xref: /linux/drivers/pwm/core.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
40 static int alloc_pwms(unsigned int count)
41 {
42 	unsigned int start;
43 
44 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
45 					   count, 0);
46 
47 	if (start + count > MAX_PWMS)
48 		return -ENOSPC;
49 
50 	return start;
51 }
52 
53 static void free_pwms(struct pwm_chip *chip)
54 {
55 	unsigned int i;
56 
57 	for (i = 0; i < chip->npwm; i++) {
58 		struct pwm_device *pwm = &chip->pwms[i];
59 
60 		radix_tree_delete(&pwm_tree, pwm->pwm);
61 	}
62 
63 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
64 
65 	kfree(chip->pwms);
66 	chip->pwms = NULL;
67 }
68 
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
70 {
71 	struct pwm_chip *chip;
72 
73 	if (!name)
74 		return NULL;
75 
76 	mutex_lock(&pwm_lock);
77 
78 	list_for_each_entry(chip, &pwm_chips, list) {
79 		const char *chip_name = dev_name(chip->dev);
80 
81 		if (chip_name && strcmp(chip_name, name) == 0) {
82 			mutex_unlock(&pwm_lock);
83 			return chip;
84 		}
85 	}
86 
87 	mutex_unlock(&pwm_lock);
88 
89 	return NULL;
90 }
91 
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
93 {
94 	int err;
95 
96 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
97 		return -EBUSY;
98 
99 	if (!try_module_get(pwm->chip->ops->owner))
100 		return -ENODEV;
101 
102 	if (pwm->chip->ops->request) {
103 		err = pwm->chip->ops->request(pwm->chip, pwm);
104 		if (err) {
105 			module_put(pwm->chip->ops->owner);
106 			return err;
107 		}
108 	}
109 
110 	if (pwm->chip->ops->get_state) {
111 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 		trace_pwm_get(pwm, &pwm->state);
113 
114 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 			pwm->last = pwm->state;
116 	}
117 
118 	set_bit(PWMF_REQUESTED, &pwm->flags);
119 	pwm->label = label;
120 
121 	return 0;
122 }
123 
124 struct pwm_device *
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
126 {
127 	struct pwm_device *pwm;
128 
129 	if (pc->of_pwm_n_cells < 2)
130 		return ERR_PTR(-EINVAL);
131 
132 	/* flags in the third cell are optional */
133 	if (args->args_count < 2)
134 		return ERR_PTR(-EINVAL);
135 
136 	if (args->args[0] >= pc->npwm)
137 		return ERR_PTR(-EINVAL);
138 
139 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 	if (IS_ERR(pwm))
141 		return pwm;
142 
143 	pwm->args.period = args->args[1];
144 	pwm->args.polarity = PWM_POLARITY_NORMAL;
145 
146 	if (pc->of_pwm_n_cells >= 3) {
147 		if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 			pwm->args.polarity = PWM_POLARITY_INVERSED;
149 	}
150 
151 	return pwm;
152 }
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
154 
155 struct pwm_device *
156 of_pwm_single_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
157 {
158 	struct pwm_device *pwm;
159 
160 	if (pc->of_pwm_n_cells < 1)
161 		return ERR_PTR(-EINVAL);
162 
163 	/* validate that one cell is specified, optionally with flags */
164 	if (args->args_count != 1 && args->args_count != 2)
165 		return ERR_PTR(-EINVAL);
166 
167 	pwm = pwm_request_from_chip(pc, 0, NULL);
168 	if (IS_ERR(pwm))
169 		return pwm;
170 
171 	pwm->args.period = args->args[0];
172 	pwm->args.polarity = PWM_POLARITY_NORMAL;
173 
174 	if (args->args_count == 2 && args->args[2] & PWM_POLARITY_INVERTED)
175 		pwm->args.polarity = PWM_POLARITY_INVERSED;
176 
177 	return pwm;
178 }
179 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
180 
181 static void of_pwmchip_add(struct pwm_chip *chip)
182 {
183 	if (!chip->dev || !chip->dev->of_node)
184 		return;
185 
186 	if (!chip->of_xlate) {
187 		u32 pwm_cells;
188 
189 		if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
190 					 &pwm_cells))
191 			pwm_cells = 2;
192 
193 		chip->of_xlate = of_pwm_xlate_with_flags;
194 		chip->of_pwm_n_cells = pwm_cells;
195 	}
196 
197 	of_node_get(chip->dev->of_node);
198 }
199 
200 static void of_pwmchip_remove(struct pwm_chip *chip)
201 {
202 	if (chip->dev)
203 		of_node_put(chip->dev->of_node);
204 }
205 
206 /**
207  * pwm_set_chip_data() - set private chip data for a PWM
208  * @pwm: PWM device
209  * @data: pointer to chip-specific data
210  *
211  * Returns: 0 on success or a negative error code on failure.
