1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic pwmlib implementation 4 * 5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 6 * Copyright (C) 2011-2012 Avionic Design GmbH 7 */ 8 9 #define DEFAULT_SYMBOL_NAMESPACE "PWM" 10 11 #include <linux/acpi.h> 12 #include <linux/module.h> 13 #include <linux/idr.h> 14 #include <linux/of.h> 15 #include <linux/pwm.h> 16 #include <linux/list.h> 17 #include <linux/mutex.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/debugfs.h> 22 #include <linux/seq_file.h> 23 24 #include <dt-bindings/pwm/pwm.h> 25 26 #include <uapi/linux/pwm.h> 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/pwm.h> 30 31 #define PWM_MINOR_COUNT 256 32 33 /* protects access to pwm_chips */ 34 static DEFINE_MUTEX(pwm_lock); 35 36 static DEFINE_IDR(pwm_chips); 37 38 static void pwmchip_lock(struct pwm_chip *chip) 39 { 40 if (chip->atomic) 41 spin_lock(&chip->atomic_lock); 42 else 43 mutex_lock(&chip->nonatomic_lock); 44 } 45 46 static void pwmchip_unlock(struct pwm_chip *chip) 47 { 48 if (chip->atomic) 49 spin_unlock(&chip->atomic_lock); 50 else 51 mutex_unlock(&chip->nonatomic_lock); 52 } 53 54 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T)) 55 56 static bool pwm_wf_valid(const struct pwm_waveform *wf) 57 { 58 /* 59 * For now restrict waveforms to period_length_ns <= S64_MAX to provide 60 * some space for future extensions. One possibility is to simplify 61 * representing waveforms with inverted polarity using negative values 62 * somehow. 63 */ 64 if (wf->period_length_ns > S64_MAX) 65 return false; 66 67 if (wf->duty_length_ns > wf->period_length_ns) 68 return false; 69 70 /* 71 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart 72 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0. 73 */ 74 if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns) 75 return false; 76 77 return true; 78 } 79 80 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state) 81 { 82 if (wf->period_length_ns) { 83 if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns) 84 *state = (struct pwm_state){ 85 .enabled = true, 86 .polarity = PWM_POLARITY_NORMAL, 87 .period = wf->period_length_ns, 88 .duty_cycle = wf->duty_length_ns, 89 }; 90 else 91 *state = (struct pwm_state){ 92 .enabled = true, 93 .polarity = PWM_POLARITY_INVERSED, 94 .period = wf->period_length_ns, 95 .duty_cycle = wf->period_length_ns - wf->duty_length_ns, 96 }; 97 } else { 98 *state = (struct pwm_state){ 99 .enabled = false, 100 }; 101 } 102 } 103 104 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf) 105 { 106 if (state->enabled) { 107 if (state->polarity == PWM_POLARITY_NORMAL) 108 *wf = (struct pwm_waveform){ 109 .period_length_ns = state->period, 110 .duty_length_ns = state->duty_cycle, 111 .duty_offset_ns = 0, 112 }; 113 else 114 *wf = (struct pwm_waveform){ 115 .period_length_ns = state->period, 116 .duty_length_ns = state->period - state->duty_cycle, 117 .duty_offset_ns = state->duty_cycle, 118 }; 119 } else { 120 *wf = (struct pwm_waveform){ 121 .period_length_ns = 0, 122 }; 123 } 124 } 125 126 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b) 127 { 128 if (a->period_length_ns > b->period_length_ns) 129 return 1; 130 131 if (a->period_length_ns < b->period_length_ns) 132 return -1; 133 134 if (a->duty_length_ns > b->duty_length_ns) 135 return 1; 136 137 if (a->duty_length_ns < b->duty_length_ns) 138 return -1; 139 140 if (a->duty_offset_ns > b->duty_offset_ns) 141 return 1; 142 143 if (a->duty_offset_ns < b->duty_offset_ns) 144 return -1; 145 146 return 0; 147 } 148 149 static bool pwm_check_rounding(const struct pwm_waveform *wf, 150 const struct pwm_waveform *wf_rounded) 151 { 152 if (!wf->period_length_ns) 153 return true; 154 155 if (wf->period_length_ns < wf_rounded->period_length_ns) 156 return false; 157 158 if (wf->duty_length_ns < wf_rounded->duty_length_ns) 159 return false; 160 161 if (wf->duty_offset_ns < wf_rounded->duty_offset_ns) 162 return false; 163 164 return true; 165 } 166 167 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, 168 const struct pwm_waveform *wf, void *wfhw) 169 { 170 const struct pwm_ops *ops = chip->ops; 171 int ret; 172 173 ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw); 174 trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret); 175 176 return ret; 177 } 178 179 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, 180 const void *wfhw, struct pwm_waveform *wf) 181 { 182 const struct pwm_ops *ops = chip->ops; 183 int ret; 184 185 ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf); 186 trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret); 187 188 return ret; 189 } 190 191 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw) 192 { 193 const struct pwm_ops *ops = chip->ops; 194 int ret; 195 196 ret = ops->read_waveform(chip, pwm, wfhw); 197 trace_pwm_read_waveform(pwm, wfhw, ret); 198 199 return ret; 200 } 201 202 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw) 203 { 204 const struct pwm_ops *ops = chip->ops; 205 int ret; 206 207 ret = ops->write_waveform(chip, pwm, wfhw); 208 trace_pwm_write_waveform(pwm, wfhw, ret); 209 210 return ret; 211 } 212 213 /** 214 * pwm_round_waveform_might_sleep - Query hardware capabilities 215 * Cannot be used in atomic context. 216 * @pwm: PWM device 217 * @wf: waveform to round and output parameter 218 * 219 * Typically a given waveform cannot be implemented exactly by hardware, e.g. 220 * because hardware only supports coarse period resolution or no duty_offset. 221 * This function returns the actually implemented waveform if you pass @wf to 222 * pwm_set_waveform_might_sleep() now. 223 * 224 * Note however that the world doesn't stop turning when you call it, so when 225 * doing:: 226 * 227 * pwm_round_waveform_might_sleep(mypwm, &wf); 228 * pwm_set_waveform_might_sleep(mypwm, &wf, true); 229 * 230 * the latter might fail, e.g. because an input clock changed its rate between 231 * these two calls and the waveform determined by 232 * pwm_round_waveform_might_sleep() cannot be implemented any more. 233 * 234 * Usually all values passed in @wf are rounded down to the nearest possible 235 * value (in the order period_length_ns, duty_length_ns and then 236 * duty_offset_ns). Only if this isn't possible, a value might grow. See the 237 * documentation for pwm_set_waveform_might_sleep() for a more formal 238 * description. 239 * 240 * Returns: 0 on success, 1 if at least one value had to be rounded up or a 241 * negative errno. 242 * Context: May sleep. 243 */ 244 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 245 { 246 struct pwm_chip *chip = pwm->chip; 247 const struct pwm_ops *ops = chip->ops; 248 struct pwm_waveform wf_req = *wf; 249 char wfhw[PWM_WFHWSIZE]; 250 int ret_tohw, ret_fromhw; 251 252 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 253 254 if (!pwmchip_supports_waveform(chip)) 255 return -EOPNOTSUPP; 256 257 if (!pwm_wf_valid(wf)) 258 return -EINVAL; 259 260 guard(pwmchip)(chip); 261 262 if (!chip->operational) 263 return -ENODEV; 264 265 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw); 266 if (ret_tohw < 0) 267 return ret_tohw; 268 269 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1) 270 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n", 271 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw); 272 273 ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf); 274 if (ret_fromhw < 0) 275 return ret_fromhw; 276 277 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0) 278 dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n", 279 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_fromhw); 280 281 if (IS_ENABLED(CONFIG_PWM_DEBUG) && 282 (ret_tohw == 0) != pwm_check_rounding(&wf_req, wf)) 283 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 284 wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, 285 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ret_tohw); 286 287 return ret_tohw; 288 } 289 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep); 290 291 /** 292 * pwm_get_waveform_might_sleep - Query hardware about current configuration 293 * Cannot be used in atomic context. 294 * @pwm: PWM device 295 * @wf: output parameter 296 * 297 * Stores the current configuration of the PWM in @wf. Note this is the 298 * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform. 299 * 300 * Returns: 0 on success or a negative errno 301 * Context: May sleep. 