xref: /linux/drivers/pwm/core.c (revision 64af5486451032fa91b2c59b1af59a37341d5e7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28 
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31 
32 static DEFINE_IDR(pwm_chips);
33 
34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 	if (chip->atomic)
37 		spin_lock(&chip->atomic_lock);
38 	else
39 		mutex_lock(&chip->nonatomic_lock);
40 }
41 
42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 	if (chip->atomic)
45 		spin_unlock(&chip->atomic_lock);
46 	else
47 		mutex_unlock(&chip->nonatomic_lock);
48 }
49 
50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51 
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 	/*
55 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 	 * some space for future extensions. One possibility is to simplify
57 	 * representing waveforms with inverted polarity using negative values
58 	 * somehow.
59 	 */
60 	if (wf->period_length_ns > S64_MAX)
61 		return false;
62 
63 	if (wf->duty_length_ns > wf->period_length_ns)
64 		return false;
65 
66 	/*
67 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 	 */
70 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 		return false;
72 
73 	return true;
74 }
75 
76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 	if (wf->period_length_ns) {
79 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 			*state = (struct pwm_state){
81 				.enabled = true,
82 				.polarity = PWM_POLARITY_NORMAL,
83 				.period = wf->period_length_ns,
84 				.duty_cycle = wf->duty_length_ns,
85 			};
86 		else
87 			*state = (struct pwm_state){
88 				.enabled = true,
89 				.polarity = PWM_POLARITY_INVERSED,
90 				.period = wf->period_length_ns,
91 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 			};
93 	} else {
94 		*state = (struct pwm_state){
95 			.enabled = false,
96 		};
97 	}
98 }
99 
100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 	if (state->enabled) {
103 		if (state->polarity == PWM_POLARITY_NORMAL)
104 			*wf = (struct pwm_waveform){
105 				.period_length_ns = state->period,
106 				.duty_length_ns = state->duty_cycle,
107 				.duty_offset_ns = 0,
108 			};
109 		else
110 			*wf = (struct pwm_waveform){
111 				.period_length_ns = state->period,
112 				.duty_length_ns = state->period - state->duty_cycle,
113 				.duty_offset_ns = state->duty_cycle,
114 			};
115 	} else {
116 		*wf = (struct pwm_waveform){
117 			.period_length_ns = 0,
118 		};
119 	}
120 }
121 
122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 	if (a->period_length_ns > b->period_length_ns)
125 		return 1;
126 
127 	if (a->period_length_ns < b->period_length_ns)
128 		return -1;
129 
130 	if (a->duty_length_ns > b->duty_length_ns)
131 		return 1;
132 
133 	if (a->duty_length_ns < b->duty_length_ns)
134 		return -1;
135 
136 	if (a->duty_offset_ns > b->duty_offset_ns)
137 		return 1;
138 
139 	if (a->duty_offset_ns < b->duty_offset_ns)
140 		return -1;
141 
142 	return 0;
143 }
144 
145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 			       const struct pwm_waveform *wf_rounded)
147 {
148 	if (!wf->period_length_ns)
149 		return true;
150 
151 	if (wf->period_length_ns < wf_rounded->period_length_ns)
152 		return false;
153 
154 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 		return false;
156 
157 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 		return false;
159 
160 	return true;
161 }
162 
163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 				     const struct pwm_waveform *wf, void *wfhw)
165 {
166 	const struct pwm_ops *ops = chip->ops;
167 	int ret;
168 
169 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171 
172 	return ret;
173 }
174 
175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 				       const void *wfhw, struct pwm_waveform *wf)
177 {
178 	const struct pwm_ops *ops = chip->ops;
179 	int ret;
180 
181 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183 
184 	return ret;
185 }
186 
187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 	int ret;
191 
192 	ret = ops->read_waveform(chip, pwm, wfhw);
193 	trace_pwm_read_waveform(pwm, wfhw, ret);
194 
195 	return ret;
196 }
197 
198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 	const struct pwm_ops *ops = chip->ops;
201 	int ret;
202 
203 	ret = ops->write_waveform(chip, pwm, wfhw);
204 	trace_pwm_write_waveform(pwm, wfhw, ret);
205 
206 	return ret;
207 }
208 
209 #define WFHWSIZE 20
210 
211 /**
212  * pwm_round_waveform_might_sleep - Query hardware capabilities
213  * Cannot be used in atomic context.
214  * @pwm: PWM device
215  * @wf: waveform to round and output parameter
216  *
217  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218  * because hardware only supports coarse period resolution or no duty_offset.
219  * This function returns the actually implemented waveform if you pass wf to
220  * pwm_set_waveform_might_sleep now.
221  *
222  * Note however that the world doesn't stop turning when you call it, so when
223  * doing
224  *
225  * 	pwm_round_waveform_might_sleep(mypwm, &wf);
226  * 	pwm_set_waveform_might_sleep(mypwm, &wf, true);
227  *
228  * the latter might fail, e.g. because an input clock changed its rate between
229  * these two calls and the waveform determined by
230  * pwm_round_waveform_might_sleep() cannot be implemented any more.
231  *
232  * Returns 0 on success, 1 if there is no valid hardware configuration matching
233  * the input waveform under the PWM rounding rules or a negative errno.
234  */
235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
236 {
237 	struct pwm_chip *chip = pwm->chip;
238 	const struct pwm_ops *ops = chip->ops;
239 	struct pwm_waveform wf_req = *wf;
240 	char wfhw[WFHWSIZE];
241 	int ret_tohw, ret_fromhw;
242 
243 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
244 
245 	if (!pwmchip_supports_waveform(chip))
246 		return -EOPNOTSUPP;
247 
248 	if (!pwm_wf_valid(wf))
249 		return -EINVAL;
250 
251 	guard(pwmchip)(chip);
252 
253 	if (!chip->operational)
254 		return -ENODEV;
255 
256 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
257 	if (ret_tohw < 0)
258 		return ret_tohw;
259 
260 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
261 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
262 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
263 
264 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
265 	if (ret_fromhw < 0)
266 		return ret_fromhw;
267 
268 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
269 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
270 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
271 
272 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
273 	    ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
274 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
275 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
276 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
277 
278 	return ret_tohw;
279 }
280 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
281 
282 /**
283  * pwm_get_waveform_might_sleep - Query hardware about current configuration
284  * Cannot be used in atomic context.
285  * @pwm: PWM device
286  * @wf: output parameter
287  *
288  * Stores the current configuration of the PWM in @wf. Note this is the
289  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
290  */
291 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
292 {
293 	struct pwm_chip *chip = pwm->chip;
294 	const struct pwm_ops *ops = chip->ops;
295 	char wfhw[WFHWSIZE];
296 	int err;
297 
298 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
299 
300 	if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
301 		return -EOPNOTSUPP;
302 
303 	guard(pwmchip)(chip);
304 
305 	if (!chip->operational)
306 		return -ENODEV;
307 
308 	err = __pwm_read_waveform(chip, pwm, &wfhw);
309 	if (err)
310 		return err;
311 
312 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
313 }
314 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
315 
316 /* Called with the pwmchip lock held */
317 static int __pwm_set_waveform(struct pwm_device *pwm,
318 			      const struct pwm_waveform *wf,
319 			      bool exact)
320 {
321 	struct pwm_chip *chip = pwm->chip;
322 	const struct pwm_ops *ops = chip->ops;
323 	char wfhw[WFHWSIZE];
324 	struct pwm_waveform wf_rounded;
325 	int err;
326 
327 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
328 
329 	if (!pwmchip_supports_waveform(chip))
330 		return -EOPNOTSUPP;
331 
332 	if (!pwm_wf_valid(wf))
333 		return -EINVAL;
334 
335 	err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
336 	if (err)
337 		return err;
338 
339 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
340 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
341 		if (err)
342 			return err;
343 
344 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
345 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
346 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
347 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
348 
349 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
350 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
351 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
352 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
353 
354 			return 1;
355 		}
356 	}
357 
358 	err = __pwm_write_waveform(chip, pwm, &wfhw);
359 	if (err)
360 		return err;
361 
362 	/* update .state */
363 	pwm_wf2state(wf, &pwm->state);
364 
365 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
366 		struct pwm_waveform wf_set;
367 
368 		err = __pwm_read_waveform(chip, pwm, &wfhw);
369 		if (err)
370 			/* maybe ignore? */
371 			return err;
372 
373 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
374 		if (err)
375 			/* maybe ignore? */
376 			return err;
377 
378 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
379 			dev_err(&chip->dev,
380 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
381 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
382 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
383 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
384 	}
385 	return 0;
386 }
387 
388 /**
389  * pwm_set_waveform_might_sleep - Apply a new waveform
390  * Cannot be used in atomic context.
