xref: /linux/drivers/pwm/core.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28 
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31 
32 static DEFINE_IDR(pwm_chips);
33 
34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 	if (chip->atomic)
37 		spin_lock(&chip->atomic_lock);
38 	else
39 		mutex_lock(&chip->nonatomic_lock);
40 }
41 
42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 	if (chip->atomic)
45 		spin_unlock(&chip->atomic_lock);
46 	else
47 		mutex_unlock(&chip->nonatomic_lock);
48 }
49 
50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51 
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 	/*
55 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 	 * some space for future extensions. One possibility is to simplify
57 	 * representing waveforms with inverted polarity using negative values
58 	 * somehow.
59 	 */
60 	if (wf->period_length_ns > S64_MAX)
61 		return false;
62 
63 	if (wf->duty_length_ns > wf->period_length_ns)
64 		return false;
65 
66 	/*
67 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 	 */
70 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 		return false;
72 
73 	return true;
74 }
75 
76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 	if (wf->period_length_ns) {
79 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 			*state = (struct pwm_state){
81 				.enabled = true,
82 				.polarity = PWM_POLARITY_NORMAL,
83 				.period = wf->period_length_ns,
84 				.duty_cycle = wf->duty_length_ns,
85 			};
86 		else
87 			*state = (struct pwm_state){
88 				.enabled = true,
89 				.polarity = PWM_POLARITY_INVERSED,
90 				.period = wf->period_length_ns,
91 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 			};
93 	} else {
94 		*state = (struct pwm_state){
95 			.enabled = false,
96 		};
97 	}
98 }
99 
100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 	if (state->enabled) {
103 		if (state->polarity == PWM_POLARITY_NORMAL)
104 			*wf = (struct pwm_waveform){
105 				.period_length_ns = state->period,
106 				.duty_length_ns = state->duty_cycle,
107 				.duty_offset_ns = 0,
108 			};
109 		else
110 			*wf = (struct pwm_waveform){
111 				.period_length_ns = state->period,
112 				.duty_length_ns = state->period - state->duty_cycle,
113 				.duty_offset_ns = state->duty_cycle,
114 			};
115 	} else {
116 		*wf = (struct pwm_waveform){
117 			.period_length_ns = 0,
118 		};
119 	}
120 }
121 
122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 	if (a->period_length_ns > b->period_length_ns)
125 		return 1;
126 
127 	if (a->period_length_ns < b->period_length_ns)
128 		return -1;
129 
130 	if (a->duty_length_ns > b->duty_length_ns)
131 		return 1;
132 
133 	if (a->duty_length_ns < b->duty_length_ns)
134 		return -1;
135 
136 	if (a->duty_offset_ns > b->duty_offset_ns)
137 		return 1;
138 
139 	if (a->duty_offset_ns < b->duty_offset_ns)
140 		return -1;
141 
142 	return 0;
143 }
144 
145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 			       const struct pwm_waveform *wf_rounded)
147 {
148 	if (!wf->period_length_ns)
149 		return true;
150 
151 	if (wf->period_length_ns < wf_rounded->period_length_ns)
152 		return false;
153 
154 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 		return false;
156 
157 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 		return false;
159 
160 	return true;
161 }
162 
163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 				     const struct pwm_waveform *wf, void *wfhw)
165 {
166 	const struct pwm_ops *ops = chip->ops;
167 	int ret;
168 
169 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171 
172 	return ret;
173 }
174 
175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 				       const void *wfhw, struct pwm_waveform *wf)
177 {
178 	const struct pwm_ops *ops = chip->ops;
179 	int ret;
180 
181 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183 
184 	return ret;
185 }
186 
187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 	int ret;
191 
192 	ret = ops->read_waveform(chip, pwm, wfhw);
193 	trace_pwm_read_waveform(pwm, wfhw, ret);
194 
195 	return ret;
196 }
197 
198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 	const struct pwm_ops *ops = chip->ops;
201 	int ret;
202 
203 	ret = ops->write_waveform(chip, pwm, wfhw);
204 	trace_pwm_write_waveform(pwm, wfhw, ret);
205 
206 	return ret;
207 }
208 
209 #define WFHWSIZE 20
210 
211 /**
212  * pwm_round_waveform_might_sleep - Query hardware capabilities
213  * Cannot be used in atomic context.
214  * @pwm: PWM device
215  * @wf: waveform to round and output parameter
216  *
217  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218  * because hardware only supports coarse period resolution or no duty_offset.
219  * This function returns the actually implemented waveform if you pass wf to
220  * pwm_set_waveform_might_sleep now.
221  *
222  * Note however that the world doesn't stop turning when you call it, so when
223  * doing
224  *
225  * 	pwm_round_waveform_might_sleep(mypwm, &wf);
226  * 	pwm_set_waveform_might_sleep(mypwm, &wf, true);
227  *
228  * the latter might fail, e.g. because an input clock changed its rate between
229  * these two calls and the waveform determined by
230  * pwm_round_waveform_might_sleep() cannot be implemented any more.
231  *
232  * Returns 0 on success, 1 if there is no valid hardware configuration matching
233  * the input waveform under the PWM rounding rules or a negative errno.
234  */
235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
236 {
237 	struct pwm_chip *chip = pwm->chip;
238 	const struct pwm_ops *ops = chip->ops;
239 	struct pwm_waveform wf_req = *wf;
240 	char wfhw[WFHWSIZE];
241 	int ret_tohw, ret_fromhw;
242 
243 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
244 
245 	if (!pwm_wf_valid(wf))
246 		return -EINVAL;
247 
248 	guard(pwmchip)(chip);
249 
250 	if (!chip->operational)
251 		return -ENODEV;
252 
253 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
254 	if (ret_tohw < 0)
255 		return ret_tohw;
256 
257 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
258 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
259 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
260 
261 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
262 	if (ret_fromhw < 0)
263 		return ret_fromhw;
264 
265 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
266 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
267 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
268 
269 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
270 	    ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
271 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
272 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
273 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
274 
275 	return ret_tohw;
276 }
277 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
278 
279 /**
280  * pwm_get_waveform_might_sleep - Query hardware about current configuration
281  * Cannot be used in atomic context.
282  * @pwm: PWM device
283  * @wf: output parameter
284  *
285  * Stores the current configuration of the PWM in @wf. Note this is the
286  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
287  */
288 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
289 {
290 	struct pwm_chip *chip = pwm->chip;
291 	const struct pwm_ops *ops = chip->ops;
292 	char wfhw[WFHWSIZE];
293 	int err;
294 
295 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
296 
297 	guard(pwmchip)(chip);
298 
299 	if (!chip->operational)
300 		return -ENODEV;
301 
302 	err = __pwm_read_waveform(chip, pwm, &wfhw);
303 	if (err)
304 		return err;
305 
306 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
307 }
308 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
309 
310 /* Called with the pwmchip lock held */
311 static int __pwm_set_waveform(struct pwm_device *pwm,
312 			      const struct pwm_waveform *wf,
313 			      bool exact)
314 {
315 	struct pwm_chip *chip = pwm->chip;
316 	const struct pwm_ops *ops = chip->ops;
317 	char wfhw[WFHWSIZE];
318 	struct pwm_waveform wf_rounded;
319 	int err;
320 
321 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
322 
323 	if (!pwm_wf_valid(wf))
324 		return -EINVAL;
325 
326 	err = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
327 	if (err)
328 		return err;
329 
330 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
331 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
332 		if (err)
333 			return err;
334 
335 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !pwm_check_rounding(wf, &wf_rounded))
336 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
337 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
338 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
339 
340 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
341 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
342 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
343 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
344 
345 			return 1;
346 		}
347 	}
348 
349 	err = __pwm_write_waveform(chip, pwm, &wfhw);
350 	if (err)
351 		return err;
352 
353 	/* update .state */
354 	pwm_wf2state(wf, &pwm->state);
355 
356 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
357 		struct pwm_waveform wf_set;
358 
359 		err = __pwm_read_waveform(chip, pwm, &wfhw);
360 		if (err)
361 			/* maybe ignore? */
362 			return err;
363 
364 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
365 		if (err)
366 			/* maybe ignore? */
367 			return err;
368 
369 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
370 			dev_err(&chip->dev,
371 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
372 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
373 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
374 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
375 	}
376 	return 0;
377 }
378 
379 /**
380  * pwm_set_waveform_might_sleep - Apply a new waveform
381  * Cannot be used in atomic context.