302 */ 303 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf) 304 { 305 struct pwm_chip *chip = pwm->chip; 306 const struct pwm_ops *ops = chip->ops; 307 char wfhw[PWM_WFHWSIZE]; 308 int err; 309 310 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 311 312 if (!pwmchip_supports_waveform(chip) || !ops->read_waveform) 313 return -EOPNOTSUPP; 314 315 guard(pwmchip)(chip); 316 317 if (!chip->operational) 318 return -ENODEV; 319 320 err = __pwm_read_waveform(chip, pwm, &wfhw); 321 if (err) 322 return err; 323 324 return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf); 325 } 326 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep); 327 328 /* Called with the pwmchip lock held */ 329 static int __pwm_set_waveform(struct pwm_device *pwm, 330 const struct pwm_waveform *wf, 331 bool exact) 332 { 333 struct pwm_chip *chip = pwm->chip; 334 const struct pwm_ops *ops = chip->ops; 335 char wfhw[PWM_WFHWSIZE]; 336 struct pwm_waveform wf_rounded; 337 int err, ret_tohw; 338 339 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 340 341 if (!pwmchip_supports_waveform(chip)) 342 return -EOPNOTSUPP; 343 344 if (!pwm_wf_valid(wf)) 345 return -EINVAL; 346 347 ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw); 348 if (ret_tohw < 0) 349 return ret_tohw; 350 351 if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) { 352 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 353 if (err) 354 return err; 355 356 if (IS_ENABLED(CONFIG_PWM_DEBUG) && (ret_tohw == 0) != pwm_check_rounding(wf, &wf_rounded)) 357 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu], ret: %d\n", 358 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 359 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, ret_tohw); 360 361 if (exact && pwmwfcmp(wf, &wf_rounded)) { 362 dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n", 363 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 364 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 365 366 return 1; 367 } 368 } 369 370 err = __pwm_write_waveform(chip, pwm, &wfhw); 371 if (err) 372 return err; 373 374 /* update .state */ 375 pwm_wf2state(wf, &pwm->state); 376 377 if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) { 378 struct pwm_waveform wf_set; 379 380 err = __pwm_read_waveform(chip, pwm, &wfhw); 381 if (err) 382 /* maybe ignore? */ 383 return err; 384 385 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set); 386 if (err) 387 /* maybe ignore? */ 388 return err; 389 390 if (pwmwfcmp(&wf_set, &wf_rounded) != 0) 391 dev_err(&chip->dev, 392 "Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n", 393 wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, 394 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns, 395 wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns); 396 } 397 398 return ret_tohw; 399 } 400 401 /** 402 * pwm_set_waveform_might_sleep - Apply a new waveform 403 * Cannot be used in atomic context. 404 * @pwm: PWM device 405 * @wf: The waveform to apply 406 * @exact: If true no rounding is allowed 407 * 408 * Typically a requested waveform cannot be implemented exactly, e.g. because 409 * you requested .period_length_ns = 100 ns, but the hardware can only set 410 * periods that are a multiple of 8.5 ns. With that hardware passing @exact = 411 * true results in pwm_set_waveform_might_sleep() failing and returning -EDOM. 412 * If @exact = false you get a period of 93.5 ns (i.e. the biggest period not 413 * bigger than the requested value). 414 * Note that even with @exact = true, some rounding by less than 1 ns is 415 * possible/needed. In the above example requesting .period_length_ns = 94 and 416 * @exact = true, you get the hardware configured with period = 93.5 ns. 417 * 418 * Let C be the set of possible hardware configurations for a given PWM device, 419 * consisting of tuples (p, d, o) where p is the period length, d is the duty 420 * length and o the duty offset. 421 * 422 * The following algorithm is implemented to pick the hardware setting 423 * (p, d, o) ∈ C for a given request (p', d', o') with @exact = false:: 424 * 425 * p = max( { ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C ∧ ṗ ≤ p' } ∪ { min({ ṗ | ∃ ḋ, ȯ : (ṗ, ḋ, ȯ) ∈ C }) }) 426 * d = max( { ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C ∧ ḋ ≤ d' } ∪ { min({ ḋ | ∃ ȯ : (p, ḋ, ȯ) ∈ C }) }) 427 * o = max( { ȯ | (p, d, ȯ) ∈ C ∧ ȯ ≤ o' } ∪ { min({ ȯ | (p, d, ȯ) ∈ C }) }) 428 * 429 * In words: The chosen period length is the maximal possible period length not 430 * bigger than the requested period length and if that doesn't exist, the 431 * minimal period length. The chosen duty length is the maximal possible duty 432 * length that is compatible with the chosen period length and isn't bigger than 433 * the requested duty length. Again if such a value doesn't exist, the minimal 434 * duty length compatible with the chosen period is picked. After that the duty 435 * offset compatible with the chosen period and duty length is chosen in the 436 * same way. 437 * 438 * Returns: 0 on success, -EDOM if setting failed due to the exact waveform not 439 * being possible (if @exact), or a different negative errno on failure. 440 * Context: May sleep. 441 */ 442 int pwm_set_waveform_might_sleep(struct pwm_device *pwm, 443 const struct pwm_waveform *wf, bool exact) 444 { 445 struct pwm_chip *chip = pwm->chip; 446 int err; 447 448 might_sleep(); 449 450 guard(pwmchip)(chip); 451 452 if (!chip->operational) 453 return -ENODEV; 454 455 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 456 /* 457 * Catch any drivers that have been marked as atomic but 458 * that will sleep anyway. 459 */ 460 non_block_start(); 461 err = __pwm_set_waveform(pwm, wf, exact); 462 non_block_end(); 463 } else { 464 err = __pwm_set_waveform(pwm, wf, exact); 465 } 466 467 /* 468 * map err == 1 to -EDOM for exact requests and 0 for !exact ones. Also 469 * make sure that -EDOM is only returned in exactly that case. Note that 470 * __pwm_set_waveform() should never return -EDOM which justifies the 471 * unlikely(). 472 */ 473 if (unlikely(err == -EDOM)) 474 err = -EINVAL; 475 else if (exact && err == 1) 476 err = -EDOM; 477 else if (err == 1) 478 err = 0; 479 480 return err; 481 } 482 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep); 483 484 static void pwm_apply_debug(struct pwm_device *pwm, 485 const struct pwm_state *state) 486 { 487 struct pwm_state *last = &pwm->last; 488 struct pwm_chip *chip = pwm->chip; 489 struct pwm_state s1 = { 0 }, s2 = { 0 }; 490 int err; 491 492 if (!IS_ENABLED(CONFIG_PWM_DEBUG)) 493 return; 494 495 /* No reasonable diagnosis possible without .get_state() */ 496 if (!chip->ops->get_state) 497 return; 498 499 /* 500 * If a disabled PWM was requested the result is unspecified, so nothing 501 * to check. 502 */ 503 if (!state->enabled) 504 return; 505 506 /* 507 * *state was just applied. Read out the hardware state and do some 508 * checks. 509 */ 510 511 err = chip->ops->get_state(chip, pwm, &s1); 512 trace_pwm_get(pwm, &s1, err); 513 if (err) 514 /* If that failed there isn't much to debug */ 515 return; 516 517 /* 518 * If the PWM was disabled that's maybe strange but there is nothing 519 * that can be sensibly checked then. So return early. 520 */ 521 if (!s1.enabled) 522 return; 523 524 /* 525 * The lowlevel driver either ignored .polarity (which is a bug) or as 526 * best effort inverted .polarity and fixed .duty_cycle respectively. 527 * Undo this inversion and fixup for further tests. 528 */ 529 if (s1.polarity != state->polarity) { 530 s2.polarity = state->polarity; 531 s2.duty_cycle = s1.period - s1.duty_cycle; 532 s2.period = s1.period; 533 s2.enabled = true; 534 } else { 535 s2 = s1; 536 } 537 538 if (s2.polarity != state->polarity && 539 s2.duty_cycle < s2.period) 540 dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n"); 541 542 if (last->polarity == state->polarity && 543 last->period > s2.period && 544 last->period <= state->period) 545 dev_warn(pwmchip_parent(chip), 546 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n", 547 state->period, s2.period, last->period); 548 549 /* 550 * Rounding period up is fine only if duty_cycle is 0 then, because a 551 * flat line doesn't have a characteristic period. 552 */ 553 if (state->period < s2.period && s2.duty_cycle) 554 dev_warn(pwmchip_parent(chip), 555 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n", 556 state->period, s2.period); 557 558 if (last->polarity == state->polarity && 559 last->period == s2.period && 560 last->duty_cycle > s2.duty_cycle && 561 last->duty_cycle <= state->duty_cycle) 562 dev_warn(pwmchip_parent(chip), 563 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n", 564 state->duty_cycle, state->period, 565 s2.duty_cycle, s2.period, 566 last->duty_cycle, last->period); 567 568 if (state->duty_cycle < s2.duty_cycle) 569 dev_warn(pwmchip_parent(chip), 570 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n", 571 state->duty_cycle, state->period, 572 s2.duty_cycle, s2.period); 573 574 /* reapply the state that the driver reported being configured. */ 575 err = chip->ops->apply(chip, pwm, &s1); 576 trace_pwm_apply(pwm, &s1, err); 577 if (err) { 578 *last = s1; 579 dev_err(pwmchip_parent(chip), "failed to reapply current setting\n"); 580 return; 581 } 582 583 *last = (struct pwm_state){ 0 }; 584 err = chip->ops->get_state(chip, pwm, last); 585 trace_pwm_get(pwm, last, err); 586 if (err) 587 return; 588 589 /* reapplication of the current state should give an exact match */ 590 if (s1.enabled != last->enabled || 591 s1.polarity != last->polarity || 592 (s1.enabled && s1.period != last->period) || 593 (s1.enabled && s1.duty_cycle != last->duty_cycle)) { 594 dev_err(pwmchip_parent(chip), 595 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n", 596 s1.enabled, s1.polarity, s1.duty_cycle, s1.period, 597 last->enabled, last->polarity, last->duty_cycle, 598 last->period); 599 } 600 } 601 602 static bool pwm_state_valid(const struct pwm_state *state) 603 { 604 /* 605 * For a disabled state all other state description is irrelevant and 606 * and supposed to be ignored. So also ignore any strange values and 607 * consider the state ok. 608 */ 609 if (!state->enabled) 610 return true; 611 612 if (!state->period) 613 return false; 614 615 if (state->duty_cycle > state->period) 616 return false; 617 618 return true; 619 } 620 621 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state) 622 { 623 struct pwm_chip *chip; 624 const struct pwm_ops *ops; 625 int err; 626 627 if (!pwm || !state) 628 return -EINVAL; 629 630 if (!pwm_state_valid(state)) { 631 /* 632 * Allow to transition from one invalid state to another. 