391  * @pwm: PWM device
392  * @wf: The waveform to apply
393  * @exact: If true no rounding is allowed
394  *
395  * Typically a requested waveform cannot be implemented exactly, e.g. because
396  * you requested .period_length_ns = 100 ns, but the hardware can only set
397  * periods that are a multiple of 8.5 ns. With that hardware passing exact =
398  * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
399  * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
400  * than the requested value).
401  * Note that even with exact = true, some rounding by less than 1 is
402  * possible/needed. In the above example requesting .period_length_ns = 94 and
403  * exact = true, you get the hardware configured with period = 93.5 ns.
404  */
405 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
406 				 const struct pwm_waveform *wf, bool exact)
407 {
408 	struct pwm_chip *chip = pwm->chip;
409 	int err;
410 
411 	might_sleep();
412 
413 	guard(pwmchip)(chip);
414 
415 	if (!chip->operational)
416 		return -ENODEV;
417 
418 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
419 		/*
420 		 * Catch any drivers that have been marked as atomic but
421 		 * that will sleep anyway.
422 		 */
423 		non_block_start();
424 		err = __pwm_set_waveform(pwm, wf, exact);
425 		non_block_end();
426 	} else {
427 		err = __pwm_set_waveform(pwm, wf, exact);
428 	}
429 
430 	return err;
431 }
432 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
433 
434 static void pwm_apply_debug(struct pwm_device *pwm,
435 			    const struct pwm_state *state)
436 {
437 	struct pwm_state *last = &pwm->last;
438 	struct pwm_chip *chip = pwm->chip;
439 	struct pwm_state s1 = { 0 }, s2 = { 0 };
440 	int err;
441 
442 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
443 		return;
444 
445 	/* No reasonable diagnosis possible without .get_state() */
446 	if (!chip->ops->get_state)
447 		return;
448 
449 	/*
450 	 * *state was just applied. Read out the hardware state and do some
451 	 * checks.
452 	 */
453 
454 	err = chip->ops->get_state(chip, pwm, &s1);
455 	trace_pwm_get(pwm, &s1, err);
456 	if (err)
457 		/* If that failed there isn't much to debug */
458 		return;
459 
460 	/*
461 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
462 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
463 	 * Undo this inversion and fixup for further tests.
464 	 */
465 	if (s1.enabled && s1.polarity != state->polarity) {
466 		s2.polarity = state->polarity;
467 		s2.duty_cycle = s1.period - s1.duty_cycle;
468 		s2.period = s1.period;
469 		s2.enabled = s1.enabled;
470 	} else {
471 		s2 = s1;
472 	}
473 
474 	if (s2.polarity != state->polarity &&
475 	    state->duty_cycle < state->period)
476 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
477 
478 	if (state->enabled && s2.enabled &&
479 	    last->polarity == state->polarity &&
480 	    last->period > s2.period &&
481 	    last->period <= state->period)
482 		dev_warn(pwmchip_parent(chip),
483 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
484 			 state->period, s2.period, last->period);
485 
486 	/*
487 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
488 	 * flat line doesn't have a characteristic period.
489 	 */
490 	if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
491 		dev_warn(pwmchip_parent(chip),
492 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
493 			 state->period, s2.period);
494 
495 	if (state->enabled &&
496 	    last->polarity == state->polarity &&
497 	    last->period == s2.period &&
498 	    last->duty_cycle > s2.duty_cycle &&
499 	    last->duty_cycle <= state->duty_cycle)
500 		dev_warn(pwmchip_parent(chip),
501 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
502 			 state->duty_cycle, state->period,
503 			 s2.duty_cycle, s2.period,
504 			 last->duty_cycle, last->period);
505 
506 	if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
507 		dev_warn(pwmchip_parent(chip),
508 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
509 			 state->duty_cycle, state->period,
510 			 s2.duty_cycle, s2.period);
511 
512 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
513 		dev_warn(pwmchip_parent(chip),
514 			 "requested disabled, but yielded enabled with duty > 0\n");
515 
516 	/* reapply the state that the driver reported being configured. */
517 	err = chip->ops->apply(chip, pwm, &s1);
518 	trace_pwm_apply(pwm, &s1, err);
519 	if (err) {
520 		*last = s1;
521 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
522 		return;
523 	}
524 
525 	*last = (struct pwm_state){ 0 };
526 	err = chip->ops->get_state(chip, pwm, last);
527 	trace_pwm_get(pwm, last, err);
528 	if (err)
529 		return;
530 
531 	/* reapplication of the current state should give an exact match */
532 	if (s1.enabled != last->enabled ||
533 	    s1.polarity != last->polarity ||
534 	    (s1.enabled && s1.period != last->period) ||
535 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
536 		dev_err(pwmchip_parent(chip),
537 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
538 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
539 			last->enabled, last->polarity, last->duty_cycle,
540 			last->period);
541 	}
542 }
543 
544 static bool pwm_state_valid(const struct pwm_state *state)
545 {
546 	/*
547 	 * For a disabled state all other state description is irrelevant and
548 	 * and supposed to be ignored. So also ignore any strange values and
549 	 * consider the state ok.
550 	 */
551 	if (state->enabled)
552 		return true;
553 
554 	if (!state->period)
555 		return false;
556 
557 	if (state->duty_cycle > state->period)
558 		return false;
559 
560 	return true;
561 }
562 
563 /**
564  * __pwm_apply() - atomically apply a new state to a PWM device
565  * @pwm: PWM device
566  * @state: new state to apply
567  */
568 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
569 {
570 	struct pwm_chip *chip;
571 	const struct pwm_ops *ops;
572 	int err;
573 
574 	if (!pwm || !state)
575 		return -EINVAL;
576 
577 	if (!pwm_state_valid(state)) {
578 		/*
579 		 * Allow to transition from one invalid state to another.
580 		 * This ensures that you can e.g. change the polarity while
581 		 * the period is zero. (This happens on stm32 when the hardware
582 		 * is in its poweron default state.) This greatly simplifies
583 		 * working with the sysfs API where you can only change one
584 		 * parameter at a time.
585 		 */
586 		if (!pwm_state_valid(&pwm->state)) {
587 			pwm->state = *state;
588 			return 0;
589 		}
590 
591 		return -EINVAL;
592 	}
593 
594 	chip = pwm->chip;
595 	ops = chip->ops;
596 
597 	if (state->period == pwm->state.period &&
598 	    state->duty_cycle == pwm->state.duty_cycle &&
599 	    state->polarity == pwm->state.polarity &&
600 	    state->enabled == pwm->state.enabled &&
601 	    state->usage_power == pwm->state.usage_power)
602 		return 0;
603 
604 	if (pwmchip_supports_waveform(chip)) {
605 		struct pwm_waveform wf;
606 		char wfhw[WFHWSIZE];
607 
608 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
609 
610 		pwm_state2wf(state, &wf);
611 
612 		/*
613 		 * The rounding is wrong here for states with inverted polarity.
614 		 * While .apply() rounds down duty_cycle (which represents the
615 		 * time from the start of the period to the inner edge),
616 		 * .round_waveform_tohw() rounds down the time the PWM is high.
617 		 * Can be fixed if the need arises, until reported otherwise
618 		 * let's assume that consumers don't care.
