xref: /linux/drivers/pwm/core.c (revision 7f15c46a57c31956591f85b713d7e63cccb25556)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE PWM
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28 
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31 
32 static DEFINE_IDR(pwm_chips);
33 
34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 	if (chip->atomic)
37 		spin_lock(&chip->atomic_lock);
38 	else
39 		mutex_lock(&chip->nonatomic_lock);
40 }
41 
42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 	if (chip->atomic)
45 		spin_unlock(&chip->atomic_lock);
46 	else
47 		mutex_unlock(&chip->nonatomic_lock);
48 }
49 
50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51 
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 	/*
55 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 	 * some space for future extensions. One possibility is to simplify
57 	 * representing waveforms with inverted polarity using negative values
58 	 * somehow.
59 	 */
60 	if (wf->period_length_ns > S64_MAX)
61 		return false;
62 
63 	if (wf->duty_length_ns > wf->period_length_ns)
64 		return false;
65 
66 	/*
67 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 	 */
70 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 		return false;
72 
73 	return true;
74 }
75 
76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 	if (wf->period_length_ns) {
79 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 			*state = (struct pwm_state){
81 				.enabled = true,
82 				.polarity = PWM_POLARITY_NORMAL,
83 				.period = wf->period_length_ns,
84 				.duty_cycle = wf->duty_length_ns,
85 			};
86 		else
87 			*state = (struct pwm_state){
88 				.enabled = true,
89 				.polarity = PWM_POLARITY_INVERSED,
90 				.period = wf->period_length_ns,
91 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 			};
93 	} else {
94 		*state = (struct pwm_state){
95 			.enabled = false,
96 		};
97 	}
98 }
99 
100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 	if (state->enabled) {
103 		if (state->polarity == PWM_POLARITY_NORMAL)
104 			*wf = (struct pwm_waveform){
105 				.period_length_ns = state->period,
106 				.duty_length_ns = state->duty_cycle,
107 				.duty_offset_ns = 0,
108 			};
109 		else
110 			*wf = (struct pwm_waveform){
111 				.period_length_ns = state->period,
112 				.duty_length_ns = state->period - state->duty_cycle,
113 				.duty_offset_ns = state->duty_cycle,
114 			};
115 	} else {
116 		*wf = (struct pwm_waveform){
117 			.period_length_ns = 0,
118 		};
119 	}
120 }
121 
122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 	if (a->period_length_ns > b->period_length_ns)
125 		return 1;
126 
127 	if (a->period_length_ns < b->period_length_ns)
128 		return -1;
129 
130 	if (a->duty_length_ns > b->duty_length_ns)
131 		return 1;
132 
133 	if (a->duty_length_ns < b->duty_length_ns)
134 		return -1;
135 
136 	if (a->duty_offset_ns > b->duty_offset_ns)
137 		return 1;
138 
139 	if (a->duty_offset_ns < b->duty_offset_ns)
140 		return -1;
141 
142 	return 0;
143 }
144 
145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 			       const struct pwm_waveform *wf_rounded)
147 {
148 	if (!wf->period_length_ns)
149 		return true;
150 
151 	if (wf->period_length_ns < wf_rounded->period_length_ns)
152 		return false;
153 
154 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 		return false;
156 
157 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 		return false;
159 
160 	return true;
161 }
162 
163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 				     const struct pwm_waveform *wf, void *wfhw)
165 {
166 	const struct pwm_ops *ops = chip->ops;
167 	int ret;
168 
169 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171 
172 	return ret;
173 }
174 
175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 				       const void *wfhw, struct pwm_waveform *wf)
177 {
178 	const struct pwm_ops *ops = chip->ops;
179 	int ret;
180 
181 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183 
184 	return ret;
185 }
186 
187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 	int ret;
191 
192 	ret = ops->read_waveform(chip, pwm, wfhw);
193 	trace_pwm_read_waveform(pwm, wfhw, ret);
194 
195 	return ret;
196 }
197 
198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 	const struct pwm_ops *ops = chip->ops;
201 	int ret;
202 
203 	ret = ops->write_waveform(chip, pwm, wfhw);
204 	trace_pwm_write_waveform(pwm, wfhw, ret);
205 
206 	return ret;
207 }
208 
209 #define WFHWSIZE 20
210 
211 /**
212  * pwm_round_waveform_might_sleep - Query hardware capabilities
213  * Cannot be used in atomic context.
214  * @pwm: PWM device
215  * @wf: waveform to round and output parameter
216  *
217  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218  * because hardware only supports coarse period resolution or no duty_offset.
219  * This function returns the actually implemented waveform if you pass wf to
220  * pwm_set_waveform_might_sleep now.
221  *
222  * Note however that the world doesn't stop turning when you call it, so when
223  * doing
224  *
225  * 	pwm_round_waveform_might_sleep(mypwm, &wf);
226  * 	pwm_set_waveform_might_sleep(mypwm, &wf, true);
227  *
228  * the latter might fail, e.g. because an input clock changed its rate between
229  * these two calls and the waveform determined by
230  * pwm_round_waveform_might_sleep() cannot be implemented any more.
231  *
232  * Returns 0 on success, 1 if there is no valid hardware configuration matching
233  * the input waveform under the PWM rounding rules or a negative errno.
234  */
235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
236 {
237 	struct pwm_chip *chip = pwm->chip;
238 	const struct pwm_ops *ops = chip->ops;
239 	struct pwm_waveform wf_req = *wf;
240 	char wfhw[WFHWSIZE];
241 	int ret_tohw, ret_fromhw;
242 
243 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
244 
245 	if (!pwm_wf_valid(wf))
246 		return -EINVAL;
247 
248 	guard(pwmchip)(chip);
249 
250 	if (!chip->operational)
251 		return -ENODEV;
252 
253 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
254 	if (ret_tohw < 0)
255 		return ret_tohw;
256 
257 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
258 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
259 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
260 
261 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
262 	if (ret_fromhw < 0)
263 		return ret_fromhw;
264 
265 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
266 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
267 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
268 
269 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
270 	    ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
271 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
272 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
273 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
274 
275 	return ret_tohw;
276 }
277 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
278 
279 /**
280  * pwm_get_waveform_might_sleep - Query hardware about current configuration
281  * Cannot be used in atomic context.
282  * @pwm: PWM device
283  * @wf: output parameter
284  *
285  * Stores the current configuration of the PWM in @wf. Note this is the
286  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
287  */
288 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
289 {
290 	struct pwm_chip *chip = pwm->chip;
291 	const struct pwm_ops *ops = chip->ops;
292 	char wfhw[WFHWSIZE];
293 	int err;
294 
295 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
296 
297 	guard(pwmchip)(chip);
298 
299 	if (!chip->operational)
300 		return -ENODEV;
301 
302 	err = __pwm_read_waveform(chip, pwm, &wfhw);
303 	if (err)
304 		return err;
305 
306 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
307 }
308 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
309 
310 /* Called with the pwmchip lock held */
311 static int __pwm_set_waveform(struct pwm_device *pwm,
312 			      const struct pwm_waveform *wf,
313 			      bool exact)
314 {
315 	struct pwm_chip *chip = pwm->chip;
316 	const struct pwm_ops *ops = chip->ops;
317 	char wfhw[WFHWSIZE];
318 	struct pwm_waveform wf_rounded;
319 	int err;
320 
321 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
322 
323 	if (!pwm_wf_valid(wf))
324 		return -EINVAL;
325 
326 	err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
327 	if (err)
328 		return err;
329 
330 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
331 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
332 		if (err)
333 			return err;
334 
335 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
336 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
337 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
338 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
339 
340 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
341 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
342 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
343 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
344 
345 			return 1;
346 		}
347 	}
348 
349 	err = __pwm_write_waveform(chip, pwm, &wfhw);
350 	if (err)
351 		return err;
352 
353 	/* update .state */
354 	pwm_wf2state(wf, &pwm->state);
355 
356 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
357 		struct pwm_waveform wf_set;
358 
359 		err = __pwm_read_waveform(chip, pwm, &wfhw);
360 		if (err)
361 			/* maybe ignore? */
362 			return err;
363 
364 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
365 		if (err)
366 			/* maybe ignore? */
367 			return err;
368 
369 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
370 			dev_err(&chip->dev,
371 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
372 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
373 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
374 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
375 	}
376 	return 0;
377 }
378 
379 /**
380  * pwm_set_waveform_might_sleep - Apply a new waveform
381  * Cannot be used in atomic context.
