xref: /linux/drivers/ptp/ptp_ocp.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 #define PCI_VENDOR_ID_ADVA			0xad5a
38 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
39 
40 static struct class timecard_class = {
41 	.name		= "timecard",
42 };
43 
44 struct ocp_reg {
45 	u32	ctrl;
46 	u32	status;
47 	u32	select;
48 	u32	version;
49 	u32	time_ns;
50 	u32	time_sec;
51 	u32	__pad0[2];
52 	u32	adjust_ns;
53 	u32	adjust_sec;
54 	u32	__pad1[2];
55 	u32	offset_ns;
56 	u32	offset_window_ns;
57 	u32	__pad2[2];
58 	u32	drift_ns;
59 	u32	drift_window_ns;
60 	u32	__pad3[6];
61 	u32	servo_offset_p;
62 	u32	servo_offset_i;
63 	u32	servo_drift_p;
64 	u32	servo_drift_i;
65 	u32	status_offset;
66 	u32	status_drift;
67 };
68 
69 struct ptp_ocp_servo_conf {
70 	u32	servo_offset_p;
71 	u32	servo_offset_i;
72 	u32	servo_drift_p;
73 	u32	servo_drift_i;
74 };
75 
76 #define OCP_CTRL_ENABLE		BIT(0)
77 #define OCP_CTRL_ADJUST_TIME	BIT(1)
78 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
79 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
80 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
81 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
82 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
83 
84 #define OCP_STATUS_IN_SYNC	BIT(0)
85 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
86 
87 #define OCP_SELECT_CLK_NONE	0
88 #define OCP_SELECT_CLK_REG	0xfe
89 
90 struct tod_reg {
91 	u32	ctrl;
92 	u32	status;
93 	u32	uart_polarity;
94 	u32	version;
95 	u32	adj_sec;
96 	u32	__pad0[3];
97 	u32	uart_baud;
98 	u32	__pad1[3];
99 	u32	utc_status;
100 	u32	leap;
101 };
102 
103 #define TOD_CTRL_PROTOCOL	BIT(28)
104 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
105 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
106 #define TOD_CTRL_ENABLE		BIT(0)
107 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
108 #define TOD_CTRL_GNSS_SHIFT	24
109 
110 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
111 #define TOD_STATUS_UTC_VALID		BIT(8)
112 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
113 #define TOD_STATUS_LEAP_VALID		BIT(16)
114 
115 struct ts_reg {
116 	u32	enable;
117 	u32	error;
118 	u32	polarity;
119 	u32	version;
120 	u32	__pad0[4];
121 	u32	cable_delay;
122 	u32	__pad1[3];
123 	u32	intr;
124 	u32	intr_mask;
125 	u32	event_count;
126 	u32	__pad2[1];
127 	u32	ts_count;
128 	u32	time_ns;
129 	u32	time_sec;
130 	u32	data_width;
131 	u32	data;
132 };
133 
134 struct pps_reg {
135 	u32	ctrl;
136 	u32	status;
137 	u32	__pad0[6];
138 	u32	cable_delay;
139 };
140 
141 #define PPS_STATUS_FILTER_ERR	BIT(0)
142 #define PPS_STATUS_SUPERV_ERR	BIT(1)
143 
144 struct img_reg {
145 	u32	version;
146 };
147 
148 struct gpio_reg {
149 	u32	gpio1;
150 	u32	__pad0;
151 	u32	gpio2;
152 	u32	__pad1;
153 };
154 
155 struct irig_master_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_M_CTRL_ENABLE	BIT(0)
165 
166 struct irig_slave_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 	u32	mode_ctrl;
173 };
174 
175 #define IRIG_S_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_master_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_M_CTRL_ENABLE	BIT(0)
186 
187 struct dcf_slave_reg {
188 	u32	ctrl;
189 	u32	status;
190 	u32	__pad0;
191 	u32	version;
192 	u32	adj_sec;
193 };
194 
195 #define DCF_S_CTRL_ENABLE	BIT(0)
196 
197 struct signal_reg {
198 	u32	enable;
199 	u32	status;
200 	u32	polarity;
201 	u32	version;
202 	u32	__pad0[4];
203 	u32	cable_delay;
204 	u32	__pad1[3];
205 	u32	intr;
206 	u32	intr_mask;
207 	u32	__pad2[2];
208 	u32	start_ns;
209 	u32	start_sec;
210 	u32	pulse_ns;
211 	u32	pulse_sec;
212 	u32	period_ns;
213 	u32	period_sec;
214 	u32	repeat_count;
215 };
216 
217 struct frequency_reg {
218 	u32	ctrl;
219 	u32	status;
220 };
221 
222 struct board_config_reg {
223 	u32 mro50_serial_activate;
224 };
225 
226 #define FREQ_STATUS_VALID	BIT(31)
227 #define FREQ_STATUS_ERROR	BIT(30)
228 #define FREQ_STATUS_OVERRUN	BIT(29)
229 #define FREQ_STATUS_MASK	GENMASK(23, 0)
230 
231 struct ptp_ocp_flash_info {
232 	const char *name;
233 	int pci_offset;
234 	int data_size;
235 	void *data;
236 };
237 
238 struct ptp_ocp_firmware_header {
239 	char magic[4];
240 	__be16 pci_vendor_id;
241 	__be16 pci_device_id;
242 	__be32 image_size;
243 	__be16 hw_revision;
244 	__be16 crc;
245 };
246 
247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
248 
249 struct ptp_ocp_i2c_info {
250 	const char *name;
251 	unsigned long fixed_rate;
252 	size_t data_size;
253 	void *data;
254 };
255 
256 struct ptp_ocp_ext_info {
257 	int index;
258 	irqreturn_t (*irq_fcn)(int irq, void *priv);
259 	int (*enable)(void *priv, u32 req, bool enable);
260 };
261 
262 struct ptp_ocp_ext_src {
263 	void __iomem		*mem;
264 	struct ptp_ocp		*bp;
265 	struct ptp_ocp_ext_info	*info;
266 	int			irq_vec;
267 };
268 
269 enum ptp_ocp_sma_mode {
270 	SMA_MODE_IN,
271 	SMA_MODE_OUT,
272 };
273 
274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
275 	DPLL_PIN_FREQUENCY_1PPS,
276 	DPLL_PIN_FREQUENCY_10MHZ,
277 	DPLL_PIN_FREQUENCY_IRIG_B,
278 	DPLL_PIN_FREQUENCY_DCF77,
279 };
280 
281 struct ptp_ocp_sma_connector {
282 	enum	ptp_ocp_sma_mode mode;
283 	bool	fixed_fcn;
284 	bool	fixed_dir;
285 	bool	disabled;
286 	u8	default_fcn;
287 	struct dpll_pin		   *dpll_pin;
288 	struct dpll_pin_properties dpll_prop;
289 };
290 
291 struct ocp_attr_group {
292 	u64 cap;
293 	const struct attribute_group *group;
294 };
295 
296 #define OCP_CAP_BASIC	BIT(0)
297 #define OCP_CAP_SIGNAL	BIT(1)
298 #define OCP_CAP_FREQ	BIT(2)
299 
300 struct ptp_ocp_signal {
301 	ktime_t		period;
302 	ktime_t		pulse;
303 	ktime_t		phase;
304 	ktime_t		start;
305 	int		duty;
306 	bool		polarity;
307 	bool		running;
308 };
309 
310 struct ptp_ocp_serial_port {
311 	int line;
312 	int baud;
313 };
314 
315 #define OCP_BOARD_ID_LEN		13
316 #define OCP_SERIAL_LEN			6
317 #define OCP_SMA_NUM			4
318 
319 struct ptp_ocp {
320 	struct pci_dev		*pdev;
321 	struct device		dev;
322 	spinlock_t		lock;
323 	struct ocp_reg __iomem	*reg;
324 	struct tod_reg __iomem	*tod;
325 	struct pps_reg __iomem	*pps_to_ext;
326 	struct pps_reg __iomem	*pps_to_clk;
327 	struct board_config_reg __iomem	*board_config;
328 	struct gpio_reg __iomem	*pps_select;
329 	struct gpio_reg __iomem	*sma_map1;
330 	struct gpio_reg __iomem	*sma_map2;
331 	struct irig_master_reg	__iomem *irig_out;
332 	struct irig_slave_reg	__iomem *irig_in;
333 	struct dcf_master_reg	__iomem *dcf_out;
334 	struct dcf_slave_reg	__iomem *dcf_in;
335 	struct tod_reg		__iomem *nmea_out;
336 	struct frequency_reg	__iomem *freq_in[4];
337 	struct ptp_ocp_ext_src	*signal_out[4];
338 	struct ptp_ocp_ext_src	*pps;
339 	struct ptp_ocp_ext_src	*ts0;
340 	struct ptp_ocp_ext_src	*ts1;
341 	struct ptp_ocp_ext_src	*ts2;
342 	struct ptp_ocp_ext_src	*ts3;
343 	struct ptp_ocp_ext_src	*ts4;
344 	struct ocp_art_gpio_reg __iomem *art_sma;
345 	struct img_reg __iomem	*image;
346 	struct ptp_clock	*ptp;
347 	struct ptp_clock_info	ptp_info;
348 	struct platform_device	*i2c_ctrl;
349 	struct platform_device	*spi_flash;
350 	struct clk_hw		*i2c_clk;
351 	struct timer_list	watchdog;
352 	const struct attribute_group **attr_group;
353 	const struct ptp_ocp_eeprom_map *eeprom_map;
354 	struct dentry		*debug_root;
355 	bool			sync;
356 	time64_t		gnss_lost;
357 	struct delayed_work	sync_work;
358 	int			id;
359 	int			n_irqs;
360 	struct ptp_ocp_serial_port	gnss_port;
361 	struct ptp_ocp_serial_port	gnss2_port;
362 	struct ptp_ocp_serial_port	mac_port;   /* miniature atomic clock */
363 	struct ptp_ocp_serial_port	nmea_port;
364 	bool			fw_loader;
365 	u8			fw_tag;
366 	u16			fw_version;
367 	u8			board_id[OCP_BOARD_ID_LEN];
368 	u8			serial[OCP_SERIAL_LEN];
369 	bool			has_eeprom_data;
370 	u32			pps_req_map;
371 	int			flash_start;
372 	u32			utc_tai_offset;
373 	u32			ts_window_adjust;
374 	u64			fw_cap;
375 	struct ptp_ocp_signal	signal[4];
376 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
377 	const struct ocp_sma_op *sma_op;
378 	struct dpll_device *dpll;
379 };
380 
381 #define OCP_REQ_TIMESTAMP	BIT(0)
382 #define OCP_REQ_PPS		BIT(1)
383 
384 struct ocp_resource {
385 	unsigned long offset;
386 	int size;
387 	int irq_vec;
388 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
389 	void *extra;
390 	unsigned long bp_offset;
391 	const char * const name;
392 };
393 
394 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
395 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
396 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
397 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
398 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
399 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
400 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
401 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
402 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
403 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
404 				      struct ptp_perout_request *req);
405 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
406 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
407 
408 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
409 
410 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
411 
412 static const struct ocp_attr_group fb_timecard_groups[];
413 
414 static const struct ocp_attr_group art_timecard_groups[];
415 
416 static const struct ocp_attr_group adva_timecard_groups[];
417 
418 struct ptp_ocp_eeprom_map {
419 	u16	off;
420 	u16	len;
421 	u32	bp_offset;
422 	const void * const tag;
423 };
424 
425 #define EEPROM_ENTRY(addr, member)				\
426 	.off = addr,						\
427 	.len = sizeof_field(struct ptp_ocp, member),		\
428 	.bp_offset = offsetof(struct ptp_ocp, member)
429 
430 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
431 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
432 })
433 
434 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
435 	{ EEPROM_ENTRY(0x43, board_id) },
436 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
437 	{ }
438 };
439 
440 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
441 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
442 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
443 	{ }
444 };
445 
446 #define bp_assign_entry(bp, res, val) ({				\
447 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
448 	*(typeof(val) *)addr = val;					\
449 })
450 
451 #define OCP_RES_LOCATION(member) \
452 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
453 
454 #define OCP_MEM_RESOURCE(member) \
455 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
456 
457 #define OCP_SERIAL_RESOURCE(member) \
458 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
459 
460 #define OCP_I2C_RESOURCE(member) \
461 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
462 
463 #define OCP_SPI_RESOURCE(member) \
464 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
465 
466 #define OCP_EXT_RESOURCE(member) \
467 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
468 
469 /* This is the MSI vector mapping used.