619 		 */
620 
621 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
622 		if (err) {
623 			if (err > 0)
624 				/*
625 				 * This signals an invalid request, typically
626 				 * the requested period (or duty_offset) is
627 				 * smaller than possible with the hardware.
628 				 */
629 				return -EINVAL;
630 
631 			return err;
632 		}
633 
634 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
635 			struct pwm_waveform wf_rounded;
636 
637 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
638 			if (err)
639 				return err;
640 
641 			if (!pwm_check_rounding(&wf, &wf_rounded))
642 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
643 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
644 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
645 		}
646 
647 		err = __pwm_write_waveform(chip, pwm, &wfhw);
648 		if (err)
649 			return err;
650 
651 		pwm->state = *state;
652 
653 	} else {
654 		err = ops->apply(chip, pwm, state);
655 		trace_pwm_apply(pwm, state, err);
656 		if (err)
657 			return err;
658 
659 		pwm->state = *state;
660 
661 		/*
662 		 * only do this after pwm->state was applied as some
663 		 * implementations of .get_state() depend on this
664 		 */
665 		pwm_apply_debug(pwm, state);
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
673  * Cannot be used in atomic context.
674  * @pwm: PWM device
675  * @state: new state to apply
676  */
677 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
678 {
679 	int err;
680 	struct pwm_chip *chip = pwm->chip;
681 
682 	/*
683 	 * Some lowlevel driver's implementations of .apply() make use of
684 	 * mutexes, also with some drivers only returning when the new
685 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
686 	 * is a bad idea. So make it explicit that calling this function might
687 	 * sleep.
688 	 */
689 	might_sleep();
690 
691 	guard(pwmchip)(chip);
692 
693 	if (!chip->operational)
694 		return -ENODEV;
695 
696 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
697 		/*
698 		 * Catch any drivers that have been marked as atomic but
699 		 * that will sleep anyway.
700 		 */
701 		non_block_start();
702 		err = __pwm_apply(pwm, state);
703 		non_block_end();
704 	} else {
705 		err = __pwm_apply(pwm, state);
706 	}
707 
708 	return err;
709 }
710 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
711 
712 /**
713  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
714  * Not all PWM devices support this function, check with pwm_might_sleep().
715  * @pwm: PWM device
716  * @state: new state to apply
717  */
718 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
719 {
720 	struct pwm_chip *chip = pwm->chip;
721 
722 	WARN_ONCE(!chip->atomic,
723 		  "sleeping PWM driver used in atomic context\n");
724 
725 	guard(pwmchip)(chip);
726 
727 	if (!chip->operational)
728 		return -ENODEV;
729 
730 	return __pwm_apply(pwm, state);
731 }
732 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
733 
734 /**
735  * pwm_get_state_hw() - get the current PWM state from hardware
736  * @pwm: PWM device
737  * @state: state to fill with the current PWM state
738  *
739  * Similar to pwm_get_state() but reads the current PWM state from hardware
740  * instead of the requested state.
741  *
742  * Returns: 0 on success or a negative error code on failure.
743  * Context: May sleep.
744  */
745 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
746 {
747 	struct pwm_chip *chip = pwm->chip;
748 	const struct pwm_ops *ops = chip->ops;
749 	int ret = -EOPNOTSUPP;
750 
751 	might_sleep();
752 
753 	guard(pwmchip)(chip);
754 
755 	if (!chip->operational)
756 		return -ENODEV;
757 
758 	if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
759 		char wfhw[WFHWSIZE];
760 		struct pwm_waveform wf;
761 
762 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
763 
764 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
765 		if (ret)
766 			return ret;
767 
768 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
769 		if (ret)
770 			return ret;
771 
772 		pwm_wf2state(&wf, state);
773 
774 	} else if (ops->get_state) {
775 		ret = ops->get_state(chip, pwm, state);
776 		trace_pwm_get(pwm, state, ret);
777 	}
778 
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
782 
783 /**
784  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
785  * @pwm: PWM device
786  *
787  * This function will adjust the PWM config to the PWM arguments provided
788  * by the DT or PWM lookup table. This is particularly useful to adapt
789  * the bootloader config to the Linux one.
790  */
791 int pwm_adjust_config(struct pwm_device *pwm)
792 {
793 	struct pwm_state state;
794 	struct pwm_args pargs;
795 
796 	pwm_get_args(pwm, &pargs);
797 	pwm_get_state(pwm, &state);
798 
799 	/*
800 	 * If the current period is zero it means that either the PWM driver
801 	 * does not support initial state retrieval or the PWM has not yet
802 	 * been configured.
803 	 *
804 	 * In either case, we setup the new period and polarity, and assign a
805 	 * duty cycle of 0.
806 	 */
807 	if (!state.period) {
808 		state.duty_cycle = 0;
809 		state.period = pargs.period;
810 		state.polarity = pargs.polarity;
811 
812 		return pwm_apply_might_sleep(pwm, &state);
813 	}
814 
815 	/*
816 	 * Adjust the PWM duty cycle/period based on the period value provided
817 	 * in PWM args.
818 	 */
819 	if (pargs.period != state.period) {
820 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
821 
822 		do_div(dutycycle, state.period);
823 		state.duty_cycle = dutycycle;
824 		state.period = pargs.period;
825 	}
826 
827 	/*
828 	 * If the polarity changed, we should also change the duty cycle.
829 	 */
830 	if (pargs.polarity != state.polarity) {
831 		state.polarity = pargs.polarity;
832 		state.duty_cycle = state.period - state.duty_cycle;
833 	}
834 
835 	return pwm_apply_might_sleep(pwm, &state);
836 }
837 EXPORT_SYMBOL_GPL(pwm_adjust_config);
838 
839 /**
840  * pwm_capture() - capture and report a PWM signal
841  * @pwm: PWM device
842  * @result: structure to fill with capture result
843  * @timeout: time to wait, in milliseconds, before giving up on capture
844  *
845  * Returns: 0 on success or a negative error code on failure.
846  */
847 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
848 		       unsigned long timeout)
849 {
850 	struct pwm_chip *chip = pwm->chip;
851 	const struct pwm_ops *ops = chip->ops;
852 
853 	if (!ops->capture)
854 		return -ENOSYS;
855 
856 	/*
857 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
858 	 * and you're interested to speed it up, please convince yourself it's
859 	 * really not needed, test and then suggest a patch on the mailing list.
860 	 */
861 	guard(mutex)(&pwm_lock);
862 
863 	guard(pwmchip)(chip);
864 
865 	if (!chip->operational)
866 		return -ENODEV;
867 
868 	return ops->capture(chip, pwm, result, timeout);
869 }
870 
871 static struct pwm_chip *pwmchip_find_by_name(const char *name)
872 {
873 	struct pwm_chip *chip;
874 	unsigned long id, tmp;
875 
876 	if (!name)
877 		return NULL;
878 
879 	guard(mutex)(&pwm_lock);
880 
881 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
882 		if (device_match_name(pwmchip_parent(chip), name))
883 			return chip;
884 	}
885 
886 	return NULL;
887 }
888 
889 static int pwm_device_request(struct pwm_device *pwm, const char *label)
890 {
891 	int err;
892 	struct pwm_chip *chip = pwm->chip;
893 	const struct pwm_ops *ops = chip->ops;
894 
895 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
896 		return -EBUSY;
897 
898 	/*
899 	 * This function is called while holding pwm_lock. As .operational only
900 	 * changes while holding this lock, checking it here without holding the
901 	 * chip lock is fine.
902 	 */
903 	if (!chip->operational)
904 		return -ENODEV;
905 
906 	if (!try_module_get(chip->owner))
907 		return -ENODEV;
908 
909 	if (!get_device(&chip->dev)) {
910 		err = -ENODEV;
911 		goto err_get_device;
912 	}
913 
914 	if (ops->request) {
915 		err = ops->request(chip, pwm);
916 		if (err) {
917 			put_device(&chip->dev);
918 err_get_device:
919 			module_put(chip->owner);
920 			return err;
921 		}
922 	}
923 
924 	if (ops->read_waveform || ops->get_state) {
925 		/*
926 		 * Zero-initialize state because most drivers are unaware of
927 		 * .usage_power. The other members of state are supposed to be
928 		 * set by lowlevel drivers. We still initialize the whole
929 		 * structure for simplicity even though this might paper over
930 		 * faulty implementations of .get_state().