382  * @pwm: PWM device
383  * @wf: The waveform to apply
384  * @exact: If true no rounding is allowed
385  *
386  * Typically a requested waveform cannot be implemented exactly, e.g. because
387  * you requested .period_length_ns = 100 ns, but the hardware can only set
388  * periods that are a multiple of 8.5 ns. With that hardware passing exact =
389  * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
390  * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
391  * than the requested value).
392  * Note that even with exact = true, some rounding by less than 1 is
393  * possible/needed. In the above example requesting .period_length_ns = 94 and
394  * exact = true, you get the hardware configured with period = 93.5 ns.
395  */
396 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
397 				 const struct pwm_waveform *wf, bool exact)
398 {
399 	struct pwm_chip *chip = pwm->chip;
400 	int err;
401 
402 	might_sleep();
403 
404 	guard(pwmchip)(chip);
405 
406 	if (!chip->operational)
407 		return -ENODEV;
408 
409 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
410 		/*
411 		 * Catch any drivers that have been marked as atomic but
412 		 * that will sleep anyway.
413 		 */
414 		non_block_start();
415 		err = __pwm_set_waveform(pwm, wf, exact);
416 		non_block_end();
417 	} else {
418 		err = __pwm_set_waveform(pwm, wf, exact);
419 	}
420 
421 	return err;
422 }
423 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
424 
425 static void pwm_apply_debug(struct pwm_device *pwm,
426 			    const struct pwm_state *state)
427 {
428 	struct pwm_state *last = &pwm->last;
429 	struct pwm_chip *chip = pwm->chip;
430 	struct pwm_state s1 = { 0 }, s2 = { 0 };
431 	int err;
432 
433 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
434 		return;
435 
436 	/* No reasonable diagnosis possible without .get_state() */
437 	if (!chip->ops->get_state)
438 		return;
439 
440 	/*
441 	 * *state was just applied. Read out the hardware state and do some
442 	 * checks.
443 	 */
444 
445 	err = chip->ops->get_state(chip, pwm, &s1);
446 	trace_pwm_get(pwm, &s1, err);
447 	if (err)
448 		/* If that failed there isn't much to debug */
449 		return;
450 
451 	/*
452 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
453 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
454 	 * Undo this inversion and fixup for further tests.
455 	 */
456 	if (s1.enabled && s1.polarity != state->polarity) {
457 		s2.polarity = state->polarity;
458 		s2.duty_cycle = s1.period - s1.duty_cycle;
459 		s2.period = s1.period;
460 		s2.enabled = s1.enabled;
461 	} else {
462 		s2 = s1;
463 	}
464 
465 	if (s2.polarity != state->polarity &&
466 	    state->duty_cycle < state->period)
467 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
468 
469 	if (state->enabled && s2.enabled &&
470 	    last->polarity == state->polarity &&
471 	    last->period > s2.period &&
472 	    last->period <= state->period)
473 		dev_warn(pwmchip_parent(chip),
474 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
475 			 state->period, s2.period, last->period);
476 
477 	/*
478 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
479 	 * flat line doesn't have a characteristic period.
480 	 */
481 	if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
482 		dev_warn(pwmchip_parent(chip),
483 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
484 			 state->period, s2.period);
485 
486 	if (state->enabled &&
487 	    last->polarity == state->polarity &&
488 	    last->period == s2.period &&
489 	    last->duty_cycle > s2.duty_cycle &&
490 	    last->duty_cycle <= state->duty_cycle)
491 		dev_warn(pwmchip_parent(chip),
492 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
493 			 state->duty_cycle, state->period,
494 			 s2.duty_cycle, s2.period,
495 			 last->duty_cycle, last->period);
496 
497 	if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
498 		dev_warn(pwmchip_parent(chip),
499 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
500 			 state->duty_cycle, state->period,
501 			 s2.duty_cycle, s2.period);
502 
503 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
504 		dev_warn(pwmchip_parent(chip),
505 			 "requested disabled, but yielded enabled with duty > 0\n");
506 
507 	/* reapply the state that the driver reported being configured. */
508 	err = chip->ops->apply(chip, pwm, &s1);
509 	trace_pwm_apply(pwm, &s1, err);
510 	if (err) {
511 		*last = s1;
512 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
513 		return;
514 	}
515 
516 	*last = (struct pwm_state){ 0 };
517 	err = chip->ops->get_state(chip, pwm, last);
518 	trace_pwm_get(pwm, last, err);
519 	if (err)
520 		return;
521 
522 	/* reapplication of the current state should give an exact match */
523 	if (s1.enabled != last->enabled ||
524 	    s1.polarity != last->polarity ||
525 	    (s1.enabled && s1.period != last->period) ||
526 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
527 		dev_err(pwmchip_parent(chip),
528 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
529 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
530 			last->enabled, last->polarity, last->duty_cycle,
531 			last->period);
532 	}
533 }
534 
535 static bool pwm_state_valid(const struct pwm_state *state)
536 {
537 	/*
538 	 * For a disabled state all other state description is irrelevant and
539 	 * and supposed to be ignored. So also ignore any strange values and
540 	 * consider the state ok.
541 	 */
542 	if (state->enabled)
543 		return true;
544 
545 	if (!state->period)
546 		return false;
547 
548 	if (state->duty_cycle > state->period)
549 		return false;
550 
551 	return true;
552 }
553 
554 /**
555  * __pwm_apply() - atomically apply a new state to a PWM device
556  * @pwm: PWM device
557  * @state: new state to apply
558  */
559 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
560 {
561 	struct pwm_chip *chip;
562 	const struct pwm_ops *ops;
563 	int err;
564 
565 	if (!pwm || !state)
566 		return -EINVAL;
567 
568 	if (!pwm_state_valid(state)) {
569 		/*
570 		 * Allow to transition from one invalid state to another.
571 		 * This ensures that you can e.g. change the polarity while
572 		 * the period is zero. (This happens on stm32 when the hardware
573 		 * is in its poweron default state.) This greatly simplifies
574 		 * working with the sysfs API where you can only change one
575 		 * parameter at a time.
576 		 */
577 		if (!pwm_state_valid(&pwm->state)) {
578 			pwm->state = *state;
579 			return 0;
580 		}
581 
582 		return -EINVAL;
583 	}
584 
585 	chip = pwm->chip;
586 	ops = chip->ops;
587 
588 	if (state->period == pwm->state.period &&
589 	    state->duty_cycle == pwm->state.duty_cycle &&
590 	    state->polarity == pwm->state.polarity &&
591 	    state->enabled == pwm->state.enabled &&
592 	    state->usage_power == pwm->state.usage_power)
593 		return 0;
594 
595 	if (ops->write_waveform) {
596 		struct pwm_waveform wf;
597 		char wfhw[WFHWSIZE];
598 
599 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
600 
601 		pwm_state2wf(state, &wf);
602 
603 		/*
604 		 * The rounding is wrong here for states with inverted polarity.
605 		 * While .apply() rounds down duty_cycle (which represents the
606 		 * time from the start of the period to the inner edge),
607 		 * .round_waveform_tohw() rounds down the time the PWM is high.
608 		 * Can be fixed if the need arises, until reported otherwise
609 		 * let's assume that consumers don't care.
610 		 */
611 
612 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
613 		if (err) {
614 			if (err > 0)
615 				/*
616 				 * This signals an invalid request, typically
617 				 * the requested period (or duty_offset) is
618 				 * smaller than possible with the hardware.