212  */
213 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
214 {
215 	if (!pwm)
216 		return -EINVAL;
217 
218 	pwm->chip_data = data;
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
223 
224 /**
225  * pwm_get_chip_data() - get private chip data for a PWM
226  * @pwm: PWM device
227  *
228  * Returns: A pointer to the chip-private data for the PWM device.
229  */
230 void *pwm_get_chip_data(struct pwm_device *pwm)
231 {
232 	return pwm ? pwm->chip_data : NULL;
233 }
234 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
235 
236 static bool pwm_ops_check(const struct pwm_chip *chip)
237 {
238 	const struct pwm_ops *ops = chip->ops;
239 
240 	if (!ops->apply)
241 		return false;
242 
243 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
244 		dev_warn(chip->dev,
245 			 "Please implement the .get_state() callback\n");
246 
247 	return true;
248 }
249 
250 /**
251  * pwmchip_add() - register a new PWM chip
252  * @chip: the PWM chip to add
253  *
254  * Register a new PWM chip.
255  *
256  * Returns: 0 on success or a negative error code on failure.
257  */
258 int pwmchip_add(struct pwm_chip *chip)
259 {
260 	struct pwm_device *pwm;
261 	unsigned int i;
262 	int ret;
263 
264 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
265 		return -EINVAL;
266 
267 	if (!pwm_ops_check(chip))
268 		return -EINVAL;
269 
270 	mutex_lock(&pwm_lock);
271 
272 	ret = alloc_pwms(chip->npwm);
273 	if (ret < 0)
274 		goto out;
275 
276 	chip->base = ret;
277 
278 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
279 	if (!chip->pwms) {
280 		ret = -ENOMEM;
281 		goto out;
282 	}
283 
284 	for (i = 0; i < chip->npwm; i++) {
285 		pwm = &chip->pwms[i];
286 
287 		pwm->chip = chip;
288 		pwm->pwm = chip->base + i;
289 		pwm->hwpwm = i;
290 
291 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
292 	}
293 
294 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
295 
296 	INIT_LIST_HEAD(&chip->list);
297 	list_add(&chip->list, &pwm_chips);
298 
299 	ret = 0;
300 
301 	if (IS_ENABLED(CONFIG_OF))
302 		of_pwmchip_add(chip);
303 
304 out:
305 	mutex_unlock(&pwm_lock);
306 
307 	if (!ret)
308 		pwmchip_sysfs_export(chip);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL_GPL(pwmchip_add);
313 
314 /**
315  * pwmchip_remove() - remove a PWM chip
316  * @chip: the PWM chip to remove
317  *
318  * Removes a PWM chip. This function may return busy if the PWM chip provides
319  * a PWM device that is still requested.
320  *
321  * Returns: 0 on success or a negative error code on failure.
322  */
323 void pwmchip_remove(struct pwm_chip *chip)
324 {
325 	pwmchip_sysfs_unexport(chip);
326 
327 	mutex_lock(&pwm_lock);
328 
329 	list_del_init(&chip->list);
330 
331 	if (IS_ENABLED(CONFIG_OF))
332 		of_pwmchip_remove(chip);
333 
334 	free_pwms(chip);
335 
336 	mutex_unlock(&pwm_lock);
337 }
338 EXPORT_SYMBOL_GPL(pwmchip_remove);
339 
340 static void devm_pwmchip_remove(void *data)
341 {
342 	struct pwm_chip *chip = data;
343 
344 	pwmchip_remove(chip);
345 }
346 
347 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
348 {
349 	int ret;
350 
351 	ret = pwmchip_add(chip);
352 	if (ret)
353 		return ret;
354 
355 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
356 }
357 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
358 
359 /**
360  * pwm_request() - request a PWM device
361  * @pwm: global PWM device index
362  * @label: PWM device label
363  *
364  * This function is deprecated, use pwm_get() instead.
