1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #define DEFAULT_SYMBOL_NAMESPACE "PWM" 10 11 #include <linux/acpi.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/of.h> 15 #include <linux/pwm.h> 16 #include <linux/list.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include <dt-bindings/pwm/pwm.h> 25 26 #include <uapi/linux/pwm.h> 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/pwm.h> 30 31 #define PWM_MINOR_COUNT 256 32 33 /* protects access to pwm_chips */ 34 static DEFINE_MUTEX(pwm_lock); 35 36 static DEFINE_IDR(pwm_chips); 37 38 static void pwmchip_lock(struct pwm_chip *chip) 39 { 40 if (chip->atomic) 41 spin_lock(&chip->atomic_lock); 42 else 43 mutex_lock(&chip->nonatomic_lock); 44 } 45 46 static void pwmchip_unlock(struct pwm_chip *chip) 47 { 48 if (chip->atomic) 49 spin_unlock(&chip->atomic_lock); 50 else 51 mutex_unlock(&chip->nonatomic_lock); 52 } 53 54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) 55 56 static bool pwm_wf_valid(const struct pwm_waveform *wf) 57 { 58 /* 59 * For now restrict waveforms to period_length_ns <= S64_MAX to provide 60 * some space for future extensions. One possibility is to simplify 61 * representing waveforms with inverted polarity using negative values 62 * somehow. 63 */ 64 if (wf->period_length_ns > S64_MAX) 65 return false; 66 67 if (wf->duty_length_ns > wf->period_length_ns) 68 return false; 69 70 /* 71 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart 72 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. 73 */ 74 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) 75 return false; 76 77 return true; 78 } 79 80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) 81 { 82 if (wf->period_length_ns) { 83 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) 84 *state = (struct pwm_state){ 85 .enabled = true, 86 .polarity = PWM_POLARITY_NORMAL, 87 .period = wf->period_length_ns, 88 .duty_cycle = wf->duty_length_ns, 89 }; 90 else 91 *state = (struct pwm_state){ 92 .enabled = true, 93 .polarity = PWM_POLARITY_INVERSED, 94 .period = wf->period_length_ns, 95 .duty_cycle = wf->period_length_ns - wf->duty_length_ns, 96 }; 97 } else { 98 *state = (struct pwm_state){ 99 .enabled = false, 100 }; 101 } 102 } 103 104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) 105 { 106 if (state->enabled) { 107 if (state->polarity == PWM_POLARITY_NORMAL) 108 *wf = (struct pwm_waveform){ 109 .period_length_ns = state->period, 110 .duty_length_ns = state->duty_cycle, 111 .duty_offset_ns = 0, 112 }; 113 else 114 *wf = (struct pwm_waveform){ 115 .period_length_ns = state->period, 116 .duty_length_ns = state->period - state->duty_cycle, 117 .duty_offset_ns = state->duty_cycle, 118 }; 119 } else { 120 *wf = (struct pwm_waveform){ 121 .period_length_ns = 0, 122 }; 123 } 124 } 125 126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) 127 { 128 if (a->period_length_ns > b->period_length_ns) 129 return 1; 130 131 if (a->period_length_ns < b->period_length_ns) 132 return -1; 133 134 if (a->duty_length_ns > b->duty_length_ns) 135 return 1; 136 137 if (a->duty_length_ns < b->duty_length_ns) 138 return -1; 139 140 if (a->duty_offset_ns > b->duty_offset_ns) 141 return 1; 142 143 if (a->duty_offset_ns < b->duty_offset_ns) 144 return -1; 145 146 return 0; 147 } 148 149 static bool pwm_check_rounding(const struct pwm_waveform *wf, 150 const struct pwm_waveform *wf_rounded) 151 { 152 if (!wf->period_length_ns) 153 return true; 154 155 if (wf->period_length_ns < wf_rounded->period_length_ns) 156 return false; 157 158 if (wf->duty_length_ns < wf_rounded->duty_length_ns) 159 return false; 160 161 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) 162 return false; 163 164 return true; 165 } 166 167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, 168 const struct pwm_waveform *wf, void *wfhw) 169 { 170 const struct pwm_ops *ops = chip->ops; 171 int ret; 172 173 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); 174 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); 175 176 return ret; 177 } 178 179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, 180 const void *wfhw, struct pwm_waveform *wf) 181 { 182 const struct pwm_ops *ops = chip->ops; 183 int ret; 184 185 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); 186 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); 187 188 return ret; 189 } 190 191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) 192 { 193 const struct pwm_ops *ops = chip->ops; 194 int ret; 195 196 ret = ops->read_waveform(chip, pwm, wfhw); 197 trace_pwm_read_waveform(pwm, wfhw, ret); 198 199 return ret; 200 } 201 202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) 203 { 204 const struct pwm_ops *ops = chip->ops; 205 int ret; 206 207 ret = ops->write_waveform(chip, pwm, wfhw); 208 trace_pwm_write_waveform(pwm, wfhw, ret); 209 210 return ret; 211 } 212 213 /** 214 * pwm_round_waveform_might_sleep - Query hardware capabilities 215 * Cannot be used in atomic context. 216 * @pwm: PWM device 217 * @wf: waveform to round and output parameter 218 * 219 * Typically a given waveform cannot be implemented exactly by hardware, e.g. 220 * because hardware only supports coarse period resolution or no duty_offset. 221 * This function returns the actually implemented waveform if you pass @wf to 222 * pwm_set_waveform_might_sleep() now. 223 * 224 * Note however that the world doesn't stop turning when you call it, so when 225 * doing:: 226 * 227 * pwm_round_waveform_might_sleep(mypwm, &wf); 228 * pwm_set_waveform_might_sleep(mypwm, &wf, true); 229 * 230 * the latter might fail, e.g. because an input clock changed its rate between 231 * these two calls and the waveform determined by 232 * pwm_round_waveform_might_sleep() cannot be implemented any more. 233 * 234 * Usually all values passed in @wf are rounded down to the nearest possible 235 * value (in the order period_length_ns, duty_length_ns and then 236 * duty_offset_ns). Only if this isn't possible, a value might grow. See the 237 * documentation for pwm_set_waveform_might_sleep() for a more formal 238 * description. 239 * 240 * Returns: 0 on success, 1 if at least one value had to be rounded up or a 241 * negative errno. 242 * Context: May sleep. 243 */ 244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 245 { 246 struct pwm_chip *chip = pwm->chip; 247 const struct pwm_ops *ops = chip->ops; 248 struct pwm_waveform wf_req = *wf; 249 char wfhw[PWM_WFHWSIZE]; 250 int ret_tohw, ret_fromhw; 251 252 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 253 254 if (!pwmchip_supports_waveform(chip)) 255 return -EOPNOTSUPP; 256 257 if (!pwm_wf_valid(wf)) 258 return -EINVAL; 259 260 guard(pwmchip)(chip); 261 262 if (!chip->operational) 263 return -ENODEV; 264 265 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); 266 if (ret_tohw < 0) 267 return ret_tohw; 268 269 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) 270 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", 271 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 272 273 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); 274 if (ret_fromhw < 0) 275 return ret_fromhw; 276 277 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) 278 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", 279 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_fromhw); 280 281 if (IS_ENABLED(CONFIG_PWM_DEBUG) && 282 (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf)) 283 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 284 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, 285 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw); 286 287 return ret_tohw; 288 } 289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); 290 291 /** 292 * pwm_get_waveform_might_sleep - Query hardware about current configuration 293 * Cannot be used in atomic context. 294 * @pwm: PWM device 295 * @wf: output parameter 296 * 297 * Stores the current configuration of the PWM in @wf. Note this is the 298 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. 299 * 300 * Returns: 0 on success or a negative errno 301 * Context: May sleep. 