382  * @pwm: PWM device
383  * @wf: The waveform to apply
384  * @exact: If true no rounding is allowed
385  *
386  * Typically a requested waveform cannot be implemented exactly, e.g. because
387  * you requested .period_length_ns = 100 ns, but the hardware can only set
388  * periods that are a multiple of 8.5 ns. With that hardware passing exact =
389  * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
390  * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
391  * than the requested value).
392  * Note that even with exact = true, some rounding by less than 1 is
393  * possible/needed. In the above example requesting .period_length_ns = 94 and
394  * exact = true, you get the hardware configured with period = 93.5 ns.
395  */
396 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
397 				 const struct pwm_waveform *wf, bool exact)
398 {
399 	struct pwm_chip *chip = pwm->chip;
400 	int err;
401 
402 	might_sleep();
403 
404 	guard(pwmchip)(chip);
405 
406 	if (!chip->operational)
407 		return -ENODEV;
408 
409 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
410 		/*
411 		 * Catch any drivers that have been marked as atomic but
412 		 * that will sleep anyway.
413 		 */
414 		non_block_start();
415 		err = __pwm_set_waveform(pwm, wf, exact);
416 		non_block_end();
417 	} else {
418 		err = __pwm_set_waveform(pwm, wf, exact);
419 	}
420 
421 	return err;
422 }
423 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
424 
425 static void pwm_apply_debug(struct pwm_device *pwm,
426 			    const struct pwm_state *state)
427 {
428 	struct pwm_state *last = &pwm->last;
429 	struct pwm_chip *chip = pwm->chip;
430 	struct pwm_state s1 = { 0 }, s2 = { 0 };
431 	int err;
432 
433 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
434 		return;
435 
436 	/* No reasonable diagnosis possible without .get_state() */
437 	if (!chip->ops->get_state)
438 		return;
439 
440 	/*
441 	 * *state was just applied. Read out the hardware state and do some
442 	 * checks.
443 	 */
444 
445 	err = chip->ops->get_state(chip, pwm, &s1);
446 	trace_pwm_get(pwm, &s1, err);
447 	if (err)
448 		/* If that failed there isn't much to debug */
449 		return;
450 
451 	/*
452 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
453 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
454 	 * Undo this inversion and fixup for further tests.
455 	 */
456 	if (s1.enabled && s1.polarity != state->polarity) {
457 		s2.polarity = state->polarity;
458 		s2.duty_cycle = s1.period - s1.duty_cycle;
459 		s2.period = s1.period;
460 		s2.enabled = s1.enabled;
461 	} else {
462 		s2 = s1;
463 	}
464 
465 	if (s2.polarity != state->polarity &&
466 	    state->duty_cycle < state->period)
467 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
468 
469 	if (state->enabled &&
470 	    last->polarity == state->polarity &&
471 	    last->period > s2.period &&
472 	    last->period <= state->period)
473 		dev_warn(pwmchip_parent(chip),
474 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
475 			 state->period, s2.period, last->period);
476 
477 	if (state->enabled && state->period < s2.period)
478 		dev_warn(pwmchip_parent(chip),
479 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
480 			 state->period, s2.period);
481 
482 	if (state->enabled &&
483 	    last->polarity == state->polarity &&
484 	    last->period == s2.period &&
485 	    last->duty_cycle > s2.duty_cycle &&
486 	    last->duty_cycle <= state->duty_cycle)
487 		dev_warn(pwmchip_parent(chip),
488 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
489 			 state->duty_cycle, state->period,
490 			 s2.duty_cycle, s2.period,
491 			 last->duty_cycle, last->period);
492 
493 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
494 		dev_warn(pwmchip_parent(chip),
495 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
496 			 state->duty_cycle, state->period,
497 			 s2.duty_cycle, s2.period);
498 
499 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
500 		dev_warn(pwmchip_parent(chip),
501 			 "requested disabled, but yielded enabled with duty > 0\n");
502 
503 	/* reapply the state that the driver reported being configured. */
504 	err = chip->ops->apply(chip, pwm, &s1);
505 	trace_pwm_apply(pwm, &s1, err);
506 	if (err) {
507 		*last = s1;
508 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
509 		return;
510 	}
511 
512 	*last = (struct pwm_state){ 0 };
513 	err = chip->ops->get_state(chip, pwm, last);
514 	trace_pwm_get(pwm, last, err);
515 	if (err)
516 		return;
517 
518 	/* reapplication of the current state should give an exact match */
519 	if (s1.enabled != last->enabled ||
520 	    s1.polarity != last->polarity ||
521 	    (s1.enabled && s1.period != last->period) ||
522 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
523 		dev_err(pwmchip_parent(chip),
524 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
525 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
526 			last->enabled, last->polarity, last->duty_cycle,
527 			last->period);
528 	}
529 }
530 
531 static bool pwm_state_valid(const struct pwm_state *state)
532 {
533 	/*
534 	 * For a disabled state all other state description is irrelevant and
535 	 * and supposed to be ignored. So also ignore any strange values and
536 	 * consider the state ok.
537 	 */
538 	if (state->enabled)
539 		return true;
540 
541 	if (!state->period)
542 		return false;
543 
544 	if (state->duty_cycle > state->period)
545 		return false;
546 
547 	return true;
548 }
549 
550 /**
551  * __pwm_apply() - atomically apply a new state to a PWM device
552  * @pwm: PWM device
553  * @state: new state to apply
554  */
555 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
556 {
557 	struct pwm_chip *chip;
558 	const struct pwm_ops *ops;
559 	int err;
560 
561 	if (!pwm || !state)
562 		return -EINVAL;
563 
564 	if (!pwm_state_valid(state)) {
565 		/*
566 		 * Allow to transition from one invalid state to another.
567 		 * This ensures that you can e.g. change the polarity while
568 		 * the period is zero. (This happens on stm32 when the hardware
569 		 * is in its poweron default state.) This greatly simplifies
570 		 * working with the sysfs API where you can only change one
571 		 * parameter at a time.
572 		 */
573 		if (!pwm_state_valid(&pwm->state)) {
574 			pwm->state = *state;
575 			return 0;
576 		}
577 
578 		return -EINVAL;
579 	}
580 
581 	chip = pwm->chip;
582 	ops = chip->ops;
583 
584 	if (state->period == pwm->state.period &&
585 	    state->duty_cycle == pwm->state.duty_cycle &&
586 	    state->polarity == pwm->state.polarity &&
587 	    state->enabled == pwm->state.enabled &&
588 	    state->usage_power == pwm->state.usage_power)
589 		return 0;
590 
591 	if (ops->write_waveform) {
592 		struct pwm_waveform wf;
593 		char wfhw[WFHWSIZE];
594 
595 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
596 
597 		pwm_state2wf(state, &wf);
598 
599 		/*
600 		 * The rounding is wrong here for states with inverted polarity.
601 		 * While .apply() rounds down duty_cycle (which represents the
602 		 * time from the start of the period to the inner edge),
603 		 * .round_waveform_tohw() rounds down the time the PWM is high.
604 		 * Can be fixed if the need arises, until reported otherwise
605 		 * let's assume that consumers don't care.
606 		 */
607 
608 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
609 		if (err) {
610 			if (err > 0)
611 				/*
612 				 * This signals an invalid request, typically
613 				 * the requested period (or duty_offset) is
614 				 * smaller than possible with the hardware.