470  * 0: PPS (TS5)
471  * 1: TS0
472  * 2: TS1
473  * 3: GNSS1
474  * 4: GNSS2
475  * 5: MAC
476  * 6: TS2
477  * 7: I2C controller
478  * 8: HWICAP (notused)
479  * 9: SPI Flash
480  * 10: NMEA
481  * 11: Signal Generator 1
482  * 12: Signal Generator 2
483  * 13: Signal Generator 3
484  * 14: Signal Generator 4
485  * 15: TS3
486  * 16: TS4
487  --
488  * 8: Orolia TS1
489  * 10: Orolia TS2
490  * 11: Orolia TS0 (GNSS)
491  * 12: Orolia PPS
492  * 14: Orolia TS3
493  * 15: Orolia TS4
494  */
495 
496 static struct ocp_resource ocp_fb_resource[] = {
497 	{
498 		OCP_MEM_RESOURCE(reg),
499 		.offset = 0x01000000, .size = 0x10000,
500 	},
501 	{
502 		OCP_EXT_RESOURCE(ts0),
503 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
504 		.extra = &(struct ptp_ocp_ext_info) {
505 			.index = 0,
506 			.irq_fcn = ptp_ocp_ts_irq,
507 			.enable = ptp_ocp_ts_enable,
508 		},
509 	},
510 	{
511 		OCP_EXT_RESOURCE(ts1),
512 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
513 		.extra = &(struct ptp_ocp_ext_info) {
514 			.index = 1,
515 			.irq_fcn = ptp_ocp_ts_irq,
516 			.enable = ptp_ocp_ts_enable,
517 		},
518 	},
519 	{
520 		OCP_EXT_RESOURCE(ts2),
521 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
522 		.extra = &(struct ptp_ocp_ext_info) {
523 			.index = 2,
524 			.irq_fcn = ptp_ocp_ts_irq,
525 			.enable = ptp_ocp_ts_enable,
526 		},
527 	},
528 	{
529 		OCP_EXT_RESOURCE(ts3),
530 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
531 		.extra = &(struct ptp_ocp_ext_info) {
532 			.index = 3,
533 			.irq_fcn = ptp_ocp_ts_irq,
534 			.enable = ptp_ocp_ts_enable,
535 		},
536 	},
537 	{
538 		OCP_EXT_RESOURCE(ts4),
539 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
540 		.extra = &(struct ptp_ocp_ext_info) {
541 			.index = 4,
542 			.irq_fcn = ptp_ocp_ts_irq,
543 			.enable = ptp_ocp_ts_enable,
544 		},
545 	},
546 	/* Timestamp for PHC and/or PPS generator */
547 	{
548 		OCP_EXT_RESOURCE(pps),
549 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
550 		.extra = &(struct ptp_ocp_ext_info) {
551 			.index = 5,
552 			.irq_fcn = ptp_ocp_ts_irq,
553 			.enable = ptp_ocp_ts_enable,
554 		},
555 	},
556 	{
557 		OCP_EXT_RESOURCE(signal_out[0]),
558 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
559 		.extra = &(struct ptp_ocp_ext_info) {
560 			.index = 1,
561 			.irq_fcn = ptp_ocp_signal_irq,
562 			.enable = ptp_ocp_signal_enable,
563 		},
564 	},
565 	{
566 		OCP_EXT_RESOURCE(signal_out[1]),
567 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
568 		.extra = &(struct ptp_ocp_ext_info) {
569 			.index = 2,
570 			.irq_fcn = ptp_ocp_signal_irq,
571 			.enable = ptp_ocp_signal_enable,
572 		},
573 	},
574 	{
575 		OCP_EXT_RESOURCE(signal_out[2]),
576 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
577 		.extra = &(struct ptp_ocp_ext_info) {
578 			.index = 3,
579 			.irq_fcn = ptp_ocp_signal_irq,
580 			.enable = ptp_ocp_signal_enable,
581 		},
582 	},
583 	{
584 		OCP_EXT_RESOURCE(signal_out[3]),
585 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
586 		.extra = &(struct ptp_ocp_ext_info) {
587 			.index = 4,
588 			.irq_fcn = ptp_ocp_signal_irq,
589 			.enable = ptp_ocp_signal_enable,
590 		},
591 	},
592 	{
593 		OCP_MEM_RESOURCE(pps_to_ext),
594 		.offset = 0x01030000, .size = 0x10000,
595 	},
596 	{
597 		OCP_MEM_RESOURCE(pps_to_clk),
598 		.offset = 0x01040000, .size = 0x10000,
599 	},
600 	{
601 		OCP_MEM_RESOURCE(tod),
602 		.offset = 0x01050000, .size = 0x10000,
603 	},
604 	{
605 		OCP_MEM_RESOURCE(irig_in),
606 		.offset = 0x01070000, .size = 0x10000,
607 	},
608 	{
609 		OCP_MEM_RESOURCE(irig_out),
610 		.offset = 0x01080000, .size = 0x10000,
611 	},
612 	{
613 		OCP_MEM_RESOURCE(dcf_in),
614 		.offset = 0x01090000, .size = 0x10000,
615 	},
616 	{
617 		OCP_MEM_RESOURCE(dcf_out),
618 		.offset = 0x010A0000, .size = 0x10000,
619 	},
620 	{
621 		OCP_MEM_RESOURCE(nmea_out),
622 		.offset = 0x010B0000, .size = 0x10000,
623 	},
624 	{
625 		OCP_MEM_RESOURCE(image),
626 		.offset = 0x00020000, .size = 0x1000,
627 	},
628 	{
629 		OCP_MEM_RESOURCE(pps_select),
630 		.offset = 0x00130000, .size = 0x1000,
631 	},
632 	{
633 		OCP_MEM_RESOURCE(sma_map1),
634 		.offset = 0x00140000, .size = 0x1000,
635 	},
636 	{
637 		OCP_MEM_RESOURCE(sma_map2),
638 		.offset = 0x00220000, .size = 0x1000,
639 	},
640 	{
641 		OCP_I2C_RESOURCE(i2c_ctrl),
642 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
643 		.extra = &(struct ptp_ocp_i2c_info) {
644 			.name = "xiic-i2c",
645 			.fixed_rate = 50000000,
646 			.data_size = sizeof(struct xiic_i2c_platform_data),
647 			.data = &(struct xiic_i2c_platform_data) {
648 				.num_devices = 2,
649 				.devices = (struct i2c_board_info[]) {
650 					{ I2C_BOARD_INFO("24c02", 0x50) },
651 					{ I2C_BOARD_INFO("24mac402", 0x58),
652 					  .platform_data = "mac" },
653 				},
654 			},
655 		},
656 	},
657 	{
658 		OCP_SERIAL_RESOURCE(gnss_port),
659 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
660 		.extra = &(struct ptp_ocp_serial_port) {
661 			.baud = 115200,
662 		},
663 	},
664 	{
665 		OCP_SERIAL_RESOURCE(gnss2_port),
666 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
667 		.extra = &(struct ptp_ocp_serial_port) {
668 			.baud = 115200,
669 		},
670 	},
671 	{
672 		OCP_SERIAL_RESOURCE(mac_port),
673 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
674 		.extra = &(struct ptp_ocp_serial_port) {
675 			.baud = 57600,
676 		},
677 	},
678 	{
679 		OCP_SERIAL_RESOURCE(nmea_port),
680 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
681 	},
682 	{
683 		OCP_SPI_RESOURCE(spi_flash),
684 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
685 		.extra = &(struct ptp_ocp_flash_info) {
686 			.name = "xilinx_spi", .pci_offset = 0,
687 			.data_size = sizeof(struct xspi_platform_data),
688 			.data = &(struct xspi_platform_data) {
689 				.num_chipselect = 1,
690 				.bits_per_word = 8,
691 				.num_devices = 1,
692 				.force_irq = true,
693 				.devices = &(struct spi_board_info) {
694 					.modalias = "spi-nor",
695 				},
696 			},
697 		},
698 	},
699 	{
700 		OCP_MEM_RESOURCE(freq_in[0]),
701 		.offset = 0x01200000, .size = 0x10000,
702 	},
703 	{
704 		OCP_MEM_RESOURCE(freq_in[1]),
705 		.offset = 0x01210000, .size = 0x10000,
706 	},
707 	{
708 		OCP_MEM_RESOURCE(freq_in[2]),
709 		.offset = 0x01220000, .size = 0x10000,
710 	},
711 	{
712 		OCP_MEM_RESOURCE(freq_in[3]),
713 		.offset = 0x01230000, .size = 0x10000,
714 	},
715 	{
716 		.setup = ptp_ocp_fb_board_init,
717 		.extra = &(struct ptp_ocp_servo_conf) {
718 			.servo_offset_p = 0x2000,
719 			.servo_offset_i = 0x1000,
720 			.servo_drift_p = 0,
721 			.servo_drift_i = 0,
722 		},
723 	},
724 	{ }
725 };
726 
727 #define OCP_ART_CONFIG_SIZE		144
728 #define OCP_ART_TEMP_TABLE_SIZE		368
729 
730 struct ocp_art_gpio_reg {
731 	struct {
732 		u32	gpio;
733 		u32	__pad[3];
734 	} map[4];
735 };
736 
737 static struct ocp_resource ocp_art_resource[] = {
738 	{
739 		OCP_MEM_RESOURCE(reg),
740 		.offset = 0x01000000, .size = 0x10000,
741 	},
742 	{
743 		OCP_SERIAL_RESOURCE(gnss_port),
744 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
745 		.extra = &(struct ptp_ocp_serial_port) {
746 			.baud = 115200,
747 		},
748 	},
749 	{
750 		OCP_MEM_RESOURCE(art_sma),
751 		.offset = 0x003C0000, .size = 0x1000,
752 	},
753 	/* Timestamp associated with GNSS1 receiver PPS */
754 	{
755 		OCP_EXT_RESOURCE(ts0),
756 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
757 		.extra = &(struct ptp_ocp_ext_info) {
758 			.index = 0,
759 			.irq_fcn = ptp_ocp_ts_irq,
760 			.enable = ptp_ocp_ts_enable,
761 		},
762 	},
763 	{
764 		OCP_EXT_RESOURCE(ts1),
765 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
766 		.extra = &(struct ptp_ocp_ext_info) {
767 			.index = 1,
768 			.irq_fcn = ptp_ocp_ts_irq,
769 			.enable = ptp_ocp_ts_enable,
770 		},
771 	},
772 	{
773 		OCP_EXT_RESOURCE(ts2),
774 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
775 		.extra = &(struct ptp_ocp_ext_info) {
776 			.index = 2,
777 			.irq_fcn = ptp_ocp_ts_irq,
778 			.enable = ptp_ocp_ts_enable,
779 		},
780 	},
781 	{
782 		OCP_EXT_RESOURCE(ts3),
783 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
784 		.extra = &(struct ptp_ocp_ext_info) {
785 			.index = 3,
786 			.irq_fcn = ptp_ocp_ts_irq,
787 			.enable = ptp_ocp_ts_enable,
788 		},
789 	},
790 	{
791 		OCP_EXT_RESOURCE(ts4),
792 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
793 		.extra = &(struct ptp_ocp_ext_info) {
794 			.index = 4,
795 			.irq_fcn = ptp_ocp_ts_irq,
796 			.enable = ptp_ocp_ts_enable,
797 		},
798 	},
799 	/* Timestamp associated with Internal PPS of the card */
800 	{