302 */ 303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 304 { 305 struct pwm_chip *chip = pwm->chip; 306 const struct pwm_ops *ops = chip->ops; 307 char wfhw[PWM_WFHWSIZE]; 308 int err; 309 310 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 311 312 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform) 313 return -EOPNOTSUPP; 314 315 guard(pwmchip)(chip); 316 317 if (!chip->operational) 318 return -ENODEV; 319 320 err = __pwm_read_waveform(chip, pwm, &wfhw); 321 if (err) 322 return err; 323 324 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); 325 } 326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); 327 328 /* Called with the pwmchip lock held */ 329 static int __pwm_set_waveform(struct pwm_device *pwm, 330 const struct pwm_waveform *wf, 331 bool exact) 332 { 333 struct pwm_chip *chip = pwm->chip; 334 const struct pwm_ops *ops = chip->ops; 335 char wfhw[PWM_WFHWSIZE]; 336 struct pwm_waveform wf_rounded; 337 int err, ret_tohw; 338 339 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 340 341 if (!pwmchip_supports_waveform(chip)) 342 return -EOPNOTSUPP; 343 344 if (!pwm_wf_valid(wf)) 345 return -EINVAL; 346 347 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); 348 if (ret_tohw < 0) 349 return ret_tohw; 350 351 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { 352 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 353 if (err) 354 return err; 355 356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded)) 357 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 358 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 359 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw); 360 361 if (exact && pwmwfcmp(wf, &wf_rounded)) { 362 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", 363 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 364 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 365 366 return 1; 367 } 368 } 369 370 err = __pwm_write_waveform(chip, pwm, &wfhw); 371 if (err) 372 return err; 373 374 /* update .state */ 375 pwm_wf2state(wf, &pwm->state); 376 377 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { 378 struct pwm_waveform wf_set; 379 380 err = __pwm_read_waveform(chip, pwm, &wfhw); 381 if (err) 382 /* maybe ignore? */ 383 return err; 384 385 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); 386 if (err) 387 /* maybe ignore? */ 388 return err; 389 390 if (pwmwfcmp(&wf_set, &wf_rounded) != 0) 391 dev_err(&chip->dev, 392 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", 393 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 394 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, 395 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); 396 } 397 398 return ret_tohw; 399 } 400 401 /** 402 * pwm_set_waveform_might_sleep - Apply a new waveform 403 * Cannot be used in atomic context. 404 * @pwm: PWM device 405 * @wf: The waveform to apply 406 * @exact: If true no rounding is allowed 407 * 408 * Typically a requested waveform cannot be implemented exactly, e.g. because 409 * you requested .period_length_ns = 100 ns, but the hardware can only set 410 * periods that are a multiple of 8.5 ns. With that hardware passing @exact = 411 * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM. 412 * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not 413 * bigger than the requested value). 414 * Note that even with @exact = true, some rounding by less than 1 ns is 415 * possible/needed. In the above example requesting .period_length_ns = 94 and 416 * @exact = true, you get the hardware configured with period = 93.5 ns. 417 * 418 * Let C be the set of possible hardware configurations for a given PWM device, 419 * consisting of tuples (p, d, o) where p is the period length, d is the duty 420 * length and o the duty offset. 421 * 422 * The following algorithm is implemented to pick the hardware setting 423 * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false:: 424 * 425 * p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) }) 426 * d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) }) 427 * o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) }) 428 * 429 * In words: The chosen period length is the maximal possible period length not 430 * bigger than the requested period length and if that doesn't exist, the 431 * minimal period length. The chosen duty length is the maximal possible duty 432 * length that is compatible with the chosen period length and isn't bigger than 433 * the requested duty length. Again if such a value doesn't exist, the minimal 434 * duty length compatible with the chosen period is picked. After that the duty 435 * offset compatible with the chosen period and duty length is chosen in the 436 * same way. 437 * 438 * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not 439 * being possible (if @exact), or a different negative errno on failure. 440 * Context: May sleep. 441 */ 442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, 443 const struct pwm_waveform *wf, bool exact) 444 { 445 struct pwm_chip *chip = pwm->chip; 446 int err; 447 448 might_sleep(); 449 450 guard(pwmchip)(chip); 451 452 if (!chip->operational) 453 return -ENODEV; 454 455 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 456 /* 457 * Catch any drivers that have been marked as atomic but 458 * that will sleep anyway. 459 */ 460 non_block_start(); 461 err = __pwm_set_waveform(pwm, wf, exact); 462 non_block_end(); 463 } else { 464 err = __pwm_set_waveform(pwm, wf, exact); 465 } 466 467 /* 468 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also 469 * make sure that -EDOM is only returned in exactly that case. Note that 470 * __pwm_set_waveform() should never return -EDOM which justifies the 471 * unlikely(). 472 */ 473 if (unlikely(err == -EDOM)) 474 err = -EINVAL; 475 else if (exact && err == 1) 476 err = -EDOM; 477 else if (err == 1) 478 err = 0; 479 480 return err; 481 } 482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); 483 484 static void pwm_apply_debug(struct pwm_device *pwm, 485 const struct pwm_state *state) 486 { 487 struct pwm_state *last = &pwm->last; 488 struct pwm_chip *chip = pwm->chip; 489 struct pwm_state s1 = { 0 }, s2 = { 0 }; 490 int err; 491 492 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 493 return; 494 495 /* No reasonable diagnosis possible without .get_state() */ 496 if (!chip->ops->get_state) 497 return; 498 499 /* 500 * If a disabled PWM was requested the result is unspecified, so nothing 501 * to check. 502 */ 503 if (!state->enabled) 504 return; 505 506 /* 507 * *state was just applied. Read out the hardware state and do some 508 * checks. 509 */ 510 511 err = chip->ops->get_state(chip, pwm, &s1); 512 trace_pwm_get(pwm, &s1, err); 513 if (err) 514 /* If that failed there isn't much to debug */ 515 return; 516 517 /* 518 * If the PWM was disabled that's maybe strange but there is nothing 519 * that can be sensibly checked then. So return early. 520 */ 521 if (!s1.enabled) 522 return; 523 524 /* 525 * The lowlevel driver either ignored .polarity (which is a bug) or as 526 * best effort inverted .polarity and fixed .duty_cycle respectively. 527 * Undo this inversion and fixup for further tests. 528 */ 529 if (s1.polarity != state->polarity) { 530 s2.polarity = state->polarity; 531 s2.duty_cycle = s1.period - s1.duty_cycle; 532 s2.period = s1.period; 533 s2.enabled = true; 534 } else { 535 s2 = s1; 536 } 537 538 if (s2.polarity != state->polarity && 539 s2.duty_cycle < s2.period) 540 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); 541 542 if (last->polarity == state->polarity && 543 last->period > s2.period && 544 last->period <= state->period) 545 dev_warn(pwmchip_parent(chip), 546 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 547 state->period, s2.period, last->period); 548 549 /* 550 * Rounding period up is fine only if duty_cycle is 0 then, because a 551 * flat line doesn't have a characteristic period. 552 */ 553 if (state->period < s2.period && s2.duty_cycle) 554 dev_warn(pwmchip_parent(chip), 555 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 556 state->period, s2.period); 557 558 if (last->polarity == state->polarity && 559 last->period == s2.period && 560 last->duty_cycle > s2.duty_cycle && 561 last->duty_cycle <= state->duty_cycle) 562 dev_warn(pwmchip_parent(chip), 563 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 564 state->duty_cycle, state->period, 565 s2.duty_cycle, s2.period, 566 last->duty_cycle, last->period); 567 568 if (state->duty_cycle < s2.duty_cycle) 569 dev_warn(pwmchip_parent(chip), 570 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 571 state->duty_cycle, state->period, 572 s2.duty_cycle, s2.period); 573 574 /* reapply the state that the driver reported being configured. */ 575 err = chip->ops->apply(chip, pwm, &s1); 576 trace_pwm_apply(pwm, &s1, err); 577 if (err) { 578 *last = s1; 579 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); 580 return; 581 } 582 583 *last = (struct pwm_state){ 0 }; 584 err = chip->ops->get_state(chip, pwm, last); 585 trace_pwm_get(pwm, last, err); 586 if (err) 587 return; 588 589 /* reapplication of the current state should give an exact match */ 590 if (s1.enabled != last->enabled || 591 s1.polarity != last->polarity || 592 (s1.enabled && s1.period != last->period) || 593 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 594 dev_err(pwmchip_parent(chip), 595 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 596 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 597 last->enabled, last->polarity, last->duty_cycle, 598 last->period); 599 } 600 } 601 602 static bool pwm_state_valid(const struct pwm_state *state) 603 { 604 /* 605 * For a disabled state all other state description is irrelevant and 606 * and supposed to be ignored. So also ignore any strange values and 607 * consider the state ok. 608 */ 609 if (!state->enabled) 610 return true; 611 612 if (!state->period) 613 return false; 614 615 if (state->duty_cycle > state->period) 616 return false; 617 618 return true; 619 } 620 621 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 622 { 623 struct pwm_chip *chip; 624 const struct pwm_ops *ops; 625 int err; 626 627 if (!pwm || !state) 628 return -EINVAL; 629 630 if (!pwm_state_valid(state)) { 631 /* 632 * Allow to transition from one invalid state to another. 