1 /* 2 * Generic pwmlib implementation 3 * 4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de> 5 * Copyright (C) 2011-2012 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; see the file COPYING. If not, write to 19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/pwm.h> 24 #include <linux/radix-tree.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/err.h> 28 #include <linux/slab.h> 29 #include <linux/device.h> 30 #include <linux/debugfs.h> 31 #include <linux/seq_file.h> 32 33 #include <dt-bindings/pwm/pwm.h> 34 35 #define MAX_PWMS 1024 36 37 static DEFINE_MUTEX(pwm_lookup_lock); 38 static LIST_HEAD(pwm_lookup_list); 39 static DEFINE_MUTEX(pwm_lock); 40 static LIST_HEAD(pwm_chips); 41 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS); 42 static RADIX_TREE(pwm_tree, GFP_KERNEL); 43 44 static struct pwm_device *pwm_to_device(unsigned int pwm) 45 { 46 return radix_tree_lookup(&pwm_tree, pwm); 47 } 48 49 static int alloc_pwms(int pwm, unsigned int count) 50 { 51 unsigned int from = 0; 52 unsigned int start; 53 54 if (pwm >= MAX_PWMS) 55 return -EINVAL; 56 57 if (pwm >= 0) 58 from = pwm; 59 60 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from, 61 count, 0); 62 63 if (pwm >= 0 && start != pwm) 64 return -EEXIST; 65 66 if (start + count > MAX_PWMS) 67 return -ENOSPC; 68 69 return start; 70 } 71 72 static void free_pwms(struct pwm_chip *chip) 73 { 74 unsigned int i; 75 76 for (i = 0; i < chip->npwm; i++) { 77 struct pwm_device *pwm = &chip->pwms[i]; 78 79 radix_tree_delete(&pwm_tree, pwm->pwm); 80 } 81 82 bitmap_clear(allocated_pwms, chip->base, chip->npwm); 83 84 kfree(chip->pwms); 85 chip->pwms = NULL; 86 } 87 88 static struct pwm_chip *pwmchip_find_by_name(const char *name) 89 { 90 struct pwm_chip *chip; 91 92 if (!name) 93 return NULL; 94 95 mutex_lock(&pwm_lock); 96 97 list_for_each_entry(chip, &pwm_chips, list) { 98 const char *chip_name = dev_name(chip->dev); 99 100 if (chip_name && strcmp(chip_name, name) == 0) { 101 mutex_unlock(&pwm_lock); 102 return chip; 103 } 104 } 105 106 mutex_unlock(&pwm_lock); 107 108 return NULL; 109 } 110 111 static int pwm_device_request(struct pwm_device *pwm, const char *label) 112 { 113 int err; 114 115 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 116 return -EBUSY; 117 118 if (!try_module_get(pwm->chip->ops->owner)) 119 return -ENODEV; 120 121 if (pwm->chip->ops->request) { 122 err = pwm->chip->ops->request(pwm->chip, pwm); 123 if (err) { 124 module_put(pwm->chip->ops->owner); 125 return err; 126 } 127 } 128 129 set_bit(PWMF_REQUESTED, &pwm->flags); 130 pwm->label = label; 131 132 return 0; 133 } 134 135 struct pwm_device * 136 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args) 137 { 138 struct pwm_device *pwm; 139 140 /* check, whether the driver supports a third cell for flags */ 141 if (pc->of_pwm_n_cells < 3) 142 return ERR_PTR(-EINVAL); 143 144 /* flags in the third cell are optional */ 145 if (args->args_count < 2) 146 return ERR_PTR(-EINVAL); 147 148 if (args->args[0] >= pc->npwm) 149 return ERR_PTR(-EINVAL); 150 151 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 152 if (IS_ERR(pwm)) 153 return pwm; 154 155 pwm->args.period = args->args[1]; 156 pwm->args.polarity = PWM_POLARITY_NORMAL; 157 158 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED) 159 pwm->args.polarity = PWM_POLARITY_INVERSED; 160 161 return pwm; 162 } 163 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags); 164 165 static struct pwm_device * 166 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args) 167 { 168 struct pwm_device *pwm; 169 170 /* sanity check driver support */ 171 if (pc->of_pwm_n_cells < 2) 172 return ERR_PTR(-EINVAL); 173 174 /* all cells are required */ 175 if (args->args_count != pc->of_pwm_n_cells) 176 return ERR_PTR(-EINVAL); 177 178 if (args->args[0] >= pc->npwm) 179 return ERR_PTR(-EINVAL); 180 181 pwm = pwm_request_from_chip(pc, args->args[0], NULL); 182 if (IS_ERR(pwm)) 183 return pwm; 184 185 pwm->args.period = args->args[1]; 186 187 return pwm; 188 } 189 190 static void of_pwmchip_add(struct pwm_chip *chip) 191 { 192 if (!chip->dev || !chip->dev->of_node) 193 return; 194 195 if (!chip->of_xlate) { 196 chip->of_xlate = of_pwm_simple_xlate; 197 chip->of_pwm_n_cells = 2; 198 } 199 200 of_node_get(chip->dev->of_node); 201 } 202 203 static void of_pwmchip_remove(struct pwm_chip *chip) 204 { 205 if (chip->dev) 206 of_node_put(chip->dev->of_node); 207 } 208 209 /** 210 * pwm_set_chip_data() - set private chip data for a PWM 211 * @pwm: PWM device 212 * @data: pointer to chip-specific data 213 * 214 * Returns: 0 on success or a negative error code on failure. 215 */ 216 int pwm_set_chip_data(struct pwm_device *pwm, void *data) 217 { 218 if (!pwm) 219 return -EINVAL; 220 221 pwm->chip_data = data; 222 223 return 0; 224 } 225 EXPORT_SYMBOL_GPL(pwm_set_chip_data); 226 227 /** 228 * pwm_get_chip_data() - get private chip data for a PWM 229 * @pwm: PWM device 230 * 231 * Returns: A pointer to the chip-private data for the PWM device. 232 */ 233 void *pwm_get_chip_data(struct pwm_device *pwm) 234 { 235 return pwm ? pwm->chip_data : NULL; 236 } 237 EXPORT_SYMBOL_GPL(pwm_get_chip_data); 238 239 static bool pwm_ops_check(const struct pwm_ops *ops) 240 { 241 /* driver supports legacy, non-atomic operation */ 242 if (ops->config && ops->enable && ops->disable) 243 return true; 244 245 /* driver supports atomic operation */ 246 if (ops->apply) 247 return true; 248 249 return false; 250 } 251 252 /** 253 * pwmchip_add_with_polarity() - register a new PWM chip 254 * @chip: the PWM chip to add 255 * @polarity: initial polarity of PWM channels 256 * 257 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 258 * will be used. The initial polarity for all channels is specified by the 259 * @polarity parameter. 260 * 261 * Returns: 0 on success or a negative error code on failure. 262 */ 263 int pwmchip_add_with_polarity(struct pwm_chip *chip, 264 enum pwm_polarity polarity) 265 { 266 struct pwm_device *pwm; 267 unsigned int i; 268 int ret; 269 270 if (!chip || !chip->dev || !chip->ops || !chip->npwm) 271 return -EINVAL; 272 273 if (!pwm_ops_check(chip->ops)) 274 return -EINVAL; 275 276 mutex_lock(&pwm_lock); 277 278 ret = alloc_pwms(chip->base, chip->npwm); 279 if (ret < 0) 280 goto out; 281 282 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL); 283 if (!chip->pwms) { 284 ret = -ENOMEM; 285 goto out; 286 } 287 288 chip->base = ret; 289 290 for (i = 0; i < chip->npwm; i++) { 291 pwm = &chip->pwms[i]; 292 293 pwm->chip = chip; 294 pwm->pwm = chip->base + i; 295 pwm->hwpwm = i; 296 pwm->state.polarity = polarity; 297 298 if (chip->ops->get_state) 299 chip->ops->get_state(chip, pwm, &pwm->state); 300 301 radix_tree_insert(&pwm_tree, pwm->pwm, pwm); 302 } 303 304 bitmap_set(allocated_pwms, chip->base, chip->npwm); 305 306 INIT_LIST_HEAD(&chip->list); 307 list_add(&chip->list, &pwm_chips); 308 309 ret = 0; 310 311 if (IS_ENABLED(CONFIG_OF)) 312 of_pwmchip_add(chip); 313 314 pwmchip_sysfs_export(chip); 315 316 out: 317 mutex_unlock(&pwm_lock); 318 return ret; 319 } 320 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity); 321 322 /** 323 * pwmchip_add() - register a new PWM chip 324 * @chip: the PWM chip to add 325 * 326 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base 327 * will be used. The initial polarity for all channels is normal. 328 * 329 * Returns: 0 on success or a negative error code on failure. 