801 		OCP_EXT_RESOURCE(pps),
802 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
803 		.extra = &(struct ptp_ocp_ext_info) {
804 			.index = 5,
805 			.irq_fcn = ptp_ocp_ts_irq,
806 			.enable = ptp_ocp_ts_enable,
807 		},
808 	},
809 	{
810 		OCP_SPI_RESOURCE(spi_flash),
811 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
812 		.extra = &(struct ptp_ocp_flash_info) {
813 			.name = "spi_altera", .pci_offset = 0,
814 			.data_size = sizeof(struct altera_spi_platform_data),
815 			.data = &(struct altera_spi_platform_data) {
816 				.num_chipselect = 1,
817 				.num_devices = 1,
818 				.devices = &(struct spi_board_info) {
819 					.modalias = "spi-nor",
820 				},
821 			},
822 		},
823 	},
824 	{
825 		OCP_I2C_RESOURCE(i2c_ctrl),
826 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
827 		.extra = &(struct ptp_ocp_i2c_info) {
828 			.name = "ocores-i2c",
829 			.fixed_rate = 400000,
830 			.data_size = sizeof(struct ocores_i2c_platform_data),
831 			.data = &(struct ocores_i2c_platform_data) {
832 				.clock_khz = 125000,
833 				.bus_khz = 400,
834 				.num_devices = 1,
835 				.devices = &(struct i2c_board_info) {
836 					I2C_BOARD_INFO("24c08", 0x50),
837 				},
838 			},
839 		},
840 	},
841 	{
842 		OCP_SERIAL_RESOURCE(mac_port),
843 		.offset = 0x00190000, .irq_vec = 7,
844 		.extra = &(struct ptp_ocp_serial_port) {
845 			.baud = 9600,
846 		},
847 	},
848 	{
849 		OCP_MEM_RESOURCE(board_config),
850 		.offset = 0x210000, .size = 0x1000,
851 	},
852 	{
853 		.setup = ptp_ocp_art_board_init,
854 		.extra = &(struct ptp_ocp_servo_conf) {
855 			.servo_offset_p = 0x2000,
856 			.servo_offset_i = 0x1000,
857 			.servo_drift_p = 0,
858 			.servo_drift_i = 0,
859 		},
860 	},
861 	{ }
862 };
863 
864 static struct ocp_resource ocp_adva_resource[] = {
865 	{
866 		OCP_MEM_RESOURCE(reg),
867 		.offset = 0x01000000, .size = 0x10000,
868 	},
869 	{
870 		OCP_EXT_RESOURCE(ts0),
871 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
872 		.extra = &(struct ptp_ocp_ext_info) {
873 			.index = 0,
874 			.irq_fcn = ptp_ocp_ts_irq,
875 			.enable = ptp_ocp_ts_enable,
876 		},
877 	},
878 	{
879 		OCP_EXT_RESOURCE(ts1),
880 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
881 		.extra = &(struct ptp_ocp_ext_info) {
882 			.index = 1,
883 			.irq_fcn = ptp_ocp_ts_irq,
884 			.enable = ptp_ocp_ts_enable,
885 		},
886 	},
887 	{
888 		OCP_EXT_RESOURCE(ts2),
889 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
890 		.extra = &(struct ptp_ocp_ext_info) {
891 			.index = 2,
892 			.irq_fcn = ptp_ocp_ts_irq,
893 			.enable = ptp_ocp_ts_enable,
894 		},
895 	},
896 	/* Timestamp for PHC and/or PPS generator */
897 	{
898 		OCP_EXT_RESOURCE(pps),
899 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
900 		.extra = &(struct ptp_ocp_ext_info) {
901 			.index = 5,
902 			.irq_fcn = ptp_ocp_ts_irq,
903 			.enable = ptp_ocp_ts_enable,
904 		},
905 	},
906 	{
907 		OCP_EXT_RESOURCE(signal_out[0]),
908 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
909 		.extra = &(struct ptp_ocp_ext_info) {
910 			.index = 1,
911 			.irq_fcn = ptp_ocp_signal_irq,
912 			.enable = ptp_ocp_signal_enable,
913 		},
914 	},
915 	{
916 		OCP_EXT_RESOURCE(signal_out[1]),
917 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
918 		.extra = &(struct ptp_ocp_ext_info) {
919 			.index = 2,
920 			.irq_fcn = ptp_ocp_signal_irq,
921 			.enable = ptp_ocp_signal_enable,
922 		},
923 	},
924 	{
925 		OCP_MEM_RESOURCE(pps_to_ext),
926 		.offset = 0x01030000, .size = 0x10000,
927 	},
928 	{
929 		OCP_MEM_RESOURCE(pps_to_clk),
930 		.offset = 0x01040000, .size = 0x10000,
931 	},
932 	{
933 		OCP_MEM_RESOURCE(tod),
934 		.offset = 0x01050000, .size = 0x10000,
935 	},
936 	{
937 		OCP_MEM_RESOURCE(image),
938 		.offset = 0x00020000, .size = 0x1000,
939 	},
940 	{
941 		OCP_MEM_RESOURCE(pps_select),
942 		.offset = 0x00130000, .size = 0x1000,
943 	},
944 	{
945 		OCP_MEM_RESOURCE(sma_map1),
946 		.offset = 0x00140000, .size = 0x1000,
947 	},
948 	{
949 		OCP_MEM_RESOURCE(sma_map2),
950 		.offset = 0x00220000, .size = 0x1000,
951 	},
952 	{
953 		OCP_SERIAL_RESOURCE(gnss_port),
954 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
955 		.extra = &(struct ptp_ocp_serial_port) {
956 			.baud = 9600,
957 		},
958 	},
959 	{
960 		OCP_SERIAL_RESOURCE(mac_port),
961 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
962 		.extra = &(struct ptp_ocp_serial_port) {
963 			.baud = 115200,
964 		},
965 	},
966 	{
967 		OCP_MEM_RESOURCE(freq_in[0]),
968 		.offset = 0x01200000, .size = 0x10000,
969 	},
970 	{
971 		OCP_MEM_RESOURCE(freq_in[1]),
972 		.offset = 0x01210000, .size = 0x10000,
973 	},
974 	{
975 		OCP_SPI_RESOURCE(spi_flash),
976 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
977 		.extra = &(struct ptp_ocp_flash_info) {
978 			.name = "spi_altera", .pci_offset = 0,
979 			.data_size = sizeof(struct altera_spi_platform_data),
980 			.data = &(struct altera_spi_platform_data) {
981 				.num_chipselect = 1,
982 				.num_devices = 1,
983 				.devices = &(struct spi_board_info) {
984 					.modalias = "spi-nor",
985 				},
986 			},
987 		},
988 	},
989 	{
990 		OCP_I2C_RESOURCE(i2c_ctrl),
991 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
992 		.extra = &(struct ptp_ocp_i2c_info) {
993 			.name = "ocores-i2c",
994 			.fixed_rate = 50000000,
995 			.data_size = sizeof(struct ocores_i2c_platform_data),
996 			.data = &(struct ocores_i2c_platform_data) {
997 				.clock_khz = 50000,
998 				.bus_khz = 100,
999 				.reg_io_width = 4, // 32-bit/4-byte
1000 				.reg_shift = 2, // 32-bit addressing
1001 				.num_devices = 2,
1002 				.devices = (struct i2c_board_info[]) {
1003 					{ I2C_BOARD_INFO("24c02", 0x50) },
1004 					{ I2C_BOARD_INFO("24mac402", 0x58),
1005 					 .platform_data = "mac" },
1006 				},
1007 			},
1008 		},
1009 	},
1010 	{
1011 		.setup = ptp_ocp_adva_board_init,
1012 		.extra = &(struct ptp_ocp_servo_conf) {
1013 			.servo_offset_p = 0xc000,
1014 			.servo_offset_i = 0x1000,
1015 			.servo_drift_p = 0,
1016 			.servo_drift_i = 0,
1017 		},
1018 	},
1019 	{ }
1020 };
1021 
1022 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1023 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
1024 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1025 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1026 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1027 	{ }
1028 };
1029 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1030 
1031 static DEFINE_MUTEX(ptp_ocp_lock);
1032 static DEFINE_IDR(ptp_ocp_idr);
1033 
1034 struct ocp_selector {
1035 	const char *name;
1036 	int value;
1037 	u64 frequency;
1038 };
1039 
1040 static const struct ocp_selector ptp_ocp_clock[] = {
1041 	{ .name = "NONE",	.value = 0 },
1042 	{ .name = "TOD",	.value = 1 },
1043 	{ .name = "IRIG",	.value = 2 },
1044 	{ .name = "PPS",	.value = 3 },
1045 	{ .name = "PTP",	.value = 4 },
1046 	{ .name = "RTC",	.value = 5 },
1047 	{ .name = "DCF",	.value = 6 },
1048 	{ .name = "REGS",	.value = 0xfe },
1049 	{ .name = "EXT",	.value = 0xff },
1050 	{ }
1051 };
1052 
1053 #define SMA_DISABLE		BIT(16)
1054 #define SMA_ENABLE		BIT(15)
1055 #define SMA_SELECT_MASK		GENMASK(14, 0)
1056 
1057 static const struct ocp_selector ptp_ocp_sma_in[] = {
1058 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1059 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1060 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1061 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1062 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1063 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1064 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1065 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1066 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1067 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1068 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1069 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1070 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1071 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1072 	{ }
1073 };
1074 
1075 static const struct ocp_selector ptp_ocp_sma_out[] = {
1076 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1077 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1078 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1079 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1080 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1081 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1082 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1083 	{ .name = "GEN1",	.value = 0x0040 },
1084 	{ .name = "GEN2",	.value = 0x0080 },