619 				 */
620 				return -EINVAL;
621 
622 			return err;
623 		}
624 
625 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
626 			struct pwm_waveform wf_rounded;
627 
628 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
629 			if (err)
630 				return err;
631 
632 			if (!pwm_check_rounding(&wf, &wf_rounded))
633 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
634 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
635 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
636 		}
637 
638 		err = __pwm_write_waveform(chip, pwm, &wfhw);
639 		if (err)
640 			return err;
641 
642 		pwm->state = *state;
643 
644 	} else {
645 		err = ops->apply(chip, pwm, state);
646 		trace_pwm_apply(pwm, state, err);
647 		if (err)
648 			return err;
649 
650 		pwm->state = *state;
651 
652 		/*
653 		 * only do this after pwm->state was applied as some
654 		 * implementations of .get_state() depend on this
655 		 */
656 		pwm_apply_debug(pwm, state);
657 	}
658 
659 	return 0;
660 }
661 
662 /**
663  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
664  * Cannot be used in atomic context.
665  * @pwm: PWM device
666  * @state: new state to apply
667  */
668 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
669 {
670 	int err;
671 	struct pwm_chip *chip = pwm->chip;
672 
673 	/*
674 	 * Some lowlevel driver's implementations of .apply() make use of
675 	 * mutexes, also with some drivers only returning when the new
676 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
677 	 * is a bad idea. So make it explicit that calling this function might
678 	 * sleep.
679 	 */
680 	might_sleep();
681 
682 	guard(pwmchip)(chip);
683 
684 	if (!chip->operational)
685 		return -ENODEV;
686 
687 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
688 		/*
689 		 * Catch any drivers that have been marked as atomic but
690 		 * that will sleep anyway.
691 		 */
692 		non_block_start();
693 		err = __pwm_apply(pwm, state);
694 		non_block_end();
695 	} else {
696 		err = __pwm_apply(pwm, state);
697 	}
698 
699 	return err;
700 }
701 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
702 
703 /**
704  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
705  * Not all PWM devices support this function, check with pwm_might_sleep().
706  * @pwm: PWM device
707  * @state: new state to apply
708  */
709 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
710 {
711 	struct pwm_chip *chip = pwm->chip;
712 
713 	WARN_ONCE(!chip->atomic,
714 		  "sleeping PWM driver used in atomic context\n");
715 
716 	guard(pwmchip)(chip);
717 
718 	if (!chip->operational)
719 		return -ENODEV;
720 
721 	return __pwm_apply(pwm, state);
722 }
723 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
724 
725 /**
726  * pwm_get_state_hw() - get the current PWM state from hardware
727  * @pwm: PWM device
728  * @state: state to fill with the current PWM state
729  *
730  * Similar to pwm_get_state() but reads the current PWM state from hardware
731  * instead of the requested state.
732  *
733  * Returns: 0 on success or a negative error code on failure.
734  * Context: May sleep.
735  */
736 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
737 {
738 	struct pwm_chip *chip = pwm->chip;
739 	const struct pwm_ops *ops = chip->ops;
740 	int ret = -EOPNOTSUPP;
741 
742 	might_sleep();
743 
744 	guard(pwmchip)(chip);
745 
746 	if (!chip->operational)
747 		return -ENODEV;
748 
749 	if (ops->read_waveform) {
750 		char wfhw[WFHWSIZE];
751 		struct pwm_waveform wf;
752 
753 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
754 
755 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
756 		if (ret)
757 			return ret;
758 
759 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
760 		if (ret)
761 			return ret;
762 
763 		pwm_wf2state(&wf, state);
764 
765 	} else if (ops->get_state) {
766 		ret = ops->get_state(chip, pwm, state);
767 		trace_pwm_get(pwm, state, ret);
768 	}
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
773 
774 /**
775  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
776  * @pwm: PWM device
777  *
778  * This function will adjust the PWM config to the PWM arguments provided
779  * by the DT or PWM lookup table. This is particularly useful to adapt
780  * the bootloader config to the Linux one.
781  */
782 int pwm_adjust_config(struct pwm_device *pwm)
783 {
784 	struct pwm_state state;
785 	struct pwm_args pargs;
786 
787 	pwm_get_args(pwm, &pargs);
788 	pwm_get_state(pwm, &state);
789 
790 	/*
791 	 * If the current period is zero it means that either the PWM driver
792 	 * does not support initial state retrieval or the PWM has not yet
793 	 * been configured.
794 	 *
795 	 * In either case, we setup the new period and polarity, and assign a
796 	 * duty cycle of 0.
797 	 */
798 	if (!state.period) {
799 		state.duty_cycle = 0;
800 		state.period = pargs.period;
801 		state.polarity = pargs.polarity;
802 
803 		return pwm_apply_might_sleep(pwm, &state);
804 	}
805 
806 	/*
807 	 * Adjust the PWM duty cycle/period based on the period value provided
808 	 * in PWM args.
809 	 */
810 	if (pargs.period != state.period) {
811 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
812 
813 		do_div(dutycycle, state.period);
814 		state.duty_cycle = dutycycle;
815 		state.period = pargs.period;
816 	}
817 
818 	/*
819 	 * If the polarity changed, we should also change the duty cycle.
820 	 */
821 	if (pargs.polarity != state.polarity) {
822 		state.polarity = pargs.polarity;
823 		state.duty_cycle = state.period - state.duty_cycle;
824 	}
825 
826 	return pwm_apply_might_sleep(pwm, &state);
827 }
828 EXPORT_SYMBOL_GPL(pwm_adjust_config);
829 
830 /**
831  * pwm_capture() - capture and report a PWM signal
832  * @pwm: PWM device
833  * @result: structure to fill with capture result
834  * @timeout: time to wait, in milliseconds, before giving up on capture
835  *
836  * Returns: 0 on success or a negative error code on failure.
837  */
838 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
839 		       unsigned long timeout)
840 {
841 	struct pwm_chip *chip = pwm->chip;
842 	const struct pwm_ops *ops = chip->ops;
843 
844 	if (!ops->capture)
845 		return -ENOSYS;
846 
847 	/*
848 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
849 	 * and you're interested to speed it up, please convince yourself it's
850 	 * really not needed, test and then suggest a patch on the mailing list.
851 	 */
852 	guard(mutex)(&pwm_lock);
853 
854 	guard(pwmchip)(chip);
855 
856 	if (!chip->operational)
857 		return -ENODEV;
858 
859 	return ops->capture(chip, pwm, result, timeout);
860 }
861 
862 static struct pwm_chip *pwmchip_find_by_name(const char *name)
863 {
864 	struct pwm_chip *chip;
865 	unsigned long id, tmp;
866 
867 	if (!name)
868 		return NULL;
869 
870 	guard(mutex)(&pwm_lock);
871 
872 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
873 		if (device_match_name(pwmchip_parent(chip), name))
874 			return chip;
875 	}
876 
877 	return NULL;
878 }
879 
880 static int pwm_device_request(struct pwm_device *pwm, const char *label)
881 {
882 	int err;
883 	struct pwm_chip *chip = pwm->chip;
884 	const struct pwm_ops *ops = chip->ops;
885 
886 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
887 		return -EBUSY;
888 
889 	/*
890 	 * This function is called while holding pwm_lock. As .operational only
891 	 * changes while holding this lock, checking it here without holding the
892 	 * chip lock is fine.
893 	 */
894 	if (!chip->operational)
895 		return -ENODEV;
896 
897 	if (!try_module_get(chip->owner))
898 		return -ENODEV;
899 
900 	if (!get_device(&chip->dev)) {
901 		err = -ENODEV;
902 		goto err_get_device;
903 	}
904 
905 	if (ops->request) {
906 		err = ops->request(chip, pwm);
907 		if (err) {
908 			put_device(&chip->dev);
909 err_get_device:
910 			module_put(chip->owner);
911 			return err;
912 		}
913 	}
914 
915 	if (ops->read_waveform || ops->get_state) {
916 		/*
917 		 * Zero-initialize state because most drivers are unaware of
918 		 * .usage_power. The other members of state are supposed to be
919 		 * set by lowlevel drivers. We still initialize the whole
920 		 * structure for simplicity even though this might paper over
921 		 * faulty implementations of .get_state().