615 				 */
616 				return -EINVAL;
617 
618 			return err;
619 		}
620 
621 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
622 			struct pwm_waveform wf_rounded;
623 
624 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
625 			if (err)
626 				return err;
627 
628 			if (!pwm_check_rounding(&wf, &wf_rounded))
629 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
630 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
631 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
632 		}
633 
634 		err = __pwm_write_waveform(chip, pwm, &wfhw);
635 		if (err)
636 			return err;
637 
638 		pwm->state = *state;
639 
640 	} else {
641 		err = ops->apply(chip, pwm, state);
642 		trace_pwm_apply(pwm, state, err);
643 		if (err)
644 			return err;
645 
646 		pwm->state = *state;
647 
648 		/*
649 		 * only do this after pwm->state was applied as some
650 		 * implementations of .get_state() depend on this
651 		 */
652 		pwm_apply_debug(pwm, state);
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
660  * Cannot be used in atomic context.
661  * @pwm: PWM device
662  * @state: new state to apply
663  */
664 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
665 {
666 	int err;
667 	struct pwm_chip *chip = pwm->chip;
668 
669 	/*
670 	 * Some lowlevel driver's implementations of .apply() make use of
671 	 * mutexes, also with some drivers only returning when the new
672 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
673 	 * is a bad idea. So make it explicit that calling this function might
674 	 * sleep.
675 	 */
676 	might_sleep();
677 
678 	guard(pwmchip)(chip);
679 
680 	if (!chip->operational)
681 		return -ENODEV;
682 
683 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
684 		/*
685 		 * Catch any drivers that have been marked as atomic but
686 		 * that will sleep anyway.
687 		 */
688 		non_block_start();
689 		err = __pwm_apply(pwm, state);
690 		non_block_end();
691 	} else {
692 		err = __pwm_apply(pwm, state);
693 	}
694 
695 	return err;
696 }
697 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
698 
699 /**
700  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
701  * Not all PWM devices support this function, check with pwm_might_sleep().
702  * @pwm: PWM device
703  * @state: new state to apply
704  */
705 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
706 {
707 	struct pwm_chip *chip = pwm->chip;
708 
709 	WARN_ONCE(!chip->atomic,
710 		  "sleeping PWM driver used in atomic context\n");
711 
712 	guard(pwmchip)(chip);
713 
714 	if (!chip->operational)
715 		return -ENODEV;
716 
717 	return __pwm_apply(pwm, state);
718 }
719 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
720 
721 static int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
722 {
723 	struct pwm_chip *chip = pwm->chip;
724 	const struct pwm_ops *ops = chip->ops;
725 	int ret = -EOPNOTSUPP;
726 
727 	if (ops->read_waveform) {
728 		char wfhw[WFHWSIZE];
729 		struct pwm_waveform wf;
730 
731 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
732 
733 		scoped_guard(pwmchip, chip) {
734 
735 			ret = __pwm_read_waveform(chip, pwm, &wfhw);
736 			if (ret)
737 				return ret;
738 
739 			ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
740 			if (ret)
741 				return ret;
742 		}
743 
744 		pwm_wf2state(&wf, state);
745 
746 	} else if (ops->get_state) {
747 		scoped_guard(pwmchip, chip)
748 			ret = ops->get_state(chip, pwm, state);
749 
750 		trace_pwm_get(pwm, state, ret);
751 	}
752 
753 	return ret;
754 }
755 
756 /**
757  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
758  * @pwm: PWM device
759  *
760  * This function will adjust the PWM config to the PWM arguments provided
761  * by the DT or PWM lookup table. This is particularly useful to adapt
762  * the bootloader config to the Linux one.
763  */
764 int pwm_adjust_config(struct pwm_device *pwm)
765 {
766 	struct pwm_state state;
767 	struct pwm_args pargs;
768 
769 	pwm_get_args(pwm, &pargs);
770 	pwm_get_state(pwm, &state);
771 
772 	/*
773 	 * If the current period is zero it means that either the PWM driver
774 	 * does not support initial state retrieval or the PWM has not yet
775 	 * been configured.
776 	 *
777 	 * In either case, we setup the new period and polarity, and assign a
778 	 * duty cycle of 0.
779 	 */
780 	if (!state.period) {
781 		state.duty_cycle = 0;
782 		state.period = pargs.period;
783 		state.polarity = pargs.polarity;
784 
785 		return pwm_apply_might_sleep(pwm, &state);
786 	}
787 
788 	/*
789 	 * Adjust the PWM duty cycle/period based on the period value provided
790 	 * in PWM args.
791 	 */
792 	if (pargs.period != state.period) {
793 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
794 
795 		do_div(dutycycle, state.period);
796 		state.duty_cycle = dutycycle;
797 		state.period = pargs.period;
798 	}
799 
800 	/*
801 	 * If the polarity changed, we should also change the duty cycle.
802 	 */
803 	if (pargs.polarity != state.polarity) {
804 		state.polarity = pargs.polarity;
805 		state.duty_cycle = state.period - state.duty_cycle;
806 	}
807 
808 	return pwm_apply_might_sleep(pwm, &state);
809 }
810 EXPORT_SYMBOL_GPL(pwm_adjust_config);
811 
812 /**
813  * pwm_capture() - capture and report a PWM signal
814  * @pwm: PWM device
815  * @result: structure to fill with capture result
816  * @timeout: time to wait, in milliseconds, before giving up on capture
817  *
818  * Returns: 0 on success or a negative error code on failure.
819  */
820 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
821 		       unsigned long timeout)
822 {
823 	struct pwm_chip *chip = pwm->chip;
824 	const struct pwm_ops *ops = chip->ops;
825 
826 	if (!ops->capture)
827 		return -ENOSYS;
828 
829 	/*
830 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
831 	 * and you're interested to speed it up, please convince yourself it's
832 	 * really not needed, test and then suggest a patch on the mailing list.
833 	 */
834 	guard(mutex)(&pwm_lock);
835 
836 	guard(pwmchip)(chip);
837 
838 	if (!chip->operational)
839 		return -ENODEV;
840 
841 	return ops->capture(chip, pwm, result, timeout);
842 }
843 
844 static struct pwm_chip *pwmchip_find_by_name(const char *name)
845 {
846 	struct pwm_chip *chip;
847 	unsigned long id, tmp;
848 
849 	if (!name)
850 		return NULL;
851 
852 	guard(mutex)(&pwm_lock);
853 
854 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
855 		const char *chip_name = dev_name(pwmchip_parent(chip));
856 
857 		if (chip_name && strcmp(chip_name, name) == 0)
858 			return chip;
859 	}
860 
861 	return NULL;
862 }
863 
864 static int pwm_device_request(struct pwm_device *pwm, const char *label)
865 {
866 	int err;
867 	struct pwm_chip *chip = pwm->chip;
868 	const struct pwm_ops *ops = chip->ops;
869 
870 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
871 		return -EBUSY;
872 
873 	/*
874 	 * This function is called while holding pwm_lock. As .operational only
875 	 * changes while holding this lock, checking it here without holding the
876 	 * chip lock is fine.
877 	 */
878 	if (!chip->operational)
879 		return -ENODEV;
880 
881 	if (!try_module_get(chip->owner))
882 		return -ENODEV;
883 
884 	if (!get_device(&chip->dev)) {
885 		err = -ENODEV;
886 		goto err_get_device;
887 	}
888 
889 	if (ops->request) {
890 		err = ops->request(chip, pwm);
891 		if (err) {
892 			put_device(&chip->dev);
893 err_get_device:
894 			module_put(chip->owner);
895 			return err;
896 		}
897 	}
898 
899 	if (ops->read_waveform || ops->get_state) {
900 		/*
901 		 * Zero-initialize state because most drivers are unaware of
902 		 * .usage_power. The other members of state are supposed to be
903 		 * set by lowlevel drivers. We still initialize the whole
904 		 * structure for simplicity even though this might paper over
905 		 * faulty implementations of .get_state().
