1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #define DEFAULT_SYMBOL_NAMESPACE "PWM" 10 11 #include <linux/acpi.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/of.h> 15 #include <linux/pwm.h> 16 #include <linux/list.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include <dt-bindings/pwm/pwm.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/pwm.h> 28 29 /* protects access to pwm_chips */ 30 static DEFINE_MUTEX(pwm_lock); 31 32 static DEFINE_IDR(pwm_chips); 33 34 static void pwmchip_lock(struct pwm_chip *chip) 35 { 36 if (chip->atomic) 37 spin_lock(&chip->atomic_lock); 38 else 39 mutex_lock(&chip->nonatomic_lock); 40 } 41 42 static void pwmchip_unlock(struct pwm_chip *chip) 43 { 44 if (chip->atomic) 45 spin_unlock(&chip->atomic_lock); 46 else 47 mutex_unlock(&chip->nonatomic_lock); 48 } 49 50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) 51 52 static bool pwm_wf_valid(const struct pwm_waveform *wf) 53 { 54 /* 55 * For now restrict waveforms to period_length_ns <= S64_MAX to provide 56 * some space for future extensions. One possibility is to simplify 57 * representing waveforms with inverted polarity using negative values 58 * somehow. 59 */ 60 if (wf->period_length_ns > S64_MAX) 61 return false; 62 63 if (wf->duty_length_ns > wf->period_length_ns) 64 return false; 65 66 /* 67 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart 68 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. 69 */ 70 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) 71 return false; 72 73 return true; 74 } 75 76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) 77 { 78 if (wf->period_length_ns) { 79 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) 80 *state = (struct pwm_state){ 81 .enabled = true, 82 .polarity = PWM_POLARITY_NORMAL, 83 .period = wf->period_length_ns, 84 .duty_cycle = wf->duty_length_ns, 85 }; 86 else 87 *state = (struct pwm_state){ 88 .enabled = true, 89 .polarity = PWM_POLARITY_INVERSED, 90 .period = wf->period_length_ns, 91 .duty_cycle = wf->period_length_ns - wf->duty_length_ns, 92 }; 93 } else { 94 *state = (struct pwm_state){ 95 .enabled = false, 96 }; 97 } 98 } 99 100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) 101 { 102 if (state->enabled) { 103 if (state->polarity == PWM_POLARITY_NORMAL) 104 *wf = (struct pwm_waveform){ 105 .period_length_ns = state->period, 106 .duty_length_ns = state->duty_cycle, 107 .duty_offset_ns = 0, 108 }; 109 else 110 *wf = (struct pwm_waveform){ 111 .period_length_ns = state->period, 112 .duty_length_ns = state->period - state->duty_cycle, 113 .duty_offset_ns = state->duty_cycle, 114 }; 115 } else { 116 *wf = (struct pwm_waveform){ 117 .period_length_ns = 0, 118 }; 119 } 120 } 121 122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) 123 { 124 if (a->period_length_ns > b->period_length_ns) 125 return 1; 126 127 if (a->period_length_ns < b->period_length_ns) 128 return -1; 129 130 if (a->duty_length_ns > b->duty_length_ns) 131 return 1; 132 133 if (a->duty_length_ns < b->duty_length_ns) 134 return -1; 135 136 if (a->duty_offset_ns > b->duty_offset_ns) 137 return 1; 138 139 if (a->duty_offset_ns < b->duty_offset_ns) 140 return -1; 141 142 return 0; 143 } 144 145 static bool pwm_check_rounding(const struct pwm_waveform *wf, 146 const struct pwm_waveform *wf_rounded) 147 { 148 if (!wf->period_length_ns) 149 return true; 150 151 if (wf->period_length_ns < wf_rounded->period_length_ns) 152 return false; 153 154 if (wf->duty_length_ns < wf_rounded->duty_length_ns) 155 return false; 156 157 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) 158 return false; 159 160 return true; 161 } 162 163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, 164 const struct pwm_waveform *wf, void *wfhw) 165 { 166 const struct pwm_ops *ops = chip->ops; 167 int ret; 168 169 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); 170 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); 171 172 return ret; 173 } 174 175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, 176 const void *wfhw, struct pwm_waveform *wf) 177 { 178 const struct pwm_ops *ops = chip->ops; 179 int ret; 180 181 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); 182 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); 183 184 return ret; 185 } 186 187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) 188 { 189 const struct pwm_ops *ops = chip->ops; 190 int ret; 191 192 ret = ops->read_waveform(chip, pwm, wfhw); 193 trace_pwm_read_waveform(pwm, wfhw, ret); 194 195 return ret; 196 } 197 198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) 199 { 200 const struct pwm_ops *ops = chip->ops; 201 int ret; 202 203 ret = ops->write_waveform(chip, pwm, wfhw); 204 trace_pwm_write_waveform(pwm, wfhw, ret); 205 206 return ret; 207 } 208 209 #define WFHWSIZE 20 210 211 /** 212 * pwm_round_waveform_might_sleep - Query hardware capabilities 213 * Cannot be used in atomic context. 214 * @pwm: PWM device 215 * @wf: waveform to round and output parameter 216 * 217 * Typically a given waveform cannot be implemented exactly by hardware, e.g. 218 * because hardware only supports coarse period resolution or no duty_offset. 219 * This function returns the actually implemented waveform if you pass wf to 220 * pwm_set_waveform_might_sleep now. 221 * 222 * Note however that the world doesn't stop turning when you call it, so when 223 * doing 224 * 225 * pwm_round_waveform_might_sleep(mypwm, &wf); 226 * pwm_set_waveform_might_sleep(mypwm, &wf, true); 227 * 228 * the latter might fail, e.g. because an input clock changed its rate between 229 * these two calls and the waveform determined by 230 * pwm_round_waveform_might_sleep() cannot be implemented any more. 231 * 232 * Returns 0 on success, 1 if there is no valid hardware configuration matching 233 * the input waveform under the PWM rounding rules or a negative errno. 234 */ 235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 236 { 237 struct pwm_chip *chip = pwm->chip; 238 const struct pwm_ops *ops = chip->ops; 239 struct pwm_waveform wf_req = *wf; 240 char wfhw[WFHWSIZE]; 241 int ret_tohw, ret_fromhw; 242 243 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 244 245 if (!pwmchip_supports_waveform(chip)) 246 return -EOPNOTSUPP; 247 248 if (!pwm_wf_valid(wf)) 249 return -EINVAL; 250 251 guard(pwmchip)(chip); 252 253 if (!chip->operational) 254 return -ENODEV; 255 256 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); 257 if (ret_tohw < 0) 258 return ret_tohw; 259 260 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) 261 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", 262 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 263 264 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); 265 if (ret_fromhw < 0) 266 return ret_fromhw; 267 268 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) 269 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", 270 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 271 272 if (IS_ENABLED(CONFIG_PWM_DEBUG) && 273 ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf)) 274 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 275 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, 276 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); 277 278 return ret_tohw; 279 } 280 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); 281 282 /** 283 * pwm_get_waveform_might_sleep - Query hardware about current configuration 284 * Cannot be used in atomic context. 285 * @pwm: PWM device 286 * @wf: output parameter 287 * 288 * Stores the current configuration of the PWM in @wf. Note this is the 289 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. 