633 * This ensures that you can e.g. change the polarity while 634 * the period is zero. (This happens on stm32 when the hardware 635 * is in its poweron default state.) This greatly simplifies 636 * working with the sysfs API where you can only change one 637 * parameter at a time. 638 */ 639 if (!pwm_state_valid(&pwm->state)) { 640 pwm->state = *state; 641 return 0; 642 } 643 644 return -EINVAL; 645 } 646 647 chip = pwm->chip; 648 ops = chip->ops; 649 650 if (state->period == pwm->state.period && 651 state->duty_cycle == pwm->state.duty_cycle && 652 state->polarity == pwm->state.polarity && 653 state->enabled == pwm->state.enabled && 654 state->usage_power == pwm->state.usage_power) 655 return 0; 656 657 if (pwmchip_supports_waveform(chip)) { 658 struct pwm_waveform wf; 659 char wfhw[PWM_WFHWSIZE]; 660 661 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 662 663 pwm_state2wf(state, &wf); 664 665 /* 666 * The rounding is wrong here for states with inverted polarity. 667 * While .apply() rounds down duty_cycle (which represents the 668 * time from the start of the period to the inner edge), 669 * .round_waveform_tohw() rounds down the time the PWM is high. 670 * Can be fixed if the need arises, until reported otherwise 671 * let's assume that consumers don't care. 672 */ 673 674 err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw); 675 if (err) { 676 if (err > 0) 677 /* 678 * This signals an invalid request, typically 679 * the requested period (or duty_offset) is 680 * smaller than possible with the hardware. 681 */ 682 return -EINVAL; 683 684 return err; 685 } 686 687 if (IS_ENABLED(CONFIG_PWM_DEBUG)) { 688 struct pwm_waveform wf_rounded; 689 690 err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded); 691 if (err) 692 return err; 693 694 if (!pwm_check_rounding(&wf, &wf_rounded)) 695 dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n", 696 wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns, 697 wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns); 698 } 699 700 err = __pwm_write_waveform(chip, pwm, &wfhw); 701 if (err) 702 return err; 703 704 pwm->state = *state; 705 706 } else { 707 err = ops->apply(chip, pwm, state); 708 trace_pwm_apply(pwm, state, err); 709 if (err) 710 return err; 711 712 pwm->state = *state; 713 714 /* 715 * only do this after pwm->state was applied as some 716 * implementations of .get_state() depend on this 717 */ 718 pwm_apply_debug(pwm, state); 719 } 720 721 return 0; 722 } 723 724 /** 725 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device 726 * Cannot be used in atomic context. 727 * @pwm: PWM device 728 * @state: new state to apply 729 * 730 * Returns: 0 on success, or a negative errno 731 * Context: May sleep. 732 */ 733 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state) 734 { 735 int err; 736 struct pwm_chip *chip = pwm->chip; 737 738 /* 739 * Some lowlevel driver's implementations of .apply() make use of 740 * mutexes, also with some drivers only returning when the new 741 * configuration is active calling pwm_apply_might_sleep() from atomic context 742 * is a bad idea. So make it explicit that calling this function might 743 * sleep. 744 */ 745 might_sleep(); 746 747 guard(pwmchip)(chip); 748 749 if (!chip->operational) 750 return -ENODEV; 751 752 if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) { 753 /* 754 * Catch any drivers that have been marked as atomic but 755 * that will sleep anyway. 756 */ 757 non_block_start(); 758 err = __pwm_apply(pwm, state); 759 non_block_end(); 760 } else { 761 err = __pwm_apply(pwm, state); 762 } 763 764 return err; 765 } 766 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep); 767 768 /** 769 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context 770 * Not all PWM devices support this function, check with pwm_might_sleep(). 771 * @pwm: PWM device 772 * @state: new state to apply 773 * 774 * Returns: 0 on success, or a negative errno 775 * Context: Any 776 */ 777 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state) 778 { 779 struct pwm_chip *chip = pwm->chip; 780 781 WARN_ONCE(!chip->atomic, 782 "sleeping PWM driver used in atomic context\n"); 783 784 guard(pwmchip)(chip); 785 786 if (!chip->operational) 787 return -ENODEV; 788 789 return __pwm_apply(pwm, state); 790 } 791 EXPORT_SYMBOL_GPL(pwm_apply_atomic); 792 793 /** 794 * pwm_get_state_hw() - get the current PWM state from hardware 795 * @pwm: PWM device 796 * @state: state to fill with the current PWM state 797 * 798 * Similar to pwm_get_state() but reads the current PWM state from hardware 799 * instead of the requested state. 800 * 801 * Returns: 0 on success or a negative error code on failure. 802 * Context: May sleep. 803 */ 804 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state) 805 { 806 struct pwm_chip *chip = pwm->chip; 807 const struct pwm_ops *ops = chip->ops; 808 int ret = -EOPNOTSUPP; 809 810 might_sleep(); 811 812 guard(pwmchip)(chip); 813 814 if (!chip->operational) 815 return -ENODEV; 816 817 if (pwmchip_supports_waveform(chip) && ops->read_waveform) { 818 char wfhw[PWM_WFHWSIZE]; 819 struct pwm_waveform wf; 820 821 BUG_ON(PWM_WFHWSIZE < ops->sizeof_wfhw); 822 823 ret = __pwm_read_waveform(chip, pwm, &wfhw); 824 if (ret) 825 return ret; 826 827 ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf); 828 if (ret) 829 return ret; 830 831 pwm_wf2state(&wf, state); 832 833 } else if (ops->get_state) { 834 ret = ops->get_state(chip, pwm, state); 835 trace_pwm_get(pwm, state, ret); 836 } 837 838 return ret; 839 } 840 EXPORT_SYMBOL_GPL(pwm_get_state_hw); 841 842 /** 843 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 844 * @pwm: PWM device 845 * 846 * This function will adjust the PWM config to the PWM arguments provided 847 * by the DT or PWM lookup table. This is particularly useful to adapt 848 * the bootloader config to the Linux one. 849 * 850 * Returns: 0 on success or a negative error code on failure. 851 * Context: May sleep. 852 */ 853 int pwm_adjust_config(struct pwm_device *pwm) 854 { 855 struct pwm_state state; 856 struct pwm_args pargs; 857 858 pwm_get_args(pwm, &pargs); 859 pwm_get_state(pwm, &state); 860 861 /* 862 * If the current period is zero it means that either the PWM driver 863 * does not support initial state retrieval or the PWM has not yet 864 * been configured. 865 * 866 * In either case, we setup the new period and polarity, and assign a 867 * duty cycle of 0. 868 */ 869 if (!state.period) { 870 state.duty_cycle = 0; 871 state.period = pargs.period; 872 state.polarity = pargs.polarity; 873 874 return pwm_apply_might_sleep(pwm, &state); 875 } 876 877 /* 878 * Adjust the PWM duty cycle/period based on the period value provided 879 * in PWM args. 880 */ 881 if (pargs.period != state.period) { 882 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 883 884 do_div(dutycycle, state.period); 885 state.duty_cycle = dutycycle; 886 state.period = pargs.period; 887 } 888 889 /* 890 * If the polarity changed, we should also change the duty cycle. 891 */ 892 if (pargs.polarity != state.polarity) { 893 state.polarity = pargs.polarity; 894 state.duty_cycle = state.period - state.duty_cycle; 895 } 896 897 return pwm_apply_might_sleep(pwm, &state); 898 } 899 EXPORT_SYMBOL_GPL(pwm_adjust_config); 900 901 /** 902 * pwm_capture() - capture and report a PWM signal 903 * @pwm: PWM device 904 * @result: structure to fill with capture result 905 * @timeout: time to wait, in milliseconds, before giving up on capture 906 * 907 * Returns: 0 on success or a negative error code on failure. 908 */ 909 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 910 unsigned long timeout) 911 { 912 struct pwm_chip *chip = pwm->chip; 913 const struct pwm_ops *ops = chip->ops; 914 915 if (!ops->capture) 916 return -ENOSYS; 917 918 /* 919 * Holding the pwm_lock is probably not needed. If you use pwm_capture() 920 * and you're interested to speed it up, please convince yourself it's 921 * really not needed, test and then suggest a patch on the mailing list. 922 */ 923 guard(mutex)(&pwm_lock); 924 925 guard(pwmchip)(chip); 926 927 if (!chip->operational) 928 return -ENODEV; 929 930 return ops->capture(chip, pwm, result, timeout); 931 } 932 933 static struct pwm_chip *pwmchip_find_by_name(const char *name) 934 { 935 struct pwm_chip *chip; 936 unsigned long id, tmp; 937 938 if (!name) 939 return NULL; 940 941 guard(mutex)(&pwm_lock); 942 943 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) { 944 if (device_match_name(pwmchip_parent(chip), name)) 945 return chip; 946 } 947 948 return NULL; 949 } 950 951 static int pwm_device_request(struct pwm_device *pwm, const char *label) 952 { 953 int err; 954 struct pwm_chip *chip = pwm->chip; 955 const struct pwm_ops *ops = chip->ops; 956 957 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 958 return -EBUSY; 959 960 /* 961 * This function is called while holding pwm_lock. As .operational only 962 * changes while holding this lock, checking it here without holding the 963 * chip lock is fine. 964 */ 965 if (!chip->operational) 966 return -ENODEV; 967 968 if (!try_module_get(chip->owner)) 969 return -ENODEV; 970 971 if (!get_device(&chip->dev)) { 972 err = -ENODEV; 973 goto err_get_device; 974 } 975 976 if (ops->request) { 977 err = ops->request(chip, pwm); 978 if (err) { 979 put_device(&chip->dev); 980 err_get_device: 981 module_put(chip->owner); 982 return err; 983 } 984 } 985 986 if (ops->read_waveform || ops->get_state) { 987 /* 988 * Zero-initialize state because most drivers are unaware of 989 * .usage_power. The other members of state are supposed to be 990 * set by lowlevel drivers. We still initialize the whole 991 * structure for simplicity even though this might paper over 992 * faulty implementations of .get_state(). 