906 		 */
907 		struct pwm_state state = { 0, };
908 
909 		err = pwm_get_state_hw(pwm, &state);
910 		if (!err)
911 			pwm->state = state;
912 
913 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
914 			pwm->last = pwm->state;
915 	}
916 
917 	set_bit(PWMF_REQUESTED, &pwm->flags);
918 	pwm->label = label;
919 
920 	return 0;
921 }
922 
923 /**
924  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
925  * @chip: PWM chip
926  * @index: per-chip index of the PWM to request
927  * @label: a literal description string of this PWM
928  *
929  * Returns: A pointer to the PWM device at the given index of the given PWM
930  * chip. A negative error code is returned if the index is not valid for the
931  * specified PWM chip or if the PWM device cannot be requested.
932  */
933 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
934 						unsigned int index,
935 						const char *label)
936 {
937 	struct pwm_device *pwm;
938 	int err;
939 
940 	if (!chip || index >= chip->npwm)
941 		return ERR_PTR(-EINVAL);
942 
943 	guard(mutex)(&pwm_lock);
944 
945 	pwm = &chip->pwms[index];
946 
947 	err = pwm_device_request(pwm, label);
948 	if (err < 0)
949 		return ERR_PTR(err);
950 
951 	return pwm;
952 }
953 
954 struct pwm_device *
955 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
956 {
957 	struct pwm_device *pwm;
958 
959 	/* period in the second cell and flags in the third cell are optional */
960 	if (args->args_count < 1)
961 		return ERR_PTR(-EINVAL);
962 
963 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
964 	if (IS_ERR(pwm))
965 		return pwm;
966 
967 	if (args->args_count > 1)
968 		pwm->args.period = args->args[1];
969 
970 	pwm->args.polarity = PWM_POLARITY_NORMAL;
971 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
972 		pwm->args.polarity = PWM_POLARITY_INVERSED;
973 
974 	return pwm;
975 }
976 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
977 
978 struct pwm_device *
979 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
980 {
981 	struct pwm_device *pwm;
982 
983 	pwm = pwm_request_from_chip(chip, 0, NULL);
984 	if (IS_ERR(pwm))
985 		return pwm;
986 
987 	if (args->args_count > 0)
988 		pwm->args.period = args->args[0];
989 
990 	pwm->args.polarity = PWM_POLARITY_NORMAL;
991 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
992 		pwm->args.polarity = PWM_POLARITY_INVERSED;
993 
994 	return pwm;
995 }
996 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
997 
998 struct pwm_export {
999 	struct device pwm_dev;
1000 	struct pwm_device *pwm;
1001 	struct mutex lock;
1002 	struct pwm_state suspend;
1003 };
1004 
1005 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1006 {
1007 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1008 }
1009 
1010 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1011 {
1012 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1013 }
1014 
1015 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1016 {
1017 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1018 
1019 	return export->pwm;
1020 }
1021 
1022 static ssize_t period_show(struct device *pwm_dev,
1023 			   struct device_attribute *attr,
1024 			   char *buf)
1025 {
1026 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1027 	struct pwm_state state;
1028 
1029 	pwm_get_state(pwm, &state);
1030 
1031 	return sysfs_emit(buf, "%llu\n", state.period);
1032 }
1033 
1034 static ssize_t period_store(struct device *pwm_dev,
1035 			    struct device_attribute *attr,
1036 			    const char *buf, size_t size)
1037 {
1038 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1039 	struct pwm_device *pwm = export->pwm;
1040 	struct pwm_state state;
1041 	u64 val;
1042 	int ret;
1043 
1044 	ret = kstrtou64(buf, 0, &val);
1045 	if (ret)
1046 		return ret;
1047 
1048 	guard(mutex)(&export->lock);
1049 
1050 	pwm_get_state(pwm, &state);
1051 	state.period = val;
1052 	ret = pwm_apply_might_sleep(pwm, &state);
1053 
1054 	return ret ? : size;
1055 }
1056 
1057 static ssize_t duty_cycle_show(struct device *pwm_dev,
1058 			       struct device_attribute *attr,
1059 			       char *buf)
1060 {
1061 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1062 	struct pwm_state state;
1063 
1064 	pwm_get_state(pwm, &state);
1065 
1066 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1067 }
1068 
1069 static ssize_t duty_cycle_store(struct device *pwm_dev,
1070 				struct device_attribute *attr,
1071 				const char *buf, size_t size)
1072 {
1073 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1074 	struct pwm_device *pwm = export->pwm;
1075 	struct pwm_state state;
1076 	u64 val;
1077 	int ret;
1078 
1079 	ret = kstrtou64(buf, 0, &val);
1080 	if (ret)
1081 		return ret;
1082 
1083 	guard(mutex)(&export->lock);
1084 
1085 	pwm_get_state(pwm, &state);
1086 	state.duty_cycle = val;
1087 	ret = pwm_apply_might_sleep(pwm, &state);
1088 
1089 	return ret ? : size;
1090 }
1091 
1092 static ssize_t enable_show(struct device *pwm_dev,
1093 			   struct device_attribute *attr,
1094 			   char *buf)
1095 {
1096 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1097 	struct pwm_state state;
1098 
1099 	pwm_get_state(pwm, &state);
1100 
1101 	return sysfs_emit(buf, "%d\n", state.enabled);
1102 }
1103 
1104 static ssize_t enable_store(struct device *pwm_dev,
1105 			    struct device_attribute *attr,
1106 			    const char *buf, size_t size)
1107 {
1108 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1109 	struct pwm_device *pwm = export->pwm;
1110 	struct pwm_state state;
1111 	int val, ret;
1112 
1113 	ret = kstrtoint(buf, 0, &val);
1114 	if (ret)
1115 		return ret;
1116 
1117 	guard(mutex)(&export->lock);
1118 
1119 	pwm_get_state(pwm, &state);
1120 
1121 	switch (val) {
1122 	case 0:
1123 		state.enabled = false;
1124 		break;
1125 	case 1:
1126 		state.enabled = true;
1127 		break;
1128 	default:
1129 		return -EINVAL;
1130 	}
1131 
1132 	ret = pwm_apply_might_sleep(pwm, &state);
1133 
1134 	return ret ? : size;
1135 }
1136 
1137 static ssize_t polarity_show(struct device *pwm_dev,
1138 			     struct device_attribute *attr,
1139 			     char *buf)
1140 {
1141 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1142 	const char *polarity = "unknown";
1143 	struct pwm_state state;
1144 
1145 	pwm_get_state(pwm, &state);
1146 
1147 	switch (state.polarity) {
1148 	case PWM_POLARITY_NORMAL:
1149 		polarity = "normal";
1150 		break;
1151 
1152 	case PWM_POLARITY_INVERSED:
1153 		polarity = "inversed";
1154 		break;
1155 	}
1156 
1157 	return sysfs_emit(buf, "%s\n", polarity);
1158 }
1159 
1160 static ssize_t polarity_store(struct device *pwm_dev,
1161 			      struct device_attribute *attr,
1162 			      const char *buf, size_t size)
1163 {
1164 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1165 	struct pwm_device *pwm = export->pwm;
1166 	enum pwm_polarity polarity;
1167 	struct pwm_state state;
1168 	int ret;
1169 
1170 	if (sysfs_streq(buf, "normal"))
1171 		polarity = PWM_POLARITY_NORMAL;
1172 	else if (sysfs_streq(buf, "inversed"))
1173 		polarity = PWM_POLARITY_INVERSED;
1174 	else
1175 		return -EINVAL;
1176 
1177 	guard(mutex)(&export->lock);
1178 
1179 	pwm_get_state(pwm, &state);
1180 	state.polarity = polarity;
1181 	ret = pwm_apply_might_sleep(pwm, &state);
1182 
1183 	return ret ? : size;
1184 }
1185 
1186 static ssize_t capture_show(struct device *pwm_dev,
