xref: /linux/drivers/pwm/core.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/idr.h>
12 #include <linux/of.h>
13 #include <linux/pwm.h>
14 #include <linux/list.h>
15 #include <linux/mutex.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/device.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 
22 #include <dt-bindings/pwm/pwm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/pwm.h>
26 
27 /* protects access to pwm_chips */
28 static DEFINE_MUTEX(pwm_lock);
29 
30 static DEFINE_IDR(pwm_chips);
31 
32 static void pwm_apply_debug(struct pwm_device *pwm,
33 			    const struct pwm_state *state)
34 {
35 	struct pwm_state *last = &pwm->last;
36 	struct pwm_chip *chip = pwm->chip;
37 	struct pwm_state s1 = { 0 }, s2 = { 0 };
38 	int err;
39 
40 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
41 		return;
42 
43 	/* No reasonable diagnosis possible without .get_state() */
44 	if (!chip->ops->get_state)
45 		return;
46 
47 	/*
48 	 * *state was just applied. Read out the hardware state and do some
49 	 * checks.
50 	 */
51 
52 	err = chip->ops->get_state(chip, pwm, &s1);
53 	trace_pwm_get(pwm, &s1, err);
54 	if (err)
55 		/* If that failed there isn't much to debug */
56 		return;
57 
58 	/*
59 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
60 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
61 	 * Undo this inversion and fixup for further tests.
62 	 */
63 	if (s1.enabled && s1.polarity != state->polarity) {
64 		s2.polarity = state->polarity;
65 		s2.duty_cycle = s1.period - s1.duty_cycle;
66 		s2.period = s1.period;
67 		s2.enabled = s1.enabled;
68 	} else {
69 		s2 = s1;
70 	}
71 
72 	if (s2.polarity != state->polarity &&
73 	    state->duty_cycle < state->period)
74 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
75 
76 	if (state->enabled &&
77 	    last->polarity == state->polarity &&
78 	    last->period > s2.period &&
79 	    last->period <= state->period)
80 		dev_warn(pwmchip_parent(chip),
81 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
82 			 state->period, s2.period, last->period);
83 
84 	if (state->enabled && state->period < s2.period)
85 		dev_warn(pwmchip_parent(chip),
86 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
87 			 state->period, s2.period);
88 
89 	if (state->enabled &&
90 	    last->polarity == state->polarity &&
91 	    last->period == s2.period &&
92 	    last->duty_cycle > s2.duty_cycle &&
93 	    last->duty_cycle <= state->duty_cycle)
94 		dev_warn(pwmchip_parent(chip),
95 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
96 			 state->duty_cycle, state->period,
97 			 s2.duty_cycle, s2.period,
98 			 last->duty_cycle, last->period);
99 
100 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
101 		dev_warn(pwmchip_parent(chip),
102 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
103 			 state->duty_cycle, state->period,
104 			 s2.duty_cycle, s2.period);
105 
106 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
107 		dev_warn(pwmchip_parent(chip),
108 			 "requested disabled, but yielded enabled with duty > 0\n");
109 
110 	/* reapply the state that the driver reported being configured. */
111 	err = chip->ops->apply(chip, pwm, &s1);
112 	trace_pwm_apply(pwm, &s1, err);
113 	if (err) {
114 		*last = s1;
115 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
116 		return;
117 	}
118 
119 	*last = (struct pwm_state){ 0 };
120 	err = chip->ops->get_state(chip, pwm, last);
121 	trace_pwm_get(pwm, last, err);
122 	if (err)
123 		return;
124 
125 	/* reapplication of the current state should give an exact match */
126 	if (s1.enabled != last->enabled ||
127 	    s1.polarity != last->polarity ||
128 	    (s1.enabled && s1.period != last->period) ||
129 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
130 		dev_err(pwmchip_parent(chip),
131 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
132 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
133 			last->enabled, last->polarity, last->duty_cycle,
134 			last->period);
135 	}
136 }
137 
138 /**
139  * __pwm_apply() - atomically apply a new state to a PWM device
140  * @pwm: PWM device
141  * @state: new state to apply
142  */
143 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
144 {
145 	struct pwm_chip *chip;
146 	int err;
147 
148 	if (!pwm || !state || !state->period ||
149 	    state->duty_cycle > state->period)
150 		return -EINVAL;
151 
152 	chip = pwm->chip;
153 
154 	if (state->period == pwm->state.period &&
155 	    state->duty_cycle == pwm->state.duty_cycle &&
156 	    state->polarity == pwm->state.polarity &&
157 	    state->enabled == pwm->state.enabled &&
158 	    state->usage_power == pwm->state.usage_power)
159 		return 0;
160 
161 	err = chip->ops->apply(chip, pwm, state);
162 	trace_pwm_apply(pwm, state, err);
163 	if (err)
164 		return err;
165 
166 	pwm->state = *state;
167 
168 	/*
169 	 * only do this after pwm->state was applied as some
170 	 * implementations of .get_state depend on this
171 	 */
172 	pwm_apply_debug(pwm, state);
173 
174 	return 0;
175 }
176 
177 /**
178  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
179  * Cannot be used in atomic context.
180  * @pwm: PWM device
181  * @state: new state to apply
182  */
183 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
184 {
185 	int err;
186 
187 	/*
188 	 * Some lowlevel driver's implementations of .apply() make use of
189 	 * mutexes, also with some drivers only returning when the new
190 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
191 	 * is a bad idea. So make it explicit that calling this function might
192 	 * sleep.
193 	 */
194 	might_sleep();
195 
196 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
197 		/*
198 		 * Catch any drivers that have been marked as atomic but
199 		 * that will sleep anyway.
200 		 */
201 		non_block_start();
202 		err = __pwm_apply(pwm, state);
203 		non_block_end();
204 	} else {
205 		err = __pwm_apply(pwm, state);
206 	}
207 
208 	return err;
209 }
210 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
211 
212 /**
213  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
214  * Not all PWM devices support this function, check with pwm_might_sleep().