931 		 */
932 		struct pwm_state state = { 0, };
933 
934 		err = pwm_get_state_hw(pwm, &state);
935 		if (!err)
936 			pwm->state = state;
937 
938 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
939 			pwm->last = pwm->state;
940 	}
941 
942 	set_bit(PWMF_REQUESTED, &pwm->flags);
943 	pwm->label = label;
944 
945 	return 0;
946 }
947 
948 /**
949  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
950  * @chip: PWM chip
951  * @index: per-chip index of the PWM to request
952  * @label: a literal description string of this PWM
953  *
954  * Returns: A pointer to the PWM device at the given index of the given PWM
955  * chip. A negative error code is returned if the index is not valid for the
956  * specified PWM chip or if the PWM device cannot be requested.
957  */
958 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
959 						unsigned int index,
960 						const char *label)
961 {
962 	struct pwm_device *pwm;
963 	int err;
964 
965 	if (!chip || index >= chip->npwm)
966 		return ERR_PTR(-EINVAL);
967 
968 	guard(mutex)(&pwm_lock);
969 
970 	pwm = &chip->pwms[index];
971 
972 	err = pwm_device_request(pwm, label);
973 	if (err < 0)
974 		return ERR_PTR(err);
975 
976 	return pwm;
977 }
978 
979 struct pwm_device *
980 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
981 {
982 	struct pwm_device *pwm;
983 
984 	/* period in the second cell and flags in the third cell are optional */
985 	if (args->args_count < 1)
986 		return ERR_PTR(-EINVAL);
987 
988 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
989 	if (IS_ERR(pwm))
990 		return pwm;
991 
992 	if (args->args_count > 1)
993 		pwm->args.period = args->args[1];
994 
995 	pwm->args.polarity = PWM_POLARITY_NORMAL;
996 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
997 		pwm->args.polarity = PWM_POLARITY_INVERSED;
998 
999 	return pwm;
1000 }
1001 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1002 
1003 /*
1004  * This callback is used for PXA PWM chips that only have a single PWM line.
1005  * For such chips you could argue that passing the line number (i.e. the first
1006  * parameter in the common case) is useless as it's always zero. So compared to
1007  * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1008  * the default period and the second are flags.
1009  *
1010  * Note that if #pwm-cells = <3>, the semantic is the same as for
1011  * of_pwm_xlate_with_flags() to allow converting the affected driver to
1012  * #pwm-cells = <3> without breaking the legacy binding.
1013  *
1014  * Don't use for new drivers.
1015  */
1016 struct pwm_device *
1017 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1018 {
1019 	struct pwm_device *pwm;
1020 
1021 	if (args->args_count >= 3)
1022 		return of_pwm_xlate_with_flags(chip, args);
1023 
1024 	pwm = pwm_request_from_chip(chip, 0, NULL);
1025 	if (IS_ERR(pwm))
1026 		return pwm;
1027 
1028 	if (args->args_count > 0)
1029 		pwm->args.period = args->args[0];
1030 
1031 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1032 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1033 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1034 
1035 	return pwm;
1036 }
1037 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1038 
1039 struct pwm_export {
1040 	struct device pwm_dev;
1041 	struct pwm_device *pwm;
1042 	struct mutex lock;
1043 	struct pwm_state suspend;
1044 };
1045 
1046 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1047 {
1048 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1049 }
1050 
1051 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1052 {
1053 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1054 }
1055 
1056 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1057 {
1058 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1059 
1060 	return export->pwm;
1061 }
1062 
1063 static ssize_t period_show(struct device *pwm_dev,
1064 			   struct device_attribute *attr,
1065 			   char *buf)
1066 {
1067 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1068 	struct pwm_state state;
1069 
1070 	pwm_get_state(pwm, &state);
1071 
1072 	return sysfs_emit(buf, "%llu\n", state.period);
1073 }
1074 
1075 static ssize_t period_store(struct device *pwm_dev,
1076 			    struct device_attribute *attr,
1077 			    const char *buf, size_t size)
1078 {
1079 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1080 	struct pwm_device *pwm = export->pwm;
1081 	struct pwm_state state;
1082 	u64 val;
1083 	int ret;
1084 
1085 	ret = kstrtou64(buf, 0, &val);
1086 	if (ret)
1087 		return ret;
1088 
1089 	guard(mutex)(&export->lock);
1090 
1091 	pwm_get_state(pwm, &state);
1092 	state.period = val;
1093 	ret = pwm_apply_might_sleep(pwm, &state);
1094 
1095 	return ret ? : size;
1096 }
1097 
1098 static ssize_t duty_cycle_show(struct device *pwm_dev,
1099 			       struct device_attribute *attr,
1100 			       char *buf)
1101 {
1102 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1103 	struct pwm_state state;
1104 
1105 	pwm_get_state(pwm, &state);
1106 
1107 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1108 }
1109 
1110 static ssize_t duty_cycle_store(struct device *pwm_dev,
1111 				struct device_attribute *attr,
1112 				const char *buf, size_t size)
1113 {
1114 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1115 	struct pwm_device *pwm = export->pwm;
1116 	struct pwm_state state;
1117 	u64 val;
1118 	int ret;
1119 
1120 	ret = kstrtou64(buf, 0, &val);
1121 	if (ret)
1122 		return ret;
1123 
1124 	guard(mutex)(&export->lock);
1125 
1126 	pwm_get_state(pwm, &state);
1127 	state.duty_cycle = val;
1128 	ret = pwm_apply_might_sleep(pwm, &state);
1129 
1130 	return ret ? : size;
1131 }
1132 
1133 static ssize_t enable_show(struct device *pwm_dev,
1134 			   struct device_attribute *attr,
1135 			   char *buf)
1136 {
1137 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1138 	struct pwm_state state;
1139 
1140 	pwm_get_state(pwm, &state);
1141 
1142 	return sysfs_emit(buf, "%d\n", state.enabled);
1143 }
1144 
1145 static ssize_t enable_store(struct device *pwm_dev,
1146 			    struct device_attribute *attr,
1147 			    const char *buf, size_t size)
1148 {
1149 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1150 	struct pwm_device *pwm = export->pwm;
1151 	struct pwm_state state;
1152 	int val, ret;
1153 
1154 	ret = kstrtoint(buf, 0, &val);
1155 	if (ret)
1156 		return ret;
1157 
1158 	guard(mutex)(&export->lock);
1159 
1160 	pwm_get_state(pwm, &state);
1161 
1162 	switch (val) {
1163 	case 0:
1164 		state.enabled = false;
1165 		break;
1166 	case 1:
1167 		state.enabled = true;
1168 		break;
1169 	default:
1170 		return -EINVAL;
1171 	}
1172 
1173 	ret = pwm_apply_might_sleep(pwm, &state);
1174 
1175 	return ret ? : size;
1176 }
1177 
1178 static ssize_t polarity_show(struct device *pwm_dev,
1179 			     struct device_attribute *attr,
1180 			     char *buf)
1181 {
1182 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1183 	const char *polarity = "unknown";
1184 	struct pwm_state state;
1185 
1186 	pwm_get_state(pwm, &state);
1187 
1188 	switch (state.polarity) {
1189 	case PWM_POLARITY_NORMAL:
1190 		polarity = "normal";
1191 		break;
1192 
1193 	case PWM_POLARITY_INVERSED:
1194 		polarity = "inversed";
1195 		break;
1196 	}
1197 
1198 	return sysfs_emit(buf, "%s\n", polarity);
1199 }
1200 
1201 static ssize_t polarity_store(struct device *pwm_dev,
1202 			      struct device_attribute *attr,
1203 			      const char *buf, size_t size)
1204 {
1205 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1206 	struct pwm_device *pwm = export->pwm;