1187 			    struct device_attribute *attr,
1188 			    char *buf)
1189 {
1190 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1191 	struct pwm_capture result;
1192 	int ret;
1193 
1194 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1195 	if (ret)
1196 		return ret;
1197 
1198 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1199 }
1200 
1201 static DEVICE_ATTR_RW(period);
1202 static DEVICE_ATTR_RW(duty_cycle);
1203 static DEVICE_ATTR_RW(enable);
1204 static DEVICE_ATTR_RW(polarity);
1205 static DEVICE_ATTR_RO(capture);
1206 
1207 static struct attribute *pwm_attrs[] = {
1208 	&dev_attr_period.attr,
1209 	&dev_attr_duty_cycle.attr,
1210 	&dev_attr_enable.attr,
1211 	&dev_attr_polarity.attr,
1212 	&dev_attr_capture.attr,
1213 	NULL
1214 };
1215 ATTRIBUTE_GROUPS(pwm);
1216 
1217 static void pwm_export_release(struct device *pwm_dev)
1218 {
1219 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1220 
1221 	kfree(export);
1222 }
1223 
1224 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1225 {
1226 	struct pwm_export *export;
1227 	char *pwm_prop[2];
1228 	int ret;
1229 
1230 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1231 		return -EBUSY;
1232 
1233 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1234 	if (!export) {
1235 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1236 		return -ENOMEM;
1237 	}
1238 
1239 	export->pwm = pwm;
1240 	mutex_init(&export->lock);
1241 
1242 	export->pwm_dev.release = pwm_export_release;
1243 	export->pwm_dev.parent = pwmchip_dev;
1244 	export->pwm_dev.devt = MKDEV(0, 0);
1245 	export->pwm_dev.groups = pwm_groups;
1246 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1247 
1248 	ret = device_register(&export->pwm_dev);
1249 	if (ret) {
1250 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1251 		put_device(&export->pwm_dev);
1252 		export = NULL;
1253 		return ret;
1254 	}
1255 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1256 	pwm_prop[1] = NULL;
1257 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1258 	kfree(pwm_prop[0]);
1259 
1260 	return 0;
1261 }
1262 
1263 static int pwm_unexport_match(struct device *pwm_dev, void *data)
1264 {
1265 	return pwm_from_dev(pwm_dev) == data;
1266 }
1267 
1268 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1269 {
1270 	struct device *pwm_dev;
1271 	char *pwm_prop[2];
1272 
1273 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1274 		return -ENODEV;
1275 
1276 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1277 	if (!pwm_dev)
1278 		return -ENODEV;
1279 
1280 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1281 	pwm_prop[1] = NULL;
1282 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1283 	kfree(pwm_prop[0]);
1284 
1285 	/* for device_find_child() */
1286 	put_device(pwm_dev);
1287 	device_unregister(pwm_dev);
1288 	pwm_put(pwm);
1289 
1290 	return 0;
1291 }
1292 
1293 static ssize_t export_store(struct device *pwmchip_dev,
1294 			    struct device_attribute *attr,
1295 			    const char *buf, size_t len)
1296 {
1297 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1298 	struct pwm_device *pwm;
1299 	unsigned int hwpwm;
1300 	int ret;
1301 
1302 	ret = kstrtouint(buf, 0, &hwpwm);
1303 	if (ret < 0)
1304 		return ret;
1305 
1306 	if (hwpwm >= chip->npwm)
1307 		return -ENODEV;
1308 
1309 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1310 	if (IS_ERR(pwm))
1311 		return PTR_ERR(pwm);
1312 
1313 	ret = pwm_export_child(pwmchip_dev, pwm);
1314 	if (ret < 0)
1315 		pwm_put(pwm);
1316 
1317 	return ret ? : len;
1318 }
1319 static DEVICE_ATTR_WO(export);
1320 
1321 static ssize_t unexport_store(struct device *pwmchip_dev,
1322 			      struct device_attribute *attr,
1323 			      const char *buf, size_t len)
1324 {
1325 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1326 	unsigned int hwpwm;
1327 	int ret;
1328 
1329 	ret = kstrtouint(buf, 0, &hwpwm);
1330 	if (ret < 0)
1331 		return ret;
1332 
1333 	if (hwpwm >= chip->npwm)
1334 		return -ENODEV;
1335 
1336 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1337 
1338 	return ret ? : len;
1339 }
1340 static DEVICE_ATTR_WO(unexport);
1341 
1342 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1343 			 char *buf)
1344 {
1345 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1346 
1347 	return sysfs_emit(buf, "%u\n", chip->npwm);
1348 }
1349 static DEVICE_ATTR_RO(npwm);
1350 
1351 static struct attribute *pwm_chip_attrs[] = {
1352 	&dev_attr_export.attr,
1353 	&dev_attr_unexport.attr,
1354 	&dev_attr_npwm.attr,
1355 	NULL,
1356 };
1357 ATTRIBUTE_GROUPS(pwm_chip);
1358 
1359 /* takes export->lock on success */
1360 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1361 					      struct pwm_device *pwm,
1362 					      struct pwm_state *state)
1363 {
1364 	struct device *pwm_dev;
1365 	struct pwm_export *export;
1366 
1367 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1368 		return NULL;
1369 
1370 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1371 	if (!pwm_dev)
1372 		return NULL;
1373 
1374 	export = pwmexport_from_dev(pwm_dev);
1375 	put_device(pwm_dev);	/* for device_find_child() */
1376 
1377 	mutex_lock(&export->lock);
1378 	pwm_get_state(pwm, state);
1379 
1380 	return export;
1381 }
1382 
1383 static int pwm_class_apply_state(struct pwm_export *export,
1384 				 struct pwm_device *pwm,
1385 				 struct pwm_state *state)
1386 {
1387 	int ret = pwm_apply_might_sleep(pwm, state);
1388 
1389 	/* release lock taken in pwm_class_get_state */
1390 	mutex_unlock(&export->lock);
1391 
1392 	return ret;
1393 }
1394 
1395 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1396 {
1397 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1398 	unsigned int i;
1399 	int ret = 0;
1400 
1401 	for (i = 0; i < npwm; i++) {
1402 		struct pwm_device *pwm = &chip->pwms[i];
1403 		struct pwm_state state;
1404 		struct pwm_export *export;
1405 
1406 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1407 		if (!export)
1408 			continue;
1409 
1410 		/* If pwmchip was not enabled before suspend, do nothing. */
1411 		if (!export->suspend.enabled) {
1412 			/* release lock taken in pwm_class_get_state */
1413 			mutex_unlock(&export->lock);
1414 			continue;
1415 		}
1416 
1417 		state.enabled = export->suspend.enabled;
1418 		ret = pwm_class_apply_state(export, pwm, &state);
1419 		if (ret < 0)
1420 			break;
1421 	}
1422 
1423 	return ret;
1424 }
1425 
1426 static int pwm_class_suspend(struct device *pwmchip_dev)
1427 {
1428 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1429 	unsigned int i;
1430 	int ret = 0;
1431 
1432 	for (i = 0; i < chip->npwm; i++) {
1433 		struct pwm_device *pwm = &chip->pwms[i];
1434 		struct pwm_state state;
1435 		struct pwm_export *export;
1436 
1437 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1438 		if (!export)
1439 			continue;
1440 
1441 		/*
1442 		 * If pwmchip was not enabled before suspend, save
1443 		 * state for resume time and do nothing else.
1444 		 */
1445 		export->suspend = state;
1446 		if (!state.enabled) {
1447 			/* release lock taken in pwm_class_get_state */
1448 			mutex_unlock(&export->lock);
1449 			continue;
1450 		}
1451 
1452 		state.enabled = false;
1453 		ret = pwm_class_apply_state(export, pwm, &state);
1454 		if (ret < 0) {
1455 			/*
1456 			 * roll back the PWM devices that were disabled by
1457 			 * this suspend function.