215  * @pwm: PWM device
216  * @state: new state to apply
217  */
218 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
219 {
220 	WARN_ONCE(!pwm->chip->atomic,
221 		  "sleeping PWM driver used in atomic context\n");
222 
223 	return __pwm_apply(pwm, state);
224 }
225 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
226 
227 /**
228  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
229  * @pwm: PWM device
230  *
231  * This function will adjust the PWM config to the PWM arguments provided
232  * by the DT or PWM lookup table. This is particularly useful to adapt
233  * the bootloader config to the Linux one.
234  */
235 int pwm_adjust_config(struct pwm_device *pwm)
236 {
237 	struct pwm_state state;
238 	struct pwm_args pargs;
239 
240 	pwm_get_args(pwm, &pargs);
241 	pwm_get_state(pwm, &state);
242 
243 	/*
244 	 * If the current period is zero it means that either the PWM driver
245 	 * does not support initial state retrieval or the PWM has not yet
246 	 * been configured.
247 	 *
248 	 * In either case, we setup the new period and polarity, and assign a
249 	 * duty cycle of 0.
250 	 */
251 	if (!state.period) {
252 		state.duty_cycle = 0;
253 		state.period = pargs.period;
254 		state.polarity = pargs.polarity;
255 
256 		return pwm_apply_might_sleep(pwm, &state);
257 	}
258 
259 	/*
260 	 * Adjust the PWM duty cycle/period based on the period value provided
261 	 * in PWM args.
262 	 */
263 	if (pargs.period != state.period) {
264 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
265 
266 		do_div(dutycycle, state.period);
267 		state.duty_cycle = dutycycle;
268 		state.period = pargs.period;
269 	}
270 
271 	/*
272 	 * If the polarity changed, we should also change the duty cycle.
273 	 */
274 	if (pargs.polarity != state.polarity) {
275 		state.polarity = pargs.polarity;
276 		state.duty_cycle = state.period - state.duty_cycle;
277 	}
278 
279 	return pwm_apply_might_sleep(pwm, &state);
280 }
281 EXPORT_SYMBOL_GPL(pwm_adjust_config);
282 
283 /**
284  * pwm_capture() - capture and report a PWM signal
285  * @pwm: PWM device
286  * @result: structure to fill with capture result
287  * @timeout: time to wait, in milliseconds, before giving up on capture
288  *
289  * Returns: 0 on success or a negative error code on failure.
290  */
291 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
292 		unsigned long timeout)
293 {
294 	int err;
295 
296 	if (!pwm || !pwm->chip->ops)
297 		return -EINVAL;
298 
299 	if (!pwm->chip->ops->capture)
300 		return -ENOSYS;
301 
302 	mutex_lock(&pwm_lock);
303 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
304 	mutex_unlock(&pwm_lock);
305 
306 	return err;
307 }
308 EXPORT_SYMBOL_GPL(pwm_capture);
309 
310 static struct pwm_chip *pwmchip_find_by_name(const char *name)
311 {
312 	struct pwm_chip *chip;
313 	unsigned long id, tmp;
314 
315 	if (!name)
316 		return NULL;
317 
318 	mutex_lock(&pwm_lock);
319 
320 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
321 		const char *chip_name = dev_name(pwmchip_parent(chip));
322 
323 		if (chip_name && strcmp(chip_name, name) == 0) {
324 			mutex_unlock(&pwm_lock);
325 			return chip;
326 		}
327 	}
328 
329 	mutex_unlock(&pwm_lock);
330 
331 	return NULL;
332 }
333 
334 static int pwm_device_request(struct pwm_device *pwm, const char *label)
335 {
336 	int err;
337 	struct pwm_chip *chip = pwm->chip;
338 	const struct pwm_ops *ops = chip->ops;
339 
340 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
341 		return -EBUSY;
342 
343 	if (!try_module_get(chip->owner))
344 		return -ENODEV;
345 
346 	if (!get_device(&chip->dev)) {
347 		err = -ENODEV;
348 		goto err_get_device;
349 	}
350 
351 	if (ops->request) {
352 		err = ops->request(chip, pwm);
353 		if (err) {
354 			put_device(&chip->dev);
355 err_get_device:
356 			module_put(chip->owner);
357 			return err;
358 		}
359 	}
360 
361 	if (ops->get_state) {
362 		/*
363 		 * Zero-initialize state because most drivers are unaware of
364 		 * .usage_power. The other members of state are supposed to be
365 		 * set by lowlevel drivers. We still initialize the whole
366 		 * structure for simplicity even though this might paper over
367 		 * faulty implementations of .get_state().
368 		 */
369 		struct pwm_state state = { 0, };
370 
371 		err = ops->get_state(chip, pwm, &state);
372 		trace_pwm_get(pwm, &state, err);
373 
374 		if (!err)
375 			pwm->state = state;
376 
377 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
378 			pwm->last = pwm->state;
379 	}
380 
381 	set_bit(PWMF_REQUESTED, &pwm->flags);
382 	pwm->label = label;
383 
384 	return 0;
385 }
386 
387 /**
388  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
389  * @chip: PWM chip
390  * @index: per-chip index of the PWM to request
391  * @label: a literal description string of this PWM
392  *
393  * Returns: A pointer to the PWM device at the given index of the given PWM
394  * chip. A negative error code is returned if the index is not valid for the
395  * specified PWM chip or if the PWM device cannot be requested.