633 * This ensures that you can e.g. change the polarity while 634 * the period is zero. (This happens on stm32 when the hardware 635 * is in its poweron default state.) This greatly simplifies 636 * working with the sysfs API where you can only change one 637 * parameter at a time. 638 */ 639 if (!pwm_state_valid(&pwm->state)) { 640 pwm->state = *state; 641 return 0; 642 } 643 644 return -EINVAL; 645 } 646 647 chip = pwm->chip; 648 ops = chip->ops; 649 650 if (state->period == pwm->state.period && 651 state->duty_cycle == pwm->state.duty_cycle && 652 state->polarity == pwm->state.polarity && 653 state->enabled == pwm->state.enabled && 654 state->usage_power == pwm->state.usage_power) 655 return 0; 656 657 if (pwmchip_supports_waveform(chip)) { 658 struct pwm_waveform wf; 659 char wfhw[PWM_WFHWSIZE]; 660 661 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 662 663 pwm_state2wf(state, &wf); 664 665 /* 666 * The rounding is wrong here for states with inverted polarity. 667 * While .apply() rounds down duty_cycle (which represents the 668 * time from the start of the period to the inner edge), 669 * .round_waveform_tohw() rounds down the time the PWM is high. 670 * Can be fixed if the need arises, until reported otherwise 671 * let's assume that consumers don't care. 672 */ 673 674 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); 675 if (err) { 676 if (err > 0) 677 /* 678 * This signals an invalid request, typically 679 * the requested period (or duty_offset) is 680 * smaller than possible with the hardware. 681 */ 682 return -EINVAL; 683 684 return err; 685 } 686 687 if (IS_ENABLED(CONFIG_PWM_DEBUG)) { 688 struct pwm_waveform wf_rounded; 689 690 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 691 if (err) 692 return err; 693 694 if (!pwm_check_rounding(&wf, &wf_rounded)) 695 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 696 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, 697 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 698 } 699 700 err = __pwm_write_waveform(chip, pwm, &wfhw); 701 if (err) 702 return err; 703 704 pwm->state = *state; 705 706 } else { 707 err = ops->apply(chip, pwm, state); 708 trace_pwm_apply(pwm, state, err); 709 if (err) 710 return err; 711 712 pwm->state = *state; 713 714 /* 715 * only do this after pwm->state was applied as some 716 * implementations of .get_state() depend on this 717 */ 718 pwm_apply_debug(pwm, state); 719 } 720 721 return 0; 722 } 723 724 /** 725 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 726 * Cannot be used in atomic context. 727 * @pwm: PWM device 728 * @state: new state to apply 729 * 730 * Returns: 0 on success, or a negative errno 731 * Context: May sleep. 732 */ 733 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 734 { 735 int err; 736 struct pwm_chip *chip = pwm->chip; 737 738 /* 739 * Some lowlevel driver's implementations of .apply() make use of 740 * mutexes, also with some drivers only returning when the new 741 * configuration is active calling pwm_apply_might_sleep() from atomic context 742 * is a bad idea. So make it explicit that calling this function might 743 * sleep. 744 */ 745 might_sleep(); 746 747 guard(pwmchip)(chip); 748 749 if (!chip->operational) 750 return -ENODEV; 751 752 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 753 /* 754 * Catch any drivers that have been marked as atomic but 755 * that will sleep anyway. 756 */ 757 non_block_start(); 758 err = __pwm_apply(pwm, state); 759 non_block_end(); 760 } else { 761 err = __pwm_apply(pwm, state); 762 } 763 764 return err; 765 } 766 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 767 768 /** 769 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 770 * Not all PWM devices support this function, check with pwm_might_sleep(). 771 * @pwm: PWM device 772 * @state: new state to apply 773 * 774 * Returns: 0 on success, or a negative errno 775 * Context: Any 776 */ 777 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 778 { 779 struct pwm_chip *chip = pwm->chip; 780 781 WARN_ONCE(!chip->atomic, 782 "sleeping PWM driver used in atomic context\n"); 783 784 guard(pwmchip)(chip); 785 786 if (!chip->operational) 787 return -ENODEV; 788 789 return __pwm_apply(pwm, state); 790 } 791 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 792 793 /** 794 * pwm_get_state_hw() - get the current PWM state from hardware 795 * @pwm: PWM device 796 * @state: state to fill with the current PWM state 797 * 798 * Similar to pwm_get_state() but reads the current PWM state from hardware 799 * instead of the requested state. 800 * 801 * Returns: 0 on success or a negative error code on failure. 802 * Context: May sleep. 803 */ 804 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 805 { 806 struct pwm_chip *chip = pwm->chip; 807 const struct pwm_ops *ops = chip->ops; 808 int ret = -EOPNOTSUPP; 809 810 might_sleep(); 811 812 guard(pwmchip)(chip); 813 814 if (!chip->operational) 815 return -ENODEV; 816 817 if (pwmchip_supports_waveform(chip) && ops->read_waveform) { 818 char wfhw[PWM_WFHWSIZE]; 819 struct pwm_waveform wf; 820 821 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 822 823 ret = __pwm_read_waveform(chip, pwm, &wfhw); 824 if (ret) 825 return ret; 826 827 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); 828 if (ret) 829 return ret; 830 831 pwm_wf2state(&wf, state); 832 833 } else if (ops->get_state) { 834 ret = ops->get_state(chip, pwm, state); 835 trace_pwm_get(pwm, state, ret); 836 } 837 838 return ret; 839 } 840 EXPORT_SYMBOL_GPL(pwm_get_state_hw); 841 842 /** 843 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 844 * @pwm: PWM device 845 * 846 * This function will adjust the PWM config to the PWM arguments provided 847 * by the DT or PWM lookup table. This is particularly useful to adapt 848 * the bootloader config to the Linux one. 849 * 850 * Returns: 0 on success or a negative error code on failure. 851 * Context: May sleep. 852 */ 853 int pwm_adjust_config(struct pwm_device *pwm) 854 { 855 struct pwm_state state; 856 struct pwm_args pargs; 857 858 pwm_get_args(pwm, &pargs); 859 pwm_get_state(pwm, &state); 860 861 /* 862 * If the current period is zero it means that either the PWM driver 863 * does not support initial state retrieval or the PWM has not yet 864 * been configured. 865 * 866 * In either case, we setup the new period and polarity, and assign a 867 * duty cycle of 0. 868 */ 869 if (!state.period) { 870 state.duty_cycle = 0; 871 state.period = pargs.period; 872 state.polarity = pargs.polarity; 873 874 return pwm_apply_might_sleep(pwm, &state); 875 } 876 877 /* 878 * Adjust the PWM duty cycle/period based on the period value provided 879 * in PWM args. 880 */ 881 if (pargs.period != state.period) { 882 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 883 884 do_div(dutycycle, state.period); 885 state.duty_cycle = dutycycle; 886 state.period = pargs.period; 887 } 888 889 /* 890 * If the polarity changed, we should also change the duty cycle. 891 */ 892 if (pargs.polarity != state.polarity) { 893 state.polarity = pargs.polarity; 894 state.duty_cycle = state.period - state.duty_cycle; 895 } 896 897 return pwm_apply_might_sleep(pwm, &state); 898 } 899 EXPORT_SYMBOL_GPL(pwm_adjust_config); 900 901 /** 902 * pwm_capture() - capture and report a PWM signal 903 * @pwm: PWM device 904 * @result: structure to fill with capture result 905 * @timeout: time to wait, in milliseconds, before giving up on capture 906 * 907 * Returns: 0 on success or a negative error code on failure. 908 */ 909 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 910 unsigned long timeout) 911 { 912 struct pwm_chip *chip = pwm->chip; 913 const struct pwm_ops *ops = chip->ops; 914 915 if (!ops->capture) 916 return -ENOSYS; 917 918 /* 919 * Holding the pwm_lock is probably not needed. If you use pwm_capture() 920 * and you're interested to speed it up, please convince yourself it's 921 * really not needed, test and then suggest a patch on the mailing list. 922 */ 923 guard(mutex)(&pwm_lock); 924 925 guard(pwmchip)(chip); 926 927 if (!chip->operational) 928 return -ENODEV; 929 930 return ops->capture(chip, pwm, result, timeout); 931 } 932 933 static struct pwm_chip *pwmchip_find_by_name(const char *name) 934 { 935 struct pwm_chip *chip; 936 unsigned long id, tmp; 937 938 if (!name) 939 return NULL; 940 941 guard(mutex)(&pwm_lock); 942 943 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 944 if (device_match_name(pwmchip_parent(chip), name)) 945 return chip; 946 } 947 948 return NULL; 949 } 950 951 static int pwm_device_request(struct pwm_device *pwm, const char *label) 952 { 953 int err; 954 struct pwm_chip *chip = pwm->chip; 955 const struct pwm_ops *ops = chip->ops; 956 957 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 958 return -EBUSY; 959 960 /* 961 * This function is called while holding pwm_lock. As .operational only 962 * changes while holding this lock, checking it here without holding the 963 * chip lock is fine. 964 */ 965 if (!chip->operational) 966 return -ENODEV; 967 968 if (!try_module_get(chip->owner)) 969 return -ENODEV; 970 971 if (!get_device(&chip->dev)) { 972 err = -ENODEV; 973 goto err_get_device; 974 } 975 976 if (ops->request) { 977 err = ops->request(chip, pwm); 978 if (err) { 979 put_device(&chip->dev); 980 err_get_device: 981 module_put(chip->owner); 982 return err; 983 } 984 } 985 986 if (ops->read_waveform || ops->get_state) { 987 /* 988 * Zero-initialize state because most drivers are unaware of 989 * .usage_power. The other members of state are supposed to be 990 * set by lowlevel drivers. We still initialize the whole 991 * structure for simplicity even though this might paper over 992 * faulty implementations of .get_state(). 