1458 			 */
1459 			pwm_class_resume_npwm(pwmchip_dev, i);
1460 			break;
1461 		}
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 static int pwm_class_resume(struct device *pwmchip_dev)
1468 {
1469 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1470 
1471 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1472 }
1473 
1474 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1475 
1476 static struct class pwm_class = {
1477 	.name = "pwm",
1478 	.dev_groups = pwm_chip_groups,
1479 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1480 };
1481 
1482 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1483 {
1484 	unsigned int i;
1485 
1486 	for (i = 0; i < chip->npwm; i++) {
1487 		struct pwm_device *pwm = &chip->pwms[i];
1488 
1489 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1490 			pwm_unexport_child(&chip->dev, pwm);
1491 	}
1492 }
1493 
1494 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1495 
1496 static void *pwmchip_priv(struct pwm_chip *chip)
1497 {
1498 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1499 }
1500 
1501 /* This is the counterpart to pwmchip_alloc() */
1502 void pwmchip_put(struct pwm_chip *chip)
1503 {
1504 	put_device(&chip->dev);
1505 }
1506 EXPORT_SYMBOL_GPL(pwmchip_put);
1507 
1508 static void pwmchip_release(struct device *pwmchip_dev)
1509 {
1510 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1511 
1512 	kfree(chip);
1513 }
1514 
1515 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1516 {
1517 	struct pwm_chip *chip;
1518 	struct device *pwmchip_dev;
1519 	size_t alloc_size;
1520 	unsigned int i;
1521 
1522 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1523 			      sizeof_priv);
1524 
1525 	chip = kzalloc(alloc_size, GFP_KERNEL);
1526 	if (!chip)
1527 		return ERR_PTR(-ENOMEM);
1528 
1529 	chip->npwm = npwm;
1530 	chip->uses_pwmchip_alloc = true;
1531 	chip->operational = false;
1532 
1533 	pwmchip_dev = &chip->dev;
1534 	device_initialize(pwmchip_dev);
1535 	pwmchip_dev->class = &pwm_class;
1536 	pwmchip_dev->parent = parent;
1537 	pwmchip_dev->release = pwmchip_release;
1538 
1539 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1540 
1541 	for (i = 0; i < chip->npwm; i++) {
1542 		struct pwm_device *pwm = &chip->pwms[i];
1543 		pwm->chip = chip;
1544 		pwm->hwpwm = i;
1545 	}
1546 
1547 	return chip;
1548 }
1549 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1550 
1551 static void devm_pwmchip_put(void *data)
1552 {
1553 	struct pwm_chip *chip = data;
1554 
1555 	pwmchip_put(chip);
1556 }
1557 
1558 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1559 {
1560 	struct pwm_chip *chip;
1561 	int ret;
1562 
1563 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1564 	if (IS_ERR(chip))
1565 		return chip;
1566 
1567 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1568 	if (ret)
1569 		return ERR_PTR(ret);
1570 
1571 	return chip;
1572 }
1573 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1574 
1575 static void of_pwmchip_add(struct pwm_chip *chip)
1576 {
1577 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1578 		return;
1579 
1580 	if (!chip->of_xlate)
1581 		chip->of_xlate = of_pwm_xlate_with_flags;
1582 
1583 	of_node_get(pwmchip_parent(chip)->of_node);
1584 }
1585 
1586 static void of_pwmchip_remove(struct pwm_chip *chip)
1587 {
1588 	if (pwmchip_parent(chip))
1589 		of_node_put(pwmchip_parent(chip)->of_node);
1590 }
1591 
1592 static bool pwm_ops_check(const struct pwm_chip *chip)
1593 {
1594 	const struct pwm_ops *ops = chip->ops;
1595 
1596 	if (ops->write_waveform) {
1597 		if (!ops->round_waveform_tohw ||
1598 		    !ops->round_waveform_fromhw ||
1599 		    !ops->write_waveform)
1600 			return false;
1601 
1602 		if (WFHWSIZE < ops->sizeof_wfhw) {
1603 			dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1604 			return false;
1605 		}
1606 	} else {
1607 		if (!ops->apply)
1608 			return false;
1609 
1610 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1611 			dev_warn(pwmchip_parent(chip),
1612 				 "Please implement the .get_state() callback\n");
1613 	}
1614 
1615 	return true;
1616 }
1617 
1618 static struct device_link *pwm_device_link_add(struct device *dev,
1619 					       struct pwm_device *pwm)
1620 {
1621 	struct device_link *dl;
1622 
1623 	if (!dev) {
1624 		/*
1625 		 * No device for the PWM consumer has been provided. It may
1626 		 * impact the PM sequence ordering: the PWM supplier may get
1627 		 * suspended before the consumer.
1628 		 */
1629 		dev_warn(pwmchip_parent(pwm->chip),
1630 			 "No consumer device specified to create a link to\n");
1631 		return NULL;
1632 	}
1633 
1634 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1635 	if (!dl) {
1636 		dev_err(dev, "failed to create device link to %s\n",
1637 			dev_name(pwmchip_parent(pwm->chip)));
1638 		return ERR_PTR(-EINVAL);
1639 	}
1640 
1641 	return dl;
1642 }
1643 
1644 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1645 {
1646 	struct pwm_chip *chip;
1647 	unsigned long id, tmp;
1648 
1649 	guard(mutex)(&pwm_lock);
1650 
1651 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1652 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1653 			return chip;
1654 
1655 	return ERR_PTR(-EPROBE_DEFER);
1656 }
1657 
1658 /**
1659  * of_pwm_get() - request a PWM via the PWM framework
1660  * @dev: device for PWM consumer
1661  * @np: device node to get the PWM from
1662  * @con_id: consumer name
1663  *
1664  * Returns the PWM device parsed from the phandle and index specified in the
1665  * "pwms" property of a device tree node or a negative error-code on failure.
1666  * Values parsed from the device tree are stored in the returned PWM device
1667  * object.
1668  *
1669  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1670  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1671  * lookup of the PWM index. This also means that the "pwm-names" property
1672  * becomes mandatory for devices that look up the PWM device via the con_id
1673  * parameter.
1674  *
1675  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1676  * error code on failure.
1677  */
1678 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1679 				     const char *con_id)
1680 {
1681 	struct pwm_device *pwm = NULL;
1682 	struct of_phandle_args args;
1683 	struct device_link *dl;
1684 	struct pwm_chip *chip;
1685 	int index = 0;
1686 	int err;
1687 
1688 	if (con_id) {
1689 		index = of_property_match_string(np, "pwm-names", con_id);
1690 		if (index < 0)
1691 			return ERR_PTR(index);
1692 	}
1693 
1694 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1695 					 &args);
1696 	if (err) {
1697 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1698 		return ERR_PTR(err);
1699 	}
1700 
1701 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1702 	if (IS_ERR(chip)) {
1703 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1704 			pr_err("%s(): PWM chip not found\n", __func__);
1705 
1706 		pwm = ERR_CAST(chip);
1707 		goto put;
1708 	}
1709 
1710 	pwm = chip->of_xlate(chip, &args);
1711 	if (IS_ERR(pwm))
1712 		goto put;
1713 
1714 	dl = pwm_device_link_add(dev, pwm);
1715 	if (IS_ERR(dl)) {
1716 		/* of_xlate ended up calling pwm_request_from_chip() */
1717 		pwm_put(pwm);
1718 		pwm = ERR_CAST(dl);
1719 		goto put;
1720 	}
1721 
1722 	/*
1723 	 * If a consumer name was not given, try to look it up from the
1724 	 * "pwm-names" property if it exists. Otherwise use the name of
1725 	 * the user device node.
