function performs like pwm_get() but the acquired PWM device will 1981 * automatically be released on driver detach. 1982 * 1983 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1984 * error code on failure. 1985 */ 1986 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 1987 { 1988 struct pwm_device *pwm; 1989 int ret; 1990 1991 pwm = pwm_get(dev, con_id); 1992 if (IS_ERR(pwm)) 1993 return pwm; 1994 1995 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 1996 if (ret) 1997 return ERR_PTR(ret); 1998 1999 return pwm; 2000 } 2001 EXPORT_SYMBOL_GPL(devm_pwm_get); 2002 2003 /** 2004 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 2005 * @dev: device for PWM consumer 2006 * @fwnode: firmware node to get the PWM from 2007 * @con_id: consumer name 2008 * 2009 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 2010 * acpi_pwm_get() for a detailed description. 2011 * 2012 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2013 * error code on failure. 2014 */ 2015 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 2016 struct fwnode_handle *fwnode, 2017 const char *con_id) 2018 { 2019 struct pwm_device *pwm = ERR_PTR(-ENODEV); 2020 int ret; 2021 2022 if (is_of_node(fwnode)) 2023 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 2024 else if (is_acpi_node(fwnode)) 2025 pwm = acpi_pwm_get(fwnode); 2026 if (IS_ERR(pwm)) 2027 return pwm; 2028 2029 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2030 if (ret) 2031 return ERR_PTR(ret); 2032 2033 return pwm; 2034 } 2035 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 2036 2037 /** 2038 * __pwmchip_add() - register a new PWM chip 2039 * @chip: the PWM chip to add 2040 * @owner: reference to the module providing the chip. 2041 * 2042 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 2043 * pwmchip_add wrapper to do this right. 2044 * 2045 * Returns: 0 on success or a negative error code on failure. 2046 */ 2047 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 2048 { 2049 int ret; 2050 2051 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) 2052 return -EINVAL; 2053 2054 /* 2055 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, 2056 * otherwise the embedded struct device might disappear too early 2057 * resulting in memory corruption. 2058 * Catch drivers that were not converted appropriately. 2059 */ 2060 if (!chip->uses_pwmchip_alloc) 2061 return -EINVAL; 2062 2063 if (!pwm_ops_check(chip)) 2064 return -EINVAL; 2065 2066 chip->owner = owner; 2067 2068 if (chip->atomic) 2069 spin_lock_init(&chip->atomic_lock); 2070 else 2071 mutex_init(&chip->nonatomic_lock); 2072 2073 guard(mutex)(&pwm_lock); 2074 2075 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 2076 if (ret < 0) 2077 return ret; 2078 2079 chip->id = ret; 2080 2081 dev_set_name(&chip->dev, "pwmchip%u", chip->id); 2082 2083 if (IS_ENABLED(CONFIG_OF)) 2084 of_pwmchip_add(chip); 2085 2086 scoped_guard(pwmchip, chip) 2087 chip->operational = true; 2088 2089 ret = device_add(&chip->dev); 2090 if (ret) 2091 goto err_device_add; 2092 2093 return 0; 2094 2095 err_device_add: 2096 scoped_guard(pwmchip, chip) 2097 chip->operational = false; 2098 2099 if (IS_ENABLED(CONFIG_OF)) 2100 of_pwmchip_remove(chip); 2101 2102 idr_remove(&pwm_chips, chip->id); 2103 2104 return ret; 2105 } 2106 EXPORT_SYMBOL_GPL(__pwmchip_add); 2107 2108 /** 2109 * pwmchip_remove() - remove a PWM chip 2110 * @chip: the PWM chip to remove 2111 * 2112 * Removes a PWM chip. 2113 */ 2114 void pwmchip_remove(struct pwm_chip *chip) 2115 { 2116 pwmchip_sysfs_unexport(chip); 2117 2118 scoped_guard(mutex, &pwm_lock) { 2119 unsigned int i; 2120 2121 scoped_guard(pwmchip, chip) 2122 chip->operational = false; 2123 2124 for (i = 0; i < chip->npwm; ++i) { 2125 struct pwm_device *pwm = &chip->pwms[i]; 2126 2127 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2128 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); 