396  */
397 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
398 					 unsigned int index,
399 					 const char *label)
400 {
401 	struct pwm_device *pwm;
402 	int err;
403 
404 	if (!chip || index >= chip->npwm)
405 		return ERR_PTR(-EINVAL);
406 
407 	mutex_lock(&pwm_lock);
408 	pwm = &chip->pwms[index];
409 
410 	err = pwm_device_request(pwm, label);
411 	if (err < 0)
412 		pwm = ERR_PTR(err);
413 
414 	mutex_unlock(&pwm_lock);
415 	return pwm;
416 }
417 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
418 
419 
420 struct pwm_device *
421 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
422 {
423 	struct pwm_device *pwm;
424 
425 	/* period in the second cell and flags in the third cell are optional */
426 	if (args->args_count < 1)
427 		return ERR_PTR(-EINVAL);
428 
429 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
430 	if (IS_ERR(pwm))
431 		return pwm;
432 
433 	if (args->args_count > 1)
434 		pwm->args.period = args->args[1];
435 
436 	pwm->args.polarity = PWM_POLARITY_NORMAL;
437 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
438 		pwm->args.polarity = PWM_POLARITY_INVERSED;
439 
440 	return pwm;
441 }
442 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
443 
444 struct pwm_device *
445 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
446 {
447 	struct pwm_device *pwm;
448 
449 	pwm = pwm_request_from_chip(chip, 0, NULL);
450 	if (IS_ERR(pwm))
451 		return pwm;
452 
453 	if (args->args_count > 0)
454 		pwm->args.period = args->args[0];
455 
456 	pwm->args.polarity = PWM_POLARITY_NORMAL;
457 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
458 		pwm->args.polarity = PWM_POLARITY_INVERSED;
459 
460 	return pwm;
461 }
462 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
463 
464 struct pwm_export {
465 	struct device pwm_dev;
466 	struct pwm_device *pwm;
467 	struct mutex lock;
468 	struct pwm_state suspend;
469 };
470 
471 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
472 {
473 	return container_of(pwmchip_dev, struct pwm_chip, dev);
474 }
475 
476 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
477 {
478 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
479 }
480 
481 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
482 {
483 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
484 
485 	return export->pwm;
486 }
487 
488 static ssize_t period_show(struct device *pwm_dev,
489 			   struct device_attribute *attr,
490 			   char *buf)
491 {
492 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
493 	struct pwm_state state;
494 
495 	pwm_get_state(pwm, &state);
496 
497 	return sysfs_emit(buf, "%llu\n", state.period);
498 }
499 
500 static ssize_t period_store(struct device *pwm_dev,
501 			    struct device_attribute *attr,
502 			    const char *buf, size_t size)
503 {
504 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
505 	struct pwm_device *pwm = export->pwm;
506 	struct pwm_state state;
507 	u64 val;
508 	int ret;
509 
510 	ret = kstrtou64(buf, 0, &val);
511 	if (ret)
512 		return ret;
513 
514 	mutex_lock(&export->lock);
515 	pwm_get_state(pwm, &state);
516 	state.period = val;
517 	ret = pwm_apply_might_sleep(pwm, &state);
518 	mutex_unlock(&export->lock);
519 
520 	return ret ? : size;
521 }
522 
523 static ssize_t duty_cycle_show(struct device *pwm_dev,
524 			       struct device_attribute *attr,
525 			       char *buf)
526 {
527 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
528 	struct pwm_state state;
529 
530 	pwm_get_state(pwm, &state);
531 
532 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
533 }
534 
535 static ssize_t duty_cycle_store(struct device *pwm_dev,
536 				struct device_attribute *attr,
537 				const char *buf, size_t size)
538 {
539 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
540 	struct pwm_device *pwm = export->pwm;
541 	struct pwm_state state;
542 	u64 val;
543 	int ret;
544 
545 	ret = kstrtou64(buf, 0, &val);
546 	if (ret)
547 		return ret;
548 
549 	mutex_lock(&export->lock);
550 	pwm_get_state(pwm, &state);
551 	state.duty_cycle = val;
552 	ret = pwm_apply_might_sleep(pwm, &state);
553 	mutex_unlock(&export->lock);
554 
555 	return ret ? : size;
556 }
557 
558 static ssize_t enable_show(struct device *pwm_dev,
559 			   struct device_attribute *attr,
560 			   char *buf)
561 {
562 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
563 	struct pwm_state state;
564 
565 	pwm_get_state(pwm, &state);
566 
567 	return sysfs_emit(buf, "%d\n", state.enabled);
568 }
569 
570 static ssize_t enable_store(struct device *pwm_dev,
571 			    struct device_attribute *attr,
572 			    const char *buf, size_t size)
573 {
574 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
575 	struct pwm_device *pwm = export->pwm;
576 	struct pwm_state state;
577 	int val, ret;
578 
579 	ret = kstrtoint(buf, 0, &val);
580 	if (ret)
581 		return ret;
582 
583 	mutex_lock(&export->lock);
584 
585 	pwm_get_state(pwm, &state);
586 
587 	switch (val) {
588 	case 0:
589 		state.enabled = false;
590 		break;
591 	case 1:
592 		state.enabled = true;
593 		break;
594 	default:
595 		ret = -EINVAL;
596 		goto unlock;
597 	}
598 
599 	ret = pwm_apply_might_sleep(pwm, &state);
600 
601 unlock:
602 	mutex_unlock(&export->lock);
603 	return ret ? : size;
604 }
605 
606 static ssize_t polarity_show(struct device *pwm_dev,
607 			     struct device_attribute *attr,
608 			     char *buf)
609 {
610 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
611 	const char *polarity = "unknown";
612 	struct pwm_state state;
613 
614 	pwm_get_state(pwm, &state);
615 
616 	switch (state.polarity) {
617 	case PWM_POLARITY_NORMAL:
618 		polarity = "normal";
619 		break;
620 
621 	case PWM_POLARITY_INVERSED:
622 		polarity = "inversed";
623 		break;
624 	}
625 
626 	return sysfs_emit(buf, "%s\n", polarity);
627 }
628 
629 static ssize_t polarity_store(struct device *pwm_dev,
630 			      struct device_attribute *attr,
631 			      const char *buf, size_t size)
632 {
633 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
634 	struct pwm_device *pwm = export->pwm;
635 	enum pwm_polarity polarity;
636 	struct pwm_state state;
637 	int ret;
638 
639 	if (sysfs_streq(buf, "normal"))
640 		polarity = PWM_POLARITY_NORMAL;
641 	else if (sysfs_streq(buf, "inversed"))
642 		polarity = PWM_POLARITY_INVERSED;
643 	else
644 		return -EINVAL;
645 
646 	mutex_lock(&export->lock);
647 	pwm_get_state(pwm, &state);
648 	state.polarity = polarity;
649 	ret = pwm_apply_might_sleep(pwm, &state);
650 	mutex_unlock(&export->lock);
651 
652 	return ret ? : size;
653 }
654 
655 static ssize_t capture_show(struct device *pwm_dev,
656 			    struct device_attribute *attr,