330 */ 331 int pwmchip_add(struct pwm_chip *chip) 332 { 333 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL); 334 } 335 EXPORT_SYMBOL_GPL(pwmchip_add); 336 337 /** 338 * pwmchip_remove() - remove a PWM chip 339 * @chip: the PWM chip to remove 340 * 341 * Removes a PWM chip. This function may return busy if the PWM chip provides 342 * a PWM device that is still requested. 343 * 344 * Returns: 0 on success or a negative error code on failure. 345 */ 346 int pwmchip_remove(struct pwm_chip *chip) 347 { 348 unsigned int i; 349 int ret = 0; 350 351 pwmchip_sysfs_unexport_children(chip); 352 353 mutex_lock(&pwm_lock); 354 355 for (i = 0; i < chip->npwm; i++) { 356 struct pwm_device *pwm = &chip->pwms[i]; 357 358 if (test_bit(PWMF_REQUESTED, &pwm->flags)) { 359 ret = -EBUSY; 360 goto out; 361 } 362 } 363 364 list_del_init(&chip->list); 365 366 if (IS_ENABLED(CONFIG_OF)) 367 of_pwmchip_remove(chip); 368 369 free_pwms(chip); 370 371 pwmchip_sysfs_unexport(chip); 372 373 out: 374 mutex_unlock(&pwm_lock); 375 return ret; 376 } 377 EXPORT_SYMBOL_GPL(pwmchip_remove); 378 379 /** 380 * pwm_request() - request a PWM device 381 * @pwm: global PWM device index 382 * @label: PWM device label 383 * 384 * This function is deprecated, use pwm_get() instead. 385 * 386 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on 387 * failure. 388 */ 389 struct pwm_device *pwm_request(int pwm, const char *label) 390 { 391 struct pwm_device *dev; 392 int err; 393 394 if (pwm < 0 || pwm >= MAX_PWMS) 395 return ERR_PTR(-EINVAL); 396 397 mutex_lock(&pwm_lock); 398 399 dev = pwm_to_device(pwm); 400 if (!dev) { 401 dev = ERR_PTR(-EPROBE_DEFER); 402 goto out; 403 } 404 405 err = pwm_device_request(dev, label); 406 if (err < 0) 407 dev = ERR_PTR(err); 408 409 out: 410 mutex_unlock(&pwm_lock); 411 412 return dev; 413 } 414 EXPORT_SYMBOL_GPL(pwm_request); 415 416 /** 417 * pwm_request_from_chip() - request a PWM device relative to a PWM chip 418 * @chip: PWM chip 419 * @index: per-chip index of the PWM to request 420 * @label: a literal description string of this PWM 421 * 422 * Returns: A pointer to the PWM device at the given index of the given PWM 423 * chip. A negative error code is returned if the index is not valid for the 424 * specified PWM chip or if the PWM device cannot be requested. 425 */ 426 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip, 427 unsigned int index, 428 const char *label) 429 { 430 struct pwm_device *pwm; 431 int err; 432 433 if (!chip || index >= chip->npwm) 434 return ERR_PTR(-EINVAL); 435 436 mutex_lock(&pwm_lock); 437 pwm = &chip->pwms[index]; 438 439 err = pwm_device_request(pwm, label); 440 if (err < 0) 441 pwm = ERR_PTR(err); 442 443 mutex_unlock(&pwm_lock); 444 return pwm; 445 } 446 EXPORT_SYMBOL_GPL(pwm_request_from_chip); 447 448 /** 449 * pwm_free() - free a PWM device 450 * @pwm: PWM device 451 * 452 * This function is deprecated, use pwm_put() instead. 453 */ 454 void pwm_free(struct pwm_device *pwm) 455 { 456 pwm_put(pwm); 457 } 458 EXPORT_SYMBOL_GPL(pwm_free); 459 460 /** 461 * pwm_apply_state() - atomically apply a new state to a PWM device 462 * @pwm: PWM device 463 * @state: new state to apply. This can be adjusted by the PWM driver 464 * if the requested config is not achievable, for example, 465 * ->duty_cycle and ->period might be approximated. 466 */ 467 int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state) 468 { 469 int err; 470 471 if (!pwm || !state || !state->period || 472 state->duty_cycle > state->period) 473 return -EINVAL; 474 475 if (state->period == pwm->state.period && 476 state->duty_cycle == pwm->state.duty_cycle && 477 state->polarity == pwm->state.polarity && 478 state->enabled == pwm->state.enabled) 479 return 0; 480 481 if (pwm->chip->ops->apply) { 482 err = pwm->chip->ops->apply(pwm->chip, pwm, state); 483 if (err) 484 return err; 485 486 pwm->state = *state; 487 } else { 488 /* 489 * FIXME: restore the initial state in case of error. 