993 */ 994 struct pwm_state state = { 0, }; 995 996 err = pwm_get_state_hw(pwm, &state); 997 if (!err) 998 pwm->state = state; 999 1000 if (IS_ENABLED(CONFIG_PWM_DEBUG)) 1001 pwm->last = pwm->state; 1002 } 1003 1004 set_bit(PWMF_REQUESTED, &pwm->flags); 1005 pwm->label = label; 1006 1007 return 0; 1008 } 1009 1010 /** 1011 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 1012 * @chip: PWM chip 1013 * @index: per-chip index of the PWM to request 1014 * @label: a literal description string of this PWM 1015 * 1016 * Returns: A pointer to the PWM device at the given index of the given PWM 1017 * chip. A negative error code is returned if the index is not valid for the 1018 * specified PWM chip or if the PWM device cannot be requested. 1019 */ 1020 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 1021 unsigned int index, 1022 const char *label) 1023 { 1024 struct pwm_device *pwm; 1025 int err; 1026 1027 if (!chip || index >= chip->npwm) 1028 return ERR_PTR(-EINVAL); 1029 1030 guard(mutex)(&pwm_lock); 1031 1032 pwm = &chip->pwms[index]; 1033 1034 err = pwm_device_request(pwm, label); 1035 if (err < 0) 1036 return ERR_PTR(err); 1037 1038 return pwm; 1039 } 1040 1041 struct pwm_device * 1042 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args) 1043 { 1044 struct pwm_device *pwm; 1045 1046 /* period in the second cell and flags in the third cell are optional */ 1047 if (args->args_count < 1) 1048 return ERR_PTR(-EINVAL); 1049 1050 pwm = pwm_request_from_chip(chip, args->args[0], NULL); 1051 if (IS_ERR(pwm)) 1052 return pwm; 1053 1054 if (args->args_count > 1) 1055 pwm->args.period = args->args[1]; 1056 1057 pwm->args.polarity = PWM_POLARITY_NORMAL; 1058 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 1059 pwm->args.polarity = PWM_POLARITY_INVERSED; 1060 1061 return pwm; 1062 } 1063 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 1064 1065 /* 1066 * This callback is used for PXA PWM chips that only have a single PWM line. 1067 * For such chips you could argue that passing the line number (i.e. the first 1068 * parameter in the common case) is useless as it's always zero. So compared to 1069 * the default xlate function of_pwm_xlate_with_flags() the first parameter is 1070 * the default period and the second are flags. 1071 * 1072 * Note that if #pwm-cells = <3>, the semantic is the same as for 1073 * of_pwm_xlate_with_flags() to allow converting the affected driver to 1074 * #pwm-cells = <3> without breaking the legacy binding. 1075 * 1076 * Don't use for new drivers. 1077 */ 1078 struct pwm_device * 1079 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args) 1080 { 1081 struct pwm_device *pwm; 1082 1083 if (args->args_count >= 3) 1084 return of_pwm_xlate_with_flags(chip, args); 1085 1086 pwm = pwm_request_from_chip(chip, 0, NULL); 1087 if (IS_ERR(pwm)) 1088 return pwm; 1089 1090 if (args->args_count > 0) 1091 pwm->args.period = args->args[0]; 1092 1093 pwm->args.polarity = PWM_POLARITY_NORMAL; 1094 if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED) 1095 pwm->args.polarity = PWM_POLARITY_INVERSED; 1096 1097 return pwm; 1098 } 1099 EXPORT_SYMBOL_GPL(of_pwm_single_xlate); 1100 1101 struct pwm_export { 1102 struct device pwm_dev; 1103 struct pwm_device *pwm; 1104 struct mutex lock; 1105 struct pwm_state suspend; 1106 }; 1107 1108 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev) 1109 { 1110 return container_of(pwmchip_dev, struct pwm_chip, dev); 1111 } 1112 1113 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev) 1114 { 1115 return container_of(pwm_dev, struct pwm_export, pwm_dev); 1116 } 1117 1118 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev) 1119 { 1120 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1121 1122 return export->pwm; 1123 } 1124 1125 static ssize_t period_show(struct device *pwm_dev, 1126 struct device_attribute *attr, 1127 char *buf) 1128 { 1129 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1130 struct pwm_state state; 1131 1132 pwm_get_state(pwm, &state); 1133 1134 return sysfs_emit(buf, "%llu\n", state.period); 1135 } 1136 1137 static ssize_t period_store(struct device *pwm_dev, 1138 struct device_attribute *attr, 1139 const char *buf, size_t size) 1140 { 1141 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1142 struct pwm_device *pwm = export->pwm; 1143 struct pwm_state state; 1144 u64 val; 1145 int ret; 1146 1147 ret = kstrtou64(buf, 0, &val); 1148 if (ret) 1149 return ret; 1150 1151 guard(mutex)(&export->lock); 1152 1153 pwm_get_state(pwm, &state); 1154 state.period = val; 1155 ret = pwm_apply_might_sleep(pwm, &state); 1156 1157 return ret ? : size; 1158 } 1159 1160 static ssize_t duty_cycle_show(struct device *pwm_dev, 1161 struct device_attribute *attr, 1162 char *buf) 1163 { 1164 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1165 struct pwm_state state; 1166 1167 pwm_get_state(pwm, &state); 1168 1169 return sysfs_emit(buf, "%llu\n", state.duty_cycle); 1170 } 1171 1172 static ssize_t duty_cycle_store(struct device *pwm_dev, 1173 struct device_attribute *attr, 1174 const char *buf, size_t size) 1175 { 1176 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1177 struct pwm_device *pwm = export->pwm; 1178 struct pwm_state state; 1179 u64 val; 1180 int ret; 1181 1182 ret = kstrtou64(buf, 0, &val); 1183 if (ret) 1184 return ret; 1185 1186 guard(mutex)(&export->lock); 1187 1188 pwm_get_state(pwm, &state); 1189 state.duty_cycle = val; 1190 ret = pwm_apply_might_sleep(pwm, &state); 1191 1192 return ret ? : size; 1193 } 1194 1195 static ssize_t enable_show(struct device *pwm_dev, 1196 struct device_attribute *attr, 1197 char *buf) 1198 { 1199 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1200 struct pwm_state state; 1201 1202 pwm_get_state(pwm, &state); 1203 1204 return sysfs_emit(buf, "%d\n", state.enabled); 1205 } 1206 1207 static ssize_t enable_store(struct device *pwm_dev, 1208 struct device_attribute *attr, 1209 const char *buf, size_t size) 1210 { 1211 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1212 struct pwm_device *pwm = export->pwm; 1213 struct pwm_state state; 1214 int val, ret; 1215 1216 ret = kstrtoint(buf, 0, &val); 1217 if (ret) 1218 return ret; 1219 1220 guard(mutex)(&export->lock); 1221 1222 pwm_get_state(pwm, &state); 1223 1224 switch (val) { 1225 case 0: 1226 state.enabled = false; 1227 break; 1228 case 1: 1229 state.enabled = true; 1230 break; 1231 default: 1232 return -EINVAL; 1233 } 1234 1235 ret = pwm_apply_might_sleep(pwm, &state); 1236 1237 return ret ? : size; 1238 } 1239 1240 static ssize_t polarity_show(struct device *pwm_dev, 1241 struct device_attribute *attr, 1242 char *buf) 1243 { 1244 const struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1245 const char *polarity = "unknown"; 1246 struct pwm_state state; 1247 1248 pwm_get_state(pwm, &state); 1249 1250 switch (state.polarity) { 1251 case PWM_POLARITY_NORMAL: 1252 polarity = "normal"; 1253 break; 1254 1255 case PWM_POLARITY_INVERSED: 1256 polarity = "inversed"; 1257 break; 1258 } 1259 1260 return sysfs_emit(buf, "%s\n", polarity); 1261 } 1262 1263 static ssize_t polarity_store(struct device *pwm_dev, 1264 struct device_attribute *attr, 1265 const char *buf, size_t size) 1266 { 1267 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1268 struct pwm_device *pwm = export->pwm; 1269 enum pwm_polarity polarity; 1270 struct pwm_state state; 1271 int ret; 1272 1273 if (sysfs_streq(buf, "normal")) 1274 polarity = PWM_POLARITY_NORMAL; 1275 else if (sysfs_streq(buf, "inversed")) 1276 polarity = PWM_POLARITY_INVERSED; 1277 else 1278 return -EINVAL; 1279 1280 guard(mutex)(&export->lock); 1281 1282 pwm_get_state(pwm, &state); 1283 state.polarity = polarity; 1284 ret = pwm_apply_might_sleep(pwm, &state); 1285 1286 return ret ? : size; 1287 } 1288 1289 static ssize_t capture_show(struct device *pwm_dev, 1290 struct device_attribute *attr, 1291 char *buf) 1292 { 1293 struct pwm_device *pwm = pwm_from_dev(pwm_dev); 1294 struct pwm_capture result; 1295 int ret; 1296 1297 ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ)); 1298 if (ret) 1299 return ret; 1300 1301 return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle); 1302 } 1303 1304 static DEVICE_ATTR_RW(period); 1305 static DEVICE_ATTR_RW(duty_cycle); 1306 static DEVICE_ATTR_RW(enable); 1307 static DEVICE_ATTR_RW(polarity); 1308 static DEVICE_ATTR_RO(capture); 1309 