993 */ 994 struct pwm_state state = { 0, }; 995 996 err = pwm_get_state_hw(pwm, &state); 997 if (!err) 998 pwm->state = state; 999 1000 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 1001 pwm->last = pwm->state; 1002 } 1003 1004 set_bit(PWMF_REQUESTED, &pwm->flags); 1005 pwm->label = label; 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 1012 * @chip: PWM chip 1013 * @index: per-chip index of the PWM to request 1014 * @label: a literal description string of this PWM 1015 * 1016 * Returns: A pointer to the PWM device at the given index of the given PWM 1017 * chip. A negative error code is returned if the index is not valid for the 1018 * specified PWM chip or if the PWM device cannot be requested. 1019 */ 1020 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 1021 unsigned int index, 1022 const char *label) 1023 { 1024 struct pwm_device *pwm; 1025 int err; 1026 1027 if (!chip || index >= chip->npwm) 1028 return ERR_PTR(-EINVAL); 1029 1030 guard(mutex)(&pwm_lock); 1031 1032 pwm = &chip->pwms[index]; 1033 1034 err = pwm_device_request(pwm, label); 1035 if (err < 0) 1036 return ERR_PTR(err); 1037 1038 return pwm; 1039 } 1040 1041 struct pwm_device * 1042 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 1043 { 1044 struct pwm_device *pwm; 1045 1046 /* period in the second cell and flags in the third cell are optional */ 1047 if (args->args_count < 1) 1048 return ERR_PTR(-EINVAL); 1049 1050 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 1051 if (IS_ERR(pwm)) 1052 return pwm; 1053 1054 if (args->args_count > 1) 1055 pwm->args.period = args->args[1]; 1056 1057 pwm->args.polarity = PWM_POLARITY_NORMAL; 1058 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 1059 pwm->args.polarity = PWM_POLARITY_INVERSED; 1060 1061 return pwm; 1062 } 1063 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 1064 1065 /* 1066 * This callback is used for PXA PWM chips that only have a single PWM line. 1067 * For such chips you could argue that passing the line number (i.e. the first 1068 * parameter in the common case) is useless as it's always zero. So compared to 1069 * the default xlate function of_pwm_xlate_with_flags() the first parameter is 1070 * the default period and the second are flags. 1071 * 1072 * Note that if #pwm-cells = <3>, the semantic is the same as for 1073 * of_pwm_xlate_with_flags() to allow converting the affected driver to 1074 * #pwm-cells = <3> without breaking the legacy binding. 1075 * 1076 * Don't use for new drivers. 1077 */ 1078 struct pwm_device * 1079 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 1080 { 1081 struct pwm_device *pwm; 1082 1083 if (args->args_count >= 3) 1084 return of_pwm_xlate_with_flags(chip, args); 1085 1086 pwm = pwm_request_from_chip(chip, 0, NULL); 1087 if (IS_ERR(pwm)) 1088 return pwm; 1089 1090 if (args->args_count > 0) 1091 pwm->args.period = args->args[0]; 1092 1093 pwm->args.polarity = PWM_POLARITY_NORMAL; 1094 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) 1095 pwm->args.polarity = PWM_POLARITY_INVERSED; 1096 1097 return pwm; 1098 } 1099 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 1100 1101 struct pwm_export { 1102 struct device pwm_dev; 1103 struct pwm_device *pwm; 1104 struct mutex lock; 1105 struct pwm_state suspend; 1106 }; 1107 1108 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) 1109 { 1110 return container_of(pwmchip_dev, struct pwm_chip, dev); 1111 } 1112 1113 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) 1114 { 1115 return container_of(pwm_dev, struct pwm_export, pwm_dev); 1116 } 1117 1118 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) 1119 { 1120 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1121 1122 return export->pwm; 1123 } 1124 1125 static ssize_t period_show(struct device *pwm_dev, 1126 struct device_attribute *attr, 1127 char *buf) 1128 { 1129 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1130 struct pwm_state state; 1131 1132 pwm_get_state(pwm, &state); 1133 1134 return sysfs_emit(buf, "%llu\n", state.period); 1135 } 1136 1137 static ssize_t period_store(struct device *pwm_dev, 1138 struct device_attribute *attr, 1139 const char *buf, size_t size) 1140 { 1141 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1142 struct pwm_device *pwm = export->pwm; 1143 struct pwm_state state; 1144 u64 val; 1145 int ret; 1146 1147 ret = kstrtou64(buf, 0, &val); 1148 if (ret) 1149 return ret; 1150 1151 guard(mutex)(&export->lock); 1152 1153 pwm_get_state(pwm, &state); 1154 state.period = val; 1155 ret = pwm_apply_might_sleep(pwm, &state); 1156 1157 return ret ? : size; 1158 } 1159 1160 static ssize_t duty_cycle_show(struct device *pwm_dev, 1161 struct device_attribute *attr, 1162 char *buf) 1163 { 1164 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1165 struct pwm_state state; 1166 1167 pwm_get_state(pwm, &state); 1168 1169 return sysfs_emit(buf, "%llu\n", state.duty_cycle); 1170 } 1171 1172 static ssize_t duty_cycle_store(struct device *pwm_dev, 1173 struct device_attribute *attr, 1174 const char *buf, size_t size) 1175 { 1176 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1177 struct pwm_device *pwm = export->pwm; 1178 struct pwm_state state; 1179 u64 val; 1180 int ret; 1181 1182 ret = kstrtou64(buf, 0, &val); 1183 if (ret) 1184 return ret; 1185 1186 guard(mutex)(&export->lock); 1187 1188 pwm_get_state(pwm, &state); 1189 state.duty_cycle = val; 1190 ret = pwm_apply_might_sleep(pwm, &state); 1191 1192 return ret ? : size; 1193 } 1194 1195 static ssize_t enable_show(struct device *pwm_dev, 1196 struct device_attribute *attr, 1197 char *buf) 1198 { 1199 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1200 struct pwm_state state; 1201 1202 pwm_get_state(pwm, &state); 1203 1204 return sysfs_emit(buf, "%d\n", state.enabled); 1205 } 1206 1207 static ssize_t enable_store(struct device *pwm_dev, 1208 struct device_attribute *attr, 1209 const char *buf, size_t size) 1210 { 1211 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1212 struct pwm_device *pwm = export->pwm; 1213 struct pwm_state state; 1214 int val, ret; 1215 1216 ret = kstrtoint(buf, 0, &val); 1217 if (ret) 1218 return ret; 1219 1220 guard(mutex)(&export->lock); 1221 1222 pwm_get_state(pwm, &state); 1223 1224 switch (val) { 1225 case 0: 1226 state.enabled = false; 1227 break; 1228 case 1: 1229 state.enabled = true; 1230 break; 1231 default: 1232 return -EINVAL; 1233 } 1234 1235 ret = pwm_apply_might_sleep(pwm, &state); 1236 1237 return ret ? : size; 1238 } 1239 1240 static ssize_t polarity_show(struct device *pwm_dev, 1241 struct device_attribute *attr, 1242 char *buf) 1243 { 1244 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1245 const char *polarity = "unknown"; 1246 struct pwm_state state; 1247 1248 pwm_get_state(pwm, &state); 1249 1250 switch (state.polarity) { 1251 case PWM_POLARITY_NORMAL: 1252 polarity = "normal"; 1253 break; 1254 1255 case PWM_POLARITY_INVERSED: 1256 polarity = "inversed"; 1257 break; 1258 } 1259 1260 return sysfs_emit(buf, "%s\n", polarity); 1261 } 1262 1263 static ssize_t polarity_store(struct device *pwm_dev, 1264 struct device_attribute *attr, 1265 const char *buf, size_t size) 1266 { 1267 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1268 struct pwm_device *pwm = export->pwm; 1269 enum pwm_polarity polarity; 1270 struct pwm_state state; 1271 int ret; 1272 1273 if (sysfs_streq(buf, "normal")) 1274 polarity = PWM_POLARITY_NORMAL; 1275 else if (sysfs_streq(buf, "inversed")) 1276 polarity = PWM_POLARITY_INVERSED; 1277 else 1278 return -EINVAL; 1279 1280 guard(mutex)(&export->lock); 1281 1282 pwm_get_state(pwm, &state); 1283 state.polarity = polarity; 1284 ret = pwm_apply_might_sleep(pwm, &state); 1285 1286 return ret ? : size; 1287 } 1288 1289 static ssize_t capture_show(struct device *pwm_dev, 1290 struct device_attribute *attr, 1291 char *buf) 1292 { 1293 struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1294 struct pwm_capture result; 1295 int ret; 1296 1297 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); 1298 if (ret) 1299 return ret; 1300 1301 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); 1302 } 1303 1304 static DEVICE_ATTR_RW(period); 1305 static DEVICE_ATTR_RW(duty_cycle); 1306 static DEVICE_ATTR_RW(enable); 1307 static DEVICE_ATTR_RW(polarity); 1308 static DEVICE_ATTR_RO(capture); 1309 1310 static struct attribute *pwm_attrs[] = { 1311 &dev_attr_period.attr, 1312 &dev_attr_duty_cycle.attr, 1313 &dev_attr_enable.attr, 1314 &dev_attr_polarity.attr, 1315 &dev_attr_capture.attr, 1316 NULL 1317 }; 1318 ATTRIBUTE_GROUPS(pwm); 1319 1320 static void pwm_export_release(struct device *pwm_dev) 1321 { 1322 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1323 1324 kfree(export); 1325 } 1326 1327 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1328 { 1329 struct pwm_export *export; 1330 char *pwm_prop[2]; 1331 int ret; 1332 1333 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) 1334 return -EBUSY; 1335 1336 export = kzalloc(sizeof(*export), GFP_KERNEL); 1337 if (!export) { 1338 clear_bit(PWMF_EXPORTED, &pwm->flags); 1339 return -ENOMEM; 1340 } 1341 1342 export->pwm = pwm; 1343 mutex_init(&export->lock); 1344 1345 export->pwm_dev.release = pwm_export_release; 1346 export->pwm_dev.parent = pwmchip_dev; 1347 export->pwm_dev.devt = MKDEV(0, 0); 1348 export->pwm_dev.groups = pwm_groups; 1349 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); 1350 1351 ret = device_register(&export->pwm_dev); 1352 if (ret) { 1353 clear_bit(PWMF_EXPORTED, &pwm->flags); 1354 put_device(&export->pwm_dev); 1355 export = NULL; 1356 return ret; 1357 } 1358 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); 1359 pwm_prop[1] = NULL; 1360 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1361 kfree(pwm_prop[0]); 1362 1363 return 0; 1364 } 1365 1366 static int pwm_unexport_match(struct device *pwm_dev, const void *data) 1367 { 1368 return pwm_from_dev(pwm_dev) == data; 1369 } 1370 1371 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1372 { 1373 struct device *pwm_dev; 1374 char *pwm_prop[2]; 1375 1376 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) 1377 return -ENODEV; 1378 1379 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1380 if (!pwm_dev) 1381 return -ENODEV; 1382 1383 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); 1384 pwm_prop[1] = NULL; 1385 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1386 kfree(pwm_prop[0]); 1387 1388 /* for device_find_child() */ 1389 put_device(pwm_dev); 1390 device_unregister(pwm_dev); 1391 pwm_put(pwm); 1392 1393 return 0; 1394 } 1395 1396 static ssize_t export_store(struct device *pwmchip_dev, 1397 struct device_attribute *attr, 1398 const char *buf, size_t len) 1399 { 1400 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1401 struct pwm_device *pwm; 1402 unsigned int hwpwm; 1403 int ret; 1404 1405 ret = kstrtouint(buf, 0, &hwpwm); 1406 if (ret < 0) 1407 return ret; 1408 1409 if (hwpwm >= chip->npwm) 1410 return -ENODEV; 1411 1412 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); 1413 if (IS_ERR(pwm)) 1414 return PTR_ERR(pwm); 1415 1416 ret = pwm_export_child(pwmchip_dev, pwm); 1417 if (ret < 0) 1418 pwm_put(pwm); 1419 1420 return ret ? : len; 1421 } 1422 static DEVICE_ATTR_WO(export); 1423 1424 static ssize_t unexport_store(struct device *pwmchip_dev, 1425 struct device_attribute *attr, 1426 const char *buf, size_t len) 1427 { 1428 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1429 unsigned int hwpwm; 1430 int ret; 1431 1432 ret = kstrtouint(buf, 0, &hwpwm); 1433 if (ret < 0) 1434 return ret; 1435 1436 if (hwpwm >= chip->npwm) 1437 return -ENODEV; 1438 1439 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); 1440 1441 return ret ? : len; 1442 } 1443 static DEVICE_ATTR_WO(unexport); 1444 1445 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, 1446 char *buf) 1447 { 1448 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1449 1450 return sysfs_emit(buf, "%u\n", chip->npwm); 1451 } 1452 static DEVICE_ATTR_RO(npwm); 1453 1454 static struct attribute *pwm_chip_attrs[] = { 1455 &dev_attr_export.attr, 1456 &dev_attr_unexport.attr, 1457 &dev_attr_npwm.attr, 1458 NULL, 1459 }; 1460 ATTRIBUTE_GROUPS(pwm_chip); 1461 1462 /* takes export->lock on success */ 1463 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, 1464 struct pwm_device *pwm, 1465 struct pwm_state *state) 1466 { 1467 struct device *pwm_dev; 1468 struct pwm_export *export; 1469 1470 if (!test_bit(PWMF_EXPORTED, &pwm->flags)) 1471 return NULL; 1472 1473 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1474 if (!pwm_dev) 1475 return NULL; 1476 1477 export = pwmexport_from_dev(pwm_dev); 1478 put_device(pwm_dev); /* for device_find_child() */ 1479 1480 mutex_lock(&export->lock); 1481 pwm_get_state(pwm, state); 1482 1483 return export; 1484 } 1485 1486 static int pwm_class_apply_state(struct pwm_export *export, 1487 struct pwm_device *pwm, 1488 struct pwm_state *state) 1489 { 1490 int ret = pwm_apply_might_sleep(pwm, state); 1491 1492 /* release lock taken in pwm_class_get_state */ 1493 mutex_unlock(&export->lock); 1494 1495 return ret; 1496 } 1497 1498 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) 1499 { 1500 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1501 unsigned int i; 1502 int ret = 0; 1503 1504 for (i = 0; i < npwm; i++) { 1505 struct pwm_device *pwm = &chip->pwms[i]; 1506 struct pwm_state state; 1507 struct pwm_export *export; 1508 1509 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1510 if (!export) 1511 continue; 1512 1513 /* If pwmchip was not enabled before suspend, do nothing. */ 1514 if (!export->suspend.enabled) { 1515 /* release lock taken in pwm_class_get_state */ 1516 mutex_unlock(&export->lock); 1517 continue; 1518 } 1519 1520 state.enabled = export->suspend.enabled; 1521 ret = pwm_class_apply_state(export, pwm, &state); 1522 if (ret < 0) 1523 break; 1524 } 1525 1526 return ret; 1527 } 1528 1529 static int pwm_class_suspend(struct device *pwmchip_dev) 1530 { 1531 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1532 unsigned int i; 1533 int ret = 0; 1534 1535 for (i = 0; i < chip->npwm; i++) { 1536 struct pwm_device *pwm = &chip->pwms[i]; 1537 struct pwm_state state; 1538 struct pwm_export *export; 1539 1540 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1541 if (!export) 1542 continue; 1543 1544 /* 1545 * If pwmchip was not enabled before suspend, save 1546 * state for resume time and do nothing else. 1547 */ 1548 export->suspend = state; 1549 if (!state.enabled) { 1550 /* release lock taken in pwm_class_get_state */ 1551 mutex_unlock(&export->lock); 1552 continue; 1553 } 1554 1555 state.enabled = false; 1556 ret = pwm_class_apply_state(export, pwm, &state); 1557 if (ret < 0) { 1558 /* 1559 * roll back the PWM devices that were disabled by 1560 * this suspend function. 1561 */ 1562 pwm_class_resume_npwm(pwmchip_dev, i); 1563 break; 1564 } 1565 } 1566 1567 return ret; 1568 } 1569 1570 static int pwm_class_resume(struct device *pwmchip_dev) 1571 { 1572 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1573 1574 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); 1575 } 1576 1577 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); 1578 1579 static struct class pwm_class = { 1580 .name = "pwm", 1581 .dev_groups = pwm_chip_groups, 1582 .pm = pm_sleep_ptr(&pwm_class_pm_ops), 1583 }; 1584 1585 static void pwmchip_sysfs_unexport(struct pwm_chip *chip) 1586 { 1587 unsigned int i; 1588 1589 for (i = 0; i < chip->npwm; i++) { 1590 struct pwm_device *pwm = &chip->pwms[i]; 1591 1592 if (test_bit(PWMF_EXPORTED, &pwm->flags)) 1593 pwm_unexport_child(&chip->dev, pwm); 1594 } 1595 } 1596 1597 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN 1598 1599 static void *pwmchip_priv(struct pwm_chip *chip) 1600 { 1601 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); 1602 } 1603 1604 /* This is the counterpart to pwmchip_alloc() */ 1605 void pwmchip_put(struct pwm_chip *chip) 1606 { 1607 put_device(&chip->dev); 1608 } 1609 EXPORT_SYMBOL_GPL(pwmchip_put); 1610 1611 void pwmchip_release(struct device *pwmchip_dev) 1612 { 1613 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1614 1615 kfree(chip); 1616 } 1617 EXPORT_SYMBOL_GPL(pwmchip_release); 1618 1619 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1620 { 1621 struct pwm_chip *chip; 1622 struct device *pwmchip_dev; 1623 size_t alloc_size; 1624 unsigned int i; 1625 1626 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), 1627 sizeof_priv); 1628 1629 chip = kzalloc(alloc_size, GFP_KERNEL); 1630 if (!chip) 1631 return ERR_PTR(-ENOMEM); 1632 1633 chip->npwm = npwm; 1634 chip->uses_pwmchip_alloc = true; 1635 chip->operational = false; 1636 1637 pwmchip_dev = &chip->dev; 1638 device_initialize(pwmchip_dev); 1639 pwmchip_dev->class = &pwm_class; 1640 pwmchip_dev->parent = parent; 1641 pwmchip_dev->release = pwmchip_release; 1642 1643 pwmchip_set_drvdata(chip, pwmchip_priv(chip)); 1644 1645 for (i = 0; i < chip->npwm; i++) { 1646 struct pwm_device *pwm = &chip->pwms[i]; 1647 pwm->chip = chip; 1648 pwm->hwpwm = i; 1649 } 1650 1651 return chip; 1652 } 1653 EXPORT_SYMBOL_GPL(pwmchip_alloc); 1654 1655 static void devm_pwmchip_put(void *data) 1656 { 1657 struct pwm_chip *chip = data; 1658 1659 pwmchip_put(chip); 1660 } 1661 1662 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1663 { 1664 struct pwm_chip *chip; 1665 int ret; 1666 1667 chip = pwmchip_alloc(parent, npwm, sizeof_priv); 1668 if (IS_ERR(chip)) 1669 return chip; 1670 1671 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); 1672 if (ret) 1673 return ERR_PTR(ret); 1674 1675 return chip; 1676 } 1677 