1207 	enum pwm_polarity polarity;
1208 	struct pwm_state state;
1209 	int ret;
1210 
1211 	if (sysfs_streq(buf, "normal"))
1212 		polarity = PWM_POLARITY_NORMAL;
1213 	else if (sysfs_streq(buf, "inversed"))
1214 		polarity = PWM_POLARITY_INVERSED;
1215 	else
1216 		return -EINVAL;
1217 
1218 	guard(mutex)(&export->lock);
1219 
1220 	pwm_get_state(pwm, &state);
1221 	state.polarity = polarity;
1222 	ret = pwm_apply_might_sleep(pwm, &state);
1223 
1224 	return ret ? : size;
1225 }
1226 
1227 static ssize_t capture_show(struct device *pwm_dev,
1228 			    struct device_attribute *attr,
1229 			    char *buf)
1230 {
1231 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1232 	struct pwm_capture result;
1233 	int ret;
1234 
1235 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1236 	if (ret)
1237 		return ret;
1238 
1239 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1240 }
1241 
1242 static DEVICE_ATTR_RW(period);
1243 static DEVICE_ATTR_RW(duty_cycle);
1244 static DEVICE_ATTR_RW(enable);
1245 static DEVICE_ATTR_RW(polarity);
1246 static DEVICE_ATTR_RO(capture);
1247 
1248 static struct attribute *pwm_attrs[] = {
1249 	&dev_attr_period.attr,
1250 	&dev_attr_duty_cycle.attr,
1251 	&dev_attr_enable.attr,
1252 	&dev_attr_polarity.attr,
1253 	&dev_attr_capture.attr,
1254 	NULL
1255 };
1256 ATTRIBUTE_GROUPS(pwm);
1257 
1258 static void pwm_export_release(struct device *pwm_dev)
1259 {
1260 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1261 
1262 	kfree(export);
1263 }
1264 
1265 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1266 {
1267 	struct pwm_export *export;
1268 	char *pwm_prop[2];
1269 	int ret;
1270 
1271 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1272 		return -EBUSY;
1273 
1274 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1275 	if (!export) {
1276 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1277 		return -ENOMEM;
1278 	}
1279 
1280 	export->pwm = pwm;
1281 	mutex_init(&export->lock);
1282 
1283 	export->pwm_dev.release = pwm_export_release;
1284 	export->pwm_dev.parent = pwmchip_dev;
1285 	export->pwm_dev.devt = MKDEV(0, 0);
1286 	export->pwm_dev.groups = pwm_groups;
1287 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1288 
1289 	ret = device_register(&export->pwm_dev);
1290 	if (ret) {
1291 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1292 		put_device(&export->pwm_dev);
1293 		export = NULL;
1294 		return ret;
1295 	}
1296 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1297 	pwm_prop[1] = NULL;
1298 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1299 	kfree(pwm_prop[0]);
1300 
1301 	return 0;
1302 }
1303 
1304 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1305 {
1306 	return pwm_from_dev(pwm_dev) == data;
1307 }
1308 
1309 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1310 {
1311 	struct device *pwm_dev;
1312 	char *pwm_prop[2];
1313 
1314 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1315 		return -ENODEV;
1316 
1317 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1318 	if (!pwm_dev)
1319 		return -ENODEV;
1320 
1321 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1322 	pwm_prop[1] = NULL;
1323 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1324 	kfree(pwm_prop[0]);
1325 
1326 	/* for device_find_child() */
1327 	put_device(pwm_dev);
1328 	device_unregister(pwm_dev);
1329 	pwm_put(pwm);
1330 
1331 	return 0;
1332 }
1333 
1334 static ssize_t export_store(struct device *pwmchip_dev,
1335 			    struct device_attribute *attr,
1336 			    const char *buf, size_t len)
1337 {
1338 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1339 	struct pwm_device *pwm;
1340 	unsigned int hwpwm;
1341 	int ret;
1342 
1343 	ret = kstrtouint(buf, 0, &hwpwm);
1344 	if (ret < 0)
1345 		return ret;
1346 
1347 	if (hwpwm >= chip->npwm)
1348 		return -ENODEV;
1349 
1350 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1351 	if (IS_ERR(pwm))
1352 		return PTR_ERR(pwm);
1353 
1354 	ret = pwm_export_child(pwmchip_dev, pwm);
1355 	if (ret < 0)
1356 		pwm_put(pwm);
1357 
1358 	return ret ? : len;
1359 }
1360 static DEVICE_ATTR_WO(export);
1361 
1362 static ssize_t unexport_store(struct device *pwmchip_dev,
1363 			      struct device_attribute *attr,
1364 			      const char *buf, size_t len)
1365 {
1366 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1367 	unsigned int hwpwm;
1368 	int ret;
1369 
1370 	ret = kstrtouint(buf, 0, &hwpwm);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	if (hwpwm >= chip->npwm)
1375 		return -ENODEV;
1376 
1377 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1378 
1379 	return ret ? : len;
1380 }
1381 static DEVICE_ATTR_WO(unexport);
1382 
1383 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1384 			 char *buf)
1385 {
1386 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1387 
1388 	return sysfs_emit(buf, "%u\n", chip->npwm);
1389 }
1390 static DEVICE_ATTR_RO(npwm);
1391 
1392 static struct attribute *pwm_chip_attrs[] = {
1393 	&dev_attr_export.attr,
1394 	&dev_attr_unexport.attr,
1395 	&dev_attr_npwm.attr,
1396 	NULL,
1397 };
1398 ATTRIBUTE_GROUPS(pwm_chip);
1399 
1400 /* takes export->lock on success */
1401 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1402 					      struct pwm_device *pwm,
1403 					      struct pwm_state *state)
1404 {
1405 	struct device *pwm_dev;
1406 	struct pwm_export *export;
1407 
1408 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1409 		return NULL;
1410 
1411 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1412 	if (!pwm_dev)
1413 		return NULL;
1414 
1415 	export = pwmexport_from_dev(pwm_dev);
1416 	put_device(pwm_dev);	/* for device_find_child() */
1417 
1418 	mutex_lock(&export->lock);
1419 	pwm_get_state(pwm, state);
1420 
1421 	return export;
1422 }
1423 
1424 static int pwm_class_apply_state(struct pwm_export *export,
1425 				 struct pwm_device *pwm,
1426 				 struct pwm_state *state)
1427 {
1428 	int ret = pwm_apply_might_sleep(pwm, state);
1429 
1430 	/* release lock taken in pwm_class_get_state */
1431 	mutex_unlock(&export->lock);
1432 
1433 	return ret;
1434 }
1435 
1436 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1437 {
1438 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1439 	unsigned int i;
1440 	int ret = 0;
1441 
1442 	for (i = 0; i < npwm; i++) {
1443 		struct pwm_device *pwm = &chip->pwms[i];
1444 		struct pwm_state state;
1445 		struct pwm_export *export;
1446 
1447 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1448 		if (!export)
1449 			continue;
1450 
1451 		/* If pwmchip was not enabled before suspend, do nothing. */
1452 		if (!export->suspend.enabled) {
1453 			/* release lock taken in pwm_class_get_state */
1454 			mutex_unlock(&export->lock);
1455 			continue;
1456 		}
1457 
1458 		state.enabled = export->suspend.enabled;
1459 		ret = pwm_class_apply_state(export, pwm, &state);
1460 		if (ret < 0)
1461 			break;
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 static int pwm_class_suspend(struct device *pwmchip_dev)
1468 {
1469 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1470 	unsigned int i;
1471 	int ret = 0;
1472 
1473 	for (i = 0; i < chip->npwm; i++) {
1474 		struct pwm_device *pwm = &chip->pwms[i];
1475 		struct pwm_state state;
1476 		struct pwm_export *export;
1477 
1478 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1479 		if (!export)
1480 			continue;
1481 
1482 		/*
1483 		 * If pwmchip was not enabled before suspend, save
1484 		 * state for resume time and do nothing else.