1726 	 */
1727 	if (!con_id) {
1728 		err = of_property_read_string_index(np, "pwm-names", index,
1729 						    &con_id);
1730 		if (err < 0)
1731 			con_id = np->name;
1732 	}
1733 
1734 	pwm->label = con_id;
1735 
1736 put:
1737 	of_node_put(args.np);
1738 
1739 	return pwm;
1740 }
1741 
1742 /**
1743  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1744  * @fwnode: firmware node to get the "pwms" property from
1745  *
1746  * Returns the PWM device parsed from the fwnode and index specified in the
1747  * "pwms" property or a negative error-code on failure.
1748  * Values parsed from the device tree are stored in the returned PWM device
1749  * object.
1750  *
1751  * This is analogous to of_pwm_get() except con_id is not yet supported.
1752  * ACPI entries must look like
1753  * Package () {"pwms", Package ()
1754  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1755  *
1756  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1757  * error code on failure.
1758  */
1759 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1760 {
1761 	struct pwm_device *pwm;
1762 	struct fwnode_reference_args args;
1763 	struct pwm_chip *chip;
1764 	int ret;
1765 
1766 	memset(&args, 0, sizeof(args));
1767 
1768 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1769 	if (ret < 0)
1770 		return ERR_PTR(ret);
1771 
1772 	if (args.nargs < 2)
1773 		return ERR_PTR(-EPROTO);
1774 
1775 	chip = fwnode_to_pwmchip(args.fwnode);
1776 	if (IS_ERR(chip))
1777 		return ERR_CAST(chip);
1778 
1779 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1780 	if (IS_ERR(pwm))
1781 		return pwm;
1782 
1783 	pwm->args.period = args.args[1];
1784 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1785 
1786 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1787 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1788 
1789 	return pwm;
1790 }
1791 
1792 static DEFINE_MUTEX(pwm_lookup_lock);
1793 static LIST_HEAD(pwm_lookup_list);
1794 
1795 /**
1796  * pwm_get() - look up and request a PWM device
1797  * @dev: device for PWM consumer
1798  * @con_id: consumer name
1799  *
1800  * Lookup is first attempted using DT. If the device was not instantiated from
1801  * a device tree, a PWM chip and a relative index is looked up via a table
1802  * supplied by board setup code (see pwm_add_table()).
1803  *
1804  * Once a PWM chip has been found the specified PWM device will be requested
1805  * and is ready to be used.
1806  *
1807  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1808  * error code on failure.
1809  */
1810 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1811 {
1812 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1813 	const char *dev_id = dev ? dev_name(dev) : NULL;
1814 	struct pwm_device *pwm;
1815 	struct pwm_chip *chip;
1816 	struct device_link *dl;
1817 	unsigned int best = 0;
1818 	struct pwm_lookup *p, *chosen = NULL;
1819 	unsigned int match;
1820 	int err;
1821 
1822 	/* look up via DT first */
1823 	if (is_of_node(fwnode))
1824 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1825 
1826 	/* then lookup via ACPI */
1827 	if (is_acpi_node(fwnode)) {
1828 		pwm = acpi_pwm_get(fwnode);
1829 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1830 			return pwm;
1831 	}
1832 
1833 	/*
1834 	 * We look up the provider in the static table typically provided by
1835 	 * board setup code. We first try to lookup the consumer device by
1836 	 * name. If the consumer device was passed in as NULL or if no match
1837 	 * was found, we try to find the consumer by directly looking it up
1838 	 * by name.
1839 	 *
1840 	 * If a match is found, the provider PWM chip is looked up by name
1841 	 * and a PWM device is requested using the PWM device per-chip index.
1842 	 *
1843 	 * The lookup algorithm was shamelessly taken from the clock
1844 	 * framework:
1845 	 *
1846 	 * We do slightly fuzzy matching here:
1847 	 *  An entry with a NULL ID is assumed to be a wildcard.
1848 	 *  If an entry has a device ID, it must match
1849 	 *  If an entry has a connection ID, it must match
1850 	 * Then we take the most specific entry - with the following order
1851 	 * of precedence: dev+con > dev only > con only.
1852 	 */
1853 	scoped_guard(mutex, &pwm_lookup_lock)
1854 		list_for_each_entry(p, &pwm_lookup_list, list) {
1855 			match = 0;
1856 
1857 			if (p->dev_id) {
1858 				if (!dev_id || strcmp(p->dev_id, dev_id))
1859 					continue;
1860 
1861 				match += 2;
1862 			}
1863 
1864 			if (p->con_id) {
1865 				if (!con_id || strcmp(p->con_id, con_id))
1866 					continue;
1867 
1868 				match += 1;
1869 			}
1870 
1871 			if (match > best) {
1872 				chosen = p;
1873 
1874 				if (match != 3)
1875 					best = match;
1876 				else
1877 					break;
1878 			}
1879 		}
1880 
1881 	if (!chosen)
1882 		return ERR_PTR(-ENODEV);
1883 
1884 	chip = pwmchip_find_by_name(chosen->provider);
1885 
1886 	/*
1887 	 * If the lookup entry specifies a module, load the module and retry
1888 	 * the PWM chip lookup. This can be used to work around driver load
1889 	 * ordering issues if driver's can't be made to properly support the
1890 	 * deferred probe mechanism.
1891 	 */
1892 	if (!chip && chosen->module) {
1893 		err = request_module(chosen->module);
1894 		if (err == 0)
1895 			chip = pwmchip_find_by_name(chosen->provider);
1896 	}
1897 
1898 	if (!chip)
1899 		return ERR_PTR(-EPROBE_DEFER);
1900 
1901 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1902 	if (IS_ERR(pwm))
1903 		return pwm;
1904 
1905 	dl = pwm_device_link_add(dev, pwm);
1906 	if (IS_ERR(dl)) {
1907 		pwm_put(pwm);
1908 		return ERR_CAST(dl);
1909 	}
1910 
1911 	pwm->args.period = chosen->period;
1912 	pwm->args.polarity = chosen->polarity;
1913 
1914 	return pwm;
1915 }
1916 EXPORT_SYMBOL_GPL(pwm_get);
1917 
1918 /**
1919  * pwm_put() - release a PWM device
1920  * @pwm: PWM device
1921  */
1922 void pwm_put(struct pwm_device *pwm)
1923 {
1924 	struct pwm_chip *chip;
1925 
1926 	if (!pwm)
1927 		return;
1928 
1929 	chip = pwm->chip;
1930 
1931 	guard(mutex)(&pwm_lock);
1932 
1933 	/*
1934 	 * Trigger a warning if a consumer called pwm_put() twice.
1935 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1936 	 * pwmchip_remove(). So don't warn in this case.
1937 	 */
1938 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1939 		pr_warn("PWM device already freed\n");
1940 		return;
1941 	}
1942 
1943 	if (chip->operational && chip->ops->free)
1944 		pwm->chip->ops->free(pwm->chip, pwm);
1945 
1946 	pwm->label = NULL;
1947 
1948 	put_device(&chip->dev);
1949 
1950 	module_put(chip->owner);
1951 }
1952 EXPORT_SYMBOL_GPL(pwm_put);
1953 
1954 static void devm_pwm_release(void *pwm)
1955 {
1956 	pwm_put(pwm);
1957 }
1958 
1959 /**
1960  * devm_pwm_get() - resource managed pwm_get()
1961  * @dev: device for PWM consumer
1962  * @con_id: consumer name
1963  *
1964  * This function performs like pwm_get() but the acquired PWM device will
1965  * automatically be released on driver detach.
1966  *
1967  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1968  * error code on failure.
1969  */
1970 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1971 {
1972 	struct pwm_device *pwm;
1973 	int ret;
1974 
1975 	pwm = pwm_get(dev, con_id);
1976 	if (IS_ERR(pwm))
1977 		return pwm;
1978 
1979 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1980 	if (ret)
1981 		return ERR_PTR(ret);
1982 
1983 	return pwm;
1984 }
1985 EXPORT_SYMBOL_GPL(devm_pwm_get);
1986 
1987 /**
1988  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1989  * @dev: device for PWM consumer
1990  * @fwnode: firmware node to get the PWM from
1991  * @con_id: consumer name
1992  *
1993  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1994  * acpi_pwm_get() for a detailed description.