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); 1678 1679 static void of_pwmchip_add(struct pwm_chip *chip) 1680 { 1681 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) 1682 return; 1683 1684 if (!chip->of_xlate) 1685 chip->of_xlate = of_pwm_xlate_with_flags; 1686 1687 of_node_get(pwmchip_parent(chip)->of_node); 1688 } 1689 1690 static void of_pwmchip_remove(struct pwm_chip *chip) 1691 { 1692 if (pwmchip_parent(chip)) 1693 of_node_put(pwmchip_parent(chip)->of_node); 1694 } 1695 1696 static bool pwm_ops_check(const struct pwm_chip *chip) 1697 { 1698 const struct pwm_ops *ops = chip->ops; 1699 1700 if (ops->write_waveform) { 1701 if (!ops->round_waveform_tohw || 1702 !ops->round_waveform_fromhw || 1703 !ops->write_waveform) 1704 return false; 1705 1706 if (PWM_WFHWSIZE < ops->sizeof_wfhw) { 1707 dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw); 1708 return false; 1709 } 1710 } else { 1711 if (!ops->apply) 1712 return false; 1713 1714 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 1715 dev_warn(pwmchip_parent(chip), 1716 "Please implement the .get_state() callback\n"); 1717 } 1718 1719 return true; 1720 } 1721 1722 static struct device_link *pwm_device_link_add(struct device *dev, 1723 struct pwm_device *pwm) 1724 { 1725 struct device_link *dl; 1726 1727 if (!dev) { 1728 /* 1729 * No device for the PWM consumer has been provided. It may 1730 * impact the PM sequence ordering: the PWM supplier may get 1731 * suspended before the consumer. 1732 */ 1733 dev_warn(pwmchip_parent(pwm->chip), 1734 "No consumer device specified to create a link to\n"); 1735 return NULL; 1736 } 1737 1738 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); 1739 if (!dl) { 1740 dev_err(dev, "failed to create device link to %s\n", 1741 dev_name(pwmchip_parent(pwm->chip))); 1742 return ERR_PTR(-EINVAL); 1743 } 1744 1745 return dl; 1746 } 1747 1748 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 1749 { 1750 struct pwm_chip *chip; 1751 unsigned long id, tmp; 1752 1753 guard(mutex)(&pwm_lock); 1754 1755 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 1756 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) 1757 return chip; 1758 1759 return ERR_PTR(-EPROBE_DEFER); 1760 } 1761 1762 /** 1763 * of_pwm_get() - request a PWM via the PWM framework 1764 * @dev: device for PWM consumer 1765 * @np: device node to get the PWM from 1766 * @con_id: consumer name 1767 * 1768 * Returns the PWM device parsed from the phandle and index specified in the 1769 * "pwms" property of a device tree node or a negative error-code on failure. 1770 * Values parsed from the device tree are stored in the returned PWM device 1771 * object. 1772 * 1773 * If con_id is NULL, the first PWM device listed in the "pwms" property will 1774 * be requested. Otherwise the "pwm-names" property is used to do a reverse 1775 * lookup of the PWM index. This also means that the "pwm-names" property 1776 * becomes mandatory for devices that look up the PWM device via the con_id 1777 * parameter. 1778 * 1779 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1780 * error code on failure. 1781 */ 1782 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 1783 const char *con_id) 1784 { 1785 struct pwm_device *pwm = NULL; 1786 struct of_phandle_args args; 1787 struct device_link *dl; 1788 struct pwm_chip *chip; 1789 int index = 0; 1790 int err; 1791 1792 if (con_id) { 1793 index = of_property_match_string(np, "pwm-names", con_id); 1794 if (index < 0) 1795 return ERR_PTR(index); 1796 } 1797 1798 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args); 1799 if (err) { 1800 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 1801 return ERR_PTR(err); 1802 } 1803 1804 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 1805 if (IS_ERR(chip)) { 1806 if (PTR_ERR(chip) != -EPROBE_DEFER) 1807 pr_err("%s(): PWM chip not found\n", __func__); 1808 1809 pwm = ERR_CAST(chip); 1810 goto put; 1811 } 1812 1813 pwm = chip->of_xlate(chip, &args); 1814 if (IS_ERR(pwm)) 1815 goto put; 1816 1817 dl = pwm_device_link_add(dev, pwm); 1818 if (IS_ERR(dl)) { 1819 /* of_xlate ended up calling pwm_request_from_chip() */ 1820 pwm_put(pwm); 1821 pwm = ERR_CAST(dl); 1822 goto put; 1823 } 1824 1825 /* 1826 * If a consumer name was not given, try to look it up from the 1827 * "pwm-names" property if it exists. Otherwise use the name of 1828 * the user device node. 1829 */ 1830 if (!con_id) { 1831 err = of_property_read_string_index(np, "pwm-names", index, 1832 &con_id); 1833 if (err < 0) 1834 con_id = np->name; 1835 } 1836 1837 pwm->label = con_id; 1838 1839 put: 1840 of_node_put(args.np); 1841 1842 return pwm; 1843 } 1844 1845 /** 1846 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 1847 * @fwnode: firmware node to get the "pwms" property from 1848 * 1849 * Returns the PWM device parsed from the fwnode and index specified in the 1850 * "pwms" property or a negative error-code on failure. 1851 * Values parsed from the device tree are stored in the returned PWM device 1852 * object. 1853 * 1854 * This is analogous to of_pwm_get() except con_id is not yet supported. 1855 * ACPI entries must look like 1856 * Package () {"pwms", Package () 1857 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 1858 * 1859 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1860 * error code on failure. 1861 */ 1862 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 1863 { 1864 struct pwm_device *pwm; 1865 struct fwnode_reference_args args; 1866 struct pwm_chip *chip; 1867 int ret; 1868 1869 memset(&args, 0, sizeof(args)); 1870 1871 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 1872 if (ret < 0) 1873 return ERR_PTR(ret); 1874 1875 if (args.nargs < 2) 1876 return ERR_PTR(-EPROTO); 1877 1878 chip = fwnode_to_pwmchip(args.fwnode); 1879 if (IS_ERR(chip)) 1880 return ERR_CAST(chip); 1881 1882 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 1883 if (IS_ERR(pwm)) 1884 return pwm; 1885 1886 pwm->args.period = args.args[1]; 1887 pwm->args.polarity = PWM_POLARITY_NORMAL; 1888 1889 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 1890 pwm->args.polarity = PWM_POLARITY_INVERSED; 1891 1892 return pwm; 1893 } 1894 1895 static DEFINE_MUTEX(pwm_lookup_lock); 1896 static LIST_HEAD(pwm_lookup_list); 1897 1898 /** 1899 * pwm_get() - look up and request a PWM device 1900 * @dev: device for PWM consumer 1901 * @con_id: consumer name 1902 * 1903 * Lookup is first attempted using DT. If the device was not instantiated from 1904 * a device tree, a PWM chip and a relative index is looked up via a table 1905 * supplied by board setup code (see pwm_add_table()). 1906 * 1907 * Once a PWM chip has been found the specified PWM device will be requested 1908 * and is ready to be used. 1909 * 1910 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1911 * error code on failure. 1912 */ 1913 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 1914 { 1915 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 1916 const char *dev_id = dev ? dev_name(dev) : NULL; 1917 struct pwm_device *pwm; 1918 struct pwm_chip *chip; 1919 struct device_link *dl; 1920 unsigned int best = 0; 1921 struct pwm_lookup *p, *chosen = NULL; 1922 unsigned int match; 1923 int err; 1924 1925 /* look up via DT first */ 1926 if (is_of_node(fwnode)) 1927 return of_pwm_get(dev, to_of_node(fwnode), con_id); 1928 1929 /* then lookup via ACPI */ 1930 if (is_acpi_node(fwnode)) { 1931 pwm = acpi_pwm_get(fwnode); 1932 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1933 return pwm; 1934 } 1935 1936 /* 1937 * We look up the provider in the static table typically provided by 1938 * board setup code. We first try to lookup the consumer device by 1939 * name. If the consumer device was passed in as NULL or if no match 1940 * was found, we try to find the consumer by directly looking it up 1941 * by name. 1942 * 1943 * If a match is found, the provider PWM chip is looked up by name 1944 * and a PWM device is requested using the PWM device per-chip index. 1945 * 1946 * The lookup algorithm was shamelessly taken from the clock 1947 * framework: 1948 * 1949 * We do slightly fuzzy matching here: 1950 * An entry with a NULL ID is assumed to be a wildcard. 1951 * If an entry has a device ID, it must match 1952 * If an entry has a connection ID, it must match 1953 * Then we take the most specific entry - with the following order 1954 * of precedence: dev+con > dev only > con only. 1955 */ 1956 scoped_guard(mutex, &pwm_lookup_lock) 1957 list_for_each_entry(p, &pwm_lookup_list, list) { 1958 match = 0; 1959 1960 if (p->dev_id) { 1961 if (!dev_id || strcmp(p->dev_id, dev_id)) 1962 continue; 1963 1964 match += 2; 1965 } 1966 1967 if (p->con_id) { 1968 if (!con_id || strcmp(p->con_id, con_id)) 1969 continue; 1970 1971 match += 1; 1972 } 1973 1974 if (match > best) { 1975 chosen = p; 1976 1977 if (match != 3) 1978 best = match; 1979 else 1980 break; 1981 } 1982 } 1983 1984 if (!chosen) 1985 return ERR_PTR(-ENODEV); 1986 1987 chip = pwmchip_find_by_name(chosen->provider); 1988 1989 /* 1990 * If the lookup entry specifies a module, load the module and retry 1991 * the PWM chip lookup. This can be used to work around driver load 1992 * ordering issues if driver's can't be made to properly support the 1993 * deferred probe mechanism. 