490 */ 491 if (state->polarity != pwm->state.polarity) { 492 if (!pwm->chip->ops->set_polarity) 493 return -ENOTSUPP; 494 495 /* 496 * Changing the polarity of a running PWM is 497 * only allowed when the PWM driver implements 498 * ->apply(). 499 */ 500 if (pwm->state.enabled) { 501 pwm->chip->ops->disable(pwm->chip, pwm); 502 pwm->state.enabled = false; 503 } 504 505 err = pwm->chip->ops->set_polarity(pwm->chip, pwm, 506 state->polarity); 507 if (err) 508 return err; 509 510 pwm->state.polarity = state->polarity; 511 } 512 513 if (state->period != pwm->state.period || 514 state->duty_cycle != pwm->state.duty_cycle) { 515 err = pwm->chip->ops->config(pwm->chip, pwm, 516 state->duty_cycle, 517 state->period); 518 if (err) 519 return err; 520 521 pwm->state.duty_cycle = state->duty_cycle; 522 pwm->state.period = state->period; 523 } 524 525 if (state->enabled != pwm->state.enabled) { 526 if (state->enabled) { 527 err = pwm->chip->ops->enable(pwm->chip, pwm); 528 if (err) 529 return err; 530 } else { 531 pwm->chip->ops->disable(pwm->chip, pwm); 532 } 533 534 pwm->state.enabled = state->enabled; 535 } 536 } 537 538 return 0; 539 } 540 EXPORT_SYMBOL_GPL(pwm_apply_state); 541 542 /** 543 * pwm_capture() - capture and report a PWM signal 544 * @pwm: PWM device 545 * @result: structure to fill with capture result 546 * @timeout: time to wait, in milliseconds, before giving up on capture 547 * 548 * Returns: 0 on success or a negative error code on failure. 549 */ 550 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result, 551 unsigned long timeout) 552 { 553 int err; 554 555 if (!pwm || !pwm->chip->ops) 556 return -EINVAL; 557 558 if (!pwm->chip->ops->capture) 559 return -ENOSYS; 560 561 mutex_lock(&pwm_lock); 562 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout); 563 mutex_unlock(&pwm_lock); 564 565 return err; 566 } 567 EXPORT_SYMBOL_GPL(pwm_capture); 568 569 /** 570 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments 571 * @pwm: PWM device 572 * 573 * This function will adjust the PWM config to the PWM arguments provided 574 * by the DT or PWM lookup table. This is particularly useful to adapt 575 * the bootloader config to the Linux one. 576 */ 577 int pwm_adjust_config(struct pwm_device *pwm) 578 { 579 struct pwm_state state; 580 struct pwm_args pargs; 581 582 pwm_get_args(pwm, &pargs); 583 pwm_get_state(pwm, &state); 584 585 /* 586 * If the current period is zero it means that either the PWM driver 587 * does not support initial state retrieval or the PWM has not yet 588 * been configured. 589 * 590 * In either case, we setup the new period and polarity, and assign a 591 * duty cycle of 0. 592 */ 593 if (!state.period) { 594 state.duty_cycle = 0; 595 state.period = pargs.period; 596 state.polarity = pargs.polarity; 597 598 return pwm_apply_state(pwm, &state); 599 } 600 601 /* 602 * Adjust the PWM duty cycle/period based on the period value provided 603 * in PWM args. 604 */ 605 if (pargs.period != state.period) { 606 u64 dutycycle = (u64)state.duty_cycle * pargs.period; 607 608 do_div(dutycycle, state.period); 609 state.duty_cycle = dutycycle; 610 state.period = pargs.period; 611 } 612 613 /* 614 * If the polarity changed, we should also change the duty cycle. 615 */ 616 if (pargs.polarity != state.polarity) { 617 state.polarity = pargs.polarity; 618 state.duty_cycle = state.period - state.duty_cycle; 619 } 620 621 return pwm_apply_state(pwm, &state); 622 } 623 EXPORT_SYMBOL_GPL(pwm_adjust_config); 624 625 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np) 626 { 627 struct pwm_chip *chip; 628 629 mutex_lock(&pwm_lock); 630 631 list_for_each_entry(chip, &pwm_chips, list) 632 if (chip->dev && chip->dev->of_node == np) { 633 mutex_unlock(&pwm_lock); 634 return chip; 635 } 636 637 mutex_unlock(&pwm_lock); 638 639 return ERR_PTR(-EPROBE_DEFER); 640 } 641 642 /** 643 * of_pwm_get() - request a PWM via the PWM framework 644 * @np: device node to get the PWM from 645 * @con_id: consumer name 646 * 647 * Returns the PWM device parsed from the phandle and index specified in the 648 * "pwms" property of a device tree node or a negative error-code on failure. 