365  *
366  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
367  * failure.
368  */
369 struct pwm_device *pwm_request(int pwm, const char *label)
370 {
371 	struct pwm_device *dev;
372 	int err;
373 
374 	if (pwm < 0 || pwm >= MAX_PWMS)
375 		return ERR_PTR(-EINVAL);
376 
377 	mutex_lock(&pwm_lock);
378 
379 	dev = pwm_to_device(pwm);
380 	if (!dev) {
381 		dev = ERR_PTR(-EPROBE_DEFER);
382 		goto out;
383 	}
384 
385 	err = pwm_device_request(dev, label);
386 	if (err < 0)
387 		dev = ERR_PTR(err);
388 
389 out:
390 	mutex_unlock(&pwm_lock);
391 
392 	return dev;
393 }
394 EXPORT_SYMBOL_GPL(pwm_request);
395 
396 /**
397  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
398  * @chip: PWM chip
399  * @index: per-chip index of the PWM to request
400  * @label: a literal description string of this PWM
401  *
402  * Returns: A pointer to the PWM device at the given index of the given PWM
403  * chip. A negative error code is returned if the index is not valid for the
404  * specified PWM chip or if the PWM device cannot be requested.
405  */
406 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
407 					 unsigned int index,
408 					 const char *label)
409 {
410 	struct pwm_device *pwm;
411 	int err;
412 
413 	if (!chip || index >= chip->npwm)
414 		return ERR_PTR(-EINVAL);
415 
416 	mutex_lock(&pwm_lock);
417 	pwm = &chip->pwms[index];
418 
419 	err = pwm_device_request(pwm, label);
420 	if (err < 0)
421 		pwm = ERR_PTR(err);
422 
423 	mutex_unlock(&pwm_lock);
424 	return pwm;
425 }
426 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
427 
428 /**
429  * pwm_free() - free a PWM device
430  * @pwm: PWM device
431  *
432  * This function is deprecated, use pwm_put() instead.
433  */
434 void pwm_free(struct pwm_device *pwm)
435 {
436 	pwm_put(pwm);
437 }
438 EXPORT_SYMBOL_GPL(pwm_free);
439 
440 static void pwm_apply_state_debug(struct pwm_device *pwm,
441 				  const struct pwm_state *state)
442 {
443 	struct pwm_state *last = &pwm->last;
444 	struct pwm_chip *chip = pwm->chip;
445 	struct pwm_state s1, s2;
446 	int err;
447 
448 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
449 		return;
450 
451 	/* No reasonable diagnosis possible without .get_state() */
452 	if (!chip->ops->get_state)
453 		return;
454 
455 	/*
456 	 * *state was just applied. Read out the hardware state and do some
457 	 * checks.
458 	 */
459 
460 	chip->ops->get_state(chip, pwm, &s1);
461 	trace_pwm_get(pwm, &s1);
462 
463 	/*
464 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
465 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
466 	 * Undo this inversion and fixup for further tests.