290 */ 291 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 292 { 293 struct pwm_chip *chip = pwm->chip; 294 const struct pwm_ops *ops = chip->ops; 295 char wfhw[WFHWSIZE]; 296 int err; 297 298 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 299 300 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform) 301 return -EOPNOTSUPP; 302 303 guard(pwmchip)(chip); 304 305 if (!chip->operational) 306 return -ENODEV; 307 308 err = __pwm_read_waveform(chip, pwm, &wfhw); 309 if (err) 310 return err; 311 312 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); 313 } 314 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); 315 316 /* Called with the pwmchip lock held */ 317 static int __pwm_set_waveform(struct pwm_device *pwm, 318 const struct pwm_waveform *wf, 319 bool exact) 320 { 321 struct pwm_chip *chip = pwm->chip; 322 const struct pwm_ops *ops = chip->ops; 323 char wfhw[WFHWSIZE]; 324 struct pwm_waveform wf_rounded; 325 int err, ret_tohw; 326 327 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 328 329 if (!pwmchip_supports_waveform(chip)) 330 return -EOPNOTSUPP; 331 332 if (!pwm_wf_valid(wf)) 333 return -EINVAL; 334 335 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); 336 if (ret_tohw < 0) 337 return ret_tohw; 338 339 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { 340 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 341 if (err) 342 return err; 343 344 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw == 0 && !pwm_check_rounding(wf, &wf_rounded)) 345 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 346 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 347 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 348 349 if (exact && pwmwfcmp(wf, &wf_rounded)) { 350 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", 351 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 352 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 353 354 return 1; 355 } 356 } 357 358 err = __pwm_write_waveform(chip, pwm, &wfhw); 359 if (err) 360 return err; 361 362 /* update .state */ 363 pwm_wf2state(wf, &pwm->state); 364 365 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { 366 struct pwm_waveform wf_set; 367 368 err = __pwm_read_waveform(chip, pwm, &wfhw); 369 if (err) 370 /* maybe ignore? */ 371 return err; 372 373 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); 374 if (err) 375 /* maybe ignore? */ 376 return err; 377 378 if (pwmwfcmp(&wf_set, &wf_rounded) != 0) 379 dev_err(&chip->dev, 380 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", 381 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 382 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, 383 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); 384 } 385 386 return ret_tohw; 387 } 388 389 /** 390 * pwm_set_waveform_might_sleep - Apply a new waveform 391 * Cannot be used in atomic context. 392 * @pwm: PWM device 393 * @wf: The waveform to apply 394 * @exact: If true no rounding is allowed 395 * 396 * Typically a requested waveform cannot be implemented exactly, e.g. because 397 * you requested .period_length_ns = 100 ns, but the hardware can only set 398 * periods that are a multiple of 8.5 ns. With that hardware passing exact = 399 * true results in pwm_set_waveform_might_sleep() failing and returning 1. If 400 * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger 401 * than the requested value). 402 * Note that even with exact = true, some rounding by less than 1 is 403 * possible/needed. In the above example requesting .period_length_ns = 94 and 404 * exact = true, you get the hardware configured with period = 93.5 ns. 405 */ 406 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, 407 const struct pwm_waveform *wf, bool exact) 408 { 409 struct pwm_chip *chip = pwm->chip; 410 int err; 411 412 might_sleep(); 413 414 guard(pwmchip)(chip); 415 416 if (!chip->operational) 417 return -ENODEV; 418 419 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 420 /* 421 * Catch any drivers that have been marked as atomic but 422 * that will sleep anyway. 423 */ 424 non_block_start(); 425 err = __pwm_set_waveform(pwm, wf, exact); 426 non_block_end(); 427 } else { 428 err = __pwm_set_waveform(pwm, wf, exact); 429 } 430 431 return err; 432 } 433 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); 434 435 static void pwm_apply_debug(struct pwm_device *pwm, 436 const struct pwm_state *state) 437 { 438 struct pwm_state *last = &pwm->last; 439 struct pwm_chip *chip = pwm->chip; 440 struct pwm_state s1 = { 0 }, s2 = { 0 }; 441 int err; 442 443 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 444 return; 445 446 /* No reasonable diagnosis possible without .get_state() */ 447 if (!chip->ops->get_state) 448 return; 449 450 /* 451 * *state was just applied. Read out the hardware state and do some 452 * checks. 453 */ 454 455 err = chip->ops->get_state(chip, pwm, &s1); 456 trace_pwm_get(pwm, &s1, err); 457 if (err) 458 /* If that failed there isn't much to debug */ 459 return; 460 461 /* 462 * The lowlevel driver either ignored .polarity (which is a bug) or as 463 * best effort inverted .polarity and fixed .duty_cycle respectively. 464 * Undo this inversion and fixup for further tests. 465 */ 466 if (s1.enabled && s1.polarity != state->polarity) { 467 s2.polarity = state->polarity; 468 s2.duty_cycle = s1.period - s1.duty_cycle; 469 s2.period = s1.period; 470 s2.enabled = s1.enabled; 471 } else { 472 s2 = s1; 473 } 474 475 if (s2.polarity != state->polarity && 476 state->duty_cycle < state->period) 477 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); 478 479 if (state->enabled && s2.enabled && 480 last->polarity == state->polarity && 481 last->period > s2.period && 482 last->period <= state->period) 483 dev_warn(pwmchip_parent(chip), 484 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 485 state->period, s2.period, last->period); 486 487 /* 488 * Rounding period up is fine only if duty_cycle is 0 then, because a 489 * flat line doesn't have a characteristic period. 490 */ 491 if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle) 492 dev_warn(pwmchip_parent(chip), 493 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 494 state->period, s2.period); 495 496 if (state->enabled && 497 last->polarity == state->polarity && 498 last->period == s2.period && 499 last->duty_cycle > s2.duty_cycle && 500 last->duty_cycle <= state->duty_cycle) 501 dev_warn(pwmchip_parent(chip), 502 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 503 state->duty_cycle, state->period, 504 s2.duty_cycle, s2.period, 505 last->duty_cycle, last->period); 506 507 if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle) 508 dev_warn(pwmchip_parent(chip), 509 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 510 state->duty_cycle, state->period, 511 s2.duty_cycle, s2.period); 512 513 if (!state->enabled && s2.enabled && s2.duty_cycle > 0) 514 dev_warn(pwmchip_parent(chip), 515 "requested disabled, but yielded enabled with duty > 0\n"); 516 517 /* reapply the state that the driver reported being configured. */ 518 err = chip->ops->apply(chip, pwm, &s1); 519 trace_pwm_apply(pwm, &s1, err); 520 if (err) { 521 *last = s1; 522 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); 523 return; 524 } 525 526 *last = (struct pwm_state){ 0 }; 527 err = chip->ops->get_state(chip, pwm, last); 528 trace_pwm_get(pwm, last, err); 529 if (err) 530 return; 531 532 /* reapplication of the current state should give an exact match */ 533 if (s1.enabled != last->enabled || 534 s1.polarity != last->polarity || 535 (s1.enabled && s1.period != last->period) || 536 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 537 dev_err(pwmchip_parent(chip), 538 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 539 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 540 last->enabled, last->polarity, last->duty_cycle, 541 last->period); 542 } 543 } 544 545 static bool pwm_state_valid(const struct pwm_state *state) 546 { 547 /* 548 * For a disabled state all other state description is irrelevant and 549 * and supposed to be ignored. So also ignore any strange values and 550 * consider the state ok. 551 */ 552 if (state->enabled) 553 return true; 554 555 if (!state->period) 556 return false; 557 558 if (state->duty_cycle > state->period) 559 return false; 560 561 return true; 562 } 563 564 /** 565 * __pwm_apply() - atomically apply a new state to a PWM device 566 * @pwm: PWM device 567 * @state: new state to apply 568 */ 569 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 570 { 571 struct pwm_chip *chip; 572 const struct pwm_ops *ops; 573 int err; 574 575 if (!pwm || !state) 576 return -EINVAL; 577 578 if (!pwm_state_valid(state)) { 579 /* 580 * Allow to transition from one invalid state to another. 