922 		 */
923 		struct pwm_state state = { 0, };
924 
925 		err = pwm_get_state_hw(pwm, &state);
926 		if (!err)
927 			pwm->state = state;
928 
929 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
930 			pwm->last = pwm->state;
931 	}
932 
933 	set_bit(PWMF_REQUESTED, &pwm->flags);
934 	pwm->label = label;
935 
936 	return 0;
937 }
938 
939 /**
940  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
941  * @chip: PWM chip
942  * @index: per-chip index of the PWM to request
943  * @label: a literal description string of this PWM
944  *
945  * Returns: A pointer to the PWM device at the given index of the given PWM
946  * chip. A negative error code is returned if the index is not valid for the
947  * specified PWM chip or if the PWM device cannot be requested.
948  */
949 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
950 						unsigned int index,
951 						const char *label)
952 {
953 	struct pwm_device *pwm;
954 	int err;
955 
956 	if (!chip || index >= chip->npwm)
957 		return ERR_PTR(-EINVAL);
958 
959 	guard(mutex)(&pwm_lock);
960 
961 	pwm = &chip->pwms[index];
962 
963 	err = pwm_device_request(pwm, label);
964 	if (err < 0)
965 		return ERR_PTR(err);
966 
967 	return pwm;
968 }
969 
970 struct pwm_device *
971 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
972 {
973 	struct pwm_device *pwm;
974 
975 	/* period in the second cell and flags in the third cell are optional */
976 	if (args->args_count < 1)
977 		return ERR_PTR(-EINVAL);
978 
979 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
980 	if (IS_ERR(pwm))
981 		return pwm;
982 
983 	if (args->args_count > 1)
984 		pwm->args.period = args->args[1];
985 
986 	pwm->args.polarity = PWM_POLARITY_NORMAL;
987 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
988 		pwm->args.polarity = PWM_POLARITY_INVERSED;
989 
990 	return pwm;
991 }
992 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
993 
994 struct pwm_device *
995 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
996 {
997 	struct pwm_device *pwm;
998 
999 	pwm = pwm_request_from_chip(chip, 0, NULL);
1000 	if (IS_ERR(pwm))
1001 		return pwm;
1002 
1003 	if (args->args_count > 0)
1004 		pwm->args.period = args->args[0];
1005 
1006 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1007 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1008 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1009 
1010 	return pwm;
1011 }
1012 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1013 
1014 struct pwm_export {
1015 	struct device pwm_dev;
1016 	struct pwm_device *pwm;
1017 	struct mutex lock;
1018 	struct pwm_state suspend;
1019 };
1020 
1021 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1022 {
1023 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1024 }
1025 
1026 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1027 {
1028 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1029 }
1030 
1031 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1032 {
1033 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1034 
1035 	return export->pwm;
1036 }
1037 
1038 static ssize_t period_show(struct device *pwm_dev,
1039 			   struct device_attribute *attr,
1040 			   char *buf)
1041 {
1042 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1043 	struct pwm_state state;
1044 
1045 	pwm_get_state(pwm, &state);
1046 
1047 	return sysfs_emit(buf, "%llu\n", state.period);
1048 }
1049 
1050 static ssize_t period_store(struct device *pwm_dev,
1051 			    struct device_attribute *attr,
1052 			    const char *buf, size_t size)
1053 {
1054 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1055 	struct pwm_device *pwm = export->pwm;
1056 	struct pwm_state state;
1057 	u64 val;
1058 	int ret;
1059 
1060 	ret = kstrtou64(buf, 0, &val);
1061 	if (ret)
1062 		return ret;
1063 
1064 	guard(mutex)(&export->lock);
1065 
1066 	pwm_get_state(pwm, &state);
1067 	state.period = val;
1068 	ret = pwm_apply_might_sleep(pwm, &state);
1069 
1070 	return ret ? : size;
1071 }
1072 
1073 static ssize_t duty_cycle_show(struct device *pwm_dev,
1074 			       struct device_attribute *attr,
1075 			       char *buf)
1076 {
1077 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1078 	struct pwm_state state;
1079 
1080 	pwm_get_state(pwm, &state);
1081 
1082 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1083 }
1084 
1085 static ssize_t duty_cycle_store(struct device *pwm_dev,
1086 				struct device_attribute *attr,
1087 				const char *buf, size_t size)
1088 {
1089 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1090 	struct pwm_device *pwm = export->pwm;
1091 	struct pwm_state state;
1092 	u64 val;
1093 	int ret;
1094 
1095 	ret = kstrtou64(buf, 0, &val);
1096 	if (ret)
1097 		return ret;
1098 
1099 	guard(mutex)(&export->lock);
1100 
1101 	pwm_get_state(pwm, &state);
1102 	state.duty_cycle = val;
1103 	ret = pwm_apply_might_sleep(pwm, &state);
1104 
1105 	return ret ? : size;
1106 }
1107 
1108 static ssize_t enable_show(struct device *pwm_dev,
1109 			   struct device_attribute *attr,
1110 			   char *buf)
1111 {
1112 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1113 	struct pwm_state state;
1114 
1115 	pwm_get_state(pwm, &state);
1116 
1117 	return sysfs_emit(buf, "%d\n", state.enabled);
1118 }
1119 
1120 static ssize_t enable_store(struct device *pwm_dev,
1121 			    struct device_attribute *attr,
1122 			    const char *buf, size_t size)
1123 {
1124 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1125 	struct pwm_device *pwm = export->pwm;
1126 	struct pwm_state state;
1127 	int val, ret;
1128 
1129 	ret = kstrtoint(buf, 0, &val);
1130 	if (ret)
1131 		return ret;
1132 
1133 	guard(mutex)(&export->lock);
1134 
1135 	pwm_get_state(pwm, &state);
1136 
1137 	switch (val) {
1138 	case 0:
1139 		state.enabled = false;
1140 		break;
1141 	case 1:
1142 		state.enabled = true;
1143 		break;
1144 	default:
1145 		return -EINVAL;
1146 	}
1147 
1148 	ret = pwm_apply_might_sleep(pwm, &state);
1149 
1150 	return ret ? : size;
1151 }
1152 
1153 static ssize_t polarity_show(struct device *pwm_dev,
1154 			     struct device_attribute *attr,
1155 			     char *buf)
1156 {
1157 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1158 	const char *polarity = "unknown";
1159 	struct pwm_state state;
1160 
1161 	pwm_get_state(pwm, &state);
1162 
1163 	switch (state.polarity) {
1164 	case PWM_POLARITY_NORMAL:
1165 		polarity = "normal";
1166 		break;
1167 
1168 	case PWM_POLARITY_INVERSED:
1169 		polarity = "inversed";
1170 		break;
1171 	}
1172 
1173 	return sysfs_emit(buf, "%s\n", polarity);
1174 }
1175 
1176 static ssize_t polarity_store(struct device *pwm_dev,
1177 			      struct device_attribute *attr,
1178 			      const char *buf, size_t size)
1179 {
1180 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1181 	struct pwm_device *pwm = export->pwm;
1182 	enum pwm_polarity polarity;
1183 	struct pwm_state state;
1184 	int ret;
1185 
1186 	if (sysfs_streq(buf, "normal"))
1187 		polarity = PWM_POLARITY_NORMAL;
1188 	else if (sysfs_streq(buf, "inversed"))
1189 		polarity = PWM_POLARITY_INVERSED;
1190 	else
1191 		return -EINVAL;
1192 
1193 	guard(mutex)(&export->lock);
1194 
1195 	pwm_get_state(pwm, &state);
1196 	state.polarity = polarity;
1197 	ret = pwm_apply_might_sleep(pwm, &state);
1198 
1199 	return ret ? : size;
1200 }
1201 
1202 static ssize_t capture_show(struct device *pwm_dev,