649 * Values parsed from the device tree are stored in the returned PWM device 650 * object. 651 * 652 * If con_id is NULL, the first PWM device listed in the "pwms" property will 653 * be requested. Otherwise the "pwm-names" property is used to do a reverse 654 * lookup of the PWM index. This also means that the "pwm-names" property 655 * becomes mandatory for devices that look up the PWM device via the con_id 656 * parameter. 657 * 658 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 659 * error code on failure. 660 */ 661 struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id) 662 { 663 struct pwm_device *pwm = NULL; 664 struct of_phandle_args args; 665 struct pwm_chip *pc; 666 int index = 0; 667 int err; 668 669 if (con_id) { 670 index = of_property_match_string(np, "pwm-names", con_id); 671 if (index < 0) 672 return ERR_PTR(index); 673 } 674 675 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index, 676 &args); 677 if (err) { 678 pr_err("%s(): can't parse \"pwms\" property\n", __func__); 679 return ERR_PTR(err); 680 } 681 682 pc = of_node_to_pwmchip(args.np); 683 if (IS_ERR(pc)) { 684 if (PTR_ERR(pc) != -EPROBE_DEFER) 685 pr_err("%s(): PWM chip not found\n", __func__); 686 687 pwm = ERR_CAST(pc); 688 goto put; 689 } 690 691 pwm = pc->of_xlate(pc, &args); 692 if (IS_ERR(pwm)) 693 goto put; 694 695 /* 696 * If a consumer name was not given, try to look it up from the 697 * "pwm-names" property if it exists. Otherwise use the name of 698 * the user device node. 699 */ 700 if (!con_id) { 701 err = of_property_read_string_index(np, "pwm-names", index, 702 &con_id); 703 if (err < 0) 704 con_id = np->name; 705 } 706 707 pwm->label = con_id; 708 709 put: 710 of_node_put(args.np); 711 712 return pwm; 713 } 714 EXPORT_SYMBOL_GPL(of_pwm_get); 715 716 /** 717 * pwm_add_table() - register PWM device consumers 718 * @table: array of consumers to register 719 * @num: number of consumers in table 720 */ 721 void pwm_add_table(struct pwm_lookup *table, size_t num) 722 { 723 mutex_lock(&pwm_lookup_lock); 724 725 while (num--) { 726 list_add_tail(&table->list, &pwm_lookup_list); 727 table++; 728 } 729 730 mutex_unlock(&pwm_lookup_lock); 731 } 732 733 /** 734 * pwm_remove_table() - unregister PWM device consumers 735 * @table: array of consumers to unregister 736 * @num: number of consumers in table 737 */ 738 void pwm_remove_table(struct pwm_lookup *table, size_t num) 739 { 740 mutex_lock(&pwm_lookup_lock); 741 742 while (num--) { 743 list_del(&table->list); 744 table++; 745 } 746 747 mutex_unlock(&pwm_lookup_lock); 748 } 749 750 /** 751 * pwm_get() - look up and request a PWM device 752 * @dev: device for PWM consumer 753 * @con_id: consumer name 754 * 755 * Lookup is first attempted using DT. If the device was not instantiated from 756 * a device tree, a PWM chip and a relative index is looked up via a table 757 * supplied by board setup code (see pwm_add_table()). 758 * 759 * Once a PWM chip has been found the specified PWM device will be requested 760 * and is ready to be used. 761 * 762 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 763 * error code on failure. 