581 * This ensures that you can e.g. change the polarity while 582 * the period is zero. (This happens on stm32 when the hardware 583 * is in its poweron default state.) This greatly simplifies 584 * working with the sysfs API where you can only change one 585 * parameter at a time. 586 */ 587 if (!pwm_state_valid(&pwm->state)) { 588 pwm->state = *state; 589 return 0; 590 } 591 592 return -EINVAL; 593 } 594 595 chip = pwm->chip; 596 ops = chip->ops; 597 598 if (state->period == pwm->state.period && 599 state->duty_cycle == pwm->state.duty_cycle && 600 state->polarity == pwm->state.polarity && 601 state->enabled == pwm->state.enabled && 602 state->usage_power == pwm->state.usage_power) 603 return 0; 604 605 if (pwmchip_supports_waveform(chip)) { 606 struct pwm_waveform wf; 607 char wfhw[WFHWSIZE]; 608 609 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 610 611 pwm_state2wf(state, &wf); 612 613 /* 614 * The rounding is wrong here for states with inverted polarity. 615 * While .apply() rounds down duty_cycle (which represents the 616 * time from the start of the period to the inner edge), 617 * .round_waveform_tohw() rounds down the time the PWM is high. 618 * Can be fixed if the need arises, until reported otherwise 619 * let's assume that consumers don't care. 620 */ 621 622 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); 623 if (err) { 624 if (err > 0) 625 /* 626 * This signals an invalid request, typically 627 * the requested period (or duty_offset) is 628 * smaller than possible with the hardware. 629 */ 630 return -EINVAL; 631 632 return err; 633 } 634 635 if (IS_ENABLED(CONFIG_PWM_DEBUG)) { 636 struct pwm_waveform wf_rounded; 637 638 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 639 if (err) 640 return err; 641 642 if (!pwm_check_rounding(&wf, &wf_rounded)) 643 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 644 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, 645 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 646 } 647 648 err = __pwm_write_waveform(chip, pwm, &wfhw); 649 if (err) 650 return err; 651 652 pwm->state = *state; 653 654 } else { 655 err = ops->apply(chip, pwm, state); 656 trace_pwm_apply(pwm, state, err); 657 if (err) 658 return err; 659 660 pwm->state = *state; 661 662 /* 663 * only do this after pwm->state was applied as some 664 * implementations of .get_state() depend on this 665 */ 666 pwm_apply_debug(pwm, state); 667 } 668 669 return 0; 670 } 671 672 /** 673 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 674 * Cannot be used in atomic context. 675 * @pwm: PWM device 676 * @state: new state to apply 677 */ 678 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 679 { 680 int err; 681 struct pwm_chip *chip = pwm->chip; 682 683 /* 684 * Some lowlevel driver's implementations of .apply() make use of 685 * mutexes, also with some drivers only returning when the new 686 * configuration is active calling pwm_apply_might_sleep() from atomic context 687 * is a bad idea. So make it explicit that calling this function might 688 * sleep. 689 */ 690 might_sleep(); 691 692 guard(pwmchip)(chip); 693 694 if (!chip->operational) 695 return -ENODEV; 696 697 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 698 /* 699 * Catch any drivers that have been marked as atomic but 700 * that will sleep anyway. 701 */ 702 non_block_start(); 703 err = __pwm_apply(pwm, state); 704 non_block_end(); 705 } else { 706 err = __pwm_apply(pwm, state); 707 } 708 709 return err; 710 } 711 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 712 713 /** 714 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 715 * Not all PWM devices support this function, check with pwm_might_sleep(). 716 * @pwm: PWM device 717 * @state: new state to apply 718 */ 719 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 720 { 721 struct pwm_chip *chip = pwm->chip; 722 723 WARN_ONCE(!chip->atomic, 724 "sleeping PWM driver used in atomic context\n"); 725 726 guard(pwmchip)(chip); 727 728 if (!chip->operational) 729 return -ENODEV; 730 731 return __pwm_apply(pwm, state); 732 } 733 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 734 735 /** 736 * pwm_get_state_hw() - get the current PWM state from hardware 737 * @pwm: PWM device 738 * @state: state to fill with the current PWM state 739 * 740 * Similar to pwm_get_state() but reads the current PWM state from hardware 741 * instead of the requested state. 742 * 743 * Returns: 0 on success or a negative error code on failure. 744 * Context: May sleep. 745 */ 746 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 747 { 748 struct pwm_chip *chip = pwm->chip; 749 const struct pwm_ops *ops = chip->ops; 750 int ret = -EOPNOTSUPP; 751 752 might_sleep(); 753 754 guard(pwmchip)(chip); 755 756 if (!chip->operational) 757 return -ENODEV; 758 759 if (pwmchip_supports_waveform(chip) && ops->read_waveform) { 760 char wfhw[WFHWSIZE]; 761 struct pwm_waveform wf; 762 763 BUG_ON(WFHWSIZE < ops->sizeof_wfhw); 764 765 ret = __pwm_read_waveform(chip, pwm, &wfhw); 766 if (ret) 767 return ret; 768 769 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); 770 if (ret) 771 return ret; 772 773 pwm_wf2state(&wf, state); 774 775 } else if (ops->get_state) { 776 ret = ops->get_state(chip, pwm, state); 777 trace_pwm_get(pwm, state, ret); 778 } 779 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(pwm_get_state_hw); 783 784 /** 785 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 786 * @pwm: PWM device 787 * 788 * This function will adjust the PWM config to the PWM arguments provided 789 * by the DT or PWM lookup table. This is particularly useful to adapt 790 * the bootloader config to the Linux one. 791 */ 792 int pwm_adjust_config(struct pwm_device *pwm) 793 { 794 struct pwm_state state; 795 struct pwm_args pargs; 796 797 pwm_get_args(pwm, &pargs); 798 pwm_get_state(pwm, &state); 799 800 /* 801 * If the current period is zero it means that either the PWM driver 802 * does not support initial state retrieval or the PWM has not yet 803 * been configured. 804 * 805 * In either case, we setup the new period and polarity, and assign a 806 * duty cycle of 0. 807 */ 808 if (!state.period) { 809 state.duty_cycle = 0; 810 state.period = pargs.period; 811 state.polarity = pargs.polarity; 812 813 return pwm_apply_might_sleep(pwm, &state); 814 } 815 816 /* 817 * Adjust the PWM duty cycle/period based on the period value provided 818 * in PWM args. 819 */ 820 if (pargs.period != state.period) { 821 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 822 823 do_div(dutycycle, state.period); 824 state.duty_cycle = dutycycle; 825 state.period = pargs.period; 826 } 827 828 /* 829 * If the polarity changed, we should also change the duty cycle. 