467 	 */
468 	if (s1.enabled && s1.polarity != state->polarity) {
469 		s2.polarity = state->polarity;
470 		s2.duty_cycle = s1.period - s1.duty_cycle;
471 		s2.period = s1.period;
472 		s2.enabled = s1.enabled;
473 	} else {
474 		s2 = s1;
475 	}
476 
477 	if (s2.polarity != state->polarity &&
478 	    state->duty_cycle < state->period)
479 		dev_warn(chip->dev, ".apply ignored .polarity\n");
480 
481 	if (state->enabled &&
482 	    last->polarity == state->polarity &&
483 	    last->period > s2.period &&
484 	    last->period <= state->period)
485 		dev_warn(chip->dev,
486 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
487 			 state->period, s2.period, last->period);
488 
489 	if (state->enabled && state->period < s2.period)
490 		dev_warn(chip->dev,
491 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
492 			 state->period, s2.period);
493 
494 	if (state->enabled &&
495 	    last->polarity == state->polarity &&
496 	    last->period == s2.period &&
497 	    last->duty_cycle > s2.duty_cycle &&
498 	    last->duty_cycle <= state->duty_cycle)
499 		dev_warn(chip->dev,
500 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
501 			 state->duty_cycle, state->period,
502 			 s2.duty_cycle, s2.period,
503 			 last->duty_cycle, last->period);
504 
505 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
506 		dev_warn(chip->dev,
507 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
508 			 state->duty_cycle, state->period,
509 			 s2.duty_cycle, s2.period);
510 
511 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
512 		dev_warn(chip->dev,
513 			 "requested disabled, but yielded enabled with duty > 0\n");
514 
515 	/* reapply the state that the driver reported being configured. */
516 	err = chip->ops->apply(chip, pwm, &s1);
517 	if (err) {
518 		*last = s1;
519 		dev_err(chip->dev, "failed to reapply current setting\n");
520 		return;
521 	}
522 
523 	trace_pwm_apply(pwm, &s1);
524 
525 	chip->ops->get_state(chip, pwm, last);
526 	trace_pwm_get(pwm, last);
527 
528 	/* reapplication of the current state should give an exact match */
529 	if (s1.enabled != last->enabled ||
530 	    s1.polarity != last->polarity ||
531 	    (s1.enabled && s1.period != last->period) ||
532 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
533 		dev_err(chip->dev,
534 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
535 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
536 			last->enabled, last->polarity, last->duty_cycle,
537 			last->period);
538 	}
539 }
540 
541 /**
542  * pwm_apply_state() - atomically apply a new state to a PWM device
543  * @pwm: PWM device
544  * @state: new state to apply
545  */
546 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
547 {
548 	struct pwm_chip *chip;
549 	int err;
550 
551 	/*
552 	 * Some lowlevel driver's implementations of .apply() make use of
553 	 * mutexes, also with some drivers only returning when the new
554 	 * configuration is active calling pwm_apply_state() from atomic context
555 	 * is a bad idea. So make it explicit that calling this function might
556 	 * sleep.
557 	 */
558 	might_sleep();
559 
560 	if (!pwm || !state || !state->period ||
561 	    state->duty_cycle > state->period)
562 		return -EINVAL;
563 
564 	chip = pwm->chip;
565 
566 	if (state->period == pwm->state.period &&
567 	    state->duty_cycle == pwm->state.duty_cycle &&
568 	    state->polarity == pwm->state.polarity &&
569 	    state->enabled == pwm->state.enabled &&
570 	    state->usage_power == pwm->state.usage_power)
571 		return 0;
572 
573 	err = chip->ops->apply(chip, pwm, state);
574 	if (err)
575 		return err;
576 
577 	trace_pwm_apply(pwm, state);
578 
579 	pwm->state = *state;
580 
581 	/*
582 	 * only do this after pwm->state was applied as some
583 	 * implementations of .get_state depend on this
584 	 */
585 	pwm_apply_state_debug(pwm, state);
586 
587 	return 0;
588 }
589 EXPORT_SYMBOL_GPL(pwm_apply_state);
590 
591 /**
592  * pwm_capture() - capture and report a PWM signal
593  * @pwm: PWM device
594  * @result: structure to fill with capture result
595  * @timeout: time to wait, in milliseconds, before giving up on capture
596  *
597  * Returns: 0 on success or a negative error code on failure.
598  */
599 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
600 		unsigned long timeout)
601 {
602 	int err;
603 
604 	if (!pwm || !pwm->chip->ops)
605 		return -EINVAL;
606 
607 	if (!pwm->chip->ops->capture)
608 		return -ENOSYS;
609 
610 	mutex_lock(&pwm_lock);
611 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
612 	mutex_unlock(&pwm_lock);
613 
614 	return err;
615 }
616 EXPORT_SYMBOL_GPL(pwm_capture);
617 
618 /**
619  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
620  * @pwm: PWM device
621  *
622  * This function will adjust the PWM config to the PWM arguments provided
623  * by the DT or PWM lookup table. This is particularly useful to adapt
624  * the bootloader config to the Linux one.
625  */
626 int pwm_adjust_config(struct pwm_device *pwm)
627 {
628 	struct pwm_state state;
629 	struct pwm_args pargs;
630 
631 	pwm_get_args(pwm, &pargs);
632 	pwm_get_state(pwm, &state);
633 
634 	/*
635 	 * If the current period is zero it means that either the PWM driver
636 	 * does not support initial state retrieval or the PWM has not yet
637 	 * been configured.