1310 static struct attribute *pwm_attrs[] = { 1311 &dev_attr_period.attr, 1312 &dev_attr_duty_cycle.attr, 1313 &dev_attr_enable.attr, 1314 &dev_attr_polarity.attr, 1315 &dev_attr_capture.attr, 1316 NULL 1317 }; 1318 ATTRIBUTE_GROUPS(pwm); 1319 1320 static void pwm_export_release(struct device *pwm_dev) 1321 { 1322 struct pwm_export *export = pwmexport_from_dev(pwm_dev); 1323 1324 kfree(export); 1325 } 1326 1327 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1328 { 1329 struct pwm_export *export; 1330 char *pwm_prop[2]; 1331 int ret; 1332 1333 if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags)) 1334 return -EBUSY; 1335 1336 export = kzalloc(sizeof(*export), GFP_KERNEL); 1337 if (!export) { 1338 clear_bit(PWMF_EXPORTED, &pwm->flags); 1339 return -ENOMEM; 1340 } 1341 1342 export->pwm = pwm; 1343 mutex_init(&export->lock); 1344 1345 export->pwm_dev.release = pwm_export_release; 1346 export->pwm_dev.parent = pwmchip_dev; 1347 export->pwm_dev.devt = MKDEV(0, 0); 1348 export->pwm_dev.groups = pwm_groups; 1349 dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm); 1350 1351 ret = device_register(&export->pwm_dev); 1352 if (ret) { 1353 clear_bit(PWMF_EXPORTED, &pwm->flags); 1354 put_device(&export->pwm_dev); 1355 export = NULL; 1356 return ret; 1357 } 1358 pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm); 1359 pwm_prop[1] = NULL; 1360 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1361 kfree(pwm_prop[0]); 1362 1363 return 0; 1364 } 1365 1366 static int pwm_unexport_match(struct device *pwm_dev, const void *data) 1367 { 1368 return pwm_from_dev(pwm_dev) == data; 1369 } 1370 1371 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm) 1372 { 1373 struct device *pwm_dev; 1374 char *pwm_prop[2]; 1375 1376 if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags)) 1377 return -ENODEV; 1378 1379 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1380 if (!pwm_dev) 1381 return -ENODEV; 1382 1383 pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm); 1384 pwm_prop[1] = NULL; 1385 kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop); 1386 kfree(pwm_prop[0]); 1387 1388 /* for device_find_child() */ 1389 put_device(pwm_dev); 1390 device_unregister(pwm_dev); 1391 pwm_put(pwm); 1392 1393 return 0; 1394 } 1395 1396 static ssize_t export_store(struct device *pwmchip_dev, 1397 struct device_attribute *attr, 1398 const char *buf, size_t len) 1399 { 1400 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1401 struct pwm_device *pwm; 1402 unsigned int hwpwm; 1403 int ret; 1404 1405 ret = kstrtouint(buf, 0, &hwpwm); 1406 if (ret < 0) 1407 return ret; 1408 1409 if (hwpwm >= chip->npwm) 1410 return -ENODEV; 1411 1412 pwm = pwm_request_from_chip(chip, hwpwm, "sysfs"); 1413 if (IS_ERR(pwm)) 1414 return PTR_ERR(pwm); 1415 1416 ret = pwm_export_child(pwmchip_dev, pwm); 1417 if (ret < 0) 1418 pwm_put(pwm); 1419 1420 return ret ? : len; 1421 } 1422 static DEVICE_ATTR_WO(export); 1423 1424 static ssize_t unexport_store(struct device *pwmchip_dev, 1425 struct device_attribute *attr, 1426 const char *buf, size_t len) 1427 { 1428 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1429 unsigned int hwpwm; 1430 int ret; 1431 1432 ret = kstrtouint(buf, 0, &hwpwm); 1433 if (ret < 0) 1434 return ret; 1435 1436 if (hwpwm >= chip->npwm) 1437 return -ENODEV; 1438 1439 ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]); 1440 1441 return ret ? : len; 1442 } 1443 static DEVICE_ATTR_WO(unexport); 1444 1445 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr, 1446 char *buf) 1447 { 1448 const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1449 1450 return sysfs_emit(buf, "%u\n", chip->npwm); 1451 } 1452 static DEVICE_ATTR_RO(npwm); 1453 1454 static struct attribute *pwm_chip_attrs[] = { 1455 &dev_attr_export.attr, 1456 &dev_attr_unexport.attr, 1457 &dev_attr_npwm.attr, 1458 NULL, 1459 }; 1460 ATTRIBUTE_GROUPS(pwm_chip); 1461 1462 /* takes export->lock on success */ 1463 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev, 1464 struct pwm_device *pwm, 1465 struct pwm_state *state) 1466 { 1467 struct device *pwm_dev; 1468 struct pwm_export *export; 1469 1470 if (!test_bit(PWMF_EXPORTED, &pwm->flags)) 1471 return NULL; 1472 1473 pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match); 1474 if (!pwm_dev) 1475 return NULL; 1476 1477 export = pwmexport_from_dev(pwm_dev); 1478 put_device(pwm_dev); /* for device_find_child() */ 1479 1480 mutex_lock(&export->lock); 1481 pwm_get_state(pwm, state); 1482 1483 return export; 1484 } 1485 1486 static int pwm_class_apply_state(struct pwm_export *export, 1487 struct pwm_device *pwm, 1488 struct pwm_state *state) 1489 { 1490 int ret = pwm_apply_might_sleep(pwm, state); 1491 1492 /* release lock taken in pwm_class_get_state */ 1493 mutex_unlock(&export->lock); 1494 1495 return ret; 1496 } 1497 1498 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm) 1499 { 1500 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1501 unsigned int i; 1502 int ret = 0; 1503 1504 for (i = 0; i < npwm; i++) { 1505 struct pwm_device *pwm = &chip->pwms[i]; 1506 struct pwm_state state; 1507 struct pwm_export *export; 1508 1509 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1510 if (!export) 1511 continue; 1512 1513 /* If pwmchip was not enabled before suspend, do nothing. */ 1514 if (!export->suspend.enabled) { 1515 /* release lock taken in pwm_class_get_state */ 1516 mutex_unlock(&export->lock); 1517 continue; 1518 } 1519 1520 state.enabled = export->suspend.enabled; 1521 ret = pwm_class_apply_state(export, pwm, &state); 1522 if (ret < 0) 1523 break; 1524 } 1525 1526 return ret; 1527 } 1528 1529 static int pwm_class_suspend(struct device *pwmchip_dev) 1530 { 1531 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1532 unsigned int i; 1533 int ret = 0; 1534 1535 for (i = 0; i < chip->npwm; i++) { 1536 struct pwm_device *pwm = &chip->pwms[i]; 1537 struct pwm_state state; 1538 struct pwm_export *export; 1539 1540 export = pwm_class_get_state(pwmchip_dev, pwm, &state); 1541 if (!export) 1542 continue; 1543 1544 /* 1545 * If pwmchip was not enabled before suspend, save 1546 * state for resume time and do nothing else. 1547 */ 1548 export->suspend = state; 1549 if (!state.enabled) { 1550 /* release lock taken in pwm_class_get_state */ 1551 mutex_unlock(&export->lock); 1552 continue; 1553 } 1554 1555 state.enabled = false; 1556 ret = pwm_class_apply_state(export, pwm, &state); 1557 if (ret < 0) { 1558 /* 1559 * roll back the PWM devices that were disabled by 1560 * this suspend function. 1561 */ 1562 pwm_class_resume_npwm(pwmchip_dev, i); 1563 break; 1564 } 1565 } 1566 1567 return ret; 1568 } 1569 1570 static int pwm_class_resume(struct device *pwmchip_dev) 1571 { 1572 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1573 1574 return pwm_class_resume_npwm(pwmchip_dev, chip->npwm); 1575 } 1576 1577 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume); 1578 1579 static struct class pwm_class = { 1580 .name = "pwm", 1581 .dev_groups = pwm_chip_groups, 1582 .pm = pm_sleep_ptr(&pwm_class_pm_ops), 1583 }; 1584 1585 static void pwmchip_sysfs_unexport(struct pwm_chip *chip) 1586 { 1587 unsigned int i; 1588 1589 for (i = 0; i < chip->npwm; i++) { 1590 struct pwm_device *pwm = &chip->pwms[i]; 1591 1592 if (test_bit(PWMF_EXPORTED, &pwm->flags)) 1593 pwm_unexport_child(&chip->dev, pwm); 1594 } 1595 } 1596 1597 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN 1598 1599 static void *pwmchip_priv(struct pwm_chip *chip) 1600 { 1601 return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN); 1602 } 1603 1604 /* This is the counterpart to pwmchip_alloc() */ 1605 void pwmchip_put(struct pwm_chip *chip) 1606 { 1607 put_device(&chip->dev); 1608 } 1609 EXPORT_SYMBOL_GPL(pwmchip_put); 1610 1611 static void pwmchip_release(struct device *pwmchip_dev) 1612 { 1613 struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev); 1614 1615 kfree(chip); 1616 } 1617 1618 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1619 { 1620 struct pwm_chip *chip; 1621 struct device *pwmchip_dev; 1622 size_t alloc_size; 1623 unsigned int i; 1624 1625 alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN), 1626 sizeof_priv); 1627 1628 chip = kzalloc(alloc_size, GFP_KERNEL); 1629 if (!chip) 1630 return ERR_PTR(-ENOMEM); 1631 1632 chip->npwm = npwm; 1633 chip->uses_pwmchip_alloc = true; 1634 chip->operational = false; 1635 1636 pwmchip_dev = &chip->dev; 1637 device_initialize(pwmchip_dev); 1638 pwmchip_dev->class = &pwm_class; 1639 pwmchip_dev->parent = parent; 1640 pwmchip_dev->release = pwmchip_release; 1641 1642 pwmchip_set_drvdata(chip, pwmchip_priv(chip)); 1643 1644 for (i = 0; i < chip->npwm; i++) { 1645 struct pwm_device *pwm = &chip->pwms[i]; 1646 pwm->chip = chip; 1647 pwm->hwpwm = i; 1648 } 1649 1650 return chip; 1651 } 1652 EXPORT_SYMBOL_GPL(pwmchip_alloc); 1653 1654 static void devm_pwmchip_put(void *data) 1655 { 1656 struct pwm_chip *chip = data; 1657 1658 pwmchip_put(chip); 1659 } 1660 1661 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv) 1662 { 1663 struct pwm_chip *chip; 1664 int ret; 1665 1666 chip = pwmchip_alloc(parent, npwm, sizeof_priv); 1667 if (IS_ERR(chip)) 1668 return chip; 1669 1670 ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip); 1671 if (ret) 1672 return ERR_PTR(ret); 