657 			    char *buf)
658 {
659 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
660 	struct pwm_capture result;
661 	int ret;
662 
663 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
664 	if (ret)
665 		return ret;
666 
667 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
668 }
669 
670 static DEVICE_ATTR_RW(period);
671 static DEVICE_ATTR_RW(duty_cycle);
672 static DEVICE_ATTR_RW(enable);
673 static DEVICE_ATTR_RW(polarity);
674 static DEVICE_ATTR_RO(capture);
675 
676 static struct attribute *pwm_attrs[] = {
677 	&dev_attr_period.attr,
678 	&dev_attr_duty_cycle.attr,
679 	&dev_attr_enable.attr,
680 	&dev_attr_polarity.attr,
681 	&dev_attr_capture.attr,
682 	NULL
683 };
684 ATTRIBUTE_GROUPS(pwm);
685 
686 static void pwm_export_release(struct device *pwm_dev)
687 {
688 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
689 
690 	kfree(export);
691 }
692 
693 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
694 {
695 	struct pwm_export *export;
696 	char *pwm_prop[2];
697 	int ret;
698 
699 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
700 		return -EBUSY;
701 
702 	export = kzalloc(sizeof(*export), GFP_KERNEL);
703 	if (!export) {
704 		clear_bit(PWMF_EXPORTED, &pwm->flags);
705 		return -ENOMEM;
706 	}
707 
708 	export->pwm = pwm;
709 	mutex_init(&export->lock);
710 
711 	export->pwm_dev.release = pwm_export_release;
712 	export->pwm_dev.parent = pwmchip_dev;
713 	export->pwm_dev.devt = MKDEV(0, 0);
714 	export->pwm_dev.groups = pwm_groups;
715 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
716 
717 	ret = device_register(&export->pwm_dev);
718 	if (ret) {
719 		clear_bit(PWMF_EXPORTED, &pwm->flags);
720 		put_device(&export->pwm_dev);
721 		export = NULL;
722 		return ret;
723 	}
724 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
725 	pwm_prop[1] = NULL;
726 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
727 	kfree(pwm_prop[0]);
728 
729 	return 0;
730 }
731 
732 static int pwm_unexport_match(struct device *pwm_dev, void *data)
733 {
734 	return pwm_from_dev(pwm_dev) == data;
735 }
736 
737 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
738 {
739 	struct device *pwm_dev;
740 	char *pwm_prop[2];
741 
742 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
743 		return -ENODEV;
744 
745 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
746 	if (!pwm_dev)
747 		return -ENODEV;
748 
749 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
750 	pwm_prop[1] = NULL;
751 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
752 	kfree(pwm_prop[0]);
753 
754 	/* for device_find_child() */
755 	put_device(pwm_dev);
756 	device_unregister(pwm_dev);
757 	pwm_put(pwm);
758 
759 	return 0;
760 }
761 
762 static ssize_t export_store(struct device *pwmchip_dev,
763 			    struct device_attribute *attr,
764 			    const char *buf, size_t len)
765 {
766 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
767 	struct pwm_device *pwm;
768 	unsigned int hwpwm;
769 	int ret;
770 
771 	ret = kstrtouint(buf, 0, &hwpwm);
772 	if (ret < 0)
773 		return ret;
774 
775 	if (hwpwm >= chip->npwm)
776 		return -ENODEV;
777 
778 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
779 	if (IS_ERR(pwm))
780 		return PTR_ERR(pwm);
781 
782 	ret = pwm_export_child(pwmchip_dev, pwm);
783 	if (ret < 0)
784 		pwm_put(pwm);
785 
786 	return ret ? : len;
787 }
788 static DEVICE_ATTR_WO(export);
789 
790 static ssize_t unexport_store(struct device *pwmchip_dev,
791 			      struct device_attribute *attr,
792 			      const char *buf, size_t len)
793 {
794 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
795 	unsigned int hwpwm;
796 	int ret;
797 
798 	ret = kstrtouint(buf, 0, &hwpwm);
799 	if (ret < 0)
800 		return ret;
801 
802 	if (hwpwm >= chip->npwm)
803 		return -ENODEV;
804 
805 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
806 
807 	return ret ? : len;
808 }
809 static DEVICE_ATTR_WO(unexport);
810 
811 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
812 			 char *buf)
813 {
814 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
815 
816 	return sysfs_emit(buf, "%u\n", chip->npwm);
817 }
818 static DEVICE_ATTR_RO(npwm);
819 
820 static struct attribute *pwm_chip_attrs[] = {
821 	&dev_attr_export.attr,
822 	&dev_attr_unexport.attr,
823 	&dev_attr_npwm.attr,
824 	NULL,
825 };
826 ATTRIBUTE_GROUPS(pwm_chip);
827 
828 /* takes export->lock on success */
829 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
830 					      struct pwm_device *pwm,
831 					      struct pwm_state *state)
832 {
833 	struct device *pwm_dev;
834 	struct pwm_export *export;
835 
836 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
837 		return NULL;
838 
839 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
840 	if (!pwm_dev)
841 		return NULL;
842 
843 	export = pwmexport_from_dev(pwm_dev);
844 	put_device(pwm_dev);	/* for device_find_child() */
845 
846 	mutex_lock(&export->lock);
847 	pwm_get_state(pwm, state);
848 
849 	return export;
850 }
851 
852 static int pwm_class_apply_state(struct pwm_export *export,
853 				 struct pwm_device *pwm,
854 				 struct pwm_state *state)
855 {
856 	int ret = pwm_apply_might_sleep(pwm, state);
857 
858 	/* release lock taken in pwm_class_get_state */
859 	mutex_unlock(&export->lock);
860 
861 	return ret;
862 }
863 
864 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
865 {
866 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
867 	unsigned int i;
868 	int ret = 0;
869 
870 	for (i = 0; i < npwm; i++) {
871 		struct pwm_device *pwm = &chip->pwms[i];
872 		struct pwm_state state;
873 		struct pwm_export *export;
874 
875 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
876 		if (!export)
877 			continue;
878 
879 		/* If pwmchip was not enabled before suspend, do nothing. */
880 		if (!export->suspend.enabled) {
881 			/* release lock taken in pwm_class_get_state */
882 			mutex_unlock(&export->lock);
883 			continue;
884 		}
885 
886 		state.enabled = export->suspend.enabled;
887 		ret = pwm_class_apply_state(export, pwm, &state);
888 		if (ret < 0)
889 			break;
890 	}
891 
892 	return ret;
893 }
894 
895 static int pwm_class_suspend(struct device *pwmchip_dev)
896 {
897 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
898 	unsigned int i;
899 	int ret = 0;
900 
901 	for (i = 0; i < chip->npwm; i++) {
902 		struct pwm_device *pwm = &chip->pwms[i];
903 		struct pwm_state state;
904 		struct pwm_export *export;
905 
906 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
907 		if (!export)
908 			continue;
909 
910 		/*
911 		 * If pwmchip was not enabled before suspend, save
912 		 * state for resume time and do nothing else.