1085 	{ .name = "GEN3",	.value = 0x0100 },
1086 	{ .name = "GEN4",	.value = 0x0200 },
1087 	{ .name = "GND",	.value = 0x2000 },
1088 	{ .name = "VCC",	.value = 0x4000 },
1089 	{ }
1090 };
1091 
1092 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1093 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1094 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1095 	{ }
1096 };
1097 
1098 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1099 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1100 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1101 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1102 	{ }
1103 };
1104 
1105 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1106 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1107 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1108 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1109 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1110 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1111 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1112 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1113 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1114 	{ }
1115 };
1116 
1117 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1118 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1119 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1120 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1121 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1122 	{ .name = "GEN1",	.value = 0x0040 },
1123 	{ .name = "GEN2",	.value = 0x0080 },
1124 	{ .name = "GND",	.value = 0x2000 },
1125 	{ .name = "VCC",	.value = 0x4000 },
1126 	{ }
1127 };
1128 
1129 struct ocp_sma_op {
1130 	const struct ocp_selector *tbl[2];
1131 	void (*init)(struct ptp_ocp *bp);
1132 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1133 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1134 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1135 };
1136 
1137 static void
1138 ptp_ocp_sma_init(struct ptp_ocp *bp)
1139 {
1140 	return bp->sma_op->init(bp);
1141 }
1142 
1143 static u32
1144 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1145 {
1146 	return bp->sma_op->get(bp, sma_nr);
1147 }
1148 
1149 static int
1150 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1151 {
1152 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1153 }
1154 
1155 static int
1156 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1157 {
1158 	return bp->sma_op->set_output(bp, sma_nr, val);
1159 }
1160 
1161 static const char *
1162 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1163 {
1164 	int i;
1165 
1166 	for (i = 0; tbl[i].name; i++)
1167 		if (tbl[i].value == val)
1168 			return tbl[i].name;
1169 	return NULL;
1170 }
1171 
1172 static int
1173 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1174 {
1175 	const char *select;
1176 	int i;
1177 
1178 	for (i = 0; tbl[i].name; i++) {
1179 		select = tbl[i].name;
1180 		if (!strncasecmp(name, select, strlen(select)))
1181 			return tbl[i].value;
1182 	}
1183 	return -EINVAL;
1184 }
1185 
1186 static ssize_t
1187 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1188 {
1189 	ssize_t count;
1190 	int i;
1191 
1192 	count = 0;
1193 	for (i = 0; tbl[i].name; i++)
1194 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1195 	if (count)
1196 		count--;
1197 	count += sysfs_emit_at(buf, count, "\n");
1198 	return count;
1199 }
1200 
1201 static int
1202 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1203 			 struct ptp_system_timestamp *sts)
1204 {
1205 	u32 ctrl, time_sec, time_ns;
1206 	int i;
1207 
1208 	ptp_read_system_prets(sts);
1209 
1210 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1211 	iowrite32(ctrl, &bp->reg->ctrl);
1212 
1213 	for (i = 0; i < 100; i++) {
1214 		ctrl = ioread32(&bp->reg->ctrl);
1215 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1216 			break;
1217 	}
1218 	ptp_read_system_postts(sts);
1219 
1220 	if (sts && bp->ts_window_adjust) {
1221 		s64 ns = timespec64_to_ns(&sts->post_ts);
1222 
1223 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1224 	}
1225 
1226 	time_ns = ioread32(&bp->reg->time_ns);
1227 	time_sec = ioread32(&bp->reg->time_sec);
1228 
1229 	ts->tv_sec = time_sec;
1230 	ts->tv_nsec = time_ns;
1231 
1232 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1233 }
1234 
1235 static int
1236 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1237 		 struct ptp_system_timestamp *sts)
1238 {
1239 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1240 	unsigned long flags;
1241 	int err;
1242 
1243 	spin_lock_irqsave(&bp->lock, flags);
1244 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1245 	spin_unlock_irqrestore(&bp->lock, flags);
1246 
1247 	return err;
1248 }
1249 
1250 static void
1251 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1252 {
1253 	u32 ctrl, time_sec, time_ns;
1254 	u32 select;
1255 
1256 	time_ns = ts->tv_nsec;
1257 	time_sec = ts->tv_sec;
1258 
1259 	select = ioread32(&bp->reg->select);
1260 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1261 
1262 	iowrite32(time_ns, &bp->reg->adjust_ns);
1263 	iowrite32(time_sec, &bp->reg->adjust_sec);
1264 
1265 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1266 	iowrite32(ctrl, &bp->reg->ctrl);
1267 
1268 	/* restore clock selection */
1269 	iowrite32(select >> 16, &bp->reg->select);
1270 }
1271 
1272 static int
1273 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1274 {
1275 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1276 	unsigned long flags;
1277 
1278 	spin_lock_irqsave(&bp->lock, flags);
1279 	__ptp_ocp_settime_locked(bp, ts);
1280 	spin_unlock_irqrestore(&bp->lock, flags);
1281 
1282 	return 0;
1283 }
1284 
1285 static void
1286 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1287 {
1288 	u32 select, ctrl;
1289 
1290 	select = ioread32(&bp->reg->select);
1291 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1292 
1293 	iowrite32(adj_val, &bp->reg->offset_ns);
1294 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1295 
1296 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1297 	iowrite32(ctrl, &bp->reg->ctrl);
1298 
1299 	/* restore clock selection */
1300 	iowrite32(select >> 16, &bp->reg->select);
1301 }
1302 
1303 static void
1304 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1305 {
1306 	struct timespec64 ts;
1307 	unsigned long flags;
1308 	int err;
1309 
1310 	spin_lock_irqsave(&bp->lock, flags);
1311 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1312 	if (likely(!err)) {
1313 		set_normalized_timespec64(&ts, ts.tv_sec,
1314 					  ts.tv_nsec + delta_ns);
1315 		__ptp_ocp_settime_locked(bp, &ts);
1316 	}
1317 	spin_unlock_irqrestore(&bp->lock, flags);
1318 }
1319 
1320 static int
1321 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1322 {
1323 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1324 	unsigned long flags;
1325 	u32 adj_ns, sign;
1326 
1327 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1328 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1329 		return 0;
1330 	}
1331 
1332 	sign = delta_ns < 0 ? BIT(31) : 0;
1333 	adj_ns = sign ? -delta_ns : delta_ns;
1334 
1335 	spin_lock_irqsave(&bp->lock, flags);
1336 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1337 	spin_unlock_irqrestore(&bp->lock, flags);
1338 
1339 	return 0;
1340 }
1341 
1342 static int
1343 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1344 {
1345 	if (scaled_ppm == 0)
1346 		return 0;
1347 
1348 	return -EOPNOTSUPP;
1349 }
1350 
1351 static s32
1352 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1353 {
1354 	return 0;
1355 }
1356 
1357 static int
1358 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1359 {
1360 	return -EOPNOTSUPP;
1361 }
1362 
1363 static int
1364 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1365 	       int on)
1366 {
1367 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1368 	struct ptp_ocp_ext_src *ext = NULL;
1369 	u32 req;
1370 	int err;
1371 
1372 	switch (rq->type) {
1373 	case PTP_CLK_REQ_EXTTS:
1374 		req = OCP_REQ_TIMESTAMP;
1375 		switch (rq->extts.index) {
1376 		case 0:
1377 			ext = bp->ts0;
1378 			break;
1379 		case 1:
1380 			ext = bp->ts1;
1381 			break;
1382 		case 2:
1383 			ext = bp->ts2;
1384 			break;
1385 		case 3:
1386 			ext = bp->ts3;
1387 			break;
1388 		case 4:
1389 			ext = bp->ts4;
1390 			break;
1391 		case 5:
1392 			ext = bp->pps;
1393 			break;
1394 		}
1395 		break;
1396 	case PTP_CLK_REQ_PPS:
1397 		req = OCP_REQ_PPS;
1398 		ext = bp->pps;
1399 		break;
1400 	case PTP_CLK_REQ_PEROUT:
1401 		switch (rq->perout.index) {
1402 		case 0:
1403 			/* This is a request for 1PPS on an output SMA.