830 */ 831 if (pargs.polarity != state.polarity) { 832 state.polarity = pargs.polarity; 833 state.duty_cycle = state.period - state.duty_cycle; 834 } 835 836 return pwm_apply_might_sleep(pwm, &state); 837 } 838 EXPORT_SYMBOL_GPL(pwm_adjust_config); 839 840 /** 841 * pwm_capture() - capture and report a PWM signal 842 * @pwm: PWM device 843 * @result: structure to fill with capture result 844 * @timeout: time to wait, in milliseconds, before giving up on capture 845 * 846 * Returns: 0 on success or a negative error code on failure. 847 */ 848 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 849 unsigned long timeout) 850 { 851 struct pwm_chip *chip = pwm->chip; 852 const struct pwm_ops *ops = chip->ops; 853 854 if (!ops->capture) 855 return -ENOSYS; 856 857 /* 858 * Holding the pwm_lock is probably not needed. If you use pwm_capture() 859 * and you're interested to speed it up, please convince yourself it's 860 * really not needed, test and then suggest a patch on the mailing list. 861 */ 862 guard(mutex)(&pwm_lock); 863 864 guard(pwmchip)(chip); 865 866 if (!chip->operational) 867 return -ENODEV; 868 869 return ops->capture(chip, pwm, result, timeout); 870 } 871 872 static struct pwm_chip *pwmchip_find_by_name(const char *name) 873 { 874 struct pwm_chip *chip; 875 unsigned long id, tmp; 876 877 if (!name) 878 return NULL; 879 880 guard(mutex)(&pwm_lock); 881 882 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 883 if (device_match_name(pwmchip_parent(chip), name)) 884 return chip; 885 } 886 887 return NULL; 888 } 889 890 static int pwm_device_request(struct pwm_device *pwm, const char *label) 891 { 892 int err; 893 struct pwm_chip *chip = pwm->chip; 894 const struct pwm_ops *ops = chip->ops; 895 896 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 897 return -EBUSY; 898 899 /* 900 * This function is called while holding pwm_lock. As .operational only 901 * changes while holding this lock, checking it here without holding the 902 * chip lock is fine. 903 */ 904 if (!chip->operational) 905 return -ENODEV; 906 907 if (!try_module_get(chip->owner)) 908 return -ENODEV; 909 910 if (!get_device(&chip->dev)) { 911 err = -ENODEV; 912 goto err_get_device; 913 } 914 915 if (ops->request) { 916 err = ops->request(chip, pwm); 917 if (err) { 918 put_device(&chip->dev); 919 err_get_device: 920 module_put(chip->owner); 921 return err; 922 } 923 } 924 925 if (ops->read_waveform || ops->get_state) { 926 /* 927 * Zero-initialize state because most drivers are unaware of 928 * .usage_power. The other members of state are supposed to be 929 * set by lowlevel drivers. We still initialize the whole 930 * structure for simplicity even though this might paper over 931 * faulty implementations of .get_state(). 932 */ 933 struct pwm_state state = { 0, }; 934 935 err = pwm_get_state_hw(pwm, &state); 936 if (!err) 937 pwm->state = state; 938 939 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 940 pwm->last = pwm->state; 941 } 942 943 set_bit(PWMF_REQUESTED, &pwm->flags); 944 pwm->label = label; 945 946 return 0; 947 } 948 949 /** 950 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 951 * @chip: PWM chip 952 * @index: per-chip index of the PWM to request 953 * @label: a literal description string of this PWM 954 * 955 * Returns: A pointer to the PWM device at the given index of the given PWM 956 * chip. A negative error code is returned if the index is not valid for the 957 * specified PWM chip or if the PWM device cannot be requested. 958 */ 959 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 960 unsigned int index, 961 const char *label) 962 { 963 struct pwm_device *pwm; 964 int err; 965 966 if (!chip || index >= chip->npwm) 967 return ERR_PTR(-EINVAL); 968 969 guard(mutex)(&pwm_lock); 970 971 pwm = &chip->pwms[index]; 972 973 err = pwm_device_request(pwm, label); 974 if (err < 0) 975 return ERR_PTR(err); 976 977 return pwm; 978 } 979 980 struct pwm_device * 981 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 982 { 983 struct pwm_device *pwm; 984 985 /* period in the second cell and flags in the third cell are optional */ 986 if (args->args_count < 1) 987 return ERR_PTR(-EINVAL); 988 989 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 990 if (IS_ERR(pwm)) 991 return pwm; 992 993 if (args->args_count > 1) 994 pwm->args.period = args->args[1]; 995 996 pwm->args.polarity = PWM_POLARITY_NORMAL; 997 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 998 pwm->args.polarity = PWM_POLARITY_INVERSED; 999 1000 return pwm; 1001 } 1002 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 1003 1004 /* 1005 * This callback is used for PXA PWM chips that only have a single PWM line. 1006 * For such chips you could argue that passing the line number (i.e. the first 1007 * parameter in the common case) is useless as it's always zero. So compared to 1008 * the default xlate function of_pwm_xlate_with_flags() the first parameter is 1009 * the default period and the second are flags. 1010 * 1011 * Note that if #pwm-cells = <3>, the semantic is the same as for 1012 * of_pwm_xlate_with_flags() to allow converting the affected driver to 1013 * #pwm-cells = <3> without breaking the legacy binding. 1014 * 1015 * Don't use for new drivers. 1016 */ 1017 struct pwm_device * 1018 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 1019 { 1020 struct pwm_device *pwm; 1021 1022 if (args->args_count >= 3) 1023 return of_pwm_xlate_with_flags(chip, args); 1024 1025 pwm = pwm_request_from_chip(chip, 0, NULL); 1026 if (IS_ERR(pwm)) 1027 return pwm; 1028 1029 if (args->args_count > 0) 1030 pwm->args.period = args->args[0]; 1031 1032 pwm->args.polarity = PWM_POLARITY_NORMAL; 1033 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) 1034 pwm->args.polarity = PWM_POLARITY_INVERSED; 1035 1036 return pwm; 1037 } 1038 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 1039 1040 struct pwm_export { 1041 struct device pwm_dev; 1042 struct pwm_device *pwm; 1043 struct mutex lock; 1044 struct pwm_state suspend; 1045 }; 1046 1047 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) 1048 { 1049 return container_of(pwmchip_dev, struct pwm_chip, dev); 1050 } 1051 1052 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) 1053 { 1054 return container_of(pwm_dev, struct pwm_export, pwm_dev); 1055 } 1056 1057 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) 1058 { 1059 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1060 1061 return export->pwm; 1062 } 1063 1064 static ssize_t period_show(struct device *pwm_dev, 1065 struct device_attribute *attr, 1066 char *buf) 1067 { 1068 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1069 struct pwm_state state; 1070 1071 pwm_get_state(pwm, &state); 1072 1073 return sysfs_emit(buf, "%llu\n", state.period); 1074 } 1075 1076 static ssize_t period_store(struct device *pwm_dev, 1077 struct device_attribute *attr, 1078 const char *buf, size_t size) 1079 { 1080 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1081 struct pwm_device *pwm = export->pwm; 1082 struct pwm_state state; 1083 u64 val; 1084 int ret; 1085 1086 ret = kstrtou64(buf, 0, &val); 1087 if (ret) 1088 return ret; 1089 1090 guard(mutex)(&export->lock); 1091 1092 pwm_get_state(pwm, &state); 1093 state.period = val; 1094 ret = pwm_apply_might_sleep(pwm, &state); 1095 1096 return ret ? : size; 1097 } 1098 1099 static ssize_t duty_cycle_show(struct device *pwm_dev, 1100 struct device_attribute *attr, 1101 char *buf) 1102 { 1103 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1104 struct pwm_state state; 1105 1106 pwm_get_state(pwm, &state); 1107 1108 return sysfs_emit(buf, "%llu\n", state.duty_cycle); 1109 } 1110 1111 static ssize_t duty_cycle_store(struct device *pwm_dev, 1112 struct device_attribute *attr, 1113 const char *buf, size_t size) 1114 { 1115 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1116 struct pwm_device *pwm = export->pwm; 1117 struct pwm_state state; 1118 u64 val; 1119 int ret; 