638 	 *
639 	 * In either case, we setup the new period and polarity, and assign a
640 	 * duty cycle of 0.
641 	 */
642 	if (!state.period) {
643 		state.duty_cycle = 0;
644 		state.period = pargs.period;
645 		state.polarity = pargs.polarity;
646 
647 		return pwm_apply_state(pwm, &state);
648 	}
649 
650 	/*
651 	 * Adjust the PWM duty cycle/period based on the period value provided
652 	 * in PWM args.
653 	 */
654 	if (pargs.period != state.period) {
655 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
656 
657 		do_div(dutycycle, state.period);
658 		state.duty_cycle = dutycycle;
659 		state.period = pargs.period;
660 	}
661 
662 	/*
663 	 * If the polarity changed, we should also change the duty cycle.
664 	 */
665 	if (pargs.polarity != state.polarity) {
666 		state.polarity = pargs.polarity;
667 		state.duty_cycle = state.period - state.duty_cycle;
668 	}
669 
670 	return pwm_apply_state(pwm, &state);
671 }
672 EXPORT_SYMBOL_GPL(pwm_adjust_config);
673 
674 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
675 {
676 	struct pwm_chip *chip;
677 
678 	mutex_lock(&pwm_lock);
679 
680 	list_for_each_entry(chip, &pwm_chips, list)
681 		if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
682 			mutex_unlock(&pwm_lock);
683 			return chip;
684 		}
685 
686 	mutex_unlock(&pwm_lock);
687 
688 	return ERR_PTR(-EPROBE_DEFER);
689 }
690 
691 static struct device_link *pwm_device_link_add(struct device *dev,
692 					       struct pwm_device *pwm)
693 {
694 	struct device_link *dl;
695 
696 	if (!dev) {
697 		/*
698 		 * No device for the PWM consumer has been provided. It may
699 		 * impact the PM sequence ordering: the PWM supplier may get
700 		 * suspended before the consumer.
701 		 */
702 		dev_warn(pwm->chip->dev,
703 			 "No consumer device specified to create a link to\n");
704 		return NULL;
705 	}
706 
707 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
708 	if (!dl) {
709 		dev_err(dev, "failed to create device link to %s\n",
710 			dev_name(pwm->chip->dev));
711 		return ERR_PTR(-EINVAL);
712 	}
713 
714 	return dl;
715 }
716 
717 /**
718  * of_pwm_get() - request a PWM via the PWM framework
719  * @dev: device for PWM consumer
720  * @np: device node to get the PWM from
721  * @con_id: consumer name
722  *
723  * Returns the PWM device parsed from the phandle and index specified in the
724  * "pwms" property of a device tree node or a negative error-code on failure.
725  * Values parsed from the device tree are stored in the returned PWM device
726  * object.
727  *
728  * If con_id is NULL, the first PWM device listed in the "pwms" property will
729  * be requested. Otherwise the "pwm-names" property is used to do a reverse
730  * lookup of the PWM index. This also means that the "pwm-names" property
731  * becomes mandatory for devices that look up the PWM device via the con_id
732  * parameter.
733  *
734  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
735  * error code on failure.
736  */
737 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
738 			      const char *con_id)
739 {
740 	struct pwm_device *pwm = NULL;
741 	struct of_phandle_args args;
742 	struct device_link *dl;
743 	struct pwm_chip *pc;
744 	int index = 0;
745 	int err;
746 
747 	if (con_id) {
748 		index = of_property_match_string(np, "pwm-names", con_id);
749 		if (index < 0)
750 			return ERR_PTR(index);
751 	}
752 
753 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
754 					 &args);
755 	if (err) {
756 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
757 		return ERR_PTR(err);
758 	}
759 
760 	pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
761 	if (IS_ERR(pc)) {
762 		if (PTR_ERR(pc) != -EPROBE_DEFER)
763 			pr_err("%s(): PWM chip not found\n", __func__);
764 
765 		pwm = ERR_CAST(pc);
766 		goto put;
767 	}
768 
769 	pwm = pc->of_xlate(pc, &args);
770 	if (IS_ERR(pwm))
771 		goto put;
772 
773 	dl = pwm_device_link_add(dev, pwm);
774 	if (IS_ERR(dl)) {
775 		/* of_xlate ended up calling pwm_request_from_chip() */
776 		pwm_free(pwm);
777 		pwm = ERR_CAST(dl);
778 		goto put;
779 	}
780 
781 	/*
782 	 * If a consumer name was not given, try to look it up from the
783 	 * "pwm-names" property if it exists. Otherwise use the name of
784 	 * the user device node.