2129 if (pwm->chip->ops->free) 2130 pwm->chip->ops->free(pwm->chip, pwm); 2131 } 2132 } 2133 2134 if (IS_ENABLED(CONFIG_OF)) 2135 of_pwmchip_remove(chip); 2136 2137 idr_remove(&pwm_chips, chip->id); 2138 } 2139 2140 device_del(&chip->dev); 2141 } 2142 EXPORT_SYMBOL_GPL(pwmchip_remove); 2143 2144 static void devm_pwmchip_remove(void *data) 2145 { 2146 struct pwm_chip *chip = data; 2147 2148 pwmchip_remove(chip); 2149 } 2150 2151 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 2152 { 2153 int ret; 2154 2155 ret = __pwmchip_add(chip, owner); 2156 if (ret) 2157 return ret; 2158 2159 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 2160 } 2161 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 2162 2163 /** 2164 * pwm_add_table() - register PWM device consumers 2165 * @table: array of consumers to register 2166 * @num: number of consumers in table 2167 */ 2168 void pwm_add_table(struct pwm_lookup *table, size_t num) 2169 { 2170 guard(mutex)(&pwm_lookup_lock); 2171 2172 while (num--) { 2173 list_add_tail(&table->list, &pwm_lookup_list); 2174 table++; 2175 } 2176 } 2177 2178 /** 2179 * pwm_remove_table() - unregister PWM device consumers 2180 * @table: array of consumers to unregister 2181 * @num: number of consumers in table 2182 */ 2183 void pwm_remove_table(struct pwm_lookup *table, size_t num) 2184 { 2185 guard(mutex)(&pwm_lookup_lock); 2186 2187 while (num--) { 2188 list_del(&table->list); 2189 table++; 2190 } 2191 } 2192 2193 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 2194 { 2195 unsigned int i; 2196 2197 for (i = 0; i < chip->npwm; i++) { 2198 struct pwm_device *pwm = &chip->pwms[i]; 2199 struct pwm_state state; 2200 2201 pwm_get_state(pwm, &state); 2202 2203 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 2204 2205 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 2206 seq_puts(s, " requested"); 2207 2208 if (state.enabled) 2209 seq_puts(s, " enabled"); 2210 2211 seq_printf(s, " period: %llu ns", state.period); 2212 seq_printf(s, " duty: %llu ns", state.duty_cycle); 2213 seq_printf(s, " polarity: %s", 2214 state.polarity ? "inverse" : "normal"); 2215 2216 if (state.usage_power) 2217 seq_puts(s, " usage_power"); 2218 2219 seq_puts(s, "\n"); 2220 } 2221 } 2222 2223 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 2224 { 2225 unsigned long id = *pos; 2226 void *ret; 2227 2228 mutex_lock(&pwm_lock); 2229 s->private = ""; 2230 2231 ret = idr_get_next_ul(&pwm_chips, &id); 2232 *pos = id; 2233 return ret; 2234 } 2235 2236 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 2237 { 2238 unsigned long id = *pos + 1; 2239 void *ret; 2240 2241 s->private = "\n"; 2242 2243 ret = idr_get_next_ul(&pwm_chips, &id); 2244 *pos = id; 2245 return ret; 2246 } 2247 2248 static void pwm_seq_stop(struct seq_file *s, void *v) 2249 { 2250 mutex_unlock(&pwm_lock); 2251 } 2252 2253 static int pwm_seq_show(struct seq_file *s, void *v) 2254 { 2255 struct pwm_chip *chip = v; 2256 2257 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", 2258 (char *)s->private, chip->id, 2259 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", 2260 dev_name(pwmchip_parent(chip)), chip->npwm, 2261 (chip->npwm != 1) ? "s" : ""); 2262 2263 pwm_dbg_show(chip, s); 2264 2265 return 0; 2266 } 2267 2268 static const struct seq_operations pwm_debugfs_sops = { 2269 .start = pwm_seq_start, 2270 .next = pwm_seq_next, 2271 .stop = pwm_seq_stop, 2272 .show = pwm_seq_show, 2273 }; 2274 2275 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 2276 2277 static int __init pwm_init(void) 2278 { 2279 int ret; 2280 2281 ret = class_register(&pwm_class); 2282 if (ret) { 2283 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); 2284 return ret; 2285 } 2286 2287 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2288 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 2289 2290 return 0; 2291 } 2292 subsys_initcall(pwm_init); 2293