1203 			    struct device_attribute *attr,
1204 			    char *buf)
1205 {
1206 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1207 	struct pwm_capture result;
1208 	int ret;
1209 
1210 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1211 	if (ret)
1212 		return ret;
1213 
1214 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1215 }
1216 
1217 static DEVICE_ATTR_RW(period);
1218 static DEVICE_ATTR_RW(duty_cycle);
1219 static DEVICE_ATTR_RW(enable);
1220 static DEVICE_ATTR_RW(polarity);
1221 static DEVICE_ATTR_RO(capture);
1222 
1223 static struct attribute *pwm_attrs[] = {
1224 	&dev_attr_period.attr,
1225 	&dev_attr_duty_cycle.attr,
1226 	&dev_attr_enable.attr,
1227 	&dev_attr_polarity.attr,
1228 	&dev_attr_capture.attr,
1229 	NULL
1230 };
1231 ATTRIBUTE_GROUPS(pwm);
1232 
1233 static void pwm_export_release(struct device *pwm_dev)
1234 {
1235 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1236 
1237 	kfree(export);
1238 }
1239 
1240 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1241 {
1242 	struct pwm_export *export;
1243 	char *pwm_prop[2];
1244 	int ret;
1245 
1246 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1247 		return -EBUSY;
1248 
1249 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1250 	if (!export) {
1251 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1252 		return -ENOMEM;
1253 	}
1254 
1255 	export->pwm = pwm;
1256 	mutex_init(&export->lock);
1257 
1258 	export->pwm_dev.release = pwm_export_release;
1259 	export->pwm_dev.parent = pwmchip_dev;
1260 	export->pwm_dev.devt = MKDEV(0, 0);
1261 	export->pwm_dev.groups = pwm_groups;
1262 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1263 
1264 	ret = device_register(&export->pwm_dev);
1265 	if (ret) {
1266 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1267 		put_device(&export->pwm_dev);
1268 		export = NULL;
1269 		return ret;
1270 	}
1271 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1272 	pwm_prop[1] = NULL;
1273 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1274 	kfree(pwm_prop[0]);
1275 
1276 	return 0;
1277 }
1278 
1279 static int pwm_unexport_match(struct device *pwm_dev, void *data)
1280 {
1281 	return pwm_from_dev(pwm_dev) == data;
1282 }
1283 
1284 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1285 {
1286 	struct device *pwm_dev;
1287 	char *pwm_prop[2];
1288 
1289 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1290 		return -ENODEV;
1291 
1292 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1293 	if (!pwm_dev)
1294 		return -ENODEV;
1295 
1296 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1297 	pwm_prop[1] = NULL;
1298 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1299 	kfree(pwm_prop[0]);
1300 
1301 	/* for device_find_child() */
1302 	put_device(pwm_dev);
1303 	device_unregister(pwm_dev);
1304 	pwm_put(pwm);
1305 
1306 	return 0;
1307 }
1308 
1309 static ssize_t export_store(struct device *pwmchip_dev,
1310 			    struct device_attribute *attr,
1311 			    const char *buf, size_t len)
1312 {
1313 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1314 	struct pwm_device *pwm;
1315 	unsigned int hwpwm;
1316 	int ret;
1317 
1318 	ret = kstrtouint(buf, 0, &hwpwm);
1319 	if (ret < 0)
1320 		return ret;
1321 
1322 	if (hwpwm >= chip->npwm)
1323 		return -ENODEV;
1324 
1325 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1326 	if (IS_ERR(pwm))
1327 		return PTR_ERR(pwm);
1328 
1329 	ret = pwm_export_child(pwmchip_dev, pwm);
1330 	if (ret < 0)
1331 		pwm_put(pwm);
1332 
1333 	return ret ? : len;
1334 }
1335 static DEVICE_ATTR_WO(export);
1336 
1337 static ssize_t unexport_store(struct device *pwmchip_dev,
1338 			      struct device_attribute *attr,
1339 			      const char *buf, size_t len)
1340 {
1341 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1342 	unsigned int hwpwm;
1343 	int ret;
1344 
1345 	ret = kstrtouint(buf, 0, &hwpwm);
1346 	if (ret < 0)
1347 		return ret;
1348 
1349 	if (hwpwm >= chip->npwm)
1350 		return -ENODEV;
1351 
1352 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1353 
1354 	return ret ? : len;
1355 }
1356 static DEVICE_ATTR_WO(unexport);
1357 
1358 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1359 			 char *buf)
1360 {
1361 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1362 
1363 	return sysfs_emit(buf, "%u\n", chip->npwm);
1364 }
1365 static DEVICE_ATTR_RO(npwm);
1366 
1367 static struct attribute *pwm_chip_attrs[] = {
1368 	&dev_attr_export.attr,
1369 	&dev_attr_unexport.attr,
1370 	&dev_attr_npwm.attr,
1371 	NULL,
1372 };
1373 ATTRIBUTE_GROUPS(pwm_chip);
1374 
1375 /* takes export->lock on success */
1376 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1377 					      struct pwm_device *pwm,
1378 					      struct pwm_state *state)
1379 {
1380 	struct device *pwm_dev;
1381 	struct pwm_export *export;
1382 
1383 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1384 		return NULL;
1385 
1386 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1387 	if (!pwm_dev)
1388 		return NULL;
1389 
1390 	export = pwmexport_from_dev(pwm_dev);
1391 	put_device(pwm_dev);	/* for device_find_child() */
1392 
1393 	mutex_lock(&export->lock);
1394 	pwm_get_state(pwm, state);
1395 
1396 	return export;
1397 }
1398 
1399 static int pwm_class_apply_state(struct pwm_export *export,
1400 				 struct pwm_device *pwm,
1401 				 struct pwm_state *state)
1402 {
1403 	int ret = pwm_apply_might_sleep(pwm, state);
1404 
1405 	/* release lock taken in pwm_class_get_state */
1406 	mutex_unlock(&export->lock);
1407 
1408 	return ret;
1409 }
1410 
1411 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1412 {
1413 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1414 	unsigned int i;
1415 	int ret = 0;
1416 
1417 	for (i = 0; i < npwm; i++) {
1418 		struct pwm_device *pwm = &chip->pwms[i];
1419 		struct pwm_state state;
1420 		struct pwm_export *export;
1421 
1422 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1423 		if (!export)
1424 			continue;
1425 
1426 		/* If pwmchip was not enabled before suspend, do nothing. */
1427 		if (!export->suspend.enabled) {
1428 			/* release lock taken in pwm_class_get_state */
1429 			mutex_unlock(&export->lock);
1430 			continue;
1431 		}
1432 
1433 		state.enabled = export->suspend.enabled;
1434 		ret = pwm_class_apply_state(export, pwm, &state);
1435 		if (ret < 0)
1436 			break;
1437 	}
1438 
1439 	return ret;
1440 }
1441 
1442 static int pwm_class_suspend(struct device *pwmchip_dev)
1443 {
1444 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1445 	unsigned int i;
1446 	int ret = 0;
1447 
1448 	for (i = 0; i < chip->npwm; i++) {
1449 		struct pwm_device *pwm = &chip->pwms[i];
1450 		struct pwm_state state;
1451 		struct pwm_export *export;
1452 
1453 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1454 		if (!export)
1455 			continue;
1456 
1457 		/*
1458 		 * If pwmchip was not enabled before suspend, save
1459 		 * state for resume time and do nothing else.
1460 		 */
1461 		export->suspend = state;
1462 		if (!state.enabled) {
1463 			/* release lock taken in pwm_class_get_state */
1464 			mutex_unlock(&export->lock);
1465 			continue;
1466 		}
1467 
1468 		state.enabled = false;
1469 		ret = pwm_class_apply_state(export, pwm, &state);
1470 		if (ret < 0) {
1471 			/*
1472 			 * roll back the PWM devices that were disabled by
1473 			 * this suspend function.