1994 */ 1995 if (!chip && chosen->module) { 1996 err = request_module(chosen->module); 1997 if (err == 0) 1998 chip = pwmchip_find_by_name(chosen->provider); 1999 } 2000 2001 if (!chip) 2002 return ERR_PTR(-EPROBE_DEFER); 2003 2004 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 2005 if (IS_ERR(pwm)) 2006 return pwm; 2007 2008 dl = pwm_device_link_add(dev, pwm); 2009 if (IS_ERR(dl)) { 2010 pwm_put(pwm); 2011 return ERR_CAST(dl); 2012 } 2013 2014 pwm->args.period = chosen->period; 2015 pwm->args.polarity = chosen->polarity; 2016 2017 return pwm; 2018 } 2019 EXPORT_SYMBOL_GPL(pwm_get); 2020 2021 static void __pwm_put(struct pwm_device *pwm) 2022 { 2023 struct pwm_chip *chip = pwm->chip; 2024 2025 /* 2026 * Trigger a warning if a consumer called pwm_put() twice. 2027 * If the chip isn't operational, PWMF_REQUESTED was already cleared in 2028 * pwmchip_remove(). So don't warn in this case. 2029 */ 2030 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2031 pr_warn("PWM device already freed\n"); 2032 return; 2033 } 2034 2035 if (chip->operational && chip->ops->free) 2036 pwm->chip->ops->free(pwm->chip, pwm); 2037 2038 pwm->label = NULL; 2039 2040 put_device(&chip->dev); 2041 2042 module_put(chip->owner); 2043 } 2044 2045 /** 2046 * pwm_put() - release a PWM device 2047 * @pwm: PWM device 2048 */ 2049 void pwm_put(struct pwm_device *pwm) 2050 { 2051 if (!pwm) 2052 return; 2053 2054 guard(mutex)(&pwm_lock); 2055 2056 __pwm_put(pwm); 2057 } 2058 EXPORT_SYMBOL_GPL(pwm_put); 2059 2060 static void devm_pwm_release(void *pwm) 2061 { 2062 pwm_put(pwm); 2063 } 2064 2065 /** 2066 * devm_pwm_get() - resource managed pwm_get() 2067 * @dev: device for PWM consumer 2068 * @con_id: consumer name 2069 * 2070 * This function performs like pwm_get() but the acquired PWM device will 2071 * automatically be released on driver detach. 2072 * 2073 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2074 * error code on failure. 2075 */ 2076 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 2077 { 2078 struct pwm_device *pwm; 2079 int ret; 2080 2081 pwm = pwm_get(dev, con_id); 2082 if (IS_ERR(pwm)) 2083 return pwm; 2084 2085 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2086 if (ret) 2087 return ERR_PTR(ret); 2088 2089 return pwm; 2090 } 2091 EXPORT_SYMBOL_GPL(devm_pwm_get); 2092 2093 /** 2094 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 2095 * @dev: device for PWM consumer 2096 * @fwnode: firmware node to get the PWM from 2097 * @con_id: consumer name 2098 * 2099 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 2100 * acpi_pwm_get() for a detailed description. 2101 * 2102 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2103 * error code on failure. 2104 */ 2105 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 2106 struct fwnode_handle *fwnode, 2107 const char *con_id) 2108 { 2109 struct pwm_device *pwm = ERR_PTR(-ENODEV); 2110 int ret; 2111 2112 if (is_of_node(fwnode)) 2113 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 2114 else if (is_acpi_node(fwnode)) 2115 pwm = acpi_pwm_get(fwnode); 2116 if (IS_ERR(pwm)) 2117 return pwm; 2118 2119 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2120 if (ret) 2121 return ERR_PTR(ret); 2122 2123 return pwm; 2124 } 2125 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 2126 2127 struct pwm_cdev_data { 2128 struct pwm_chip *chip; 2129 struct pwm_device *pwm[]; 2130 }; 2131 2132 static int pwm_cdev_open(struct inode *inode, struct file *file) 2133 { 2134 struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev); 2135 struct pwm_cdev_data *cdata; 2136 2137 guard(mutex)(&pwm_lock); 2138 2139 if (!chip->operational) 2140 return -ENXIO; 2141 2142 cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL); 2143 if (!cdata) 2144 return -ENOMEM; 2145 2146 cdata->chip = chip; 2147 2148 file->private_data = cdata; 2149 2150 return nonseekable_open(inode, file); 2151 } 2152 2153 static int pwm_cdev_release(struct inode *inode, struct file *file) 2154 { 2155 struct pwm_cdev_data *cdata = file->private_data; 2156 unsigned int i; 2157 2158 for (i = 0; i < cdata->chip->npwm; ++i) { 2159 struct pwm_device *pwm = cdata->pwm[i]; 2160 2161 if (pwm) { 2162 const char *label = pwm->label; 2163 2164 pwm_put(cdata->pwm[i]); 2165 kfree(label); 2166 } 2167 } 2168 kfree(cdata); 2169 2170 return 0; 2171 } 2172 2173 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm) 2174 { 2175 struct pwm_chip *chip = cdata->chip; 2176 2177 if (hwpwm >= chip->npwm) 2178 return -EINVAL; 2179 2180 if (!cdata->pwm[hwpwm]) { 2181 struct pwm_device *pwm = &chip->pwms[hwpwm]; 2182 const char *label; 2183 int ret; 2184 2185 label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid); 2186 if (!label) 2187 return -ENOMEM; 2188 2189 ret = pwm_device_request(pwm, label); 2190 if (ret < 0) { 2191 kfree(label); 2192 return ret; 2193 } 2194 2195 cdata->pwm[hwpwm] = pwm; 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm) 2202 { 2203 struct pwm_chip *chip = cdata->chip; 2204 2205 if (hwpwm >= chip->npwm) 2206 return -EINVAL; 2207 2208 if (cdata->pwm[hwpwm]) { 2209 struct pwm_device *pwm = cdata->pwm[hwpwm]; 2210 const char *label = pwm->label; 2211 2212 __pwm_put(pwm); 2213 2214 kfree(label); 2215 2216 cdata->pwm[hwpwm] = NULL; 2217 } 2218 2219 return 0; 2220 } 2221 2222 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata, 2223 u32 hwpwm) 2224 { 2225 struct pwm_chip *chip = cdata->chip; 2226 2227 if (hwpwm >= chip->npwm) 2228 return ERR_PTR(-EINVAL); 2229 2230 if (cdata->pwm[hwpwm]) 2231 return cdata->pwm[hwpwm]; 2232 2233 return ERR_PTR(-EINVAL); 2234 } 2235 2236 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2237 { 2238 int ret = 0; 2239 struct pwm_cdev_data *cdata = file->private_data; 2240 struct pwm_chip *chip = cdata->chip; 2241 2242 guard(mutex)(&pwm_lock); 2243 2244 if (!chip->operational) 2245 return -ENODEV; 2246 2247 switch (cmd) { 2248 case PWM_IOCTL_REQUEST: 2249 { 2250 unsigned int hwpwm = arg; 2251 2252 return pwm_cdev_request(cdata, hwpwm); 2253 } 2254 2255 case PWM_IOCTL_FREE: 2256 { 2257 unsigned int hwpwm = arg; 2258 2259 return pwm_cdev_free(cdata, hwpwm); 2260 } 2261 2262 case PWM_IOCTL_ROUNDWF: 2263 { 2264 struct pwmchip_waveform cwf; 2265 struct pwm_waveform wf; 2266 struct pwm_device *pwm; 2267 2268 ret = copy_from_user(&cwf, 2269 (struct pwmchip_waveform __user *)arg, 2270 sizeof(cwf)); 2271 if (ret) 2272 return -EFAULT; 2273 2274 if (cwf.__pad != 0) 2275 return -EINVAL; 2276 2277 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2278 if (IS_ERR(pwm)) 2279 return PTR_ERR(pwm); 2280 2281 wf = (struct pwm_waveform) { 2282 .period_length_ns = cwf.period_length_ns, 2283 .duty_length_ns = cwf.duty_length_ns, 2284 .duty_offset_ns = cwf.duty_offset_ns, 2285 }; 2286 2287 ret = pwm_round_waveform_might_sleep(pwm, &wf); 2288 if (ret < 0) 2289 return ret; 2290 2291 cwf = (struct pwmchip_waveform) { 2292 .hwpwm = cwf.hwpwm, 2293 .period_length_ns = wf.period_length_ns, 2294 .duty_length_ns = wf.duty_length_ns, 2295 .duty_offset_ns = wf.duty_offset_ns, 2296 }; 2297 2298 return copy_to_user((struct pwmchip_waveform __user *)arg, 2299 &cwf, sizeof(cwf)); 2300 } 2301 2302 case PWM_IOCTL_GETWF: 2303 { 2304 struct pwmchip_waveform cwf; 2305 struct pwm_waveform wf; 2306 struct pwm_device *pwm; 2307 2308 ret = copy_from_user(&cwf, 2309 (struct pwmchip_waveform __user *)arg, 2310 sizeof(cwf)); 2311 if (ret) 2312 return -EFAULT; 2313 2314 if (cwf.__pad != 0) 2315 return -EINVAL; 2316 2317 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2318 if (IS_ERR(pwm)) 2319 return PTR_ERR(pwm); 2320 2321 ret = pwm_get_waveform_might_sleep(pwm, &wf); 2322 if (ret) 2323 return ret; 2324 2325 cwf = (struct pwmchip_waveform) { 2326 .hwpwm = cwf.hwpwm, 2327 .period_length_ns = wf.period_length_ns, 2328 .duty_length_ns = wf.duty_length_ns, 2329 .duty_offset_ns = wf.duty_offset_ns, 2330 }; 2331 2332 return copy_to_user((struct pwmchip_waveform __user *)arg, 2333 &cwf, sizeof(cwf)); 2334 } 2335 2336 case PWM_IOCTL_SETROUNDEDWF: 2337 case PWM_IOCTL_SETEXACTWF: 2338 { 2339 struct pwmchip_waveform cwf; 2340 struct pwm_waveform wf; 2341 struct pwm_device *pwm; 2342 2343 ret = copy_from_user(&cwf, 2344 (struct pwmchip_waveform __user *)arg, 2345 sizeof(cwf)); 2346 if (ret) 2347 return -EFAULT; 2348 2349 if (cwf.