1404 			 * Allow, but assume manual configuration.
1405 			 */
1406 			if (on && (rq->perout.period.sec != 1 ||
1407 				   rq->perout.period.nsec != 0))
1408 				return -EINVAL;
1409 			return 0;
1410 		case 1:
1411 		case 2:
1412 		case 3:
1413 		case 4:
1414 			req = rq->perout.index - 1;
1415 			ext = bp->signal_out[req];
1416 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1417 			if (err)
1418 				return err;
1419 			break;
1420 		}
1421 		break;
1422 	default:
1423 		return -EOPNOTSUPP;
1424 	}
1425 
1426 	err = -ENXIO;
1427 	if (ext)
1428 		err = ext->info->enable(ext, req, on);
1429 
1430 	return err;
1431 }
1432 
1433 static int
1434 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1435 	       enum ptp_pin_function func, unsigned chan)
1436 {
1437 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1438 	char buf[16];
1439 
1440 	switch (func) {
1441 	case PTP_PF_NONE:
1442 		snprintf(buf, sizeof(buf), "IN: None");
1443 		break;
1444 	case PTP_PF_EXTTS:
1445 		/* Allow timestamps, but require sysfs configuration. */
1446 		return 0;
1447 	case PTP_PF_PEROUT:
1448 		/* channel 0 is 1PPS from PHC.
1449 		 * channels 1..4 are the frequency generators.
1450 		 */
1451 		if (chan)
1452 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1453 		else
1454 			snprintf(buf, sizeof(buf), "OUT: PHC");
1455 		break;
1456 	default:
1457 		return -EOPNOTSUPP;
1458 	}
1459 
1460 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1461 }
1462 
1463 static const struct ptp_clock_info ptp_ocp_clock_info = {
1464 	.owner		= THIS_MODULE,
1465 	.name		= KBUILD_MODNAME,
1466 	.max_adj	= 100000000,
1467 	.gettimex64	= ptp_ocp_gettimex,
1468 	.settime64	= ptp_ocp_settime,
1469 	.adjtime	= ptp_ocp_adjtime,
1470 	.adjfine	= ptp_ocp_null_adjfine,
1471 	.adjphase	= ptp_ocp_null_adjphase,
1472 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1473 	.enable		= ptp_ocp_enable,
1474 	.verify		= ptp_ocp_verify,
1475 	.pps		= true,
1476 	.n_ext_ts	= 6,
1477 	.n_per_out	= 5,
1478 };
1479 
1480 static void
1481 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1482 {
1483 	u32 ctrl, select;
1484 
1485 	select = ioread32(&bp->reg->select);
1486 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1487 
1488 	iowrite32(0, &bp->reg->drift_ns);
1489 
1490 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1491 	iowrite32(ctrl, &bp->reg->ctrl);
1492 
1493 	/* restore clock selection */
1494 	iowrite32(select >> 16, &bp->reg->select);
1495 }
1496 
1497 static void
1498 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1499 {
1500 	unsigned long flags;
1501 
1502 	spin_lock_irqsave(&bp->lock, flags);
1503 
1504 	bp->utc_tai_offset = val;
1505 
1506 	if (bp->irig_out)
1507 		iowrite32(val, &bp->irig_out->adj_sec);
1508 	if (bp->dcf_out)
1509 		iowrite32(val, &bp->dcf_out->adj_sec);
1510 	if (bp->nmea_out)
1511 		iowrite32(val, &bp->nmea_out->adj_sec);
1512 
1513 	spin_unlock_irqrestore(&bp->lock, flags);
1514 }
1515 
1516 static void
1517 ptp_ocp_watchdog(struct timer_list *t)
1518 {
1519 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1520 	unsigned long flags;
1521 	u32 status, utc_offset;
1522 
1523 	status = ioread32(&bp->pps_to_clk->status);
1524 
1525 	if (status & PPS_STATUS_SUPERV_ERR) {
1526 		iowrite32(status, &bp->pps_to_clk->status);
1527 		if (!bp->gnss_lost) {
1528 			spin_lock_irqsave(&bp->lock, flags);
1529 			__ptp_ocp_clear_drift_locked(bp);
1530 			spin_unlock_irqrestore(&bp->lock, flags);
1531 			bp->gnss_lost = ktime_get_real_seconds();
1532 		}
1533 
1534 	} else if (bp->gnss_lost) {
1535 		bp->gnss_lost = 0;
1536 	}
1537 
1538 	/* if GNSS provides correct data we can rely on
1539 	 * it to get leap second information
1540 	 */
1541 	if (bp->tod) {
1542 		status = ioread32(&bp->tod->utc_status);
1543 		utc_offset = status & TOD_STATUS_UTC_MASK;
1544 		if (status & TOD_STATUS_UTC_VALID &&
1545 		    utc_offset != bp->utc_tai_offset)
1546 			ptp_ocp_utc_distribute(bp, utc_offset);
1547 	}
1548 
1549 	mod_timer(&bp->watchdog, jiffies + HZ);
1550 }
1551 
1552 static void
1553 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1554 {
1555 	ktime_t start, end;
1556 	ktime_t delay;
1557 	u32 ctrl;
1558 
1559 	ctrl = ioread32(&bp->reg->ctrl);
1560 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1561 
1562 	iowrite32(ctrl, &bp->reg->ctrl);
1563 
1564 	start = ktime_get_ns();
1565 
1566 	ctrl = ioread32(&bp->reg->ctrl);
1567 
1568 	end = ktime_get_ns();
1569 
1570 	delay = end - start;
1571 	bp->ts_window_adjust = (delay >> 5) * 3;
1572 }
1573 
1574 static int
1575 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1576 {
1577 	struct timespec64 ts;
1578 	u32 ctrl;
1579 
1580 	ctrl = OCP_CTRL_ENABLE;
1581 	iowrite32(ctrl, &bp->reg->ctrl);
1582 
1583 	/* servo configuration */
1584 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1585 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1586 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1587 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1588 
1589 	/* latch servo values */
1590 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1591 	iowrite32(ctrl, &bp->reg->ctrl);
1592 
1593 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1594 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1595 		return -ENODEV;
1596 	}
1597 
1598 	ptp_ocp_estimate_pci_timing(bp);
1599 
1600 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1601 	if (!bp->sync) {
1602 		ktime_get_clocktai_ts64(&ts);
1603 		ptp_ocp_settime(&bp->ptp_info, &ts);
1604 	}
1605 
1606 	/* If there is a clock supervisor, then enable the watchdog */
1607 	if (bp->pps_to_clk) {
1608 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1609 		mod_timer(&bp->watchdog, jiffies + HZ);
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 static void
1616 ptp_ocp_tod_init(struct ptp_ocp *bp)
1617 {
1618 	u32 ctrl, reg;
1619 
1620 	ctrl = ioread32(&bp->tod->ctrl);
1621 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1622 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1623 	iowrite32(ctrl, &bp->tod->ctrl);
1624 
1625 	reg = ioread32(&bp->tod->utc_status);
1626 	if (reg & TOD_STATUS_UTC_VALID)
1627 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1628 }
1629 
1630 static const char *
1631 ptp_ocp_tod_proto_name(const int idx)
1632 {
1633 	static const char * const proto_name[] = {
1634 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1635 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1636 	};
1637 	return proto_name[idx];
1638 }
1639 
1640 static const char *
1641 ptp_ocp_tod_gnss_name(int idx)
1642 {
1643 	static const char * const gnss_name[] = {
1644 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1645 		"Unknown"
1646 	};
1647 	if (idx >= ARRAY_SIZE(gnss_name))
1648 		idx = ARRAY_SIZE(gnss_name) - 1;
1649 	return gnss_name[idx];
1650 }
1651 
1652 struct ptp_ocp_nvmem_match_info {
1653 	struct ptp_ocp *bp;
1654 	const void * const tag;
1655 };
1656 
1657 static int
1658 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1659 {
1660 	const struct ptp_ocp_nvmem_match_info *info = data;
1661 
1662 	dev = dev->parent;
1663 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1664 		return 0;
1665 
1666 	while ((dev = dev->parent))
1667 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1668 			return info->bp == dev_get_drvdata(dev);
1669 	return 0;
1670 }
1671 
1672 static inline struct nvmem_device *
1673 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1674 {
1675 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1676 
1677 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1678 }
1679 
1680 static inline void
1681 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1682 {
1683 	if (!IS_ERR_OR_NULL(*nvmemp))
1684 		nvmem_device_put(*nvmemp);
1685 	*nvmemp = NULL;
1686 }
1687 
1688 static void
1689 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1690 {
1691 	const struct ptp_ocp_eeprom_map *map;
1692 	struct nvmem_device *nvmem;
1693 	const void *tag;
1694 	int ret;
1695 
1696 	if (!bp->i2c_ctrl)
1697 		return;
1698 
1699 	tag = NULL;
1700 	nvmem = NULL;
1701 
1702 	for (map = bp->eeprom_map; map->len; map++) {
1703 		if (map->tag != tag) {
1704 			tag = map->tag;
1705 			ptp_ocp_nvmem_device_put(&nvmem);
1706 		}
1707 		if (!nvmem) {
1708 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1709 			if (IS_ERR(nvmem)) {
1710 				ret = PTR_ERR(nvmem);
1711 				goto fail;
1712 			}
1713 		}
1714 		ret = nvmem_device_read(nvmem, map->off, map->len,
1715 					BP_MAP_ENTRY_ADDR(bp, map));
1716 		if (ret != map->len)
1717 			goto fail;
1718 	}
1719 
1720 	bp->has_eeprom_data = true;
1721 
1722 out:
1723 	ptp_ocp_nvmem_device_put(&nvmem);
1724 	return;
1725 
1726 fail:
1727 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1728 	goto out;
1729 }
1730 
1731 static struct device *
1732 ptp_ocp_find_flash(struct ptp_ocp *bp)
1733 {
1734 	struct device *dev, *last;
1735 
1736 	last = NULL;
1737 	dev = &bp->spi_flash->dev;
1738 
1739 	while ((dev = device_find_any_child(dev))) {
1740 		if (!strcmp("mtd", dev_bus_name(dev)))
1741 			break;
1742 		put_device(last);
1743 		last = dev;
1744 	}
1745 	put_device(last);
1746 
1747 	return dev;
1748 }
1749 
1750 static int
1751 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1752 			 const u8 **data, size_t *size)
1753 {
1754 	struct ptp_ocp *bp = devlink_priv(devlink);
1755 	const struct ptp_ocp_firmware_header *hdr;
1756 	size_t offset, length;
1757 	u16 crc;
1758 
1759 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1760 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1761 		devlink_flash_update_status_notify(devlink,
1762 			"No firmware header found, cancel firmware upgrade",
1763 			NULL, 0, 0);
1764 		return -EINVAL;
1765 	}
1766 
1767 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1768 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1769 		devlink_flash_update_status_notify(devlink,
1770 			"Firmware image compatibility check failed",
1771 			NULL, 0, 0);
1772 		return -EINVAL;
1773 	}
1774 
1775 	offset = sizeof(*hdr);