1995  *
1996  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1997  * error code on failure.
1998  */
1999 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2000 				       struct fwnode_handle *fwnode,
2001 				       const char *con_id)
2002 {
2003 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2004 	int ret;
2005 
2006 	if (is_of_node(fwnode))
2007 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2008 	else if (is_acpi_node(fwnode))
2009 		pwm = acpi_pwm_get(fwnode);
2010 	if (IS_ERR(pwm))
2011 		return pwm;
2012 
2013 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2014 	if (ret)
2015 		return ERR_PTR(ret);
2016 
2017 	return pwm;
2018 }
2019 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2020 
2021 /**
2022  * __pwmchip_add() - register a new PWM chip
2023  * @chip: the PWM chip to add
2024  * @owner: reference to the module providing the chip.
2025  *
2026  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2027  * pwmchip_add wrapper to do this right.
2028  *
2029  * Returns: 0 on success or a negative error code on failure.
2030  */
2031 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2032 {
2033 	int ret;
2034 
2035 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2036 		return -EINVAL;
2037 
2038 	/*
2039 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2040 	 * otherwise the embedded struct device might disappear too early
2041 	 * resulting in memory corruption.
2042 	 * Catch drivers that were not converted appropriately.
2043 	 */
2044 	if (!chip->uses_pwmchip_alloc)
2045 		return -EINVAL;
2046 
2047 	if (!pwm_ops_check(chip))
2048 		return -EINVAL;
2049 
2050 	chip->owner = owner;
2051 
2052 	if (chip->atomic)
2053 		spin_lock_init(&chip->atomic_lock);
2054 	else
2055 		mutex_init(&chip->nonatomic_lock);
2056 
2057 	guard(mutex)(&pwm_lock);
2058 
2059 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2060 	if (ret < 0)
2061 		return ret;
2062 
2063 	chip->id = ret;
2064 
2065 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2066 
2067 	if (IS_ENABLED(CONFIG_OF))
2068 		of_pwmchip_add(chip);
2069 
2070 	scoped_guard(pwmchip, chip)
2071 		chip->operational = true;
2072 
2073 	ret = device_add(&chip->dev);
2074 	if (ret)
2075 		goto err_device_add;
2076 
2077 	return 0;
2078 
2079 err_device_add:
2080 	scoped_guard(pwmchip, chip)
2081 		chip->operational = false;
2082 
2083 	if (IS_ENABLED(CONFIG_OF))
2084 		of_pwmchip_remove(chip);
2085 
2086 	idr_remove(&pwm_chips, chip->id);
2087 
2088 	return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(__pwmchip_add);
2091 
2092 /**
2093  * pwmchip_remove() - remove a PWM chip
2094  * @chip: the PWM chip to remove
2095  *
2096  * Removes a PWM chip.
2097  */
2098 void pwmchip_remove(struct pwm_chip *chip)
2099 {
2100 	pwmchip_sysfs_unexport(chip);
2101 
2102 	scoped_guard(mutex, &pwm_lock) {
2103 		unsigned int i;
2104 
2105 		scoped_guard(pwmchip, chip)
2106 			chip->operational = false;
2107 
2108 		for (i = 0; i < chip->npwm; ++i) {
2109 			struct pwm_device *pwm = &chip->pwms[i];
2110 
2111 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2112 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2113 				if (pwm->chip->ops->free)
2114 					pwm->chip->ops->free(pwm->chip, pwm);
2115 			}
2116 		}
2117 
2118 		if (IS_ENABLED(CONFIG_OF))
2119 			of_pwmchip_remove(chip);
2120 
2121 		idr_remove(&pwm_chips, chip->id);
2122 	}
2123 
2124 	device_del(&chip->dev);
2125 }
2126 EXPORT_SYMBOL_GPL(pwmchip_remove);
2127 
2128 static void devm_pwmchip_remove(void *data)
2129 {
2130 	struct pwm_chip *chip = data;
2131 
2132 	pwmchip_remove(chip);
2133 }
2134 
2135 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2136 {
2137 	int ret;
2138 
2139 	ret = __pwmchip_add(chip, owner);
2140 	if (ret)
2141 		return ret;
2142 
2143 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2144 }
2145 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2146 
2147 /**
2148  * pwm_add_table() - register PWM device consumers
2149  * @table: array of consumers to register
2150  * @num: number of consumers in table
2151  */
2152 void pwm_add_table(struct pwm_lookup *table, size_t num)
2153 {
2154 	guard(mutex)(&pwm_lookup_lock);
2155 
2156 	while (num--) {
2157 		list_add_tail(&table->list, &pwm_lookup_list);
2158 		table++;
2159 	}
2160 }
2161 
2162 /**
2163  * pwm_remove_table() - unregister PWM device consumers
2164  * @table: array of consumers to unregister
2165  * @num: number of consumers in table
2166  */
2167 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2168 {
2169 	guard(mutex)(&pwm_lookup_lock);
2170 
2171 	while (num--) {
2172 		list_del(&table->list);
2173 		table++;
2174 	}
2175 }
2176 
2177 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2178 {
2179 	unsigned int i;
2180 
2181 	for (i = 0; i < chip->npwm; i++) {
2182 		struct pwm_device *pwm = &chip->pwms[i];
2183 		struct pwm_state state;
2184 
2185 		pwm_get_state(pwm, &state);
2186 
2187 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2188 
2189 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2190 			seq_puts(s, " requested");
2191 
2192 		if (state.enabled)
2193 			seq_puts(s, " enabled");
2194 
2195 		seq_printf(s, " period: %llu ns", state.period);
2196 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
2197 		seq_printf(s, " polarity: %s",
2198 			   state.polarity ? "inverse" : "normal");
2199 
2200 		if (state.usage_power)
2201 			seq_puts(s, " usage_power");
2202 
2203 		seq_puts(s, "\n");
2204 	}
2205 }
2206 
2207 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2208 {
2209 	unsigned long id = *pos;
2210 	void *ret;
2211 
2212 	mutex_lock(&pwm_lock);
2213 	s->private = "";
2214 
2215 	ret = idr_get_next_ul(&pwm_chips, &id);
2216 	*pos = id;
2217 	return ret;
2218 }
2219 
2220 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2221 {
2222 	unsigned long id = *pos + 1;
2223 	void *ret;
2224 
2225 	s->private = "\n";
2226 
2227 	ret = idr_get_next_ul(&pwm_chips, &id);
2228 	*pos = id;
2229 	return ret;
2230 }
2231 
2232 static void pwm_seq_stop(struct seq_file *s, void *v)
2233 {
2234 	mutex_unlock(&pwm_lock);
2235 }
2236 
2237 static int pwm_seq_show(struct seq_file *s, void *v)
2238 {
2239 	struct pwm_chip *chip = v;
2240 
2241 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2242 		   (char *)s->private, chip->id,
2243 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2244 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2245 		   (chip->npwm != 1) ? "s" : "");
2246 
2247 	pwm_dbg_show(chip, s);
2248 
2249 	return 0;
2250 }
2251 
2252 static const struct seq_operations pwm_debugfs_sops = {
2253 	.start = pwm_seq_start,
2254 	.next = pwm_seq_next,
2255 	.stop = pwm_seq_stop,
2256 	.show = pwm_seq_show,
2257 };
2258 
2259 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2260 
2261 static int __init pwm_init(void)
2262 {
2263 	int ret;
2264 
2265 	ret = class_register(&pwm_class);
2266 	if (ret) {
2267 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2268 		return ret;
2269 	}
2270 
2271 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2272 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2273 
2274 	return 0;
2275 }
2276 subsys_initcall(pwm_init);
2277