785 	 */
786 	if (!con_id) {
787 		err = of_property_read_string_index(np, "pwm-names", index,
788 						    &con_id);
789 		if (err < 0)
790 			con_id = np->name;
791 	}
792 
793 	pwm->label = con_id;
794 
795 put:
796 	of_node_put(args.np);
797 
798 	return pwm;
799 }
800 EXPORT_SYMBOL_GPL(of_pwm_get);
801 
802 /**
803  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
804  * @fwnode: firmware node to get the "pwms" property from
805  *
806  * Returns the PWM device parsed from the fwnode and index specified in the
807  * "pwms" property or a negative error-code on failure.
808  * Values parsed from the device tree are stored in the returned PWM device
809  * object.
810  *
811  * This is analogous to of_pwm_get() except con_id is not yet supported.
812  * ACPI entries must look like
813  * Package () {"pwms", Package ()
814  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
815  *
816  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
817  * error code on failure.
818  */
819 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
820 {
821 	struct pwm_device *pwm;
822 	struct fwnode_reference_args args;
823 	struct pwm_chip *chip;
824 	int ret;
825 
826 	memset(&args, 0, sizeof(args));
827 
828 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
829 	if (ret < 0)
830 		return ERR_PTR(ret);
831 
832 	if (args.nargs < 2)
833 		return ERR_PTR(-EPROTO);
834 
835 	chip = fwnode_to_pwmchip(args.fwnode);
836 	if (IS_ERR(chip))
837 		return ERR_CAST(chip);
838 
839 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
840 	if (IS_ERR(pwm))
841 		return pwm;
842 
843 	pwm->args.period = args.args[1];
844 	pwm->args.polarity = PWM_POLARITY_NORMAL;
845 
846 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
847 		pwm->args.polarity = PWM_POLARITY_INVERSED;
848 
849 	return pwm;
850 }
851 
852 /**
853  * pwm_add_table() - register PWM device consumers
854  * @table: array of consumers to register
855  * @num: number of consumers in table
856  */
857 void pwm_add_table(struct pwm_lookup *table, size_t num)
858 {
859 	mutex_lock(&pwm_lookup_lock);
860 
861 	while (num--) {
862 		list_add_tail(&table->list, &pwm_lookup_list);
863 		table++;
864 	}
865 
866 	mutex_unlock(&pwm_lookup_lock);
867 }
868 
869 /**
870  * pwm_remove_table() - unregister PWM device consumers
871  * @table: array of consumers to unregister
872  * @num: number of consumers in table
873  */
874 void pwm_remove_table(struct pwm_lookup *table, size_t num)
875 {
876 	mutex_lock(&pwm_lookup_lock);
877 
878 	while (num--) {
879 		list_del(&table->list);
880 		table++;
881 	}
882 
883 	mutex_unlock(&pwm_lookup_lock);
884 }
885 
886 /**
887  * pwm_get() - look up and request a PWM device
888  * @dev: device for PWM consumer
889  * @con_id: consumer name
890  *
891  * Lookup is first attempted using DT. If the device was not instantiated from
892  * a device tree, a PWM chip and a relative index is looked up via a table
893  * supplied by board setup code (see pwm_add_table()).
894  *
895  * Once a PWM chip has been found the specified PWM device will be requested
896  * and is ready to be used.
897  *
898  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
899  * error code on failure.
900  */
901 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
902 {
903 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
904 	const char *dev_id = dev ? dev_name(dev) : NULL;
905 	struct pwm_device *pwm;
906 	struct pwm_chip *chip;
907 	struct device_link *dl;
908 	unsigned int best = 0;
909 	struct pwm_lookup *p, *chosen = NULL;
910 	unsigned int match;
911 	int err;
912 
913 	/* look up via DT first */
914 	if (is_of_node(fwnode))
915 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
916 
917 	/* then lookup via ACPI */
918 	if (is_acpi_node(fwnode)) {
919 		pwm = acpi_pwm_get(fwnode);
920 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
921 			return pwm;
922 	}
923 
924 	/*
925 	 * We look up the provider in the static table typically provided by
926 	 * board setup code. We first try to lookup the consumer device by
927 	 * name. If the consumer device was passed in as NULL or if no match
928 	 * was found, we try to find the consumer by directly looking it up
929 	 * by name.