1776 	length = be32_to_cpu(hdr->image_size);
1777 	if (length != (fw->size - offset)) {
1778 		devlink_flash_update_status_notify(devlink,
1779 			"Firmware image size check failed",
1780 			NULL, 0, 0);
1781 		return -EINVAL;
1782 	}
1783 
1784 	crc = crc16(0xffff, &fw->data[offset], length);
1785 	if (be16_to_cpu(hdr->crc) != crc) {
1786 		devlink_flash_update_status_notify(devlink,
1787 			"Firmware image CRC check failed",
1788 			NULL, 0, 0);
1789 		return -EINVAL;
1790 	}
1791 
1792 	*data = &fw->data[offset];
1793 	*size = length;
1794 
1795 	return 0;
1796 }
1797 
1798 static int
1799 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1800 		      const struct firmware *fw)
1801 {
1802 	struct mtd_info *mtd = dev_get_drvdata(dev);
1803 	struct ptp_ocp *bp = devlink_priv(devlink);
1804 	size_t off, len, size, resid, wrote;
1805 	struct erase_info erase;
1806 	size_t base, blksz;
1807 	const u8 *data;
1808 	int err;
1809 
1810 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1811 	if (err)
1812 		goto out;
1813 
1814 	off = 0;
1815 	base = bp->flash_start;
1816 	blksz = 4096;
1817 	resid = size;
1818 
1819 	while (resid) {
1820 		devlink_flash_update_status_notify(devlink, "Flashing",
1821 						   NULL, off, size);
1822 
1823 		len = min_t(size_t, resid, blksz);
1824 		erase.addr = base + off;
1825 		erase.len = blksz;
1826 
1827 		err = mtd_erase(mtd, &erase);
1828 		if (err)
1829 			goto out;
1830 
1831 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1832 		if (err)
1833 			goto out;
1834 
1835 		off += blksz;
1836 		resid -= len;
1837 	}
1838 out:
1839 	return err;
1840 }
1841 
1842 static int
1843 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1844 			     struct devlink_flash_update_params *params,
1845 			     struct netlink_ext_ack *extack)
1846 {
1847 	struct ptp_ocp *bp = devlink_priv(devlink);
1848 	struct device *dev;
1849 	const char *msg;
1850 	int err;
1851 
1852 	dev = ptp_ocp_find_flash(bp);
1853 	if (!dev) {
1854 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1855 		return -ENODEV;
1856 	}
1857 
1858 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1859 					   NULL, 0, 0);
1860 
1861 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1862 
1863 	msg = err ? "Flash error" : "Flash complete";
1864 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1865 
1866 	put_device(dev);
1867 	return err;
1868 }
1869 
1870 static int
1871 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1872 			 struct netlink_ext_ack *extack)
1873 {
1874 	struct ptp_ocp *bp = devlink_priv(devlink);
1875 	const char *fw_image;
1876 	char buf[32];
1877 	int err;
1878 
1879 	fw_image = bp->fw_loader ? "loader" : "fw";
1880 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1881 	err = devlink_info_version_running_put(req, fw_image, buf);
1882 	if (err)
1883 		return err;
1884 
1885 	if (!bp->has_eeprom_data) {
1886 		ptp_ocp_read_eeprom(bp);
1887 		if (!bp->has_eeprom_data)
1888 			return 0;
1889 	}
1890 
1891 	sprintf(buf, "%pM", bp->serial);
1892 	err = devlink_info_serial_number_put(req, buf);
1893 	if (err)
1894 		return err;
1895 
1896 	err = devlink_info_version_fixed_put(req,
1897 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1898 			bp->board_id);
1899 	if (err)
1900 		return err;
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct devlink_ops ptp_ocp_devlink_ops = {
1906 	.flash_update = ptp_ocp_devlink_flash_update,
1907 	.info_get = ptp_ocp_devlink_info_get,
1908 };
1909 
1910 static void __iomem *
1911 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1912 {
1913 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1914 
1915 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1916 }
1917 
1918 static void __iomem *
1919 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1920 {
1921 	resource_size_t start;
1922 
1923 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1924 	return __ptp_ocp_get_mem(bp, start, r->size);
1925 }
1926 
1927 static int
1928 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1929 {
1930 	struct ptp_ocp_flash_info *info;
1931 	struct pci_dev *pdev = bp->pdev;
1932 	struct platform_device *p;
1933 	struct resource res[2];
1934 	resource_size_t start;
1935 	int id;
1936 
1937 	start = pci_resource_start(pdev, 0) + r->offset;
1938 	res[0] = DEFINE_RES_MEM(start, r->size);
1939 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1940 
1941 	info = r->extra;
1942 	id = pci_dev_id(pdev) << 1;
1943 	id += info->pci_offset;
1944 
1945 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1946 					      res, ARRAY_SIZE(res), info->data,
1947 					      info->data_size);
1948 	if (IS_ERR(p))
1949 		return PTR_ERR(p);
1950 
1951 	bp_assign_entry(bp, r, p);
1952 
1953 	return 0;
1954 }
1955 
1956 static struct platform_device *
1957 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1958 {
1959 	struct ptp_ocp_i2c_info *info;
1960 	struct resource res[2];
1961 	resource_size_t start;
1962 
1963 	info = r->extra;
1964 	start = pci_resource_start(pdev, 0) + r->offset;
1965 	res[0] = DEFINE_RES_MEM(start, r->size);
1966 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1967 
1968 	return platform_device_register_resndata(&pdev->dev, info->name,
1969 						 id, res, ARRAY_SIZE(res),
1970 						 info->data, info->data_size);
1971 }
1972 
1973 static int
1974 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1975 {
1976 	struct pci_dev *pdev = bp->pdev;
1977 	struct ptp_ocp_i2c_info *info;
1978 	struct platform_device *p;
1979 	struct clk_hw *clk;
1980 	char buf[32];
1981 	int id;
1982 
1983 	info = r->extra;
1984 	id = pci_dev_id(bp->pdev);
1985 
1986 	sprintf(buf, "AXI.%d", id);
1987 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1988 					 info->fixed_rate);
1989 	if (IS_ERR(clk))
1990 		return PTR_ERR(clk);
1991 	bp->i2c_clk = clk;
1992 
1993 	sprintf(buf, "%s.%d", info->name, id);
1994 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1995 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1996 	if (IS_ERR(p))
1997 		return PTR_ERR(p);
1998 
1999 	bp_assign_entry(bp, r, p);
2000 
2001 	return 0;
2002 }
2003 
2004 /* The expectation is that this is triggered only on error. */
2005 static irqreturn_t
2006 ptp_ocp_signal_irq(int irq, void *priv)
2007 {
2008 	struct ptp_ocp_ext_src *ext = priv;
2009 	struct signal_reg __iomem *reg = ext->mem;
2010 	struct ptp_ocp *bp = ext->bp;
2011 	u32 enable, status;
2012 	int gen;
2013 
2014 	gen = ext->info->index - 1;
2015 
2016 	enable = ioread32(&reg->enable);
2017 	status = ioread32(&reg->status);
2018 
2019 	/* disable generator on error */
2020 	if (status || !enable) {
2021 		iowrite32(0, &reg->intr_mask);
2022 		iowrite32(0, &reg->enable);
2023 		bp->signal[gen].running = false;
2024 	}
2025 
2026 	iowrite32(0, &reg->intr);	/* ack interrupt */
2027 
2028 	return IRQ_HANDLED;
2029 }
2030 
2031 static int
2032 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2033 {
2034 	struct ptp_system_timestamp sts;
2035 	struct timespec64 ts;
2036 	ktime_t start_ns;
2037 	int err;
2038 
2039 	if (!s->period)
2040 		return 0;
2041 
2042 	if (!s->pulse)
2043 		s->pulse = ktime_divns(s->period * s->duty, 100);
2044 
2045 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2046 	if (err)
2047 		return err;
2048 
2049 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2050 	if (!s->start) {
2051 		/* roundup() does not work on 32-bit systems */
2052 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2053 		s->start = ktime_add(s->start, s->phase);
2054 	}
2055 
2056 	if (s->duty < 1 || s->duty > 99)
2057 		return -EINVAL;
2058 
2059 	if (s->pulse < 1 || s->pulse > s->period)
2060 		return -EINVAL;
2061 
2062 	if (s->start < start_ns)
2063 		return -EINVAL;
2064 
2065 	bp->signal[gen] = *s;
2066 
2067 	return 0;
2068 }
2069 
2070 static int
2071 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2072 			   struct ptp_perout_request *req)
2073 {
2074 	struct ptp_ocp_signal s = { };
2075 
2076 	s.polarity = bp->signal[gen].polarity;
2077 	s.period = ktime_set(req->period.sec, req->period.nsec);
2078 	if (!s.period)
2079 		return 0;
2080 
2081 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2082 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2083 		s.duty = ktime_divns(s.pulse * 100, s.period);
2084 	}
2085 
2086 	if (req->flags & PTP_PEROUT_PHASE)
2087 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2088 	else
2089 		s.start = ktime_set(req->start.sec, req->start.nsec);
2090 
2091 	return ptp_ocp_signal_set(bp, gen, &s);
2092 }
2093 
2094 static int
2095 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2096 {
2097 	struct ptp_ocp_ext_src *ext = priv;
2098 	struct signal_reg __iomem *reg = ext->mem;
2099 	struct ptp_ocp *bp = ext->bp;
2100 	struct timespec64 ts;
2101 	int gen;
2102 
2103 	gen = ext->info->index - 1;
2104 
2105 	iowrite32(0, &reg->intr_mask);
2106 	iowrite32(0, &reg->enable);
2107 	bp->signal[gen].running = false;
2108 	if (!enable)
2109 		return 0;
2110 
2111 	ts = ktime_to_timespec64(bp->signal[gen].start);
2112 	iowrite32(ts.tv_sec, &reg->start_sec);
2113 	iowrite32(ts.tv_nsec, &reg->start_ns);
2114 
2115 	ts = ktime_to_timespec64(bp->signal[gen].period);
2116 	iowrite32(ts.tv_sec, &reg->period_sec);
2117 	iowrite32(ts.tv_nsec, &reg->period_ns);
2118 
2119 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2120 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2121 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2122 
2123 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2124 	iowrite32(0, &reg->repeat_count);
2125 
2126 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2127 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2128 	iowrite32(3, &reg->enable);		/* valid & enable */
2129 
2130 	bp->signal[gen].running = true;
2131 
2132 	return 0;
2133 }
2134 
2135 static irqreturn_t
2136 ptp_ocp_ts_irq(int irq, void *priv)
2137 {
2138 	struct ptp_ocp_ext_src *ext = priv;
2139 	struct ts_reg __iomem *reg = ext->mem;
2140 	struct ptp_clock_event ev;
2141 	u32 sec, nsec;
2142 