1673 1674 return chip; 1675 } 1676 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc); 1677 1678 static void of_pwmchip_add(struct pwm_chip *chip) 1679 { 1680 if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node) 1681 return; 1682 1683 if (!chip->of_xlate) 1684 chip->of_xlate = of_pwm_xlate_with_flags; 1685 1686 of_node_get(pwmchip_parent(chip)->of_node); 1687 } 1688 1689 static void of_pwmchip_remove(struct pwm_chip *chip) 1690 { 1691 if (pwmchip_parent(chip)) 1692 of_node_put(pwmchip_parent(chip)->of_node); 1693 } 1694 1695 static bool pwm_ops_check(const struct pwm_chip *chip) 1696 { 1697 const struct pwm_ops *ops = chip->ops; 1698 1699 if (ops->write_waveform) { 1700 if (!ops->round_waveform_tohw || 1701 !ops->round_waveform_fromhw || 1702 !ops->write_waveform) 1703 return false; 1704 1705 if (PWM_WFHWSIZE < ops->sizeof_wfhw) { 1706 dev_warn(pwmchip_parent(chip), "PWM_WFHWSIZE < %zu\n", ops->sizeof_wfhw); 1707 return false; 1708 } 1709 } else { 1710 if (!ops->apply) 1711 return false; 1712 1713 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state) 1714 dev_warn(pwmchip_parent(chip), 1715 "Please implement the .get_state() callback\n"); 1716 } 1717 1718 return true; 1719 } 1720 1721 static struct device_link *pwm_device_link_add(struct device *dev, 1722 struct pwm_device *pwm) 1723 { 1724 struct device_link *dl; 1725 1726 if (!dev) { 1727 /* 1728 * No device for the PWM consumer has been provided. It may 1729 * impact the PM sequence ordering: the PWM supplier may get 1730 * suspended before the consumer. 1731 */ 1732 dev_warn(pwmchip_parent(pwm->chip), 1733 "No consumer device specified to create a link to\n"); 1734 return NULL; 1735 } 1736 1737 dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER); 1738 if (!dl) { 1739 dev_err(dev, "failed to create device link to %s\n", 1740 dev_name(pwmchip_parent(pwm->chip))); 1741 return ERR_PTR(-EINVAL); 1742 } 1743 1744 return dl; 1745 } 1746 1747 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode) 1748 { 1749 struct pwm_chip *chip; 1750 unsigned long id, tmp; 1751 1752 guard(mutex)(&pwm_lock); 1753 1754 idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) 1755 if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) 1756 return chip; 1757 1758 return ERR_PTR(-EPROBE_DEFER); 1759 } 1760 1761 /** 1762 * of_pwm_get() - request a PWM via the PWM framework 1763 * @dev: device for PWM consumer 1764 * @np: device node to get the PWM from 1765 * @con_id: consumer name 1766 * 1767 * Returns the PWM device parsed from the phandle and index specified in the 1768 * "pwms" property of a device tree node or a negative error-code on failure. 1769 * Values parsed from the device tree are stored in the returned PWM device 1770 * object. 1771 * 1772 * If con_id is NULL, the first PWM device listed in the "pwms" property will 1773 * be requested. Otherwise the "pwm-names" property is used to do a reverse 1774 * lookup of the PWM index. This also means that the "pwm-names" property 1775 * becomes mandatory for devices that look up the PWM device via the con_id 1776 * parameter. 1777 * 1778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1779 * error code on failure. 1780 */ 1781 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np, 1782 const char *con_id) 1783 { 1784 struct pwm_device *pwm = NULL; 1785 struct of_phandle_args args; 1786 struct device_link *dl; 1787 struct pwm_chip *chip; 1788 int index = 0; 1789 int err; 1790 1791 if (con_id) { 1792 index = of_property_match_string(np, "pwm-names", con_id); 1793 if (index < 0) 1794 return ERR_PTR(index); 1795 } 1796 1797 err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args); 1798 if (err) { 1799 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 1800 return ERR_PTR(err); 1801 } 1802 1803 chip = fwnode_to_pwmchip(of_fwnode_handle(args.np)); 1804 if (IS_ERR(chip)) { 1805 if (PTR_ERR(chip) != -EPROBE_DEFER) 1806 pr_err("%s(): PWM chip not found\n", __func__); 1807 1808 pwm = ERR_CAST(chip); 1809 goto put; 1810 } 1811 1812 pwm = chip->of_xlate(chip, &args); 1813 if (IS_ERR(pwm)) 1814 goto put; 1815 1816 dl = pwm_device_link_add(dev, pwm); 1817 if (IS_ERR(dl)) { 1818 /* of_xlate ended up calling pwm_request_from_chip() */ 1819 pwm_put(pwm); 1820 pwm = ERR_CAST(dl); 1821 goto put; 1822 } 1823 1824 /* 1825 * If a consumer name was not given, try to look it up from the 1826 * "pwm-names" property if it exists. Otherwise use the name of 1827 * the user device node. 1828 */ 1829 if (!con_id) { 1830 err = of_property_read_string_index(np, "pwm-names", index, 1831 &con_id); 1832 if (err < 0) 1833 con_id = np->name; 1834 } 1835 1836 pwm->label = con_id; 1837 1838 put: 1839 of_node_put(args.np); 1840 1841 return pwm; 1842 } 1843 1844 /** 1845 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI 1846 * @fwnode: firmware node to get the "pwms" property from 1847 * 1848 * Returns the PWM device parsed from the fwnode and index specified in the 1849 * "pwms" property or a negative error-code on failure. 1850 * Values parsed from the device tree are stored in the returned PWM device 1851 * object. 1852 * 1853 * This is analogous to of_pwm_get() except con_id is not yet supported. 1854 * ACPI entries must look like 1855 * Package () {"pwms", Package () 1856 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}} 1857 * 1858 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1859 * error code on failure. 1860 */ 1861 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode) 1862 { 1863 struct pwm_device *pwm; 1864 struct fwnode_reference_args args; 1865 struct pwm_chip *chip; 1866 int ret; 1867 1868 memset(&args, 0, sizeof(args)); 1869 1870 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args); 1871 if (ret < 0) 1872 return ERR_PTR(ret); 1873 1874 if (args.nargs < 2) 1875 return ERR_PTR(-EPROTO); 1876 1877 chip = fwnode_to_pwmchip(args.fwnode); 1878 if (IS_ERR(chip)) 1879 return ERR_CAST(chip); 1880 1881 pwm = pwm_request_from_chip(chip, args.args[0], NULL); 1882 if (IS_ERR(pwm)) 1883 return pwm; 1884 1885 pwm->args.period = args.args[1]; 1886 pwm->args.polarity = PWM_POLARITY_NORMAL; 1887 1888 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED) 1889 pwm->args.polarity = PWM_POLARITY_INVERSED; 1890 1891 return pwm; 1892 } 1893 1894 static DEFINE_MUTEX(pwm_lookup_lock); 1895 static LIST_HEAD(pwm_lookup_list); 1896 1897 /** 1898 * pwm_get() - look up and request a PWM device 1899 * @dev: device for PWM consumer 1900 * @con_id: consumer name 1901 * 1902 * Lookup is first attempted using DT. If the device was not instantiated from 1903 * a device tree, a PWM chip and a relative index is looked up via a table 1904 * supplied by board setup code (see pwm_add_table()). 1905 * 1906 * Once a PWM chip has been found the specified PWM device will be requested 1907 * and is ready to be used. 1908 * 1909 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 1910 * error code on failure. 1911 */ 1912 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 1913 { 1914 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL; 1915 const char *dev_id = dev ? dev_name(dev) : NULL; 1916 struct pwm_device *pwm; 1917 struct pwm_chip *chip; 1918 struct device_link *dl; 1919 unsigned int best = 0; 1920 struct pwm_lookup *p, *chosen = NULL; 1921 unsigned int match; 1922 int err; 1923 1924 /* look up via DT first */ 1925 if (is_of_node(fwnode)) 1926 return of_pwm_get(dev, to_of_node(fwnode), con_id); 1927 1928 /* then lookup via ACPI */ 1929 if (is_acpi_node(fwnode)) { 1930 pwm = acpi_pwm_get(fwnode); 1931 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT) 1932 return pwm; 1933 } 1934 1935 /* 1936 * We look up the provider in the static table typically provided by 1937 * board setup code. We first try to lookup the consumer device by 1938 * name. If the consumer device was passed in as NULL or if no match 1939 * was found, we try to find the consumer by directly looking it up 1940 * by name. 1941 * 1942 * If a match is found, the provider PWM chip is looked up by name 1943 * and a PWM device is requested using the PWM device per-chip index. 1944 * 1945 * The lookup algorithm was shamelessly taken from the clock 1946 * framework: 1947 * 1948 * We do slightly fuzzy matching here: 1949 * An entry with a NULL ID is assumed to be a wildcard. 1950 * If an entry has a device ID, it must match 1951 * If an entry has a connection ID, it must match 1952 * Then we take the most specific entry - with the following order 1953 * of precedence: dev+con > dev only > con only. 1954 */ 1955 scoped_guard(mutex, &pwm_lookup_lock) 1956 list_for_each_entry(p, &pwm_lookup_list, list) { 1957 match = 0; 1958 1959 if (p->dev_id) { 1960 if (!dev_id || strcmp(p->dev_id, dev_id)) 1961 continue; 1962 1963 match += 2; 1964 } 1965 1966 if (p->con_id) { 1967 if (!con_id || strcmp(p->con_id, con_id)) 1968 continue; 1969 1970 match += 1; 1971 } 1972 1973 if (match > best) { 1974 chosen = p; 1975 1976 if (match != 3) 1977 best = match; 1978 else 1979 break; 1980 } 1981 } 1982 1983 if (!chosen) 1984 return ERR_PTR(-ENODEV); 1985 1986 chip = pwmchip_find_by_name(chosen->provider); 1987 1988 /* 1989 * If the lookup entry specifies a module, load the module and retry 1990 * the PWM chip lookup. This can be used to work around driver load 1991 * ordering issues if driver's can't be made to properly support the 1992 * deferred probe mechanism. 