1474 			 */
1475 			pwm_class_resume_npwm(pwmchip_dev, i);
1476 			break;
1477 		}
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 static int pwm_class_resume(struct device *pwmchip_dev)
1484 {
1485 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1486 
1487 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1488 }
1489 
1490 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1491 
1492 static struct class pwm_class = {
1493 	.name = "pwm",
1494 	.dev_groups = pwm_chip_groups,
1495 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1496 };
1497 
1498 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1499 {
1500 	unsigned int i;
1501 
1502 	for (i = 0; i < chip->npwm; i++) {
1503 		struct pwm_device *pwm = &chip->pwms[i];
1504 
1505 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1506 			pwm_unexport_child(&chip->dev, pwm);
1507 	}
1508 }
1509 
1510 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1511 
1512 static void *pwmchip_priv(struct pwm_chip *chip)
1513 {
1514 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1515 }
1516 
1517 /* This is the counterpart to pwmchip_alloc() */
1518 void pwmchip_put(struct pwm_chip *chip)
1519 {
1520 	put_device(&chip->dev);
1521 }
1522 EXPORT_SYMBOL_GPL(pwmchip_put);
1523 
1524 static void pwmchip_release(struct device *pwmchip_dev)
1525 {
1526 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1527 
1528 	kfree(chip);
1529 }
1530 
1531 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1532 {
1533 	struct pwm_chip *chip;
1534 	struct device *pwmchip_dev;
1535 	size_t alloc_size;
1536 	unsigned int i;
1537 
1538 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1539 			      sizeof_priv);
1540 
1541 	chip = kzalloc(alloc_size, GFP_KERNEL);
1542 	if (!chip)
1543 		return ERR_PTR(-ENOMEM);
1544 
1545 	chip->npwm = npwm;
1546 	chip->uses_pwmchip_alloc = true;
1547 	chip->operational = false;
1548 
1549 	pwmchip_dev = &chip->dev;
1550 	device_initialize(pwmchip_dev);
1551 	pwmchip_dev->class = &pwm_class;
1552 	pwmchip_dev->parent = parent;
1553 	pwmchip_dev->release = pwmchip_release;
1554 
1555 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1556 
1557 	for (i = 0; i < chip->npwm; i++) {
1558 		struct pwm_device *pwm = &chip->pwms[i];
1559 		pwm->chip = chip;
1560 		pwm->hwpwm = i;
1561 	}
1562 
1563 	return chip;
1564 }
1565 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1566 
1567 static void devm_pwmchip_put(void *data)
1568 {
1569 	struct pwm_chip *chip = data;
1570 
1571 	pwmchip_put(chip);
1572 }
1573 
1574 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1575 {
1576 	struct pwm_chip *chip;
1577 	int ret;
1578 
1579 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1580 	if (IS_ERR(chip))
1581 		return chip;
1582 
1583 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1584 	if (ret)
1585 		return ERR_PTR(ret);
1586 
1587 	return chip;
1588 }
1589 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1590 
1591 static void of_pwmchip_add(struct pwm_chip *chip)
1592 {
1593 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1594 		return;
1595 
1596 	if (!chip->of_xlate)
1597 		chip->of_xlate = of_pwm_xlate_with_flags;
1598 
1599 	of_node_get(pwmchip_parent(chip)->of_node);
1600 }
1601 
1602 static void of_pwmchip_remove(struct pwm_chip *chip)
1603 {
1604 	if (pwmchip_parent(chip))
1605 		of_node_put(pwmchip_parent(chip)->of_node);
1606 }
1607 
1608 static bool pwm_ops_check(const struct pwm_chip *chip)
1609 {
1610 	const struct pwm_ops *ops = chip->ops;
1611 
1612 	if (ops->write_waveform) {
1613 		if (!ops->round_waveform_tohw ||
1614 		    !ops->round_waveform_fromhw ||
1615 		    !ops->write_waveform)
1616 			return false;
1617 
1618 		if (WFHWSIZE < ops->sizeof_wfhw) {
1619 			dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1620 			return false;
1621 		}
1622 	} else {
1623 		if (!ops->apply)
1624 			return false;
1625 
1626 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1627 			dev_warn(pwmchip_parent(chip),
1628 				 "Please implement the .get_state() callback\n");
1629 	}
1630 
1631 	return true;
1632 }
1633 
1634 static struct device_link *pwm_device_link_add(struct device *dev,
1635 					       struct pwm_device *pwm)
1636 {
1637 	struct device_link *dl;
1638 
1639 	if (!dev) {
1640 		/*
1641 		 * No device for the PWM consumer has been provided. It may
1642 		 * impact the PM sequence ordering: the PWM supplier may get
1643 		 * suspended before the consumer.
1644 		 */
1645 		dev_warn(pwmchip_parent(pwm->chip),
1646 			 "No consumer device specified to create a link to\n");
1647 		return NULL;
1648 	}
1649 
1650 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1651 	if (!dl) {
1652 		dev_err(dev, "failed to create device link to %s\n",
1653 			dev_name(pwmchip_parent(pwm->chip)));
1654 		return ERR_PTR(-EINVAL);
1655 	}
1656 
1657 	return dl;
1658 }
1659 
1660 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1661 {
1662 	struct pwm_chip *chip;
1663 	unsigned long id, tmp;
1664 
1665 	guard(mutex)(&pwm_lock);
1666 
1667 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1668 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1669 			return chip;
1670 
1671 	return ERR_PTR(-EPROBE_DEFER);
1672 }
1673 
1674 /**
1675  * of_pwm_get() - request a PWM via the PWM framework
1676  * @dev: device for PWM consumer
1677  * @np: device node to get the PWM from
1678  * @con_id: consumer name
1679  *
1680  * Returns the PWM device parsed from the phandle and index specified in the
1681  * "pwms" property of a device tree node or a negative error-code on failure.
1682  * Values parsed from the device tree are stored in the returned PWM device
1683  * object.
1684  *
1685  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1686  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1687  * lookup of the PWM index. This also means that the "pwm-names" property
1688  * becomes mandatory for devices that look up the PWM device via the con_id
1689  * parameter.
1690  *
1691  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1692  * error code on failure.
1693  */
1694 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1695 				     const char *con_id)
1696 {
1697 	struct pwm_device *pwm = NULL;
1698 	struct of_phandle_args args;
1699 	struct device_link *dl;
1700 	struct pwm_chip *chip;
1701 	int index = 0;
1702 	int err;
1703 
1704 	if (con_id) {
1705 		index = of_property_match_string(np, "pwm-names", con_id);
1706 		if (index < 0)
1707 			return ERR_PTR(index);
1708 	}
1709 
1710 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1711 					 &args);
1712 	if (err) {
1713 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1714 		return ERR_PTR(err);
1715 	}
1716 
1717 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1718 	if (IS_ERR(chip)) {
1719 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1720 			pr_err("%s(): PWM chip not found\n", __func__);
1721 
1722 		pwm = ERR_CAST(chip);
1723 		goto put;
1724 	}
1725 
1726 	pwm = chip->of_xlate(chip, &args);
1727 	if (IS_ERR(pwm))
1728 		goto put;
1729 
1730 	dl = pwm_device_link_add(dev, pwm);
1731 	if (IS_ERR(dl)) {
1732 		/* of_xlate ended up calling pwm_request_from_chip() */
1733 		pwm_put(pwm);
1734 		pwm = ERR_CAST(dl);
1735 		goto put;
1736 	}
1737 
1738 	/*
1739 	 * If a consumer name was not given, try to look it up from the
1740 	 * "pwm-names" property if it exists. Otherwise use the name of
1741 	 * the user device node.