913 		 */
914 		export->suspend = state;
915 		if (!state.enabled) {
916 			/* release lock taken in pwm_class_get_state */
917 			mutex_unlock(&export->lock);
918 			continue;
919 		}
920 
921 		state.enabled = false;
922 		ret = pwm_class_apply_state(export, pwm, &state);
923 		if (ret < 0) {
924 			/*
925 			 * roll back the PWM devices that were disabled by
926 			 * this suspend function.
927 			 */
928 			pwm_class_resume_npwm(pwmchip_dev, i);
929 			break;
930 		}
931 	}
932 
933 	return ret;
934 }
935 
936 static int pwm_class_resume(struct device *pwmchip_dev)
937 {
938 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
939 
940 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
941 }
942 
943 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
944 
945 static struct class pwm_class = {
946 	.name = "pwm",
947 	.dev_groups = pwm_chip_groups,
948 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
949 };
950 
951 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
952 {
953 	unsigned int i;
954 
955 	for (i = 0; i < chip->npwm; i++) {
956 		struct pwm_device *pwm = &chip->pwms[i];
957 
958 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
959 			pwm_unexport_child(&chip->dev, pwm);
960 	}
961 }
962 
963 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
964 
965 static void *pwmchip_priv(struct pwm_chip *chip)
966 {
967 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
968 }
969 
970 /* This is the counterpart to pwmchip_alloc() */
971 void pwmchip_put(struct pwm_chip *chip)
972 {
973 	put_device(&chip->dev);
974 }
975 EXPORT_SYMBOL_GPL(pwmchip_put);
976 
977 static void pwmchip_release(struct device *pwmchip_dev)
978 {
979 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
980 
981 	kfree(chip);
982 }
983 
984 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
985 {
986 	struct pwm_chip *chip;
987 	struct device *pwmchip_dev;
988 	size_t alloc_size;
989 	unsigned int i;
990 
991 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
992 			      sizeof_priv);
993 
994 	chip = kzalloc(alloc_size, GFP_KERNEL);
995 	if (!chip)
996 		return ERR_PTR(-ENOMEM);
997 
998 	chip->npwm = npwm;
999 	chip->uses_pwmchip_alloc = true;
1000 
1001 	pwmchip_dev = &chip->dev;
1002 	device_initialize(pwmchip_dev);
1003 	pwmchip_dev->class = &pwm_class;
1004 	pwmchip_dev->parent = parent;
1005 	pwmchip_dev->release = pwmchip_release;
1006 
1007 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1008 
1009 	for (i = 0; i < chip->npwm; i++) {
1010 		struct pwm_device *pwm = &chip->pwms[i];
1011 		pwm->chip = chip;
1012 		pwm->hwpwm = i;
1013 	}
1014 
1015 	return chip;
1016 }
1017 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1018 
1019 static void devm_pwmchip_put(void *data)
1020 {
1021 	struct pwm_chip *chip = data;
1022 
1023 	pwmchip_put(chip);
1024 }
1025 
1026 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1027 {
1028 	struct pwm_chip *chip;
1029 	int ret;
1030 
1031 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1032 	if (IS_ERR(chip))
1033 		return chip;
1034 
1035 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1036 	if (ret)
1037 		return ERR_PTR(ret);
1038 
1039 	return chip;
1040 }
1041 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1042 
1043 static void of_pwmchip_add(struct pwm_chip *chip)
1044 {
1045 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1046 		return;
1047 
1048 	if (!chip->of_xlate)
1049 		chip->of_xlate = of_pwm_xlate_with_flags;
1050 
1051 	of_node_get(pwmchip_parent(chip)->of_node);
1052 }
1053 
1054 static void of_pwmchip_remove(struct pwm_chip *chip)
1055 {
1056 	if (pwmchip_parent(chip))
1057 		of_node_put(pwmchip_parent(chip)->of_node);
1058 }
1059 
1060 static bool pwm_ops_check(const struct pwm_chip *chip)
1061 {
1062 	const struct pwm_ops *ops = chip->ops;
1063 
1064 	if (!ops->apply)
1065 		return false;
1066 
1067 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1068 		dev_warn(pwmchip_parent(chip),
1069 			 "Please implement the .get_state() callback\n");
1070 
1071 	return true;
1072 }
1073 
1074 /**
1075  * __pwmchip_add() - register a new PWM chip
1076  * @chip: the PWM chip to add
1077  * @owner: reference to the module providing the chip.
1078  *
1079  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
1080  * pwmchip_add wrapper to do this right.
1081  *
1082  * Returns: 0 on success or a negative error code on failure.
1083  */
1084 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
1085 {
1086 	int ret;
1087 
1088 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
1089 		return -EINVAL;
1090 
1091 	/*
1092 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
1093 	 * otherwise the embedded struct device might disappear too early
1094 	 * resulting in memory corruption.
1095 	 * Catch drivers that were not converted appropriately.