1993 */ 1994 if (!chip && chosen->module) { 1995 err = request_module(chosen->module); 1996 if (err == 0) 1997 chip = pwmchip_find_by_name(chosen->provider); 1998 } 1999 2000 if (!chip) 2001 return ERR_PTR(-EPROBE_DEFER); 2002 2003 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 2004 if (IS_ERR(pwm)) 2005 return pwm; 2006 2007 dl = pwm_device_link_add(dev, pwm); 2008 if (IS_ERR(dl)) { 2009 pwm_put(pwm); 2010 return ERR_CAST(dl); 2011 } 2012 2013 pwm->args.period = chosen->period; 2014 pwm->args.polarity = chosen->polarity; 2015 2016 return pwm; 2017 } 2018 EXPORT_SYMBOL_GPL(pwm_get); 2019 2020 static void __pwm_put(struct pwm_device *pwm) 2021 { 2022 struct pwm_chip *chip = pwm->chip; 2023 2024 /* 2025 * Trigger a warning if a consumer called pwm_put() twice. 2026 * If the chip isn't operational, PWMF_REQUESTED was already cleared in 2027 * pwmchip_remove(). So don't warn in this case. 2028 */ 2029 if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2030 pr_warn("PWM device already freed\n"); 2031 return; 2032 } 2033 2034 if (chip->operational && chip->ops->free) 2035 pwm->chip->ops->free(pwm->chip, pwm); 2036 2037 pwm->label = NULL; 2038 2039 put_device(&chip->dev); 2040 2041 module_put(chip->owner); 2042 } 2043 2044 /** 2045 * pwm_put() - release a PWM device 2046 * @pwm: PWM device 2047 */ 2048 void pwm_put(struct pwm_device *pwm) 2049 { 2050 if (!pwm) 2051 return; 2052 2053 guard(mutex)(&pwm_lock); 2054 2055 __pwm_put(pwm); 2056 } 2057 EXPORT_SYMBOL_GPL(pwm_put); 2058 2059 static void devm_pwm_release(void *pwm) 2060 { 2061 pwm_put(pwm); 2062 } 2063 2064 /** 2065 * devm_pwm_get() - resource managed pwm_get() 2066 * @dev: device for PWM consumer 2067 * @con_id: consumer name 2068 * 2069 * This function performs like pwm_get() but the acquired PWM device will 2070 * automatically be released on driver detach. 2071 * 2072 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2073 * error code on failure. 2074 */ 2075 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 2076 { 2077 struct pwm_device *pwm; 2078 int ret; 2079 2080 pwm = pwm_get(dev, con_id); 2081 if (IS_ERR(pwm)) 2082 return pwm; 2083 2084 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2085 if (ret) 2086 return ERR_PTR(ret); 2087 2088 return pwm; 2089 } 2090 EXPORT_SYMBOL_GPL(devm_pwm_get); 2091 2092 /** 2093 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node 2094 * @dev: device for PWM consumer 2095 * @fwnode: firmware node to get the PWM from 2096 * @con_id: consumer name 2097 * 2098 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and 2099 * acpi_pwm_get() for a detailed description. 2100 * 2101 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 2102 * error code on failure. 2103 */ 2104 struct pwm_device *devm_fwnode_pwm_get(struct device *dev, 2105 struct fwnode_handle *fwnode, 2106 const char *con_id) 2107 { 2108 struct pwm_device *pwm = ERR_PTR(-ENODEV); 2109 int ret; 2110 2111 if (is_of_node(fwnode)) 2112 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id); 2113 else if (is_acpi_node(fwnode)) 2114 pwm = acpi_pwm_get(fwnode); 2115 if (IS_ERR(pwm)) 2116 return pwm; 2117 2118 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm); 2119 if (ret) 2120 return ERR_PTR(ret); 2121 2122 return pwm; 2123 } 2124 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get); 2125 2126 struct pwm_cdev_data { 2127 struct pwm_chip *chip; 2128 struct pwm_device *pwm[]; 2129 }; 2130 2131 static int pwm_cdev_open(struct inode *inode, struct file *file) 2132 { 2133 struct pwm_chip *chip = container_of(inode->i_cdev, struct pwm_chip, cdev); 2134 struct pwm_cdev_data *cdata; 2135 2136 guard(mutex)(&pwm_lock); 2137 2138 if (!chip->operational) 2139 return -ENXIO; 2140 2141 cdata = kzalloc(struct_size(cdata, pwm, chip->npwm), GFP_KERNEL); 2142 if (!cdata) 2143 return -ENOMEM; 2144 2145 cdata->chip = chip; 2146 2147 file->private_data = cdata; 2148 2149 return nonseekable_open(inode, file); 2150 } 2151 2152 static int pwm_cdev_release(struct inode *inode, struct file *file) 2153 { 2154 struct pwm_cdev_data *cdata = file->private_data; 2155 unsigned int i; 2156 2157 for (i = 0; i < cdata->chip->npwm; ++i) { 2158 struct pwm_device *pwm = cdata->pwm[i]; 2159 2160 if (pwm) { 2161 const char *label = pwm->label; 2162 2163 pwm_put(cdata->pwm[i]); 2164 kfree(label); 2165 } 2166 } 2167 kfree(cdata); 2168 2169 return 0; 2170 } 2171 2172 static int pwm_cdev_request(struct pwm_cdev_data *cdata, unsigned int hwpwm) 2173 { 2174 struct pwm_chip *chip = cdata->chip; 2175 2176 if (hwpwm >= chip->npwm) 2177 return -EINVAL; 2178 2179 if (!cdata->pwm[hwpwm]) { 2180 struct pwm_device *pwm = &chip->pwms[hwpwm]; 2181 const char *label; 2182 int ret; 2183 2184 label = kasprintf(GFP_KERNEL, "pwm-cdev (pid=%d)", current->pid); 2185 if (!label) 2186 return -ENOMEM; 2187 2188 ret = pwm_device_request(pwm, label); 2189 if (ret < 0) { 2190 kfree(label); 2191 return ret; 2192 } 2193 2194 cdata->pwm[hwpwm] = pwm; 2195 } 2196 2197 return 0; 2198 } 2199 2200 static int pwm_cdev_free(struct pwm_cdev_data *cdata, unsigned int hwpwm) 2201 { 2202 struct pwm_chip *chip = cdata->chip; 2203 2204 if (hwpwm >= chip->npwm) 2205 return -EINVAL; 2206 2207 if (cdata->pwm[hwpwm]) { 2208 struct pwm_device *pwm = cdata->pwm[hwpwm]; 2209 const char *label = pwm->label; 2210 2211 __pwm_put(pwm); 2212 2213 kfree(label); 2214 2215 cdata->pwm[hwpwm] = NULL; 2216 } 2217 2218 return 0; 2219 } 2220 2221 static struct pwm_device *pwm_cdev_get_requested_pwm(struct pwm_cdev_data *cdata, 2222 u32 hwpwm) 2223 { 2224 struct pwm_chip *chip = cdata->chip; 2225 2226 if (hwpwm >= chip->npwm) 2227 return ERR_PTR(-EINVAL); 2228 2229 if (cdata->pwm[hwpwm]) 2230 return cdata->pwm[hwpwm]; 2231 2232 return ERR_PTR(-EINVAL); 2233 } 2234 2235 static long pwm_cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2236 { 2237 int ret = 0; 2238 struct pwm_cdev_data *cdata = file->private_data; 2239 struct pwm_chip *chip = cdata->chip; 2240 2241 guard(mutex)(&pwm_lock); 2242 2243 if (!chip->operational) 2244 return -ENODEV; 2245 2246 switch (cmd) { 2247 case PWM_IOCTL_REQUEST: 2248 { 2249 unsigned int hwpwm = arg; 2250 2251 return pwm_cdev_request(cdata, hwpwm); 2252 } 2253 2254 case PWM_IOCTL_FREE: 2255 { 2256 unsigned int hwpwm = arg; 2257 2258 return pwm_cdev_free(cdata, hwpwm); 2259 } 2260 2261 case PWM_IOCTL_ROUNDWF: 2262 { 2263 struct pwmchip_waveform cwf; 2264 struct pwm_waveform wf; 2265 struct pwm_device *pwm; 2266 2267 ret = copy_from_user(&cwf, 2268 (struct pwmchip_waveform __user *)arg, 2269 sizeof(cwf)); 2270 if (ret) 2271 return -EFAULT; 2272 2273 if (cwf.__pad != 0) 2274 return -EINVAL; 2275 2276 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2277 if (IS_ERR(pwm)) 2278 return PTR_ERR(pwm); 2279 2280 wf = (struct pwm_waveform) { 2281 .period_length_ns = cwf.period_length_ns, 2282 .duty_length_ns = cwf.duty_length_ns, 2283 .duty_offset_ns = cwf.duty_offset_ns, 2284 }; 2285 2286 ret = pwm_round_waveform_might_sleep(pwm, &wf); 2287 if (ret < 0) 2288 return ret; 2289 2290 cwf = (struct pwmchip_waveform) { 2291 .hwpwm = cwf.hwpwm, 2292 .period_length_ns = wf.period_length_ns, 2293 .duty_length_ns = wf.duty_length_ns, 2294 .duty_offset_ns = wf.duty_offset_ns, 2295 }; 2296 2297 return copy_to_user((struct pwmchip_waveform __user *)arg, 2298 &cwf, sizeof(cwf)); 2299 } 2300 2301 case PWM_IOCTL_GETWF: 2302 { 2303 struct pwmchip_waveform cwf; 2304 struct pwm_waveform wf; 2305 struct pwm_device *pwm; 2306 2307 ret = copy_from_user(&cwf, 2308 (struct pwmchip_waveform __user *)arg, 2309 sizeof(cwf)); 2310 if (ret) 2311 return -EFAULT; 2312 2313 if (cwf.__pad != 0) 2314 return -EINVAL; 2315 2316 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2317 if (IS_ERR(pwm)) 2318 return PTR_ERR(pwm); 2319 2320 ret = pwm_get_waveform_might_sleep(pwm, &wf); 2321 if (ret) 2322 return ret; 2323 2324 cwf = (struct pwmchip_waveform) { 2325 .hwpwm = cwf.hwpwm, 2326 .period_length_ns = wf.period_length_ns, 2327 .duty_length_ns = wf.duty_length_ns, 2328 .duty_offset_ns = wf.duty_offset_ns, 2329 }; 2330 2331 return copy_to_user((struct pwmchip_waveform __user *)arg, 2332 &cwf, sizeof(cwf)); 2333 } 2334 2335 case PWM_IOCTL_SETROUNDEDWF: 2336 case PWM_IOCTL_SETEXACTWF: 2337 { 2338 struct pwmchip_waveform cwf; 2339 struct pwm_waveform wf; 2340 struct pwm_device *pwm; 2341 2342 ret = copy_from_user(&cwf, 2343 (struct pwmchip_waveform __user *)arg, 2344 sizeof(cwf)); 2345 if (ret) 2346 return -EFAULT; 2347 2348 if (cwf.