1742 	 */
1743 	if (!con_id) {
1744 		err = of_property_read_string_index(np, "pwm-names", index,
1745 						    &con_id);
1746 		if (err < 0)
1747 			con_id = np->name;
1748 	}
1749 
1750 	pwm->label = con_id;
1751 
1752 put:
1753 	of_node_put(args.np);
1754 
1755 	return pwm;
1756 }
1757 
1758 /**
1759  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1760  * @fwnode: firmware node to get the "pwms" property from
1761  *
1762  * Returns the PWM device parsed from the fwnode and index specified in the
1763  * "pwms" property or a negative error-code on failure.
1764  * Values parsed from the device tree are stored in the returned PWM device
1765  * object.
1766  *
1767  * This is analogous to of_pwm_get() except con_id is not yet supported.
1768  * ACPI entries must look like
1769  * Package () {"pwms", Package ()
1770  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1771  *
1772  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1773  * error code on failure.
1774  */
1775 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1776 {
1777 	struct pwm_device *pwm;
1778 	struct fwnode_reference_args args;
1779 	struct pwm_chip *chip;
1780 	int ret;
1781 
1782 	memset(&args, 0, sizeof(args));
1783 
1784 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1785 	if (ret < 0)
1786 		return ERR_PTR(ret);
1787 
1788 	if (args.nargs < 2)
1789 		return ERR_PTR(-EPROTO);
1790 
1791 	chip = fwnode_to_pwmchip(args.fwnode);
1792 	if (IS_ERR(chip))
1793 		return ERR_CAST(chip);
1794 
1795 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1796 	if (IS_ERR(pwm))
1797 		return pwm;
1798 
1799 	pwm->args.period = args.args[1];
1800 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1801 
1802 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1803 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1804 
1805 	return pwm;
1806 }
1807 
1808 static DEFINE_MUTEX(pwm_lookup_lock);
1809 static LIST_HEAD(pwm_lookup_list);
1810 
1811 /**
1812  * pwm_get() - look up and request a PWM device
1813  * @dev: device for PWM consumer
1814  * @con_id: consumer name
1815  *
1816  * Lookup is first attempted using DT. If the device was not instantiated from
1817  * a device tree, a PWM chip and a relative index is looked up via a table
1818  * supplied by board setup code (see pwm_add_table()).
1819  *
1820  * Once a PWM chip has been found the specified PWM device will be requested
1821  * and is ready to be used.
1822  *
1823  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1824  * error code on failure.
1825  */
1826 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1827 {
1828 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1829 	const char *dev_id = dev ? dev_name(dev) : NULL;
1830 	struct pwm_device *pwm;
1831 	struct pwm_chip *chip;
1832 	struct device_link *dl;
1833 	unsigned int best = 0;
1834 	struct pwm_lookup *p, *chosen = NULL;
1835 	unsigned int match;
1836 	int err;
1837 
1838 	/* look up via DT first */
1839 	if (is_of_node(fwnode))
1840 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1841 
1842 	/* then lookup via ACPI */
1843 	if (is_acpi_node(fwnode)) {
1844 		pwm = acpi_pwm_get(fwnode);
1845 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1846 			return pwm;
1847 	}
1848 
1849 	/*
1850 	 * We look up the provider in the static table typically provided by
1851 	 * board setup code. We first try to lookup the consumer device by
1852 	 * name. If the consumer device was passed in as NULL or if no match
1853 	 * was found, we try to find the consumer by directly looking it up
1854 	 * by name.
1855 	 *
1856 	 * If a match is found, the provider PWM chip is looked up by name
1857 	 * and a PWM device is requested using the PWM device per-chip index.
1858 	 *
1859 	 * The lookup algorithm was shamelessly taken from the clock
1860 	 * framework:
1861 	 *
1862 	 * We do slightly fuzzy matching here:
1863 	 *  An entry with a NULL ID is assumed to be a wildcard.
1864 	 *  If an entry has a device ID, it must match
1865 	 *  If an entry has a connection ID, it must match
1866 	 * Then we take the most specific entry - with the following order
1867 	 * of precedence: dev+con > dev only > con only.
1868 	 */
1869 	scoped_guard(mutex, &pwm_lookup_lock)
1870 		list_for_each_entry(p, &pwm_lookup_list, list) {
1871 			match = 0;
1872 
1873 			if (p->dev_id) {
1874 				if (!dev_id || strcmp(p->dev_id, dev_id))
1875 					continue;
1876 
1877 				match += 2;
1878 			}
1879 
1880 			if (p->con_id) {
1881 				if (!con_id || strcmp(p->con_id, con_id))
1882 					continue;
1883 
1884 				match += 1;
1885 			}
1886 
1887 			if (match > best) {
1888 				chosen = p;
1889 
1890 				if (match != 3)
1891 					best = match;
1892 				else
1893 					break;
1894 			}
1895 		}
1896 
1897 	if (!chosen)
1898 		return ERR_PTR(-ENODEV);
1899 
1900 	chip = pwmchip_find_by_name(chosen->provider);
1901 
1902 	/*
1903 	 * If the lookup entry specifies a module, load the module and retry
1904 	 * the PWM chip lookup. This can be used to work around driver load
1905 	 * ordering issues if driver's can't be made to properly support the
1906 	 * deferred probe mechanism.
1907 	 */
1908 	if (!chip && chosen->module) {
1909 		err = request_module(chosen->module);
1910 		if (err == 0)
1911 			chip = pwmchip_find_by_name(chosen->provider);
1912 	}
1913 
1914 	if (!chip)
1915 		return ERR_PTR(-EPROBE_DEFER);
1916 
1917 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1918 	if (IS_ERR(pwm))
1919 		return pwm;
1920 
1921 	dl = pwm_device_link_add(dev, pwm);
1922 	if (IS_ERR(dl)) {
1923 		pwm_put(pwm);
1924 		return ERR_CAST(dl);
1925 	}
1926 
1927 	pwm->args.period = chosen->period;
1928 	pwm->args.polarity = chosen->polarity;
1929 
1930 	return pwm;
1931 }
1932 EXPORT_SYMBOL_GPL(pwm_get);
1933 
1934 /**
1935  * pwm_put() - release a PWM device
1936  * @pwm: PWM device
1937  */
1938 void pwm_put(struct pwm_device *pwm)
1939 {
1940 	struct pwm_chip *chip;
1941 
1942 	if (!pwm)
1943 		return;
1944 
1945 	chip = pwm->chip;
1946 
1947 	guard(mutex)(&pwm_lock);
1948 
1949 	/*
1950 	 * Trigger a warning if a consumer called pwm_put() twice.
1951 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1952 	 * pwmchip_remove(). So don't warn in this case.
1953 	 */
1954 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1955 		pr_warn("PWM device already freed\n");
1956 		return;
1957 	}
1958 
1959 	if (chip->operational && chip->ops->free)
1960 		pwm->chip->ops->free(pwm->chip, pwm);
1961 
1962 	pwm->label = NULL;
1963 
1964 	put_device(&chip->dev);
1965 
1966 	module_put(chip->owner);
1967 }
1968 EXPORT_SYMBOL_GPL(pwm_put);
1969 
1970 static void devm_pwm_release(void *pwm)
1971 {
1972 	pwm_put(pwm);
1973 }
1974 
1975 /**
1976  * devm_pwm_get() - resource managed pwm_get()
1977  * @dev: device for PWM consumer
1978  * @con_id: consumer name
1979  *
1980  * This function performs like pwm_get() but the acquired PWM device will
1981  * automatically be released on driver detach.
1982  *
1983  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1984  * error code on failure.
1985  */
1986 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1987 {
1988 	struct pwm_device *pwm;
1989 	int ret;
1990 
1991 	pwm = pwm_get(dev, con_id);
1992 	if (IS_ERR(pwm))
1993 		return pwm;
1994 
1995 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1996 	if (ret)
1997 		return ERR_PTR(ret);
1998 
1999 	return pwm;
2000 }
2001 EXPORT_SYMBOL_GPL(devm_pwm_get);
2002 
2003 /**
2004  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2005  * @dev: device for PWM consumer
2006  * @fwnode: firmware node to get the PWM from
2007  * @con_id: consumer name
2008  *
2009  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2010  * acpi_pwm_get() for a detailed description.