1096 	 */
1097 	if (!chip->uses_pwmchip_alloc)
1098 		return -EINVAL;
1099 
1100 	if (!pwm_ops_check(chip))
1101 		return -EINVAL;
1102 
1103 	chip->owner = owner;
1104 
1105 	mutex_lock(&pwm_lock);
1106 
1107 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
1108 	if (ret < 0)
1109 		goto err_idr_alloc;
1110 
1111 	chip->id = ret;
1112 
1113 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
1114 
1115 	if (IS_ENABLED(CONFIG_OF))
1116 		of_pwmchip_add(chip);
1117 
1118 	ret = device_add(&chip->dev);
1119 	if (ret)
1120 		goto err_device_add;
1121 
1122 	mutex_unlock(&pwm_lock);
1123 
1124 	return 0;
1125 
1126 err_device_add:
1127 	if (IS_ENABLED(CONFIG_OF))
1128 		of_pwmchip_remove(chip);
1129 
1130 	idr_remove(&pwm_chips, chip->id);
1131 err_idr_alloc:
1132 
1133 	mutex_unlock(&pwm_lock);
1134 
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL_GPL(__pwmchip_add);
1138 
1139 /**
1140  * pwmchip_remove() - remove a PWM chip
1141  * @chip: the PWM chip to remove
1142  *
1143  * Removes a PWM chip.
1144  */
1145 void pwmchip_remove(struct pwm_chip *chip)
1146 {
1147 	pwmchip_sysfs_unexport(chip);
1148 
1149 	if (IS_ENABLED(CONFIG_OF))
1150 		of_pwmchip_remove(chip);
1151 
1152 	mutex_lock(&pwm_lock);
1153 
1154 	idr_remove(&pwm_chips, chip->id);
1155 
1156 	mutex_unlock(&pwm_lock);
1157 
1158 	device_del(&chip->dev);
1159 }
1160 EXPORT_SYMBOL_GPL(pwmchip_remove);
1161 
1162 static void devm_pwmchip_remove(void *data)
1163 {
1164 	struct pwm_chip *chip = data;
1165 
1166 	pwmchip_remove(chip);
1167 }
1168 
1169 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
1170 {
1171 	int ret;
1172 
1173 	ret = __pwmchip_add(chip, owner);
1174 	if (ret)
1175 		return ret;
1176 
1177 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
1178 }
1179 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
1180 
1181 static struct device_link *pwm_device_link_add(struct device *dev,
1182 					       struct pwm_device *pwm)
1183 {
1184 	struct device_link *dl;
1185 
1186 	if (!dev) {
1187 		/*
1188 		 * No device for the PWM consumer has been provided. It may
1189 		 * impact the PM sequence ordering: the PWM supplier may get
1190 		 * suspended before the consumer.
1191 		 */
1192 		dev_warn(pwmchip_parent(pwm->chip),
1193 			 "No consumer device specified to create a link to\n");
1194 		return NULL;
1195 	}
1196 
1197 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1198 	if (!dl) {
1199 		dev_err(dev, "failed to create device link to %s\n",
1200 			dev_name(pwmchip_parent(pwm->chip)));
1201 		return ERR_PTR(-EINVAL);
1202 	}
1203 
1204 	return dl;
1205 }
1206 
1207 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1208 {
1209 	struct pwm_chip *chip;
1210 	unsigned long id, tmp;
1211 
1212 	mutex_lock(&pwm_lock);
1213 
1214 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1215 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) {
1216 			mutex_unlock(&pwm_lock);
1217 			return chip;
1218 		}
1219 
1220 	mutex_unlock(&pwm_lock);
1221 
1222 	return ERR_PTR(-EPROBE_DEFER);
1223 }
1224 
1225 /**
1226  * of_pwm_get() - request a PWM via the PWM framework
1227  * @dev: device for PWM consumer
1228  * @np: device node to get the PWM from
1229  * @con_id: consumer name
1230  *
1231  * Returns the PWM device parsed from the phandle and index specified in the
1232  * "pwms" property of a device tree node or a negative error-code on failure.
1233  * Values parsed from the device tree are stored in the returned PWM device
1234  * object.
1235  *
1236  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1237  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1238  * lookup of the PWM index. This also means that the "pwm-names" property
1239  * becomes mandatory for devices that look up the PWM device via the con_id
1240  * parameter.
1241  *
1242  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1243  * error code on failure.
1244  */
1245 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1246 				     const char *con_id)
1247 {
1248 	struct pwm_device *pwm = NULL;
1249 	struct of_phandle_args args;
1250 	struct device_link *dl;
1251 	struct pwm_chip *chip;
1252 	int index = 0;
1253 	int err;
1254 
1255 	if (con_id) {
1256 		index = of_property_match_string(np, "pwm-names", con_id);
1257 		if (index < 0)
1258 			return ERR_PTR(index);
1259 	}
1260 
1261 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
1262 					 &args);
1263 	if (err) {
1264 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1265 		return ERR_PTR(err);
1266 	}
1267 
1268 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1269 	if (IS_ERR(chip)) {
1270 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1271 			pr_err("%s(): PWM chip not found\n", __func__);
1272 
1273 		pwm = ERR_CAST(chip);
1274 		goto put;
1275 	}
1276 
1277 	pwm = chip->of_xlate(chip, &args);
1278 	if (IS_ERR(pwm))
1279 		goto put;
1280 
1281 	dl = pwm_device_link_add(dev, pwm);
1282 	if (IS_ERR(dl)) {
1283 		/* of_xlate ended up calling pwm_request_from_chip() */
1284 		pwm_put(pwm);
1285 		pwm = ERR_CAST(dl);
1286 		goto put;
1287 	}
1288 
1289 	/*
1290 	 * If a consumer name was not given, try to look it up from the
1291 	 * "pwm-names" property if it exists. Otherwise use the name of
1292 	 * the user device node.
1293 	 */
1294 	if (!con_id) {
1295 		err = of_property_read_string_index(np, "pwm-names", index,
1296 						    &con_id);
1297 		if (err < 0)
1298 			con_id = np->name;
1299 	}
1300 
1301 	pwm->label = con_id;
1302 
1303 put:
1304 	of_node_put(args.np);
1305 
1306 	return pwm;
1307 }
1308 
1309 /**
1310  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1311  * @fwnode: firmware node to get the "pwms" property from
1312  *
1313  * Returns the PWM device parsed from the fwnode and index specified in the
1314  * "pwms" property or a negative error-code on failure.