__pad != 0) 2350 return -EINVAL; 2351 2352 wf = (struct pwm_waveform){ 2353 .period_length_ns = cwf.period_length_ns, 2354 .duty_length_ns = cwf.duty_length_ns, 2355 .duty_offset_ns = cwf.duty_offset_ns, 2356 }; 2357 2358 if (!pwm_wf_valid(&wf)) 2359 return -EINVAL; 2360 2361 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2362 if (IS_ERR(pwm)) 2363 return PTR_ERR(pwm); 2364 2365 ret = pwm_set_waveform_might_sleep(pwm, &wf, 2366 cmd == PWM_IOCTL_SETEXACTWF); 2367 2368 /* 2369 * If userspace cares about rounding deviations it has 2370 * to check the values anyhow, so simplify handling for 2371 * them and don't signal uprounding. This matches the 2372 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0 2373 * in that case. 2374 */ 2375 if (ret == 1) 2376 ret = 0; 2377 2378 return ret; 2379 } 2380 2381 default: 2382 return -ENOTTY; 2383 } 2384 } 2385 2386 static const struct file_operations pwm_cdev_fileops = { 2387 .open = pwm_cdev_open, 2388 .release = pwm_cdev_release, 2389 .owner = THIS_MODULE, 2390 .unlocked_ioctl = pwm_cdev_ioctl, 2391 }; 2392 2393 static dev_t pwm_devt; 2394 2395 static int pwm_gpio_request(struct gpio_chip *gc, unsigned int offset) 2396 { 2397 struct pwm_chip *chip = gpiochip_get_data(gc); 2398 struct pwm_device *pwm; 2399 2400 pwm = pwm_request_from_chip(chip, offset, "pwm-gpio"); 2401 if (IS_ERR(pwm)) 2402 return PTR_ERR(pwm); 2403 2404 return 0; 2405 } 2406 2407 static void pwm_gpio_free(struct gpio_chip *gc, unsigned int offset) 2408 { 2409 struct pwm_chip *chip = gpiochip_get_data(gc); 2410 2411 pwm_put(&chip->pwms[offset]); 2412 } 2413 2414 static int pwm_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 2415 { 2416 return GPIO_LINE_DIRECTION_OUT; 2417 } 2418 2419 static int pwm_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 2420 { 2421 struct pwm_chip *chip = gpiochip_get_data(gc); 2422 struct pwm_device *pwm = &chip->pwms[offset]; 2423 int ret; 2424 struct pwm_waveform wf = { 2425 .period_length_ns = 1, 2426 }; 2427 2428 ret = pwm_round_waveform_might_sleep(pwm, &wf); 2429 if (ret < 0) 2430 return ret; 2431 2432 if (value) 2433 wf.duty_length_ns = wf.period_length_ns; 2434 else 2435 wf.duty_length_ns = 0; 2436 2437 return pwm_set_waveform_might_sleep(pwm, &wf, true); 2438 } 2439 2440 /** 2441 * __pwmchip_add() - register a new PWM chip 2442 * @chip: the PWM chip to add 2443 * @owner: reference to the module providing the chip. 2444 * 2445 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 2446 * pwmchip_add wrapper to do this right. 2447 * 2448 * Returns: 0 on success or a negative error code on failure. 2449 */ 2450 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 2451 { 2452 int ret; 2453 2454 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) 2455 return -EINVAL; 2456 2457 /* 2458 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, 2459 * otherwise the embedded struct device might disappear too early 2460 * resulting in memory corruption. 2461 * Catch drivers that were not converted appropriately. 2462 */ 2463 if (!chip->uses_pwmchip_alloc) 2464 return -EINVAL; 2465 2466 if (!pwm_ops_check(chip)) 2467 return -EINVAL; 2468 2469 chip->owner = owner; 2470 2471 if (chip->atomic) 2472 spin_lock_init(&chip->atomic_lock); 2473 else 2474 mutex_init(&chip->nonatomic_lock); 2475 2476 guard(mutex)(&pwm_lock); 2477 2478 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 2479 if (ret < 0) 2480 return ret; 2481 2482 chip->id = ret; 2483 2484 dev_set_name(&chip->dev, "pwmchip%u", chip->id); 2485 2486 if (IS_ENABLED(CONFIG_OF)) 2487 of_pwmchip_add(chip); 2488 2489 scoped_guard(pwmchip, chip) 2490 chip->operational = true; 2491 2492 if (chip->ops->write_waveform) { 2493 if (chip->id < PWM_MINOR_COUNT) 2494 chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id); 2495 else 2496 dev_warn(&chip->dev, "chip id too high to create a chardev\n"); 2497 } 2498 2499 cdev_init(&chip->cdev, &pwm_cdev_fileops); 2500 chip->cdev.owner = owner; 2501 2502 ret = cdev_device_add(&chip->cdev, &chip->dev); 2503 if (ret) 2504 goto err_device_add; 2505 2506 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) { 2507 struct device *parent = pwmchip_parent(chip); 2508 2509 chip->gpio = (typeof(chip->gpio)){ 2510 .label = dev_name(parent), 2511 .parent = parent, 2512 .request = pwm_gpio_request, 2513 .free = pwm_gpio_free, 2514 .get_direction = pwm_gpio_get_direction, 2515 .set = pwm_gpio_set, 2516 .base = -1, 2517 .ngpio = chip->npwm, 2518 .can_sleep = true, 2519 }; 2520 2521 ret = gpiochip_add_data(&chip->gpio, chip); 2522 if (ret) 2523 goto err_gpiochip_add; 2524 } 2525 2526 return 0; 2527 2528 err_gpiochip_add: 2529 2530 cdev_device_del(&chip->cdev, &chip->dev); 2531 err_device_add: 2532 2533 scoped_guard(pwmchip, chip) 2534 chip->operational = false; 2535 2536 if (IS_ENABLED(CONFIG_OF)) 2537 of_pwmchip_remove(chip); 2538 2539 idr_remove(&pwm_chips, chip->id); 2540 2541 return ret; 2542 } 2543 EXPORT_SYMBOL_GPL(__pwmchip_add); 2544 2545 /** 2546 * pwmchip_remove() - remove a PWM chip 2547 * @chip: the PWM chip to remove 2548 * 2549 * Removes a PWM chip. 2550 */ 2551 void pwmchip_remove(struct pwm_chip *chip) 2552 { 2553 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) 2554 gpiochip_remove(&chip->gpio); 2555 2556 pwmchip_sysfs_unexport(chip); 2557 2558 scoped_guard(mutex, &pwm_lock) { 2559 unsigned int i; 2560 2561 scoped_guard(pwmchip, chip) 2562 chip->operational = false; 2563 2564 for (i = 0; i < chip->npwm; ++i) { 2565 struct pwm_device *pwm = &chip->pwms[i]; 2566 2567 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2568 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); 2569 if (pwm->chip->ops->free) 2570 pwm->chip->ops->free(pwm->chip, pwm); 2571 } 2572 } 2573 2574 if (IS_ENABLED(CONFIG_OF)) 2575 of_pwmchip_remove(chip); 2576 2577 idr_remove(&pwm_chips, chip->id); 2578 } 2579 2580 cdev_device_del(&chip->cdev, &chip->dev); 2581 } 2582 EXPORT_SYMBOL_GPL(pwmchip_remove); 2583 2584 static void devm_pwmchip_remove(void *data) 2585 { 2586 struct pwm_chip *chip = data; 2587 2588 pwmchip_remove(chip); 2589 } 2590 2591 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 2592 { 2593 int ret; 2594 2595 ret = __pwmchip_add(chip, owner); 2596 if (ret) 2597 return ret; 2598 2599 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 2600 } 2601 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 2602 2603 /** 2604 * pwm_add_table() - register PWM device consumers 2605 * @table: array of consumers to register 2606 * @num: number of consumers in table 2607 */ 2608 void pwm_add_table(struct pwm_lookup *table, size_t num) 2609 { 2610 guard(mutex)(&pwm_lookup_lock); 2611 2612 while (num--) { 2613 list_add_tail(&table->list, &pwm_lookup_list); 2614 table++; 2615 } 2616 } 2617 2618 /** 2619 * pwm_remove_table() - unregister PWM device consumers 2620 * @table: array of consumers to unregister 2621 * @num: number of consumers in table 2622 */ 2623 void pwm_remove_table(struct pwm_lookup *table, size_t num) 2624 { 2625 guard(mutex)(&pwm_lookup_lock); 2626 2627 while (num--) { 2628 list_del(&table->list); 2629 table++; 2630 } 2631 } 2632 2633 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 2634 { 2635 unsigned int i; 2636 2637 for (i = 0; i < chip->npwm; i++) { 2638 struct pwm_device *pwm = &chip->pwms[i]; 2639 struct pwm_state state, hwstate; 2640 2641 pwm_get_state(pwm, &state); 2642 pwm_get_state_hw(pwm, &hwstate); 2643 2644 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 2645 2646 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 2647 seq_puts(s, " requested"); 2648 2649 seq_puts(s, "\n"); 2650 2651 seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity", 2652 state.enabled ? "en" : "dis", state.duty_cycle, state.period, 2653 state.polarity ? "inverse" : "normal"); 2654 if (state.usage_power) 2655 seq_puts(s, ", usage_power"); 2656 seq_puts(s, "\n"); 2657 2658 seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity", 2659 hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period, 2660 hwstate.polarity ? "inverse" : "normal"); 2661 2662 seq_puts(s, "\n"); 2663 } 2664 } 2665 2666 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 2667 { 2668 unsigned long id = *pos; 2669 void *ret; 2670 2671 mutex_lock(&pwm_lock); 2672 s->private = ""; 2673 2674 ret = idr_get_next_ul(&pwm_chips, &id); 2675 *pos = id; 2676 return ret; 2677 } 2678 2679 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 2680 { 2681 unsigned long id = *pos + 1; 2682 void *ret; 2683 2684 s->private = "\n"; 2685 2686 ret = idr_get_next_ul(&pwm_chips, &id); 2687 *pos = id; 2688 return ret; 2689 } 2690 2691 static void pwm_seq_stop(struct seq_file *s, void *v) 2692 { 2693 mutex_unlock(&pwm_lock); 2694 } 2695 2696 static int pwm_seq_show(struct seq_file *s, void *v) 2697 { 2698 struct pwm_chip *chip = v; 2699 2700 seq_printf(s, "%s%u: %s/%s, npwm: %u\n", 2701 (char *)s->private, chip->id, 2702 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", 2703 dev_name(pwmchip_parent(chip)), chip->npwm); 2704 2705 pwm_dbg_show(chip, s); 2706 2707 return 0; 2708 } 2709 2710 static const struct seq_operations pwm_debugfs_sops = { 2711 .start = pwm_seq_start, 2712 .next = pwm_seq_next, 2713 .stop = pwm_seq_stop, 2714 .show = pwm_seq_show, 2715 }; 2716 2717 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 2718 2719 static int __init pwm_init(void) 2720 { 2721 int ret; 2722 2723 ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm"); 2724 if (ret) { 2725 pr_err("Failed to initialize chrdev region for PWM usage\n"); 2726 return ret; 2727 } 2728 2729 ret = class_register(&pwm_class); 2730 if (ret) { 2731 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); 2732 unregister_chrdev_region(pwm_devt, 256); 2733 return ret; 2734 } 2735 2736 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2737 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 2738 2739 return 0; 2740 } 2741 subsys_initcall(pwm_init); 2742