930 	 *
931 	 * If a match is found, the provider PWM chip is looked up by name
932 	 * and a PWM device is requested using the PWM device per-chip index.
933 	 *
934 	 * The lookup algorithm was shamelessly taken from the clock
935 	 * framework:
936 	 *
937 	 * We do slightly fuzzy matching here:
938 	 *  An entry with a NULL ID is assumed to be a wildcard.
939 	 *  If an entry has a device ID, it must match
940 	 *  If an entry has a connection ID, it must match
941 	 * Then we take the most specific entry - with the following order
942 	 * of precedence: dev+con > dev only > con only.
943 	 */
944 	mutex_lock(&pwm_lookup_lock);
945 
946 	list_for_each_entry(p, &pwm_lookup_list, list) {
947 		match = 0;
948 
949 		if (p->dev_id) {
950 			if (!dev_id || strcmp(p->dev_id, dev_id))
951 				continue;
952 
953 			match += 2;
954 		}
955 
956 		if (p->con_id) {
957 			if (!con_id || strcmp(p->con_id, con_id))
958 				continue;
959 
960 			match += 1;
961 		}
962 
963 		if (match > best) {
964 			chosen = p;
965 
966 			if (match != 3)
967 				best = match;
968 			else
969 				break;
970 		}
971 	}
972 
973 	mutex_unlock(&pwm_lookup_lock);
974 
975 	if (!chosen)
976 		return ERR_PTR(-ENODEV);
977 
978 	chip = pwmchip_find_by_name(chosen->provider);
979 
980 	/*
981 	 * If the lookup entry specifies a module, load the module and retry
982 	 * the PWM chip lookup. This can be used to work around driver load
983 	 * ordering issues if driver's can't be made to properly support the
984 	 * deferred probe mechanism.
985 	 */
986 	if (!chip && chosen->module) {
987 		err = request_module(chosen->module);
988 		if (err == 0)
989 			chip = pwmchip_find_by_name(chosen->provider);
990 	}
991 
992 	if (!chip)
993 		return ERR_PTR(-EPROBE_DEFER);
994 
995 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
996 	if (IS_ERR(pwm))
997 		return pwm;
998 
999 	dl = pwm_device_link_add(dev, pwm);
1000 	if (IS_ERR(dl)) {
1001 		pwm_free(pwm);
1002 		return ERR_CAST(dl);
1003 	}
1004 
1005 	pwm->args.period = chosen->period;
1006 	pwm->args.polarity = chosen->polarity;
1007 
1008 	return pwm;
1009 }
1010 EXPORT_SYMBOL_GPL(pwm_get);
1011 
1012 /**
1013  * pwm_put() - release a PWM device
1014  * @pwm: PWM device
1015  */
1016 void pwm_put(struct pwm_device *pwm)
1017 {
1018 	if (!pwm)
1019 		return;
1020 
1021 	mutex_lock(&pwm_lock);
1022 
1023 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1024 		pr_warn("PWM device already freed\n");
1025 		goto out;
1026 	}
1027 
1028 	if (pwm->chip->ops->free)
1029 		pwm->chip->ops->free(pwm->chip, pwm);
1030 
1031 	pwm_set_chip_data(pwm, NULL);
1032 	pwm->label = NULL;
1033 
1034 	module_put(pwm->chip->ops->owner);
1035 out:
1036 	mutex_unlock(&pwm_lock);
1037 }
1038 EXPORT_SYMBOL_GPL(pwm_put);
1039 
1040 static void devm_pwm_release(void *pwm)
1041 {
1042 	pwm_put(pwm);
1043 }
1044 
1045 /**
1046  * devm_pwm_get() - resource managed pwm_get()
1047  * @dev: device for PWM consumer
1048  * @con_id: consumer name
1049  *
1050  * This function performs like pwm_get() but the acquired PWM device will
1051  * automatically be released on driver detach.
1052  *
1053  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054  * error code on failure.