764 */ 765 struct pwm_device *pwm_get(struct device *dev, const char *con_id) 766 { 767 const char *dev_id = dev ? dev_name(dev) : NULL; 768 struct pwm_device *pwm; 769 struct pwm_chip *chip; 770 unsigned int best = 0; 771 struct pwm_lookup *p, *chosen = NULL; 772 unsigned int match; 773 int err; 774 775 /* look up via DT first */ 776 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node) 777 return of_pwm_get(dev->of_node, con_id); 778 779 /* 780 * We look up the provider in the static table typically provided by 781 * board setup code. We first try to lookup the consumer device by 782 * name. If the consumer device was passed in as NULL or if no match 783 * was found, we try to find the consumer by directly looking it up 784 * by name. 785 * 786 * If a match is found, the provider PWM chip is looked up by name 787 * and a PWM device is requested using the PWM device per-chip index. 788 * 789 * The lookup algorithm was shamelessly taken from the clock 790 * framework: 791 * 792 * We do slightly fuzzy matching here: 793 * An entry with a NULL ID is assumed to be a wildcard. 794 * If an entry has a device ID, it must match 795 * If an entry has a connection ID, it must match 796 * Then we take the most specific entry - with the following order 797 * of precedence: dev+con > dev only > con only. 798 */ 799 mutex_lock(&pwm_lookup_lock); 800 801 list_for_each_entry(p, &pwm_lookup_list, list) { 802 match = 0; 803 804 if (p->dev_id) { 805 if (!dev_id || strcmp(p->dev_id, dev_id)) 806 continue; 807 808 match += 2; 809 } 810 811 if (p->con_id) { 812 if (!con_id || strcmp(p->con_id, con_id)) 813 continue; 814 815 match += 1; 816 } 817 818 if (match > best) { 819 chosen = p; 820 821 if (match != 3) 822 best = match; 823 else 824 break; 825 } 826 } 827 828 mutex_unlock(&pwm_lookup_lock); 829 830 if (!chosen) 831 return ERR_PTR(-ENODEV); 832 833 chip = pwmchip_find_by_name(chosen->provider); 834 835 /* 836 * If the lookup entry specifies a module, load the module and retry 837 * the PWM chip lookup. This can be used to work around driver load 838 * ordering issues if driver's can't be made to properly support the 839 * deferred probe mechanism. 840 */ 841 if (!chip && chosen->module) { 842 err = request_module(chosen->module); 843 if (err == 0) 844 chip = pwmchip_find_by_name(chosen->provider); 845 } 846 847 if (!chip) 848 return ERR_PTR(-EPROBE_DEFER); 849 850 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id); 851 if (IS_ERR(pwm)) 852 return pwm; 853 854 pwm->args.period = chosen->period; 855 pwm->args.polarity = chosen->polarity; 856 857 return pwm; 858 } 859 EXPORT_SYMBOL_GPL(pwm_get); 860 861 /** 862 * pwm_put() - release a PWM device 863 * @pwm: PWM device 864 */ 865 void pwm_put(struct pwm_device *pwm) 866 { 867 if (!pwm) 868 return; 869 870 mutex_lock(&pwm_lock); 871 872 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) { 873 pr_warn("PWM device already freed\n"); 874 goto out; 875 } 876 877 if (pwm->chip->ops->free) 878 pwm->chip->ops->free(pwm->chip, pwm); 879 880 pwm->label = NULL; 881 882 module_put(pwm->chip->ops->owner); 883 out: 884 mutex_unlock(&pwm_lock); 885 } 886 EXPORT_SYMBOL_GPL(pwm_put); 887 888 static void devm_pwm_release(struct device *dev, void *res) 889 { 890 pwm_put(*(struct pwm_device **)res); 891 } 892 893 /** 894 * devm_pwm_get() - resource managed pwm_get() 895 * @dev: device for PWM consumer 896 * @con_id: consumer name 897 * 898 * This function performs like pwm_get() but the acquired PWM device will 899 * automatically be released on driver detach. 900 * 901 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 902 * error code on failure. 903 */ 904 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id) 905 { 906 struct pwm_device **ptr, *pwm; 907 908 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 909 if (!ptr) 910 return ERR_PTR(-ENOMEM); 911 912 pwm = pwm_get(dev, con_id); 913 if (!IS_ERR(pwm)) { 914 *ptr = pwm; 915 devres_add(dev, ptr); 916 } else { 917 devres_free(ptr); 918 } 919 920 return pwm; 921 } 922 EXPORT_SYMBOL_GPL(devm_pwm_get); 923 924 /** 925 * devm_of_pwm_get() - resource managed of_pwm_get() 926 * @dev: device for PWM consumer 927 * @np: device node to get the PWM from 928 * @con_id: consumer name 929 * 930 * This function performs like of_pwm_get() but the acquired PWM device will 931 * automatically be released on driver detach. 