1315  * Values parsed from the device tree are stored in the returned PWM device
1316  * object.
1317  *
1318  * This is analogous to of_pwm_get() except con_id is not yet supported.
1319  * ACPI entries must look like
1320  * Package () {"pwms", Package ()
1321  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1322  *
1323  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1324  * error code on failure.
1325  */
1326 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1327 {
1328 	struct pwm_device *pwm;
1329 	struct fwnode_reference_args args;
1330 	struct pwm_chip *chip;
1331 	int ret;
1332 
1333 	memset(&args, 0, sizeof(args));
1334 
1335 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1336 	if (ret < 0)
1337 		return ERR_PTR(ret);
1338 
1339 	if (args.nargs < 2)
1340 		return ERR_PTR(-EPROTO);
1341 
1342 	chip = fwnode_to_pwmchip(args.fwnode);
1343 	if (IS_ERR(chip))
1344 		return ERR_CAST(chip);
1345 
1346 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1347 	if (IS_ERR(pwm))
1348 		return pwm;
1349 
1350 	pwm->args.period = args.args[1];
1351 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1352 
1353 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1354 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1355 
1356 	return pwm;
1357 }
1358 
1359 static DEFINE_MUTEX(pwm_lookup_lock);
1360 static LIST_HEAD(pwm_lookup_list);
1361 
1362 /**
1363  * pwm_add_table() - register PWM device consumers
1364  * @table: array of consumers to register
1365  * @num: number of consumers in table
1366  */
1367 void pwm_add_table(struct pwm_lookup *table, size_t num)
1368 {
1369 	mutex_lock(&pwm_lookup_lock);
1370 
1371 	while (num--) {
1372 		list_add_tail(&table->list, &pwm_lookup_list);
1373 		table++;
1374 	}
1375 
1376 	mutex_unlock(&pwm_lookup_lock);
1377 }
1378 
1379 /**
1380  * pwm_remove_table() - unregister PWM device consumers
1381  * @table: array of consumers to unregister
1382  * @num: number of consumers in table
1383  */
1384 void pwm_remove_table(struct pwm_lookup *table, size_t num)
1385 {
1386 	mutex_lock(&pwm_lookup_lock);
1387 
1388 	while (num--) {
1389 		list_del(&table->list);
1390 		table++;
1391 	}
1392 
1393 	mutex_unlock(&pwm_lookup_lock);
1394 }
1395 
1396 /**
1397  * pwm_get() - look up and request a PWM device
1398  * @dev: device for PWM consumer
1399  * @con_id: consumer name
1400  *
1401  * Lookup is first attempted using DT. If the device was not instantiated from
1402  * a device tree, a PWM chip and a relative index is looked up via a table
1403  * supplied by board setup code (see pwm_add_table()).
1404  *
1405  * Once a PWM chip has been found the specified PWM device will be requested
1406  * and is ready to be used.
1407  *
1408  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1409  * error code on failure.
1410  */
1411 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1412 {
1413 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1414 	const char *dev_id = dev ? dev_name(dev) : NULL;
1415 	struct pwm_device *pwm;
1416 	struct pwm_chip *chip;
1417 	struct device_link *dl;
1418 	unsigned int best = 0;
1419 	struct pwm_lookup *p, *chosen = NULL;
1420 	unsigned int match;
1421 	int err;
1422 
1423 	/* look up via DT first */
1424 	if (is_of_node(fwnode))
1425 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1426 
1427 	/* then lookup via ACPI */
1428 	if (is_acpi_node(fwnode)) {
1429 		pwm = acpi_pwm_get(fwnode);
1430 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1431 			return pwm;
1432 	}
1433 
1434 	/*
1435 	 * We look up the provider in the static table typically provided by
1436 	 * board setup code. We first try to lookup the consumer device by
1437 	 * name. If the consumer device was passed in as NULL or if no match
1438 	 * was found, we try to find the consumer by directly looking it up
1439 	 * by name.
1440 	 *
1441 	 * If a match is found, the provider PWM chip is looked up by name
1442 	 * and a PWM device is requested using the PWM device per-chip index.
1443 	 *
1444 	 * The lookup algorithm was shamelessly taken from the clock
1445 	 * framework:
1446 	 *
1447 	 * We do slightly fuzzy matching here:
1448 	 *  An entry with a NULL ID is assumed to be a wildcard.
1449 	 *  If an entry has a device ID, it must match
1450 	 *  If an entry has a connection ID, it must match
1451 	 * Then we take the most specific entry - with the following order
1452 	 * of precedence: dev+con > dev only > con only.
1453 	 */
1454 	mutex_lock(&pwm_lookup_lock);
1455 
1456 	list_for_each_entry(p, &pwm_lookup_list, list) {
1457 		match = 0;
1458 
1459 		if (p->dev_id) {
1460 			if (!dev_id || strcmp(p->dev_id, dev_id))
1461 				continue;
1462 
1463 			match += 2;
1464 		}
1465 
1466 		if (p->con_id) {
1467 			if (!con_id || strcmp(p->con_id, con_id))
1468 				continue;
1469 
1470 			match += 1;
1471 		}
1472 
1473 		if (match > best) {
1474 			chosen = p;
1475 
1476 			if (match != 3)
1477 				best = match;
1478 			else
1479 				break;
1480 		}
1481 	}
1482 
1483 	mutex_unlock(&pwm_lookup_lock);
1484 
1485 	if (!chosen)
1486 		return ERR_PTR(-ENODEV);
1487 
1488 	chip = pwmchip_find_by_name(chosen->provider);
1489 
1490 	/*
1491 	 * If the lookup entry specifies a module, load the module and retry
1492 	 * the PWM chip lookup. This can be used to work around driver load
1493 	 * ordering issues if driver's can't be made to properly support the
1494 	 * deferred probe mechanism.