1485 		 */
1486 		export->suspend = state;
1487 		if (!state.enabled) {
1488 			/* release lock taken in pwm_class_get_state */
1489 			mutex_unlock(&export->lock);
1490 			continue;
1491 		}
1492 
1493 		state.enabled = false;
1494 		ret = pwm_class_apply_state(export, pwm, &state);
1495 		if (ret < 0) {
1496 			/*
1497 			 * roll back the PWM devices that were disabled by
1498 			 * this suspend function.
1499 			 */
1500 			pwm_class_resume_npwm(pwmchip_dev, i);
1501 			break;
1502 		}
1503 	}
1504 
1505 	return ret;
1506 }
1507 
1508 static int pwm_class_resume(struct device *pwmchip_dev)
1509 {
1510 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1511 
1512 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1513 }
1514 
1515 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1516 
1517 static struct class pwm_class = {
1518 	.name = "pwm",
1519 	.dev_groups = pwm_chip_groups,
1520 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1521 };
1522 
1523 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1524 {
1525 	unsigned int i;
1526 
1527 	for (i = 0; i < chip->npwm; i++) {
1528 		struct pwm_device *pwm = &chip->pwms[i];
1529 
1530 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1531 			pwm_unexport_child(&chip->dev, pwm);
1532 	}
1533 }
1534 
1535 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1536 
1537 static void *pwmchip_priv(struct pwm_chip *chip)
1538 {
1539 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1540 }
1541 
1542 /* This is the counterpart to pwmchip_alloc() */
1543 void pwmchip_put(struct pwm_chip *chip)
1544 {
1545 	put_device(&chip->dev);
1546 }
1547 EXPORT_SYMBOL_GPL(pwmchip_put);
1548 
1549 static void pwmchip_release(struct device *pwmchip_dev)
1550 {
1551 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1552 
1553 	kfree(chip);
1554 }
1555 
1556 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1557 {
1558 	struct pwm_chip *chip;
1559 	struct device *pwmchip_dev;
1560 	size_t alloc_size;
1561 	unsigned int i;
1562 
1563 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1564 			      sizeof_priv);
1565 
1566 	chip = kzalloc(alloc_size, GFP_KERNEL);
1567 	if (!chip)
1568 		return ERR_PTR(-ENOMEM);
1569 
1570 	chip->npwm = npwm;
1571 	chip->uses_pwmchip_alloc = true;
1572 	chip->operational = false;
1573 
1574 	pwmchip_dev = &chip->dev;
1575 	device_initialize(pwmchip_dev);
1576 	pwmchip_dev->class = &pwm_class;
1577 	pwmchip_dev->parent = parent;
1578 	pwmchip_dev->release = pwmchip_release;
1579 
1580 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1581 
1582 	for (i = 0; i < chip->npwm; i++) {
1583 		struct pwm_device *pwm = &chip->pwms[i];
1584 		pwm->chip = chip;
1585 		pwm->hwpwm = i;
1586 	}
1587 
1588 	return chip;
1589 }
1590 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1591 
1592 static void devm_pwmchip_put(void *data)
1593 {
1594 	struct pwm_chip *chip = data;
1595 
1596 	pwmchip_put(chip);
1597 }
1598 
1599 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1600 {
1601 	struct pwm_chip *chip;
1602 	int ret;
1603 
1604 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1605 	if (IS_ERR(chip))
1606 		return chip;
1607 
1608 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1609 	if (ret)
1610 		return ERR_PTR(ret);
1611 
1612 	return chip;
1613 }
1614 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1615 
1616 static void of_pwmchip_add(struct pwm_chip *chip)
1617 {
1618 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1619 		return;
1620 
1621 	if (!chip->of_xlate)
1622 		chip->of_xlate = of_pwm_xlate_with_flags;
1623 
1624 	of_node_get(pwmchip_parent(chip)->of_node);
1625 }
1626 
1627 static void of_pwmchip_remove(struct pwm_chip *chip)
1628 {
1629 	if (pwmchip_parent(chip))
1630 		of_node_put(pwmchip_parent(chip)->of_node);
1631 }
1632 
1633 static bool pwm_ops_check(const struct pwm_chip *chip)
1634 {
1635 	const struct pwm_ops *ops = chip->ops;
1636 
1637 	if (ops->write_waveform) {
1638 		if (!ops->round_waveform_tohw ||
1639 		    !ops->round_waveform_fromhw ||
1640 		    !ops->write_waveform)
1641 			return false;
1642 
1643 		if (WFHWSIZE < ops->sizeof_wfhw) {
1644 			dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1645 			return false;
1646 		}
1647 	} else {
1648 		if (!ops->apply)
1649 			return false;
1650 
1651 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1652 			dev_warn(pwmchip_parent(chip),
1653 				 "Please implement the .get_state() callback\n");
1654 	}
1655 
1656 	return true;
1657 }
1658 
1659 static struct device_link *pwm_device_link_add(struct device *dev,
1660 					       struct pwm_device *pwm)
1661 {
1662 	struct device_link *dl;
1663 
1664 	if (!dev) {
1665 		/*
1666 		 * No device for the PWM consumer has been provided. It may
1667 		 * impact the PM sequence ordering: the PWM supplier may get
1668 		 * suspended before the consumer.
1669 		 */
1670 		dev_warn(pwmchip_parent(pwm->chip),
1671 			 "No consumer device specified to create a link to\n");
1672 		return NULL;
1673 	}
1674 
1675 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1676 	if (!dl) {
1677 		dev_err(dev, "failed to create device link to %s\n",
1678 			dev_name(pwmchip_parent(pwm->chip)));
1679 		return ERR_PTR(-EINVAL);
1680 	}
1681 
1682 	return dl;
1683 }
1684 
1685 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1686 {
1687 	struct pwm_chip *chip;
1688 	unsigned long id, tmp;
1689 
1690 	guard(mutex)(&pwm_lock);
1691 
1692 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1693 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1694 			return chip;
1695 
1696 	return ERR_PTR(-EPROBE_DEFER);
1697 }
1698 
1699 /**
1700  * of_pwm_get() - request a PWM via the PWM framework
1701  * @dev: device for PWM consumer
1702  * @np: device node to get the PWM from
1703  * @con_id: consumer name
1704  *
1705  * Returns the PWM device parsed from the phandle and index specified in the
1706  * "pwms" property of a device tree node or a negative error-code on failure.
1707  * Values parsed from the device tree are stored in the returned PWM device
1708  * object.
1709  *
1710  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1711  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1712  * lookup of the PWM index. This also means that the "pwm-names" property
1713  * becomes mandatory for devices that look up the PWM device via the con_id
1714  * parameter.
1715  *
1716  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1717  * error code on failure.
1718  */
1719 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1720 				     const char *con_id)
1721 {
1722 	struct pwm_device *pwm = NULL;
1723 	struct of_phandle_args args;
1724 	struct device_link *dl;
1725 	struct pwm_chip *chip;
1726 	int index = 0;
1727 	int err;
1728 
1729 	if (con_id) {
1730 		index = of_property_match_string(np, "pwm-names", con_id);
1731 		if (index < 0)
1732 			return ERR_PTR(index);
1733 	}
1734 
1735 	err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1736 	if (err) {
1737 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1738 		return ERR_PTR(err);
1739 	}
1740 
1741 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1742 	if (IS_ERR(chip)) {
1743 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1744 			pr_err("%s(): PWM chip not found\n", __func__);
1745 
1746 		pwm = ERR_CAST(chip);
1747 		goto put;
1748 	}
1749 
1750 	pwm = chip->of_xlate(chip, &args);
1751 	if (IS_ERR(pwm))
1752 		goto put;
1753 
1754 	dl = pwm_device_link_add(dev, pwm);
1755 	if (IS_ERR(dl)) {
1756 		/* of_xlate ended up calling pwm_request_from_chip() */
1757 		pwm_put(pwm);
1758 		pwm = ERR_CAST(dl);
1759 		goto put;
1760 	}
1761 
1762 	/*
1763 	 * If a consumer name was not given, try to look it up from the
1764 	 * "pwm-names" property if it exists. Otherwise use the name of
1765 	 * the user device node.