932 * 933 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded 934 * error code on failure. 935 */ 936 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np, 937 const char *con_id) 938 { 939 struct pwm_device **ptr, *pwm; 940 941 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL); 942 if (!ptr) 943 return ERR_PTR(-ENOMEM); 944 945 pwm = of_pwm_get(np, con_id); 946 if (!IS_ERR(pwm)) { 947 *ptr = pwm; 948 devres_add(dev, ptr); 949 } else { 950 devres_free(ptr); 951 } 952 953 return pwm; 954 } 955 EXPORT_SYMBOL_GPL(devm_of_pwm_get); 956 957 static int devm_pwm_match(struct device *dev, void *res, void *data) 958 { 959 struct pwm_device **p = res; 960 961 if (WARN_ON(!p || !*p)) 962 return 0; 963 964 return *p == data; 965 } 966 967 /** 968 * devm_pwm_put() - resource managed pwm_put() 969 * @dev: device for PWM consumer 970 * @pwm: PWM device 971 * 972 * Release a PWM previously allocated using devm_pwm_get(). Calling this 973 * function is usually not needed because devm-allocated resources are 974 * automatically released on driver detach. 975 */ 976 void devm_pwm_put(struct device *dev, struct pwm_device *pwm) 977 { 978 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm)); 979 } 980 EXPORT_SYMBOL_GPL(devm_pwm_put); 981 982 #ifdef CONFIG_DEBUG_FS 983 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s) 984 { 985 unsigned int i; 986 987 for (i = 0; i < chip->npwm; i++) { 988 struct pwm_device *pwm = &chip->pwms[i]; 989 struct pwm_state state; 990 991 pwm_get_state(pwm, &state); 992 993 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label); 994 995 if (test_bit(PWMF_REQUESTED, &pwm->flags)) 996 seq_puts(s, " requested"); 997 998 if (state.enabled) 999 seq_puts(s, " enabled"); 1000 1001 seq_printf(s, " period: %u ns", state.period); 1002 seq_printf(s, " duty: %u ns", state.duty_cycle); 1003 seq_printf(s, " polarity: %s", 1004 state.polarity ? "inverse" : "normal"); 1005 1006 seq_puts(s, "\n"); 1007 } 1008 } 1009 1010 static void *pwm_seq_start(struct seq_file *s, loff_t *pos) 1011 { 1012 mutex_lock(&pwm_lock); 1013 s->private = ""; 1014 1015 return seq_list_start(&pwm_chips, *pos); 1016 } 1017 1018 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos) 1019 { 1020 s->private = "\n"; 1021 1022 return seq_list_next(v, &pwm_chips, pos); 1023 } 1024 1025 static void pwm_seq_stop(struct seq_file *s, void *v) 1026 { 1027 mutex_unlock(&pwm_lock); 1028 } 1029 1030 static int pwm_seq_show(struct seq_file *s, void *v) 1031 { 1032 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list); 1033 1034 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private, 1035 chip->dev->bus ? chip->dev->bus->name : "no-bus", 1036 dev_name(chip->dev), chip->npwm, 1037 (chip->npwm != 1) ? "s" : ""); 1038 1039 pwm_dbg_show(chip, s); 1040 1041 return 0; 1042 } 1043 1044 static const struct seq_operations pwm_seq_ops = { 1045 .start = pwm_seq_start, 1046 .next = pwm_seq_next, 1047 .stop = pwm_seq_stop, 1048 .show = pwm_seq_show, 1049 }; 1050 1051 static int pwm_seq_open(struct inode *inode, struct file *file) 1052 { 1053 return seq_open(file, &pwm_seq_ops); 1054 } 1055 1056 static const struct file_operations pwm_debugfs_ops = { 1057 .owner = THIS_MODULE, 1058 .open = pwm_seq_open, 1059 .read = seq_read, 1060 .llseek = seq_lseek, 1061 .release = seq_release, 1062 }; 1063 1064 static int __init pwm_debugfs_init(void) 1065 { 1066 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL, 1067 &pwm_debugfs_ops); 1068 1069 return 0; 1070 } 1071 subsys_initcall(pwm_debugfs_init); 1072 #endif /* CONFIG_DEBUG_FS */ 1073