2143 	if (ext == ext->bp->pps) {
2144 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2145 			ev.type = PTP_CLOCK_PPS;
2146 			ptp_clock_event(ext->bp->ptp, &ev);
2147 		}
2148 
2149 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2150 			goto out;
2151 	}
2152 
2153 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2154 	sec = ioread32(&reg->time_sec);
2155 	nsec = ioread32(&reg->time_ns);
2156 
2157 	ev.type = PTP_CLOCK_EXTTS;
2158 	ev.index = ext->info->index;
2159 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2160 
2161 	ptp_clock_event(ext->bp->ptp, &ev);
2162 
2163 out:
2164 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2165 
2166 	return IRQ_HANDLED;
2167 }
2168 
2169 static int
2170 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2171 {
2172 	struct ptp_ocp_ext_src *ext = priv;
2173 	struct ts_reg __iomem *reg = ext->mem;
2174 	struct ptp_ocp *bp = ext->bp;
2175 
2176 	if (ext == bp->pps) {
2177 		u32 old_map = bp->pps_req_map;
2178 
2179 		if (enable)
2180 			bp->pps_req_map |= req;
2181 		else
2182 			bp->pps_req_map &= ~req;
2183 
2184 		/* if no state change, just return */
2185 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2186 			return 0;
2187 	}
2188 
2189 	if (enable) {
2190 		iowrite32(1, &reg->enable);
2191 		iowrite32(1, &reg->intr_mask);
2192 		iowrite32(1, &reg->intr);
2193 	} else {
2194 		iowrite32(0, &reg->intr_mask);
2195 		iowrite32(0, &reg->enable);
2196 	}
2197 
2198 	return 0;
2199 }
2200 
2201 static void
2202 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2203 {
2204 	ext->info->enable(ext, ~0, false);
2205 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2206 	kfree(ext);
2207 }
2208 
2209 static int
2210 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2211 {
2212 	struct pci_dev *pdev = bp->pdev;
2213 	struct ptp_ocp_ext_src *ext;
2214 	int err;
2215 
2216 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2217 	if (!ext)
2218 		return -ENOMEM;
2219 
2220 	ext->mem = ptp_ocp_get_mem(bp, r);
2221 	if (IS_ERR(ext->mem)) {
2222 		err = PTR_ERR(ext->mem);
2223 		goto out;
2224 	}
2225 
2226 	ext->bp = bp;
2227 	ext->info = r->extra;
2228 	ext->irq_vec = r->irq_vec;
2229 
2230 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2231 			      ext, "ocp%d.%s", bp->id, r->name);
2232 	if (err) {
2233 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2234 		goto out;
2235 	}
2236 
2237 	bp_assign_entry(bp, r, ext);
2238 
2239 	return 0;
2240 
2241 out:
2242 	kfree(ext);
2243 	return err;
2244 }
2245 
2246 static int
2247 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2248 {
2249 	struct pci_dev *pdev = bp->pdev;
2250 	struct uart_8250_port uart;
2251 
2252 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2253 	 * the serial port device claim and release the pci resource.
2254 	 */
2255 	memset(&uart, 0, sizeof(uart));
2256 	uart.port.dev = &pdev->dev;
2257 	uart.port.iotype = UPIO_MEM;
2258 	uart.port.regshift = 2;
2259 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2260 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2261 	uart.port.uartclk = 50000000;
2262 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2263 	uart.port.type = PORT_16550A;
2264 
2265 	return serial8250_register_8250_port(&uart);
2266 }
2267 
2268 static int
2269 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2270 {
2271 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2272 	struct ptp_ocp_serial_port port = {};
2273 
2274 	port.line = ptp_ocp_serial_line(bp, r);
2275 	if (port.line < 0)
2276 		return port.line;
2277 
2278 	if (p)
2279 		port.baud = p->baud;
2280 
2281 	bp_assign_entry(bp, r, port);
2282 
2283 	return 0;
2284 }
2285 
2286 static int
2287 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2288 {
2289 	void __iomem *mem;
2290 
2291 	mem = ptp_ocp_get_mem(bp, r);
2292 	if (IS_ERR(mem))
2293 		return PTR_ERR(mem);
2294 
2295 	bp_assign_entry(bp, r, mem);
2296 
2297 	return 0;
2298 }
2299 
2300 static void
2301 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2302 {
2303 	if (!bp->nmea_out)
2304 		return;
2305 
2306 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2307 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2308 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2309 }
2310 
2311 static void
2312 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2313 {
2314 	u32 val;
2315 
2316 	iowrite32(0, &reg->enable);		/* disable */
2317 
2318 	val = ioread32(&reg->polarity);
2319 	s->polarity = val ? true : false;
2320 	s->duty = 50;
2321 }
2322 
2323 static void
2324 ptp_ocp_signal_init(struct ptp_ocp *bp)
2325 {
2326 	int i;
2327 
2328 	for (i = 0; i < 4; i++)
2329 		if (bp->signal_out[i])
2330 			_ptp_ocp_signal_init(&bp->signal[i],
2331 					     bp->signal_out[i]->mem);
2332 }
2333 
2334 static void
2335 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2336 {
2337 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2338 	kfree(bp->attr_group);
2339 }
2340 
2341 static int
2342 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2343 		       const struct ocp_attr_group *attr_tbl)
2344 {
2345 	int count, i;
2346 	int err;
2347 
2348 	count = 0;
2349 	for (i = 0; attr_tbl[i].cap; i++)
2350 		if (attr_tbl[i].cap & bp->fw_cap)
2351 			count++;
2352 
2353 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2354 				 GFP_KERNEL);
2355 	if (!bp->attr_group)
2356 		return -ENOMEM;
2357 
2358 	count = 0;
2359 	for (i = 0; attr_tbl[i].cap; i++)
2360 		if (attr_tbl[i].cap & bp->fw_cap)
2361 			bp->attr_group[count++] = attr_tbl[i].group;
2362 
2363 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2364 	if (err)
2365 		bp->attr_group[0] = NULL;
2366 
2367 	return err;
2368 }
2369 
2370 static void
2371 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2372 {
2373 	u32 ctrl;
2374 	bool on;
2375 
2376 	ctrl = ioread32(reg);
2377 	on = ctrl & bit;
2378 	if (on ^ enable) {
2379 		ctrl &= ~bit;
2380 		ctrl |= enable ? bit : 0;
2381 		iowrite32(ctrl, reg);
2382 	}
2383 }
2384 
2385 static void
2386 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2387 {
2388 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2389 				   IRIG_M_CTRL_ENABLE, enable);
2390 }
2391 
2392 static void
2393 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2394 {
2395 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2396 				   IRIG_S_CTRL_ENABLE, enable);
2397 }
2398 
2399 static void
2400 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2401 {
2402 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2403 				   DCF_M_CTRL_ENABLE, enable);
2404 }
2405 
2406 static void
2407 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2408 {
2409 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2410 				   DCF_S_CTRL_ENABLE, enable);
2411 }
2412 
2413 static void
2414 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2415 {
2416 	ptp_ocp_irig_out(bp, val & 0x00100010);
2417 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2418 }
2419 
2420 static void
2421 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2422 {
2423 	ptp_ocp_irig_in(bp, val & 0x00100010);
2424 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2425 }
2426 
2427 static u32
2428 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2429 {
2430 	u32 __iomem *gpio;
2431 	u32 shift;
2432 
2433 	if (bp->sma[sma_nr - 1].fixed_fcn)
2434 		return (sma_nr - 1) & 1;
2435 
2436 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2437 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2438 	else
2439 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2440 	shift = sma_nr & 1 ? 0 : 16;
2441 
2442 	return (ioread32(gpio) >> shift) & 0xffff;
2443 }
2444 
2445 static int
2446 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2447 {
2448 	u32 reg, mask, shift;
2449 	unsigned long flags;
2450 	u32 __iomem *gpio;
2451 
2452 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2453 	shift = sma_nr & 1 ? 0 : 16;
2454 
2455 	mask = 0xffff << (16 - shift);
2456 
2457 	spin_lock_irqsave(&bp->lock, flags);
2458 
2459 	reg = ioread32(gpio);
2460 	reg = (reg & mask) | (val << shift);
2461 
2462 	__handle_signal_outputs(bp, reg);
2463 
2464 	iowrite32(reg, gpio);
2465 
2466 	spin_unlock_irqrestore(&bp->lock, flags);
2467 
2468 	return 0;
2469 }
2470 
2471 static int
2472 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2473 {
2474 	u32 reg, mask, shift;
2475 	unsigned long flags;
2476 	u32 __iomem *gpio;
2477 
2478 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2479 	shift = sma_nr & 1 ? 0 : 16;
2480 
2481 	mask = 0xffff << (16 - shift);
2482 
2483 	spin_lock_irqsave(&bp->lock, flags);
2484 
2485 	reg = ioread32(gpio);
2486 	reg = (reg & mask) | (val << shift);
2487 
2488 	__handle_signal_inputs(bp, reg);
2489 
2490 	iowrite32(reg, gpio);
2491 
2492 	spin_unlock_irqrestore(&bp->lock, flags);
2493 
2494 	return 0;
2495 }
2496 
2497 static void
2498 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2499 {
2500 	struct dpll_pin_properties prop = {
2501 		.board_label = NULL,
2502 		.type = DPLL_PIN_TYPE_EXT,
2503 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2504 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2505 		.freq_supported = ptp_ocp_sma_freq,
2506 
2507 	};
2508 	u32 reg;
2509 	int i;
2510 
2511 	/* defaults */
2512 	for (i = 0; i < OCP_SMA_NUM; i++) {
2513 		bp->sma[i].default_fcn = i & 1;
2514 		bp->sma[i].dpll_prop = prop;
2515 		bp->sma[i].dpll_prop.board_label =
2516 			bp->ptp_info.pin_config[i].name;
2517 	}
2518 	bp->sma[0].mode = SMA_MODE_IN;
2519 	bp->sma[1].mode = SMA_MODE_IN;
2520 	bp->sma[2].mode = SMA_MODE_OUT;
2521 	bp->sma[3].mode = SMA_MODE_OUT;
2522 	/* If no SMA1 map, the pin functions and directions are fixed. */
2523 	if (!bp->sma_map1) {
2524 		for (i = 0; i < OCP_SMA_NUM; i++) {
2525 			bp->sma[i].fixed_fcn = true;
2526 			bp->sma[i].fixed_dir = true;
2527 			bp->sma[1].dpll_prop.capabilities &=
2528 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2529 		}
2530 		return;
2531 	}
2532 
2533 	/* If SMA2 GPIO output map is all 1, it is not present.