1495 	 */
1496 	if (!chip && chosen->module) {
1497 		err = request_module(chosen->module);
1498 		if (err == 0)
1499 			chip = pwmchip_find_by_name(chosen->provider);
1500 	}
1501 
1502 	if (!chip)
1503 		return ERR_PTR(-EPROBE_DEFER);
1504 
1505 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1506 	if (IS_ERR(pwm))
1507 		return pwm;
1508 
1509 	dl = pwm_device_link_add(dev, pwm);
1510 	if (IS_ERR(dl)) {
1511 		pwm_put(pwm);
1512 		return ERR_CAST(dl);
1513 	}
1514 
1515 	pwm->args.period = chosen->period;
1516 	pwm->args.polarity = chosen->polarity;
1517 
1518 	return pwm;
1519 }
1520 EXPORT_SYMBOL_GPL(pwm_get);
1521 
1522 /**
1523  * pwm_put() - release a PWM device
1524  * @pwm: PWM device
1525  */
1526 void pwm_put(struct pwm_device *pwm)
1527 {
1528 	struct pwm_chip *chip;
1529 
1530 	if (!pwm)
1531 		return;
1532 
1533 	chip = pwm->chip;
1534 
1535 	mutex_lock(&pwm_lock);
1536 
1537 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1538 		pr_warn("PWM device already freed\n");
1539 		goto out;
1540 	}
1541 
1542 	if (chip->ops->free)
1543 		pwm->chip->ops->free(pwm->chip, pwm);
1544 
1545 	pwm->label = NULL;
1546 
1547 	put_device(&chip->dev);
1548 
1549 	module_put(chip->owner);
1550 out:
1551 	mutex_unlock(&pwm_lock);
1552 }
1553 EXPORT_SYMBOL_GPL(pwm_put);
1554 
1555 static void devm_pwm_release(void *pwm)
1556 {
1557 	pwm_put(pwm);
1558 }
1559 
1560 /**
1561  * devm_pwm_get() - resource managed pwm_get()
1562  * @dev: device for PWM consumer
1563  * @con_id: consumer name
1564  *
1565  * This function performs like pwm_get() but the acquired PWM device will
1566  * automatically be released on driver detach.
1567  *
1568  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1569  * error code on failure.
1570  */
1571 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1572 {
1573 	struct pwm_device *pwm;
1574 	int ret;
1575 
1576 	pwm = pwm_get(dev, con_id);
1577 	if (IS_ERR(pwm))
1578 		return pwm;
1579 
1580 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1581 	if (ret)
1582 		return ERR_PTR(ret);
1583 
1584 	return pwm;
1585 }
1586 EXPORT_SYMBOL_GPL(devm_pwm_get);
1587 
1588 /**
1589  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1590  * @dev: device for PWM consumer
1591  * @fwnode: firmware node to get the PWM from
1592  * @con_id: consumer name
1593  *
1594  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1595  * acpi_pwm_get() for a detailed description.
1596  *
1597  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1598  * error code on failure.
1599  */
1600 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1601 				       struct fwnode_handle *fwnode,
1602 				       const char *con_id)
1603 {
1604 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1605 	int ret;
1606 
1607 	if (is_of_node(fwnode))
1608 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1609 	else if (is_acpi_node(fwnode))
1610 		pwm = acpi_pwm_get(fwnode);
1611 	if (IS_ERR(pwm))
1612 		return pwm;
1613 
1614 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1615 	if (ret)
1616 		return ERR_PTR(ret);
1617 
1618 	return pwm;
1619 }
1620 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1621 
1622 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1623 {
1624 	unsigned int i;
1625 
1626 	for (i = 0; i < chip->npwm; i++) {
1627 		struct pwm_device *pwm = &chip->pwms[i];
1628 		struct pwm_state state;
1629 
1630 		pwm_get_state(pwm, &state);
1631 
1632 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1633 
1634 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1635 			seq_puts(s, " requested");
1636 
1637 		if (state.enabled)
1638 			seq_puts(s, " enabled");
1639 
1640 		seq_printf(s, " period: %llu ns", state.period);
1641 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1642 		seq_printf(s, " polarity: %s",
1643 			   state.polarity ? "inverse" : "normal");
1644 
1645 		if (state.usage_power)
1646 			seq_puts(s, " usage_power");
1647 
1648 		seq_puts(s, "\n");
1649 	}
1650 }
1651 
1652 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1653 {
1654 	unsigned long id = *pos;
1655 	void *ret;
1656 
1657 	mutex_lock(&pwm_lock);
1658 	s->private = "";
1659 
1660 	ret = idr_get_next_ul(&pwm_chips, &id);
1661 	*pos = id;
1662 	return ret;
1663 }
1664 
1665 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1666 {
1667 	unsigned long id = *pos + 1;
1668 	void *ret;
1669 
1670 	s->private = "\n";
1671 
1672 	ret = idr_get_next_ul(&pwm_chips, &id);
1673 	*pos = id;
1674 	return ret;
1675 }
1676 
1677 static void pwm_seq_stop(struct seq_file *s, void *v)
1678 {
1679 	mutex_unlock(&pwm_lock);
1680 }
1681 
1682 static int pwm_seq_show(struct seq_file *s, void *v)
1683 {
1684 	struct pwm_chip *chip = v;
1685 
1686 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1687 		   (char *)s->private, chip->id,
1688 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1689 		   dev_name(pwmchip_parent(chip)), chip->npwm,
1690 		   (chip->npwm != 1) ? "s" : "");
1691 
1692 	pwm_dbg_show(chip, s);
1693 
1694 	return 0;
1695 }
1696 
1697 static const struct seq_operations pwm_debugfs_sops = {
1698 	.start = pwm_seq_start,
1699 	.next = pwm_seq_next,
1700 	.stop = pwm_seq_stop,
1701 	.show = pwm_seq_show,
1702 };
1703 
1704 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1705 
1706 static int __init pwm_init(void)
1707 {
1708 	if (IS_ENABLED(CONFIG_DEBUG_FS))
1709 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1710 
1711 	return class_register(&pwm_class);
1712 }
1713 subsys_initcall(pwm_init);
1714