1766 	 */
1767 	if (!con_id) {
1768 		err = of_property_read_string_index(np, "pwm-names", index,
1769 						    &con_id);
1770 		if (err < 0)
1771 			con_id = np->name;
1772 	}
1773 
1774 	pwm->label = con_id;
1775 
1776 put:
1777 	of_node_put(args.np);
1778 
1779 	return pwm;
1780 }
1781 
1782 /**
1783  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1784  * @fwnode: firmware node to get the "pwms" property from
1785  *
1786  * Returns the PWM device parsed from the fwnode and index specified in the
1787  * "pwms" property or a negative error-code on failure.
1788  * Values parsed from the device tree are stored in the returned PWM device
1789  * object.
1790  *
1791  * This is analogous to of_pwm_get() except con_id is not yet supported.
1792  * ACPI entries must look like
1793  * Package () {"pwms", Package ()
1794  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1795  *
1796  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1797  * error code on failure.
1798  */
1799 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1800 {
1801 	struct pwm_device *pwm;
1802 	struct fwnode_reference_args args;
1803 	struct pwm_chip *chip;
1804 	int ret;
1805 
1806 	memset(&args, 0, sizeof(args));
1807 
1808 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1809 	if (ret < 0)
1810 		return ERR_PTR(ret);
1811 
1812 	if (args.nargs < 2)
1813 		return ERR_PTR(-EPROTO);
1814 
1815 	chip = fwnode_to_pwmchip(args.fwnode);
1816 	if (IS_ERR(chip))
1817 		return ERR_CAST(chip);
1818 
1819 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1820 	if (IS_ERR(pwm))
1821 		return pwm;
1822 
1823 	pwm->args.period = args.args[1];
1824 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1825 
1826 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1827 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1828 
1829 	return pwm;
1830 }
1831 
1832 static DEFINE_MUTEX(pwm_lookup_lock);
1833 static LIST_HEAD(pwm_lookup_list);
1834 
1835 /**
1836  * pwm_get() - look up and request a PWM device
1837  * @dev: device for PWM consumer
1838  * @con_id: consumer name
1839  *
1840  * Lookup is first attempted using DT. If the device was not instantiated from
1841  * a device tree, a PWM chip and a relative index is looked up via a table
1842  * supplied by board setup code (see pwm_add_table()).
1843  *
1844  * Once a PWM chip has been found the specified PWM device will be requested
1845  * and is ready to be used.
1846  *
1847  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1848  * error code on failure.
1849  */
1850 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1851 {
1852 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1853 	const char *dev_id = dev ? dev_name(dev) : NULL;
1854 	struct pwm_device *pwm;
1855 	struct pwm_chip *chip;
1856 	struct device_link *dl;
1857 	unsigned int best = 0;
1858 	struct pwm_lookup *p, *chosen = NULL;
1859 	unsigned int match;
1860 	int err;
1861 
1862 	/* look up via DT first */
1863 	if (is_of_node(fwnode))
1864 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1865 
1866 	/* then lookup via ACPI */
1867 	if (is_acpi_node(fwnode)) {
1868 		pwm = acpi_pwm_get(fwnode);
1869 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1870 			return pwm;
1871 	}
1872 
1873 	/*
1874 	 * We look up the provider in the static table typically provided by
1875 	 * board setup code. We first try to lookup the consumer device by
1876 	 * name. If the consumer device was passed in as NULL or if no match
1877 	 * was found, we try to find the consumer by directly looking it up
1878 	 * by name.
1879 	 *
1880 	 * If a match is found, the provider PWM chip is looked up by name
1881 	 * and a PWM device is requested using the PWM device per-chip index.
1882 	 *
1883 	 * The lookup algorithm was shamelessly taken from the clock
1884 	 * framework:
1885 	 *
1886 	 * We do slightly fuzzy matching here:
1887 	 *  An entry with a NULL ID is assumed to be a wildcard.
1888 	 *  If an entry has a device ID, it must match
1889 	 *  If an entry has a connection ID, it must match
1890 	 * Then we take the most specific entry - with the following order
1891 	 * of precedence: dev+con > dev only > con only.
1892 	 */
1893 	scoped_guard(mutex, &pwm_lookup_lock)
1894 		list_for_each_entry(p, &pwm_lookup_list, list) {
1895 			match = 0;
1896 
1897 			if (p->dev_id) {
1898 				if (!dev_id || strcmp(p->dev_id, dev_id))
1899 					continue;
1900 
1901 				match += 2;
1902 			}
1903 
1904 			if (p->con_id) {
1905 				if (!con_id || strcmp(p->con_id, con_id))
1906 					continue;
1907 
1908 				match += 1;
1909 			}
1910 
1911 			if (match > best) {
1912 				chosen = p;
1913 
1914 				if (match != 3)
1915 					best = match;
1916 				else
1917 					break;
1918 			}
1919 		}
1920 
1921 	if (!chosen)
1922 		return ERR_PTR(-ENODEV);
1923 
1924 	chip = pwmchip_find_by_name(chosen->provider);
1925 
1926 	/*
1927 	 * If the lookup entry specifies a module, load the module and retry
1928 	 * the PWM chip lookup. This can be used to work around driver load
1929 	 * ordering issues if driver's can't be made to properly support the
1930 	 * deferred probe mechanism.
1931 	 */
1932 	if (!chip && chosen->module) {
1933 		err = request_module(chosen->module);
1934 		if (err == 0)
1935 			chip = pwmchip_find_by_name(chosen->provider);
1936 	}
1937 
1938 	if (!chip)
1939 		return ERR_PTR(-EPROBE_DEFER);
1940 
1941 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1942 	if (IS_ERR(pwm))
1943 		return pwm;
1944 
1945 	dl = pwm_device_link_add(dev, pwm);
1946 	if (IS_ERR(dl)) {
1947 		pwm_put(pwm);
1948 		return ERR_CAST(dl);
1949 	}
1950 
1951 	pwm->args.period = chosen->period;
1952 	pwm->args.polarity = chosen->polarity;
1953 
1954 	return pwm;
1955 }
1956 EXPORT_SYMBOL_GPL(pwm_get);
1957 
1958 /**
1959  * pwm_put() - release a PWM device
1960  * @pwm: PWM device
1961  */
1962 void pwm_put(struct pwm_device *pwm)
1963 {
1964 	struct pwm_chip *chip;
1965 
1966 	if (!pwm)
1967 		return;
1968 
1969 	chip = pwm->chip;
1970 
1971 	guard(mutex)(&pwm_lock);
1972 
1973 	/*
1974 	 * Trigger a warning if a consumer called pwm_put() twice.
1975 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1976 	 * pwmchip_remove(). So don't warn in this case.
1977 	 */
1978 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1979 		pr_warn("PWM device already freed\n");
1980 		return;
1981 	}
1982 
1983 	if (chip->operational && chip->ops->free)
1984 		pwm->chip->ops->free(pwm->chip, pwm);
1985 
1986 	pwm->label = NULL;
1987 
1988 	put_device(&chip->dev);
1989 
1990 	module_put(chip->owner);
1991 }
1992 EXPORT_SYMBOL_GPL(pwm_put);
1993 
1994 static void devm_pwm_release(void *pwm)
1995 {
1996 	pwm_put(pwm);
1997 }
1998 
1999 /**
2000  * devm_pwm_get() - resource managed pwm_get()
2001  * @dev: device for PWM consumer
2002  * @con_id: consumer name
2003  *
2004  * This function performs like pwm_get() but the acquired PWM device will
2005  * automatically be released on driver detach.
2006  *
2007  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2008  * error code on failure.