1055  */
1056 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1057 {
1058 	struct pwm_device *pwm;
1059 	int ret;
1060 
1061 	pwm = pwm_get(dev, con_id);
1062 	if (IS_ERR(pwm))
1063 		return pwm;
1064 
1065 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1066 	if (ret)
1067 		return ERR_PTR(ret);
1068 
1069 	return pwm;
1070 }
1071 EXPORT_SYMBOL_GPL(devm_pwm_get);
1072 
1073 /**
1074  * devm_of_pwm_get() - resource managed of_pwm_get()
1075  * @dev: device for PWM consumer
1076  * @np: device node to get the PWM from
1077  * @con_id: consumer name
1078  *
1079  * This function performs like of_pwm_get() but the acquired PWM device will
1080  * automatically be released on driver detach.
1081  *
1082  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1083  * error code on failure.
1084  */
1085 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1086 				   const char *con_id)
1087 {
1088 	struct pwm_device *pwm;
1089 	int ret;
1090 
1091 	pwm = of_pwm_get(dev, np, con_id);
1092 	if (IS_ERR(pwm))
1093 		return pwm;
1094 
1095 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1096 	if (ret)
1097 		return ERR_PTR(ret);
1098 
1099 	return pwm;
1100 }
1101 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1102 
1103 /**
1104  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1105  * @dev: device for PWM consumer
1106  * @fwnode: firmware node to get the PWM from
1107  * @con_id: consumer name
1108  *
1109  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1110  * acpi_pwm_get() for a detailed description.
1111  *
1112  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1113  * error code on failure.
1114  */
1115 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1116 				       struct fwnode_handle *fwnode,
1117 				       const char *con_id)
1118 {
1119 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1120 	int ret;
1121 
1122 	if (is_of_node(fwnode))
1123 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1124 	else if (is_acpi_node(fwnode))
1125 		pwm = acpi_pwm_get(fwnode);
1126 	if (IS_ERR(pwm))
1127 		return pwm;
1128 
1129 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1130 	if (ret)
1131 		return ERR_PTR(ret);
1132 
1133 	return pwm;
1134 }
1135 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1136 
1137 #ifdef CONFIG_DEBUG_FS
1138 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1139 {
1140 	unsigned int i;
1141 
1142 	for (i = 0; i < chip->npwm; i++) {
1143 		struct pwm_device *pwm = &chip->pwms[i];
1144 		struct pwm_state state;
1145 
1146 		pwm_get_state(pwm, &state);
1147 
1148 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1149 
1150 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1151 			seq_puts(s, " requested");
1152 
1153 		if (state.enabled)
1154 			seq_puts(s, " enabled");
1155 
1156 		seq_printf(s, " period: %llu ns", state.period);
1157 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1158 		seq_printf(s, " polarity: %s",
1159 			   state.polarity ? "inverse" : "normal");
1160 
1161 		if (state.usage_power)
1162 			seq_puts(s, " usage_power");
1163 
1164 		seq_puts(s, "\n");
1165 	}
1166 }
1167 
1168 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169 {
1170 	mutex_lock(&pwm_lock);
1171 	s->private = "";
1172 
1173 	return seq_list_start(&pwm_chips, *pos);
1174 }
1175 
1176 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177 {
1178 	s->private = "\n";
1179 
1180 	return seq_list_next(v, &pwm_chips, pos);
1181 }
1182 
1183 static void pwm_seq_stop(struct seq_file *s, void *v)
1184 {
1185 	mutex_unlock(&pwm_lock);
1186 }
1187 
1188 static int pwm_seq_show(struct seq_file *s, void *v)
1189 {
1190 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191 
1192 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194 		   dev_name(chip->dev), chip->npwm,
1195 		   (chip->npwm != 1) ? "s" : "");
1196 
1197 	pwm_dbg_show(chip, s);
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct seq_operations pwm_debugfs_sops = {
1203 	.start = pwm_seq_start,
1204 	.next = pwm_seq_next,
1205 	.stop = pwm_seq_stop,
1206 	.show = pwm_seq_show,
1207 };
1208 
1209 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1210 
1211 static int __init pwm_debugfs_init(void)
1212 {
1213 	debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1214 			    &pwm_debugfs_fops);
1215 
1216 	return 0;
1217 }
1218 subsys_initcall(pwm_debugfs_init);
1219 #endif /* CONFIG_DEBUG_FS */
1220