1120 1121 ret = kstrtou64(buf, 0, &val); 1122 if (ret) 1123 return ret; 1124 1125 guard(mutex)(&export->lock); 1126 1127 pwm_get_state(pwm, &state); 1128 state.duty_cycle = val; 1129 ret = pwm_apply_might_sleep(pwm, &state); 1130 1131 return ret ? : size; 1132 } 1133 1134 static ssize_t enable_show(struct device *pwm_dev, 1135 struct device_attribute *attr, 1136 char *buf) 1137 { 1138 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1139 struct pwm_state state; 1140 1141 pwm_get_state(pwm, &state); 1142 1143 return sysfs_emit(buf, "%d\n", state.enabled); 1144 } 1145 1146 static ssize_t enable_store(struct device *pwm_dev, 1147 struct device_attribute *attr, 1148 const char *buf, size_t size) 1149 { 1150 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1151 struct pwm_device *pwm = export->pwm; 1152 struct pwm_state state; 1153 int val, ret; 1154 1155 ret = kstrtoint(buf, 0, &val); 1156 if (ret) 1157 return ret; 1158 1159 guard(mutex)(&export->lock); 1160 1161 pwm_get_state(pwm, &state); 1162 1163 switch (val) { 1164 case 0: 1165 state.enabled = false; 1166 break; 1167 case 1: 1168 state.enabled = true; 1169 break; 1170 default: 1171 return -EINVAL; 1172 } 1173 1174 ret = pwm_apply_might_sleep(pwm, &state); 1175 1176 return ret ? : size; 1177 } 1178 1179 static ssize_t polarity_show(struct device *pwm_dev, 1180 struct device_attribute *attr, 1181 char *buf) 1182 { 1183 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1184 const char *polarity = "unknown"; 1185 struct pwm_state state; 1186 1187 pwm_get_state(pwm, &state); 1188 1189 switch (state.polarity) { 1190 case PWM_POLARITY_NORMAL: 1191 polarity = "normal"; 1192 break; 1193 1194 case PWM_POLARITY_INVERSED: 1195 polarity = "inversed"; 1196 break; 1197 } 1198 1199 return sysfs_emit(buf, "%s\n", polarity); 1200 } 1201 1202 static ssize_t polarity_store(struct device *pwm_dev, 1203 struct device_attribute *attr, 1204 const char *buf, size_t size) 1205 { 1206 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1207 struct pwm_device *pwm = export->pwm; 1208 enum pwm_polarity polarity; 1209 struct pwm_state state; 1210 int ret; 1211 1212 if (sysfs_streq(buf, "normal")) 1213 polarity = PWM_POLARITY_NORMAL; 1214 else if (sysfs_streq(buf, "inversed")) 1215 polarity = PWM_POLARITY_INVERSED; 1216 else 1217 return -EINVAL; 1218 1219 guard(mutex)(&export->lock); 1220 1221 pwm_get_state(pwm, &state); 1222 state.polarity = polarity; 1223 ret = pwm_apply_might_sleep(pwm, &state); 1224 1225 return ret ? : size; 1226 } 1227 1228 static ssize_t capture_show(struct device *pwm_dev, 1229 struct device_attribute *attr, 1230 char *buf) 1231 { 1232 struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1233 struct pwm_capture result; 1234 int ret; 1235 1236 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); 1237 if (ret) 1238 return ret; 1239 1240 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); 1241 } 1242 1243 static DEVICE_ATTR_RW(period); 1244 static DEVICE_ATTR_RW(duty_cycle); 1245 static DEVICE_ATTR_RW(enable); 1246 static DEVICE_ATTR_RW(polarity); 1247 static DEVICE_ATTR_RO(capture); 1248 1249 static struct attribute *pwm_attrs[] = { 1250 &dev_attr_period.attr, 1251 &dev_attr_duty_cycle.attr, 1252 &dev_attr_enable.attr, 1253 &dev_attr_polarity.attr, 1254 &dev_attr_capture.attr, 1255 NULL 1256 }; 1257 ATTRIBUTE_GROUPS(pwm); 1258 1259 static void pwm_export_release(struct device *pwm_dev) 1260 { 1261 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1262 1263 kfree(export); 1264 } 1265 1266 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1267 { 1268 struct pwm_export *export; 1269 char *pwm_prop[2]; 1270 int ret; 1271 1272 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) 1273 return -EBUSY; 1274 1275 export = kzalloc(sizeof(*export), GFP_KERNEL); 1276 if (!export) { 1277 clear_bit(PWMF_EXPORTED, &pwm->flags); 1278 return -ENOMEM; 1279 } 1280 1281 export->pwm = pwm; 1282 mutex_init(&export->lock); 1283 1284 export->pwm_dev.release = pwm_export_release; 1285 export->pwm_dev.parent = pwmchip_dev; 1286 export->pwm_dev.devt = MKDEV(0, 0); 1287 export->pwm_dev.groups = pwm_groups; 1288 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); 1289 1290 ret = device_register(&export->pwm_dev); 1291 if (ret) { 1292 clear_bit(PWMF_EXPORTED, &pwm->flags); 1293 put_device(&export->pwm_dev); 1294 export = NULL; 1295 return ret; 1296 } 1297 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); 1298 pwm_prop[1] = NULL; 1299 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1300 kfree(pwm_prop[0]); 1301 1302 return 0; 1303 } 1304 1305 static int pwm_unexport_match(struct device *pwm_dev, const void *data) 1306 { 1307 return pwm_from_dev(pwm_dev) == data; 1308 } 1309 1310 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1311 { 1312 struct device *pwm_dev; 1313 char *pwm_prop[2]; 1314 1315 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) 1316 return -ENODEV; 1317 1318 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1319 if (!pwm_dev) 1320 return -ENODEV; 1321 1322 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); 1323 pwm_prop[1] = NULL; 1324 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1325 kfree(pwm_prop[0]); 1326 1327 /* for device_find_child() */ 1328 put_device(pwm_dev); 1329 device_unregister(pwm_dev); 1330 pwm_put(pwm); 1331 1332 return 0; 1333 } 1334 1335 static ssize_t export_store(struct device *pwmchip_dev, 1336 struct device_attribute *attr, 1337 const char *buf, size_t len) 1338 { 1339 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1340 struct pwm_device *pwm; 1341 unsigned int hwpwm; 1342 int ret; 1343 1344 ret = kstrtouint(buf, 0, &hwpwm); 1345 if (ret < 0) 1346 return ret; 1347 1348 if (hwpwm >= chip->npwm) 1349 return -ENODEV; 1350 1351 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); 1352 if (IS_ERR(pwm)) 1353 return PTR_ERR(pwm); 1354 1355 ret = pwm_export_child(pwmchip_dev, pwm); 1356 if (ret < 0) 1357 pwm_put(pwm); 1358 1359 return ret ? : len; 1360 } 1361 static DEVICE_ATTR_WO(export); 1362 1363 static ssize_t unexport_store(struct device *pwmchip_dev, 1364 struct device_attribute *attr, 1365 const char *buf, size_t len) 1366 { 1367 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1368 unsigned int hwpwm; 1369 int ret; 1370 1371 ret = kstrtouint(buf, 0, &hwpwm); 1372 if (ret < 0) 1373 return ret; 1374 1375 if (hwpwm >= chip->npwm) 1376 return -ENODEV; 1377 1378 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); 1379 1380 return ret ? : len; 1381 } 1382 static DEVICE_ATTR_WO(unexport); 1383 1384 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, 1385 char *buf) 1386 { 1387 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1388 1389 return sysfs_emit(buf, "%u\n", chip->npwm); 1390 } 1391 static DEVICE_ATTR_RO(npwm); 1392 1393 static struct attribute *pwm_chip_attrs[] = { 1394 &dev_attr_export.attr, 1395 &dev_attr_unexport.attr, 1396 &dev_attr_npwm.attr, 1397 NULL, 1398 }; 1399 ATTRIBUTE_GROUPS(pwm_chip); 1400 1401 /* takes export->lock on success */ 1402 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, 1403 struct pwm_device *pwm, 1404 struct pwm_state *state) 1405 { 1406 struct device *pwm_dev; 1407 struct pwm_export *export; 1408 1409 if (!test_bit(PWMF_EXPORTED, &pwm->flags)) 1410 return NULL; 1411 1412 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1413 if (!pwm_dev) 1414 return NULL; 1415 1416 export = pwmexport_from_dev(pwm_dev); 1417 put_device(pwm_dev); /* for device_find_child() */ 1418 1419 mutex_lock(&export->lock); 1420 pwm_get_state(pwm, state); 1421 1422 return export; 1423 } 1424 1425 static int pwm_class_apply_state(struct pwm_export *export, 1426 struct pwm_device *pwm, 1427 struct pwm_state *state) 1428 { 1429 int ret = pwm_apply_might_sleep(pwm, state); 