2009  */
2010 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2011 {
2012 	struct pwm_device *pwm;
2013 	int ret;
2014 
2015 	pwm = pwm_get(dev, con_id);
2016 	if (IS_ERR(pwm))
2017 		return pwm;
2018 
2019 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2020 	if (ret)
2021 		return ERR_PTR(ret);
2022 
2023 	return pwm;
2024 }
2025 EXPORT_SYMBOL_GPL(devm_pwm_get);
2026 
2027 /**
2028  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2029  * @dev: device for PWM consumer
2030  * @fwnode: firmware node to get the PWM from
2031  * @con_id: consumer name
2032  *
2033  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2034  * acpi_pwm_get() for a detailed description.
2035  *
2036  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2037  * error code on failure.
2038  */
2039 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2040 				       struct fwnode_handle *fwnode,
2041 				       const char *con_id)
2042 {
2043 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2044 	int ret;
2045 
2046 	if (is_of_node(fwnode))
2047 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2048 	else if (is_acpi_node(fwnode))
2049 		pwm = acpi_pwm_get(fwnode);
2050 	if (IS_ERR(pwm))
2051 		return pwm;
2052 
2053 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2054 	if (ret)
2055 		return ERR_PTR(ret);
2056 
2057 	return pwm;
2058 }
2059 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2060 
2061 /**
2062  * __pwmchip_add() - register a new PWM chip
2063  * @chip: the PWM chip to add
2064  * @owner: reference to the module providing the chip.
2065  *
2066  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2067  * pwmchip_add wrapper to do this right.
2068  *
2069  * Returns: 0 on success or a negative error code on failure.
2070  */
2071 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2072 {
2073 	int ret;
2074 
2075 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2076 		return -EINVAL;
2077 
2078 	/*
2079 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2080 	 * otherwise the embedded struct device might disappear too early
2081 	 * resulting in memory corruption.
2082 	 * Catch drivers that were not converted appropriately.
2083 	 */
2084 	if (!chip->uses_pwmchip_alloc)
2085 		return -EINVAL;
2086 
2087 	if (!pwm_ops_check(chip))
2088 		return -EINVAL;
2089 
2090 	chip->owner = owner;
2091 
2092 	if (chip->atomic)
2093 		spin_lock_init(&chip->atomic_lock);
2094 	else
2095 		mutex_init(&chip->nonatomic_lock);
2096 
2097 	guard(mutex)(&pwm_lock);
2098 
2099 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2100 	if (ret < 0)
2101 		return ret;
2102 
2103 	chip->id = ret;
2104 
2105 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2106 
2107 	if (IS_ENABLED(CONFIG_OF))
2108 		of_pwmchip_add(chip);
2109 
2110 	scoped_guard(pwmchip, chip)
2111 		chip->operational = true;
2112 
2113 	ret = device_add(&chip->dev);
2114 	if (ret)
2115 		goto err_device_add;
2116 
2117 	return 0;
2118 
2119 err_device_add:
2120 	scoped_guard(pwmchip, chip)
2121 		chip->operational = false;
2122 
2123 	if (IS_ENABLED(CONFIG_OF))
2124 		of_pwmchip_remove(chip);
2125 
2126 	idr_remove(&pwm_chips, chip->id);
2127 
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(__pwmchip_add);
2131 
2132 /**
2133  * pwmchip_remove() - remove a PWM chip
2134  * @chip: the PWM chip to remove
2135  *
2136  * Removes a PWM chip.
2137  */
2138 void pwmchip_remove(struct pwm_chip *chip)
2139 {
2140 	pwmchip_sysfs_unexport(chip);
2141 
2142 	scoped_guard(mutex, &pwm_lock) {
2143 		unsigned int i;
2144 
2145 		scoped_guard(pwmchip, chip)
2146 			chip->operational = false;
2147 
2148 		for (i = 0; i < chip->npwm; ++i) {
2149 			struct pwm_device *pwm = &chip->pwms[i];
2150 
2151 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2152 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2153 				if (pwm->chip->ops->free)
2154 					pwm->chip->ops->free(pwm->chip, pwm);
2155 			}
2156 		}
2157 
2158 		if (IS_ENABLED(CONFIG_OF))
2159 			of_pwmchip_remove(chip);
2160 
2161 		idr_remove(&pwm_chips, chip->id);
2162 	}
2163 
2164 	device_del(&chip->dev);
2165 }
2166 EXPORT_SYMBOL_GPL(pwmchip_remove);
2167 
2168 static void devm_pwmchip_remove(void *data)
2169 {
2170 	struct pwm_chip *chip = data;
2171 
2172 	pwmchip_remove(chip);
2173 }
2174 
2175 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2176 {
2177 	int ret;
2178 
2179 	ret = __pwmchip_add(chip, owner);
2180 	if (ret)
2181 		return ret;
2182 
2183 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2184 }
2185 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2186 
2187 /**
2188  * pwm_add_table() - register PWM device consumers
2189  * @table: array of consumers to register
2190  * @num: number of consumers in table
2191  */
2192 void pwm_add_table(struct pwm_lookup *table, size_t num)
2193 {
2194 	guard(mutex)(&pwm_lookup_lock);
2195 
2196 	while (num--) {
2197 		list_add_tail(&table->list, &pwm_lookup_list);
2198 		table++;
2199 	}
2200 }
2201 
2202 /**
2203  * pwm_remove_table() - unregister PWM device consumers
2204  * @table: array of consumers to unregister
2205  * @num: number of consumers in table
2206  */
2207 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2208 {
2209 	guard(mutex)(&pwm_lookup_lock);
2210 
2211 	while (num--) {
2212 		list_del(&table->list);
2213 		table++;
2214 	}
2215 }
2216 
2217 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2218 {
2219 	unsigned int i;
2220 
2221 	for (i = 0; i < chip->npwm; i++) {
2222 		struct pwm_device *pwm = &chip->pwms[i];
2223 		struct pwm_state state;
2224 
2225 		pwm_get_state(pwm, &state);
2226 
2227 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2228 
2229 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2230 			seq_puts(s, " requested");
2231 
2232 		if (state.enabled)
2233 			seq_puts(s, " enabled");
2234 
2235 		seq_printf(s, " period: %llu ns", state.period);
2236 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
2237 		seq_printf(s, " polarity: %s",
2238 			   state.polarity ? "inverse" : "normal");
2239 
2240 		if (state.usage_power)
2241 			seq_puts(s, " usage_power");
2242 
2243 		seq_puts(s, "\n");
2244 	}
2245 }
2246 
2247 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2248 {
2249 	unsigned long id = *pos;
2250 	void *ret;
2251 
2252 	mutex_lock(&pwm_lock);
2253 	s->private = "";
2254 
2255 	ret = idr_get_next_ul(&pwm_chips, &id);
2256 	*pos = id;
2257 	return ret;
2258 }
2259 
2260 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2261 {
2262 	unsigned long id = *pos + 1;
2263 	void *ret;
2264 
2265 	s->private = "\n";
2266 
2267 	ret = idr_get_next_ul(&pwm_chips, &id);
2268 	*pos = id;
2269 	return ret;
2270 }
2271 
2272 static void pwm_seq_stop(struct seq_file *s, void *v)
2273 {
2274 	mutex_unlock(&pwm_lock);
2275 }
2276 
2277 static int pwm_seq_show(struct seq_file *s, void *v)
2278 {
2279 	struct pwm_chip *chip = v;
2280 
2281 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2282 		   (char *)s->private, chip->id,
2283 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2284 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2285 		   (chip->npwm != 1) ? "s" : "");
2286 
2287 	pwm_dbg_show(chip, s);
2288 
2289 	return 0;
2290 }
2291 
2292 static const struct seq_operations pwm_debugfs_sops = {
2293 	.start = pwm_seq_start,
2294 	.next = pwm_seq_next,
2295 	.stop = pwm_seq_stop,
2296 	.show = pwm_seq_show,
2297 };
2298 
2299 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2300 
2301 static int __init pwm_init(void)
2302 {
2303 	int ret;
2304 
2305 	ret = class_register(&pwm_class);
2306 	if (ret) {
2307 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2308 		return ret;
2309 	}
2310 
2311 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2312 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2313 
2314 	return 0;
2315 }
2316 subsys_initcall(pwm_init);
2317