__pad != 0) 2349 return -EINVAL; 2350 2351 wf = (struct pwm_waveform){ 2352 .period_length_ns = cwf.period_length_ns, 2353 .duty_length_ns = cwf.duty_length_ns, 2354 .duty_offset_ns = cwf.duty_offset_ns, 2355 }; 2356 2357 if (!pwm_wf_valid(&wf)) 2358 return -EINVAL; 2359 2360 pwm = pwm_cdev_get_requested_pwm(cdata, cwf.hwpwm); 2361 if (IS_ERR(pwm)) 2362 return PTR_ERR(pwm); 2363 2364 ret = pwm_set_waveform_might_sleep(pwm, &wf, 2365 cmd == PWM_IOCTL_SETEXACTWF); 2366 2367 /* 2368 * If userspace cares about rounding deviations it has 2369 * to check the values anyhow, so simplify handling for 2370 * them and don't signal uprounding. This matches the 2371 * behaviour of PWM_IOCTL_ROUNDWF which also returns 0 2372 * in that case. 2373 */ 2374 if (ret == 1) 2375 ret = 0; 2376 2377 return ret; 2378 } 2379 2380 default: 2381 return -ENOTTY; 2382 } 2383 } 2384 2385 static const struct file_operations pwm_cdev_fileops = { 2386 .open = pwm_cdev_open, 2387 .release = pwm_cdev_release, 2388 .owner = THIS_MODULE, 2389 .unlocked_ioctl = pwm_cdev_ioctl, 2390 }; 2391 2392 static dev_t pwm_devt; 2393 2394 static int pwm_gpio_request(struct gpio_chip *gc, unsigned int offset) 2395 { 2396 struct pwm_chip *chip = gpiochip_get_data(gc); 2397 struct pwm_device *pwm; 2398 2399 pwm = pwm_request_from_chip(chip, offset, "pwm-gpio"); 2400 if (IS_ERR(pwm)) 2401 return PTR_ERR(pwm); 2402 2403 return 0; 2404 } 2405 2406 static void pwm_gpio_free(struct gpio_chip *gc, unsigned int offset) 2407 { 2408 struct pwm_chip *chip = gpiochip_get_data(gc); 2409 2410 pwm_put(&chip->pwms[offset]); 2411 } 2412 2413 static int pwm_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 2414 { 2415 return GPIO_LINE_DIRECTION_OUT; 2416 } 2417 2418 static int pwm_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 2419 { 2420 struct pwm_chip *chip = gpiochip_get_data(gc); 2421 struct pwm_device *pwm = &chip->pwms[offset]; 2422 int ret; 2423 struct pwm_waveform wf = { 2424 .period_length_ns = 1, 2425 }; 2426 2427 ret = pwm_round_waveform_might_sleep(pwm, &wf); 2428 if (ret < 0) 2429 return ret; 2430 2431 if (value) 2432 wf.duty_length_ns = wf.period_length_ns; 2433 else 2434 wf.duty_length_ns = 0; 2435 2436 return pwm_set_waveform_might_sleep(pwm, &wf, true); 2437 } 2438 2439 /** 2440 * __pwmchip_add() - register a new PWM chip 2441 * @chip: the PWM chip to add 2442 * @owner: reference to the module providing the chip. 2443 * 2444 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the 2445 * pwmchip_add wrapper to do this right. 2446 * 2447 * Returns: 0 on success or a negative error code on failure. 2448 */ 2449 int __pwmchip_add(struct pwm_chip *chip, struct module *owner) 2450 { 2451 int ret; 2452 2453 if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm) 2454 return -EINVAL; 2455 2456 /* 2457 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc, 2458 * otherwise the embedded struct device might disappear too early 2459 * resulting in memory corruption. 2460 * Catch drivers that were not converted appropriately. 2461 */ 2462 if (!chip->uses_pwmchip_alloc) 2463 return -EINVAL; 2464 2465 if (!pwm_ops_check(chip)) 2466 return -EINVAL; 2467 2468 chip->owner = owner; 2469 2470 if (chip->atomic) 2471 spin_lock_init(&chip->atomic_lock); 2472 else 2473 mutex_init(&chip->nonatomic_lock); 2474 2475 guard(mutex)(&pwm_lock); 2476 2477 ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL); 2478 if (ret < 0) 2479 return ret; 2480 2481 chip->id = ret; 2482 2483 dev_set_name(&chip->dev, "pwmchip%u", chip->id); 2484 2485 if (IS_ENABLED(CONFIG_OF)) 2486 of_pwmchip_add(chip); 2487 2488 scoped_guard(pwmchip, chip) 2489 chip->operational = true; 2490 2491 if (chip->ops->write_waveform) { 2492 if (chip->id < PWM_MINOR_COUNT) 2493 chip->dev.devt = MKDEV(MAJOR(pwm_devt), chip->id); 2494 else 2495 dev_warn(&chip->dev, "chip id too high to create a chardev\n"); 2496 } 2497 2498 cdev_init(&chip->cdev, &pwm_cdev_fileops); 2499 chip->cdev.owner = owner; 2500 2501 ret = cdev_device_add(&chip->cdev, &chip->dev); 2502 if (ret) 2503 goto err_device_add; 2504 2505 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) { 2506 struct device *parent = pwmchip_parent(chip); 2507 2508 chip->gpio = (typeof(chip->gpio)){ 2509 .label = dev_name(parent), 2510 .parent = parent, 2511 .request = pwm_gpio_request, 2512 .free = pwm_gpio_free, 2513 .get_direction = pwm_gpio_get_direction, 2514 .set = pwm_gpio_set, 2515 .base = -1, 2516 .ngpio = chip->npwm, 2517 .can_sleep = true, 2518 }; 2519 2520 ret = gpiochip_add_data(&chip->gpio, chip); 2521 if (ret) 2522 goto err_gpiochip_add; 2523 } 2524 2525 return 0; 2526 2527 err_gpiochip_add: 2528 2529 cdev_device_del(&chip->cdev, &chip->dev); 2530 err_device_add: 2531 2532 scoped_guard(pwmchip, chip) 2533 chip->operational = false; 2534 2535 if (IS_ENABLED(CONFIG_OF)) 2536 of_pwmchip_remove(chip); 2537 2538 idr_remove(&pwm_chips, chip->id); 2539 2540 return ret; 2541 } 2542 EXPORT_SYMBOL_GPL(__pwmchip_add); 2543 2544 /** 2545 * pwmchip_remove() - remove a PWM chip 2546 * @chip: the PWM chip to remove 2547 * 2548 * Removes a PWM chip. 2549 */ 2550 void pwmchip_remove(struct pwm_chip *chip) 2551 { 2552 if (IS_ENABLED(CONFIG_PWM_PROVIDE_GPIO) && chip->ops->write_waveform) 2553 gpiochip_remove(&chip->gpio); 2554 2555 pwmchip_sysfs_unexport(chip); 2556 2557 scoped_guard(mutex, &pwm_lock) { 2558 unsigned int i; 2559 2560 scoped_guard(pwmchip, chip) 2561 chip->operational = false; 2562 2563 for (i = 0; i < chip->npwm; ++i) { 2564 struct pwm_device *pwm = &chip->pwms[i]; 2565 2566 if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 2567 dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i); 2568 if (pwm->chip->ops->free) 2569 pwm->chip->ops->free(pwm->chip, pwm); 2570 } 2571 } 2572 2573 if (IS_ENABLED(CONFIG_OF)) 2574 of_pwmchip_remove(chip); 2575 2576 idr_remove(&pwm_chips, chip->id); 2577 } 2578 2579 cdev_device_del(&chip->cdev, &chip->dev); 2580 } 2581 EXPORT_SYMBOL_GPL(pwmchip_remove); 2582 2583 static void devm_pwmchip_remove(void *data) 2584 { 2585 struct pwm_chip *chip = data; 2586 2587 pwmchip_remove(chip); 2588 } 2589 2590 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner) 2591 { 2592 int ret; 2593 2594 ret = __pwmchip_add(chip, owner); 2595 if (ret) 2596 return ret; 2597 2598 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip); 2599 } 2600 EXPORT_SYMBOL_GPL(__devm_pwmchip_add); 2601 2602 /** 2603 * pwm_add_table() - register PWM device consumers 2604 * @table: array of consumers to register 2605 * @num: number of consumers in table 2606 */ 2607 void pwm_add_table(struct pwm_lookup *table, size_t num) 2608 { 2609 guard(mutex)(&pwm_lookup_lock); 2610 2611 while (num--) { 2612 list_add_tail(&table->list, &pwm_lookup_list); 2613 table++; 2614 } 2615 } 2616 2617 /** 2618 * pwm_remove_table() - unregister PWM device consumers 2619 * @table: array of consumers to unregister 2620 * @num: number of consumers in table 2621 */ 2622 void pwm_remove_table(struct pwm_lookup *table, size_t num) 2623 { 2624 guard(mutex)(&pwm_lookup_lock); 2625 2626 while (num--) { 2627 list_del(&table->list); 2628 table++; 2629 } 2630 } 2631 2632 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 2633 { 2634 unsigned int i; 2635 2636 for (i = 0; i < chip->npwm; i++) { 2637 struct pwm_device *pwm = &chip->pwms[i]; 2638 struct pwm_state state, hwstate; 2639 2640 pwm_get_state(pwm, &state); 2641 pwm_get_state_hw(pwm, &hwstate); 2642 2643 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 2644 2645 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 2646 seq_puts(s, " requested"); 2647 2648 seq_puts(s, "\n"); 2649 2650 seq_printf(s, " requested configuration: %3sabled, %llu/%llu ns, %s polarity", 2651 state.enabled ? "en" : "dis", state.duty_cycle, state.period, 2652 state.polarity ? "inverse" : "normal"); 2653 if (state.usage_power) 2654 seq_puts(s, ", usage_power"); 2655 seq_puts(s, "\n"); 2656 2657 seq_printf(s, " actual configuration: %3sabled, %llu/%llu ns, %s polarity", 2658 hwstate.enabled ? "en" : "dis", hwstate.duty_cycle, hwstate.period, 2659 hwstate.polarity ? "inverse" : "normal"); 2660 2661 seq_puts(s, "\n"); 2662 } 2663 } 2664 2665 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 2666 { 2667 unsigned long id = *pos; 2668 void *ret; 2669 2670 mutex_lock(&pwm_lock); 2671 s->private = ""; 2672 2673 ret = idr_get_next_ul(&pwm_chips, &id); 2674 *pos = id; 2675 return ret; 2676 } 2677 2678 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 2679 { 2680 unsigned long id = *pos + 1; 2681 void *ret; 2682 2683 s->private = "\n"; 2684 2685 ret = idr_get_next_ul(&pwm_chips, &id); 2686 *pos = id; 2687 return ret; 2688 } 2689 2690 static void pwm_seq_stop(struct seq_file *s, void *v) 2691 { 2692 mutex_unlock(&pwm_lock); 2693 } 2694 2695 static int pwm_seq_show(struct seq_file *s, void *v) 2696 { 2697 struct pwm_chip *chip = v; 2698 2699 seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n", 2700 (char *)s->private, chip->id, 2701 pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus", 2702 dev_name(pwmchip_parent(chip)), chip->npwm, 2703 (chip->npwm != 1) ? "s" : ""); 2704 2705 pwm_dbg_show(chip, s); 2706 2707 return 0; 2708 } 2709 2710 static const struct seq_operations pwm_debugfs_sops = { 2711 .start = pwm_seq_start, 2712 .next = pwm_seq_next, 2713 .stop = pwm_seq_stop, 2714 .show = pwm_seq_show, 2715 }; 2716 2717 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs); 2718 2719 static int __init pwm_init(void) 2720 { 2721 int ret; 2722 2723 ret = alloc_chrdev_region(&pwm_devt, 0, PWM_MINOR_COUNT, "pwm"); 2724 if (ret) { 2725 pr_err("Failed to initialize chrdev region for PWM usage\n"); 2726 return ret; 2727 } 2728 2729 ret = class_register(&pwm_class); 2730 if (ret) { 2731 pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret)); 2732 unregister_chrdev_region(pwm_devt, 256); 2733 return ret; 2734 } 2735 2736 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2737 debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops); 2738 2739 return 0; 2740 } 2741 subsys_initcall(pwm_init); 2742