1430 1431 /* release lock taken in pwm_class_get_state */ 1432 mutex_unlock(&export->lock); 1433 1434 return ret; 1435 } 1436 1437 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) 1438 { 1439 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1440 unsigned int i; 1441 int ret = 0; 1442 1443 for (i = 0; i < npwm; i++) { 1444 struct pwm_device *pwm = &chip->pwms[i]; 1445 struct pwm_state state; 1446 struct pwm_export *export; 1447 1448 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1449 if (!export) 1450 continue; 1451 1452 /* If pwmchip was not enabled before suspend, do nothing. */ 1453 if (!export->suspend.enabled) { 1454 /* release lock taken in pwm_class_get_state */ 1455 mutex_unlock(&export->lock); 1456 continue; 1457 } 1458 1459 state.enabled = export->suspend.enabled; 1460 ret = pwm_class_apply_state(export, pwm, &state); 1461 if (ret < 0) 1462 break; 1463 } 1464 1465 return ret; 1466 } 1467 1468 static int pwm_class_suspend(struct device *pwmchip_dev) 1469 { 1470 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1471 unsigned int i; 1472 int ret = 0; 1473 1474 for (i = 0; i < chip->npwm; i++) { 1475 struct pwm_device *pwm = &chip->pwms[i]; 1476 struct pwm_state state; 1477 struct pwm_export *export; 1478 1479 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1480 if (!export) 1481 continue; 1482 1483 /* 1484 * If pwmchip was not enabled before suspend, save 1485 * state for resume time and do nothing else. 1486 */ 1487 export->suspend = state; 1488 if (!state.enabled) { 1489 /* release lock taken in pwm_class_get_state */ 1490 mutex_unlock(&export->lock); 1491 continue; 1492 } 1493 1494 state.enabled = false; 1495 ret = pwm_class_apply_state(export, pwm, &state); 1496 if (ret < 0) { 1497 /* 1498 * roll back the PWM devices that were disabled by 1499 * this suspend function. 1500 */ 1501 pwm_class_resume_npwm(pwmchip_dev, i); 1502 break; 1503 } 1504 } 1505 1506 return ret; 1507 } 1508 1509 static int pwm_class_resume(struct device *pwmchip_dev) 1510 { 1511 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1512 1513 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); 1514 } 1515 1516 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); 1517 1518 static struct class pwm_class = { 1519 .name = "pwm", 1520 .dev_groups = pwm_chip_groups, 1521 .pm = pm_sleep_ptr(&pwm_class_pm_ops), 1522 }; 1523 1524 static void pwmchip_sysfs_unexport(struct pwm_chip *chip) 1525 { 1526 unsigned int i; 1527 1528 for (i = 0; i < chip->npwm; i++) { 1529 struct pwm_device *pwm = &chip->pwms[i]; 1530 1531 if (test_bit(PWMF_EXPORTED, &pwm->flags)) 1532 pwm_unexport_child(&chip->dev, pwm); 1533 } 1534 } 1535 1536 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN 1537 1538 static void *pwmchip_priv(struct pwm_chip *chip) 1539 { 1540 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); 1541 } 1542 1543 /* This is the counterpart to pwmchip_alloc() */ 1544 void pwmchip_put(struct pwm_chip *chip) 1545 { 1546 put_device(&chip->dev); 1547 } 1548 EXPORT_SYMBOL_GPL(pwmchip_put); 1549 1550 static void pwmchip_release(struct device *pwmchip_dev) 1551 { 1552 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1553 1554 kfree(chip); 1555 } 1556 1557 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1558 { 1559 struct pwm_chip *chip; 1560 struct device *pwmchip_dev; 1561 size_t alloc_size; 1562 unsigned int i; 1563 1564 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), 1565 sizeof_priv); 1566 1567 chip = kzalloc(alloc_size, GFP_KERNEL); 1568 if (!chip) 1569 return ERR_PTR(-ENOMEM); 1570 1571 chip->npwm = npwm; 1572 chip->uses_pwmchip_alloc = true; 1573 chip->operational = false; 1574 1575 pwmchip_dev = &chip->dev; 1576 device_initialize(pwmchip_dev); 1577 pwmchip_dev->class = &pwm_class; 1578 pwmchip_dev->parent = parent; 1579 pwmchip_dev->release = pwmchip_release; 1580 1581 pwmchip_set_drvdata(chip, pwmchip_priv(chip)); 1582 1583 for (i = 0; i < chip->npwm; i++) { 1584 struct pwm_device *pwm = &chip->pwms[i]; 1585 pwm->chip = chip; 1586 pwm->hwpwm = i; 1587 } 1588 1589 return chip; 1590 } 1591 EXPORT_SYMBOL_GPL(pwmchip_alloc); 1592 1593 static void devm_pwmchip_put(void *data) 1594 { 1595 struct pwm_chip *chip = data; 1596 1597 pwmchip_put(chip); 1598 } 1599 1600 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1601 { 1602 struct pwm_chip *chip; 1603 int ret; 1604 1605 chip = pwmchip_alloc(parent, npwm, sizeof_priv); 1606 if (IS_ERR(chip)) 1607 return chip; 1608 1609 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); 1610 if (ret) 1611 return ERR_PTR(ret); 1612 1613 return chip; 1614 } 1615 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); 1616 1617 static void of_pwmchip_add(struct pwm_chip *chip) 1618 { 1619 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) 1620 return; 1621 1622 if (!chip->of_xlate) 1623 chip->of_xlate = of_pwm_xlate_with_flags; 1624 1625 of_node_get(pwmchip_parent(chip)->of_node); 1626 } 1627 1628 static void of_pwmchip_remove(struct pwm_chip *chip) 1629 { 1630 if (pwmchip_parent(chip)) 1631 of_node_put(pwmchip_parent(chip)->of_node); 1632 } 1633 1634 static bool pwm_ops_check(const struct pwm_chip *chip) 1635 { 1636 const struct pwm_ops *ops = chip->ops; 1637 1638 if (ops->write_waveform) { 1639 if (!ops->round_waveform_tohw || 1640 !ops->round_waveform_fromhw || 1641 !ops->write_waveform) 1642 return false; 1643 1644 if (WFHWSIZE < ops->sizeof_wfhw) { 1645 dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw); 1646 return false; 1647 } 1648 } else { 1649 if (!ops->apply) 1650 return false; 1651 1652 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 1653 dev_warn(pwmchip_parent(chip), 1654 "Please implement the .get_state() callback\n"); 1655 } 1656 1657 return true; 1658 } 1659 1660 static struct device_link *pwm_device_link_add(struct device *dev, 1661 struct pwm_device *pwm) 1662 { 1663 struct device_link *dl; 1664 1665 if (!dev) { 1666 /* 1667 * No device for the PWM consumer has been provided. It may 1668 * impact the PM sequence ordering: the PWM supplier may get 1669 * suspended before the consumer. 1670 */ 1671 dev_warn(pwmchip_parent(pwm->chip), 1672 "No consumer device specified to create a link to\n"); 1673 return NULL; 1674 } 1675 1676 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); 1677 if (!dl) { 1678 dev_err(dev, "failed to create device link to %s\n", 1679 dev_name(pwmchip_parent(pwm->chip))); 1680 return ERR_PTR(-EINVAL); 1681 } 1682 1683 return dl; 1684 } 1685 1686 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 1687 { 1688 struct pwm_chip *chip; 1689 unsigned long id, tmp; 1690 1691 guard(mutex)(&pwm_lock); 1692 1693 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 1694 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) 1695 return chip; 1696 1697 return ERR_PTR(-EPROBE_DEFER); 1698 } 1699 1700 /** 1701 * of_pwm_get() - request a PWM via the PWM framework 1702 * @dev: device for PWM consumer 1703 * @np: device node to get the PWM from 1704 * @con_id: consumer name 1705 * 1706 * Returns the PWM device parsed from the phandle and index specified in the 1707 * "pwms" property of a device tree node or a negative error-code on failure. 1708 * Values parsed from the device tree are stored in the returned PWM device 1709 * object. 1710 * 1711 * If con_id is NULL, the first PWM device listed in the "pwms" property will 1712 * be requested. Otherwise the "pwm-names" property is used to do a reverse 1713 * lookup of the PWM index. This also means that the "pwm-names" property 1714 * becomes mandatory for devices that look up the PWM device via the con_id 1715 * parameter. 1716 * 1717 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1718 * error code on failure. 