2011  *
2012  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2013  * error code on failure.
2014  */
2015 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2016 				       struct fwnode_handle *fwnode,
2017 				       const char *con_id)
2018 {
2019 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2020 	int ret;
2021 
2022 	if (is_of_node(fwnode))
2023 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2024 	else if (is_acpi_node(fwnode))
2025 		pwm = acpi_pwm_get(fwnode);
2026 	if (IS_ERR(pwm))
2027 		return pwm;
2028 
2029 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2030 	if (ret)
2031 		return ERR_PTR(ret);
2032 
2033 	return pwm;
2034 }
2035 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2036 
2037 /**
2038  * __pwmchip_add() - register a new PWM chip
2039  * @chip: the PWM chip to add
2040  * @owner: reference to the module providing the chip.
2041  *
2042  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2043  * pwmchip_add wrapper to do this right.
2044  *
2045  * Returns: 0 on success or a negative error code on failure.
2046  */
2047 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2048 {
2049 	int ret;
2050 
2051 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2052 		return -EINVAL;
2053 
2054 	/*
2055 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2056 	 * otherwise the embedded struct device might disappear too early
2057 	 * resulting in memory corruption.
2058 	 * Catch drivers that were not converted appropriately.
2059 	 */
2060 	if (!chip->uses_pwmchip_alloc)
2061 		return -EINVAL;
2062 
2063 	if (!pwm_ops_check(chip))
2064 		return -EINVAL;
2065 
2066 	chip->owner = owner;
2067 
2068 	if (chip->atomic)
2069 		spin_lock_init(&chip->atomic_lock);
2070 	else
2071 		mutex_init(&chip->nonatomic_lock);
2072 
2073 	guard(mutex)(&pwm_lock);
2074 
2075 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2076 	if (ret < 0)
2077 		return ret;
2078 
2079 	chip->id = ret;
2080 
2081 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2082 
2083 	if (IS_ENABLED(CONFIG_OF))
2084 		of_pwmchip_add(chip);
2085 
2086 	scoped_guard(pwmchip, chip)
2087 		chip->operational = true;
2088 
2089 	ret = device_add(&chip->dev);
2090 	if (ret)
2091 		goto err_device_add;
2092 
2093 	return 0;
2094 
2095 err_device_add:
2096 	scoped_guard(pwmchip, chip)
2097 		chip->operational = false;
2098 
2099 	if (IS_ENABLED(CONFIG_OF))
2100 		of_pwmchip_remove(chip);
2101 
2102 	idr_remove(&pwm_chips, chip->id);
2103 
2104 	return ret;
2105 }
2106 EXPORT_SYMBOL_GPL(__pwmchip_add);
2107 
2108 /**
2109  * pwmchip_remove() - remove a PWM chip
2110  * @chip: the PWM chip to remove
2111  *
2112  * Removes a PWM chip.
2113  */
2114 void pwmchip_remove(struct pwm_chip *chip)
2115 {
2116 	pwmchip_sysfs_unexport(chip);
2117 
2118 	scoped_guard(mutex, &pwm_lock) {
2119 		unsigned int i;
2120 
2121 		scoped_guard(pwmchip, chip)
2122 			chip->operational = false;
2123 
2124 		for (i = 0; i < chip->npwm; ++i) {
2125 			struct pwm_device *pwm = &chip->pwms[i];
2126 
2127 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2128 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2129 				if (pwm->chip->ops->free)
2130 					pwm->chip->ops->free(pwm->chip, pwm);
2131 			}
2132 		}
2133 
2134 		if (IS_ENABLED(CONFIG_OF))
2135 			of_pwmchip_remove(chip);
2136 
2137 		idr_remove(&pwm_chips, chip->id);
2138 	}
2139 
2140 	device_del(&chip->dev);
2141 }
2142 EXPORT_SYMBOL_GPL(pwmchip_remove);
2143 
2144 static void devm_pwmchip_remove(void *data)
2145 {
2146 	struct pwm_chip *chip = data;
2147 
2148 	pwmchip_remove(chip);
2149 }
2150 
2151 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2152 {
2153 	int ret;
2154 
2155 	ret = __pwmchip_add(chip, owner);
2156 	if (ret)
2157 		return ret;
2158 
2159 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2160 }
2161 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2162 
2163 /**
2164  * pwm_add_table() - register PWM device consumers
2165  * @table: array of consumers to register
2166  * @num: number of consumers in table
2167  */
2168 void pwm_add_table(struct pwm_lookup *table, size_t num)
2169 {
2170 	guard(mutex)(&pwm_lookup_lock);
2171 
2172 	while (num--) {
2173 		list_add_tail(&table->list, &pwm_lookup_list);
2174 		table++;
2175 	}
2176 }
2177 
2178 /**
2179  * pwm_remove_table() - unregister PWM device consumers
2180  * @table: array of consumers to unregister
2181  * @num: number of consumers in table
2182  */
2183 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2184 {
2185 	guard(mutex)(&pwm_lookup_lock);
2186 
2187 	while (num--) {
2188 		list_del(&table->list);
2189 		table++;
2190 	}
2191 }
2192 
2193 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2194 {
2195 	unsigned int i;
2196 
2197 	for (i = 0; i < chip->npwm; i++) {
2198 		struct pwm_device *pwm = &chip->pwms[i];
2199 		struct pwm_state state;
2200 
2201 		pwm_get_state(pwm, &state);
2202 
2203 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2204 
2205 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2206 			seq_puts(s, " requested");
2207 
2208 		if (state.enabled)
2209 			seq_puts(s, " enabled");
2210 
2211 		seq_printf(s, " period: %llu ns", state.period);
2212 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
2213 		seq_printf(s, " polarity: %s",
2214 			   state.polarity ? "inverse" : "normal");
2215 
2216 		if (state.usage_power)
2217 			seq_puts(s, " usage_power");
2218 
2219 		seq_puts(s, "\n");
2220 	}
2221 }
2222 
2223 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2224 {
2225 	unsigned long id = *pos;
2226 	void *ret;
2227 
2228 	mutex_lock(&pwm_lock);
2229 	s->private = "";
2230 
2231 	ret = idr_get_next_ul(&pwm_chips, &id);
2232 	*pos = id;
2233 	return ret;
2234 }
2235 
2236 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2237 {
2238 	unsigned long id = *pos + 1;
2239 	void *ret;
2240 
2241 	s->private = "\n";
2242 
2243 	ret = idr_get_next_ul(&pwm_chips, &id);
2244 	*pos = id;
2245 	return ret;
2246 }
2247 
2248 static void pwm_seq_stop(struct seq_file *s, void *v)
2249 {
2250 	mutex_unlock(&pwm_lock);
2251 }
2252 
2253 static int pwm_seq_show(struct seq_file *s, void *v)
2254 {
2255 	struct pwm_chip *chip = v;
2256 
2257 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2258 		   (char *)s->private, chip->id,
2259 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2260 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2261 		   (chip->npwm != 1) ? "s" : "");
2262 
2263 	pwm_dbg_show(chip, s);
2264 
2265 	return 0;
2266 }
2267 
2268 static const struct seq_operations pwm_debugfs_sops = {
2269 	.start = pwm_seq_start,
2270 	.next = pwm_seq_next,
2271 	.stop = pwm_seq_stop,
2272 	.show = pwm_seq_show,
2273 };
2274 
2275 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2276 
2277 static int __init pwm_init(void)
2278 {
2279 	int ret;
2280 
2281 	ret = class_register(&pwm_class);
2282 	if (ret) {
2283 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2284 		return ret;
2285 	}
2286 
2287 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2288 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2289 
2290 	return 0;
2291 }
2292 subsys_initcall(pwm_init);
2293