1719 */ 1720 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 1721 const char *con_id) 1722 { 1723 struct pwm_device *pwm = NULL; 1724 struct of_phandle_args args; 1725 struct device_link *dl; 1726 struct pwm_chip *chip; 1727 int index = 0; 1728 int err; 1729 1730 if (con_id) { 1731 index = of_property_match_string(np, "pwm-names", con_id); 1732 if (index < 0) 1733 return ERR_PTR(index); 1734 } 1735 1736 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args); 1737 if (err) { 1738 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 1739 return ERR_PTR(err); 1740 } 1741 1742 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 1743 if (IS_ERR(chip)) { 1744 if (PTR_ERR(chip) != -EPROBE_DEFER) 1745 pr_err("%s(): PWM chip not found\n", __func__); 1746 1747 pwm = ERR_CAST(chip); 1748 goto put; 1749 } 1750 1751 pwm = chip->of_xlate(chip, &args); 1752 if (IS_ERR(pwm)) 1753 goto put; 1754 1755 dl = pwm_device_link_add(dev, pwm); 1756 if (IS_ERR(dl)) { 1757 /* of_xlate ended up calling pwm_request_from_chip() */ 1758 pwm_put(pwm); 1759 pwm = ERR_CAST(dl); 1760 goto put; 1761 } 1762 1763 /* 1764 * If a consumer name was not given, try to look it up from the 1765 * "pwm-names" property if it exists. Otherwise use the name of 1766 * the user device node. 1767 */ 1768 if (!con_id) { 1769 err = of_property_read_string_index(np, "pwm-names", index, 1770 &con_id); 1771 if (err < 0) 1772 con_id = np->name; 1773 } 1774 1775 pwm->label = con_id; 1776 1777 put: 1778 of_node_put(args.np); 1779 1780 return pwm; 1781 } 1782 1783 /** 1784 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 1785 * @fwnode: firmware node to get the "pwms" property from 1786 * 1787 * Returns the PWM device parsed from the fwnode and index specified in the 1788 * "pwms" property or a negative error-code on failure. 1789 * Values parsed from the device tree are stored in the returned PWM device 1790 * object. 1791 * 1792 * This is analogous to of_pwm_get() except con_id is not yet supported. 1793 * ACPI entries must look like 1794 * Package () {"pwms", Package () 1795 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 1796 * 1797 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1798 * error code on failure. 1799 */ 1800 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 1801 { 1802 struct pwm_device *pwm; 1803 struct fwnode_reference_args args; 1804 struct pwm_chip *chip; 1805 int ret; 1806 1807 memset(&args, 0, sizeof(args)); 1808 1809 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 1810 if (ret < 0) 1811 return ERR_PTR(ret); 1812 1813 if (args.nargs < 2) 1814 return ERR_PTR(-EPROTO); 1815 1816 chip = fwnode_to_pwmchip(args.fwnode); 1817 if (IS_ERR(chip)) 1818 return ERR_CAST(chip); 1819 1820 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 1821 if (IS_ERR(pwm)) 1822 return pwm; 1823 1824 pwm->args.period = args.args[1]; 1825 pwm->args.polarity = PWM_POLARITY_NORMAL; 1826 1827 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 1828 pwm->args.polarity = PWM_POLARITY_INVERSED; 1829 1830 return pwm; 1831 } 1832 1833 static DEFINE_MUTEX(pwm_lookup_lock); 1834 static LIST_HEAD(pwm_lookup_list); 1835 1836 /** 1837 * pwm_get() - look up and request a PWM device 1838 * @dev: device for PWM consumer 1839 * @con_id: consumer name 1840 * 1841 * Lookup is first attempted using DT. If the device was not instantiated from 1842 * a device tree, a PWM chip and a relative index is looked up via a table 1843 * supplied by board setup code (see pwm_add_table()). 1844 * 1845 * Once a PWM chip has been found the specified PWM device will be requested 1846 * and is ready to be used. 1847 * 1848 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1849 * error code on failure. 1850 */ 1851 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 1852 { 1853 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 1854 const char *dev_id = dev ? dev_name(dev) : NULL; 1855 struct pwm_device *pwm; 1856 struct pwm_chip *chip; 1857 struct device_link *dl; 1858 unsigned int best = 0; 1859 struct pwm_lookup *p, *chosen = NULL; 1860 unsigned int match; 1861 int err; 1862 1863 /* look up via DT first */ 1864 if (is_of_node(fwnode)) 1865 return of_pwm_get(dev, to_of_node(fwnode), con_id); 1866 1867 /* then lookup via ACPI */ 1868 if (is_acpi_node(fwnode)) { 1869 pwm = acpi_pwm_get(fwnode); 1870 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1871 return pwm; 1872 } 1873 1874 /* 1875 * We look up the provider in the static table typically provided by 1876 * board setup code. We first try to lookup the consumer device by 1877 * name. If the consumer device was passed in as NULL or if no match 1878 * was found, we try to find the consumer by directly looking it up 1879 * by name. 1880 * 1881 * If a match is found, the provider PWM chip is looked up by name 1882 * and a PWM device is requested using the PWM device per-chip index. 1883 * 1884 * The lookup algorithm was shamelessly taken from the clock 1885 * framework: 1886 * 1887 * We do slightly fuzzy matching here: 1888 * An entry with a NULL ID is assumed to be a wildcard. 1889 * If an entry has a device ID, it must match 1890 * If an entry has a connection ID, it must match 1891 * Then we take the most specific entry - with the following order 1892 * of precedence: dev+con > dev only > con only. 1893 */ 1894 scoped_guard(mutex, &pwm_lookup_lock) 1895 list_for_each_entry(p, &pwm_lookup_list, list) { 1896 match = 0; 1897 1898 if (p->dev_id) { 1899 if (!dev_id || strcmp(p->dev_id, dev_id)) 1900 continue; 1901 1902 match += 2; 1903 } 1904 1905 if (p->con_id) { 1906 if (!con_id || strcmp(p->con_id, con_id)) 1907 continue; 1908 1909 match += 1; 1910 } 1911 1912 if (match > best) { 1913 chosen = p; 1914 1915 if (match != 3) 1916 best = match; 1917 else 1918 break; 1919 } 1920 } 1921 1922 if (!chosen) 1923 return ERR_PTR(-ENODEV); 1924 1925 chip = pwmchip_find_by_name(chosen->provider); 1926 1927 /* 1928 * If the lookup entry specifies a module, load the module and retry 1929 * the PWM chip lookup. This can be used to work around driver load 1930 * ordering issues if driver's can't be made to properly support the 1931 * deferred probe mechanism. 1932 */ 1933 if (!chip && chosen->module) { 1934 err = request_module(chosen->module); 1935 if (err == 0) 1936 chip = pwmchip_find_by_name(chosen->provider); 1937 } 1938 1939 if (!chip) 1940 return ERR_PTR(-EPROBE_DEFER); 1941 1942 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 1943 if (IS_ERR(pwm)) 1944 return pwm; 1945 1946 dl = pwm_device_link_add(dev, pwm); 1947 if (IS_ERR(dl)) { 1948 pwm_put(pwm); 1949 return ERR_CAST(dl); 1950 } 1951 1952 pwm->args.period = chosen->period; 1953 pwm->args.polarity = chosen->polarity; 1954 1955 return pwm; 1956 } 1957 EXPORT_SYMBOL_GPL(pwm_get); 1958 1959 /** 1960 * pwm_put() - release a PWM device 1961 * @pwm: PWM device 1962 */ 1963 void pwm_put(struct pwm_device *pwm) 1964 { 1965 struct pwm_chip *chip; 1966 1967 if (!pwm) 1968 return; 1969 1970 chip = pwm->chip; 1971 1972 guard(mutex)(&pwm_lock); 1973 1974 /* 1975 * Trigger a warning if a consumer called pwm_put() twice. 1976 * If the chip isn't operational, PWMF_REQUESTED was already cleared in 1977 * pwmchip_remove(). So don't warn in this case. 1978 */ 1979 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 1980 pr_warn("PWM device already freed\n"); 1981 return; 1982 } 1983 1984 if (chip->operational && chip->ops->free) 1985 pwm->chip->ops->free(pwm->chip, pwm); 1986 1987 pwm->label = NULL; 1988 1989 put_device(&chip->dev); 1990 1991 module_put(chip->owner); 1992 } 1993 EXPORT_SYMBOL_GPL(pwm_put); 1994 1995 static void devm_pwm_release(void *pwm) 1996 { 1997 pwm_put(pwm); 1998 } 1999 2000 /** 2001 * devm_pwm_get() - resource managed pwm_get() 2002 * @dev: device for PWM consumer 2003 * @con_id: consumer name 2004 * 2005 * This function performs like pwm_get() but the acquired PWM device will 2006 * automatically be released on driver detach. 2007 * 2008 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2009 * error code on failure. 2010 */ 2011 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 2012 { 2013 struct pwm_device *pwm; 2014 int ret; 2015 2016 pwm = pwm_get(dev, con_id); 2017 if (IS_ERR(pwm)) 2018 return pwm; 2019 2020 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2021 if (ret) 2022 return ERR_PTR(ret); 2023 2024 return pwm; 2025 } 2026 EXPORT_SYMBOL_GPL(devm_pwm_get); 2027 2028 /** 2029 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 2030 * @dev: device for PWM consumer 2031 * @fwnode: firmware node to get the PWM from 2032 * @con_id: consumer name 2033 * 2034 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 2035 * acpi_pwm_get() for a detailed description. 2036 * 2037 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2038 * error code on failure. 2039 */ 2040 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 2041 struct fwnode_handle *fwnode, 2042 const char *con_id) 2043 { 2044 struct pwm_device *pwm = ERR_PTR(-ENODEV); 2045 int ret; 2046 2047 if (is_of_node(fwnode)) 2048 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 2049 else if (is_acpi_node(fwnode)) 2050 pwm = acpi_pwm_get(fwnode); 2051 if (IS_ERR(pwm)) 2052 return pwm; 2053 2054 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2055 if (ret) 2056 return ERR_PTR(ret); 2057 2058 return pwm; 2059 } 2060 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 2061 2062 /** 2063 * __pwmchip_add() - register a new PWM chip 2064 * @chip: the PWM chip to add 2065 * @owner: reference to the module providing the chip. 2066 * 2067 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 2068 * pwmchip_add wrapper to do this right. 2069 * 2070 * Returns: 0 on success or a negative error code on failure. 2071 */ 2072 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 2073 { 2074 int ret; 2075 2076 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) 2077 return -EINVAL; 2078 2079 /* 2080 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, 2081 * otherwise the embedded struct device might disappear too early 2082 * resulting in memory corruption. 2083 * Catch drivers that were not converted appropriately. 2084 */ 2085 if (!chip->uses_pwmchip_alloc) 2086 return -EINVAL; 2087 2088 if (!pwm_ops_check(chip)) 2089 return -EINVAL; 2090 2091 chip->owner = owner; 2092 2093 if (chip->atomic) 2094 spin_lock_init(&chip->atomic_lock); 2095 else 2096 mutex_init(&chip->nonatomic_lock); 2097 2098 guard(mutex)(&pwm_lock); 2099 2100 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 2101 if (ret < 0) 2102 return ret; 2103 2104 chip->id = ret; 2105 2106 dev_set_name(&chip->dev, "pwmchip%u", chip->id); 2107 2108 if (IS_ENABLED(CONFIG_OF)) 2109 of_pwmchip_add(chip); 2110 2111 scoped_guard(pwmchip, chip) 2112 chip->operational = true; 2113 2114 ret = device_add(&chip->dev); 2115 if (ret) 2116 goto err_device_add; 2117 2118 return 0; 2119 2120 err_device_add: 2121 scoped_guard(pwmchip, chip) 2122 chip->operational = false; 2123 2124 if (IS_ENABLED(CONFIG_OF)) 2125 of_pwmchip_remove(chip); 2126 2127 idr_remove(&pwm_chips, chip->id); 2128 2129 return ret; 2130 } 2131 EXPORT_SYMBOL_GPL(__pwmchip_add); 2132 2133 /** 2134 * pwmchip_remove() - remove a PWM chip 2135 * @chip: the PWM chip to remove 2136 * 2137 * Removes a PWM chip. 2138 */ 2139 void pwmchip_remove(struct pwm_chip *chip) 2140 { 2141 pwmchip_sysfs_unexport(chip); 2142 2143 scoped_guard(mutex, &pwm_lock) { 2144 unsigned int i; 2145 2146 scoped_guard(pwmchip, chip) 2147 chip->operational = false; 2148 2149 for (i = 0; i < chip->npwm; ++i) { 2150 struct pwm_device *pwm = &chip->pwms[i]; 2151 2152 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2153 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); 2154 if (pwm->chip->ops->free) 2155 pwm->chip->ops->free(pwm->chip, pwm); 2156 } 2157 } 2158 2159 if (IS_ENABLED(CONFIG_OF)) 2160 of_pwmchip_remove(chip); 2161 2162 idr_remove(&pwm_chips, chip->id); 2163 } 2164 2165 device_del(&chip->dev); 2166 } 2167 EXPORT_SYMBOL_GPL(pwmchip_remove); 2168 2169 static void devm_pwmchip_remove(void *data) 2170 { 2171 struct pwm_chip *chip = data; 2172 2173 pwmchip_remove(chip); 2174 } 2175 2176 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 2177 { 2178 int ret; 2179 2180 ret = __pwmchip_add(chip, owner); 2181 if (ret) 2182 return ret; 2183 2184 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 2185 } 2186 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 2187 2188 /** 2189 * pwm_add_table() - register PWM device consumers 2190 * @table: array of consumers to register 2191 * @num: number of consumers in table 2192 */ 2193 void pwm_add_table(struct pwm_lookup *table, size_t num) 2194 { 2195 guard(mutex)(&pwm_lookup_lock); 2196 2197 while (num--) { 2198 list_add_tail(&table->list, &pwm_lookup_list); 2199 table++; 2200 } 2201 } 2202 2203 /** 2204 * pwm_remove_table() - unregister PWM device consumers 2205 * @table: array of consumers to unregister 2206 * @num: number of consumers in table 2207 */ 2208 void pwm_remove_table(struct pwm_lookup *table, size_t num) 2209 { 2210 guard(mutex)(&pwm_lookup_lock); 2211 2212 while (num--) { 2213 list_del(&table->list); 2214 table++; 2215 } 2216 } 2217 2218 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 2219 { 2220 unsigned int i; 2221 2222 for (i = 0; i < chip->npwm; i++) { 2223 struct pwm_device *pwm = &chip->pwms[i]; 2224 struct pwm_state state; 2225 2226 pwm_get_state(pwm, &state); 2227 2228 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 2229 2230 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 2231 seq_puts(s, " requested"); 2232 2233 if (state.enabled) 2234 seq_puts(s, " enabled"); 2235 2236 seq_printf(s, " period: %llu ns", state.period); 2237 seq_printf(s, " duty: %llu ns", state.duty_cycle); 2238 seq_printf(s, " polarity: %s", 2239 state.polarity ? "inverse" : "normal"); 2240 2241 if (state.usage_power) 2242 seq_puts(s, " usage_power"); 2243 2244 seq_puts(s, "\n"); 2245 } 2246 } 2247 2248 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 2249 { 2250 unsigned long id = *pos; 2251 void *ret; 2252 2253 mutex_lock(&pwm_lock); 2254 s->private = ""; 2255 2256 ret = idr_get_next_ul(&pwm_chips, &id); 2257 *pos = id; 2258 return ret; 2259 } 2260 2261 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 2262 { 2263 unsigned long id = *pos + 1; 2264 void *ret; 2265 2266 s->private = "\n"; 2267 2268 ret = idr_get_next_ul(&pwm_chips, &id); 2269 *pos = id; 2270 return ret; 2271 } 2272 2273 static void pwm_seq_stop(struct seq_file *s, void *v) 2274 { 2275 mutex_unlock(&pwm_lock); 2276 } 2277 2278 static int pwm_seq_show(struct seq_file *s, void *v) 2279 { 2280 struct pwm_chip *chip = v; 2281 2282 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", 2283 (char *)s->private, chip->id, 2284 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", 2285 dev_name(pwmchip_parent(chip)), chip->npwm, 2286 (chip->npwm != 1) ? "s" : ""); 2287 2288 pwm_dbg_show(chip, s); 2289 2290 return 0; 2291 } 2292 2293 static const struct seq_operations pwm_debugfs_sops = { 2294 .start = pwm_seq_start, 2295 .next = pwm_seq_next, 2296 .stop = pwm_seq_stop, 2297 .show = pwm_seq_show, 2298 }; 2299 2300 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 2301 2302 static int __init pwm_init(void) 2303 { 2304 int ret; 2305 2306 ret = class_register(&pwm_class); 2307 if (ret) { 2308 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); 2309 return ret; 2310 } 2311 2312 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2313 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 2314 2315 return 0; 2316 } 2317 subsys_initcall(pwm_init); 2318