2534 	 * This indicates the firmware has fixed direction SMA pins.
2535 	 */
2536 	reg = ioread32(&bp->sma_map2->gpio2);
2537 	if (reg == 0xffffffff) {
2538 		for (i = 0; i < OCP_SMA_NUM; i++)
2539 			bp->sma[i].fixed_dir = true;
2540 	} else {
2541 		reg = ioread32(&bp->sma_map1->gpio1);
2542 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2543 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2544 
2545 		reg = ioread32(&bp->sma_map1->gpio2);
2546 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2547 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2548 	}
2549 }
2550 
2551 static const struct ocp_sma_op ocp_fb_sma_op = {
2552 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2553 	.init		= ptp_ocp_sma_fb_init,
2554 	.get		= ptp_ocp_sma_fb_get,
2555 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2556 	.set_output	= ptp_ocp_sma_fb_set_output,
2557 };
2558 
2559 static const struct ocp_sma_op ocp_adva_sma_op = {
2560 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2561 	.init		= ptp_ocp_sma_fb_init,
2562 	.get		= ptp_ocp_sma_fb_get,
2563 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2564 	.set_output	= ptp_ocp_sma_fb_set_output,
2565 };
2566 
2567 static int
2568 ptp_ocp_set_pins(struct ptp_ocp *bp)
2569 {
2570 	struct ptp_pin_desc *config;
2571 	int i;
2572 
2573 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2574 	if (!config)
2575 		return -ENOMEM;
2576 
2577 	for (i = 0; i < 4; i++) {
2578 		sprintf(config[i].name, "sma%d", i + 1);
2579 		config[i].index = i;
2580 	}
2581 
2582 	bp->ptp_info.n_pins = 4;
2583 	bp->ptp_info.pin_config = config;
2584 
2585 	return 0;
2586 }
2587 
2588 static void
2589 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2590 {
2591 	u64 cap = OCP_CAP_BASIC;
2592 	u32 version;
2593 
2594 	version = ioread32(&bp->image->version);
2595 
2596 	/* if lower 16 bits are empty, this is the fw loader. */
2597 	if ((version & 0xffff) == 0) {
2598 		version = version >> 16;
2599 		bp->fw_loader = true;
2600 	}
2601 
2602 	bp->fw_tag = version >> 15;
2603 	bp->fw_version = version & 0x7fff;
2604 
2605 	if (bp->fw_tag) {
2606 		/* FPGA firmware */
2607 		if (version >= 5)
2608 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2609 	} else {
2610 		/* SOM firmware */
2611 		if (version >= 19)
2612 			cap |= OCP_CAP_SIGNAL;
2613 		if (version >= 20)
2614 			cap |= OCP_CAP_FREQ;
2615 	}
2616 
2617 	bp->fw_cap = cap;
2618 }
2619 
2620 /* FB specific board initializers; last "resource" registered. */
2621 static int
2622 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2623 {
2624 	int err;
2625 
2626 	bp->flash_start = 1024 * 4096;
2627 	bp->eeprom_map = fb_eeprom_map;
2628 	bp->fw_version = ioread32(&bp->image->version);
2629 	bp->sma_op = &ocp_fb_sma_op;
2630 
2631 	ptp_ocp_fb_set_version(bp);
2632 
2633 	ptp_ocp_tod_init(bp);
2634 	ptp_ocp_nmea_out_init(bp);
2635 	ptp_ocp_signal_init(bp);
2636 
2637 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2638 	if (err)
2639 		return err;
2640 
2641 	err = ptp_ocp_set_pins(bp);
2642 	if (err)
2643 		return err;
2644 	ptp_ocp_sma_init(bp);
2645 
2646 	return ptp_ocp_init_clock(bp, r->extra);
2647 }
2648 
2649 static bool
2650 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2651 {
2652 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2653 
2654 	if (!allow)
2655 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2656 			r->irq_vec, r->name);
2657 	return allow;
2658 }
2659 
2660 static int
2661 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2662 {
2663 	struct ocp_resource *r, *table;
2664 	int err = 0;
2665 
2666 	table = (struct ocp_resource *)driver_data;
2667 	for (r = table; r->setup; r++) {
2668 		if (!ptp_ocp_allow_irq(bp, r))
2669 			continue;
2670 		err = r->setup(bp, r);
2671 		if (err) {
2672 			dev_err(&bp->pdev->dev,
2673 				"Could not register %s: err %d\n",
2674 				r->name, err);
2675 			break;
2676 		}
2677 	}
2678 	return err;
2679 }
2680 
2681 static void
2682 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2683 {
2684 	struct dpll_pin_properties prop = {
2685 		.board_label = NULL,
2686 		.type = DPLL_PIN_TYPE_EXT,
2687 		.capabilities = 0,
2688 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2689 		.freq_supported = ptp_ocp_sma_freq,
2690 
2691 	};
2692 	u32 reg;
2693 	int i;
2694 
2695 	/* defaults */
2696 	bp->sma[0].mode = SMA_MODE_IN;
2697 	bp->sma[1].mode = SMA_MODE_IN;
2698 	bp->sma[2].mode = SMA_MODE_OUT;
2699 	bp->sma[3].mode = SMA_MODE_OUT;
2700 
2701 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2702 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2703 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2704 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2705 
2706 	for (i = 0; i < OCP_SMA_NUM; i++) {
2707 		/* If no SMA map, the pin functions and directions are fixed. */
2708 		bp->sma[i].dpll_prop = prop;
2709 		bp->sma[i].dpll_prop.board_label =
2710 			bp->ptp_info.pin_config[i].name;
2711 		if (!bp->art_sma) {
2712 			bp->sma[i].fixed_fcn = true;
2713 			bp->sma[i].fixed_dir = true;
2714 			continue;
2715 		}
2716 		reg = ioread32(&bp->art_sma->map[i].gpio);
2717 
2718 		switch (reg & 0xff) {
2719 		case 0:
2720 			bp->sma[i].fixed_fcn = true;
2721 			bp->sma[i].fixed_dir = true;
2722 			break;
2723 		case 1:
2724 		case 8:
2725 			bp->sma[i].mode = SMA_MODE_IN;
2726 			bp->sma[i].dpll_prop.capabilities =
2727 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2728 			break;
2729 		default:
2730 			bp->sma[i].mode = SMA_MODE_OUT;
2731 			bp->sma[i].dpll_prop.capabilities =
2732 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2733 			break;
2734 		}
2735 	}
2736 }
2737 
2738 static u32
2739 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2740 {
2741 	if (bp->sma[sma_nr - 1].fixed_fcn)
2742 		return bp->sma[sma_nr - 1].default_fcn;
2743 
2744 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2745 }
2746 
2747 /* note: store 0 is considered invalid. */
2748 static int
2749 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2750 {
2751 	unsigned long flags;
2752 	u32 __iomem *gpio;
2753 	int err = 0;
2754 	u32 reg;
2755 
2756 	val &= SMA_SELECT_MASK;
2757 	if (hweight32(val) > 1)
2758 		return -EINVAL;
2759 
2760 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2761 
2762 	spin_lock_irqsave(&bp->lock, flags);
2763 	reg = ioread32(gpio);
2764 	if (((reg >> 16) & val) == 0) {
2765 		err = -EOPNOTSUPP;
2766 	} else {
2767 		reg = (reg & 0xff00) | (val & 0xff);
2768 		iowrite32(reg, gpio);
2769 	}
2770 	spin_unlock_irqrestore(&bp->lock, flags);
2771 
2772 	return err;
2773 }
2774 
2775 static const struct ocp_sma_op ocp_art_sma_op = {
2776 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2777 	.init		= ptp_ocp_art_sma_init,
2778 	.get		= ptp_ocp_art_sma_get,
2779 	.set_inputs	= ptp_ocp_art_sma_set,
2780 	.set_output	= ptp_ocp_art_sma_set,
2781 };
2782 
2783 /* ART specific board initializers; last "resource" registered. */
2784 static int
2785 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2786 {
2787 	int err;
2788 
2789 	bp->flash_start = 0x1000000;
2790 	bp->eeprom_map = art_eeprom_map;
2791 	bp->fw_cap = OCP_CAP_BASIC;
2792 	bp->fw_version = ioread32(&bp->reg->version);
2793 	bp->fw_tag = 2;
2794 	bp->sma_op = &ocp_art_sma_op;
2795 
2796 	/* Enable MAC serial port during initialisation */
2797 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2798 
2799 	err = ptp_ocp_set_pins(bp);
2800 	if (err)
2801 		return err;
2802 	ptp_ocp_sma_init(bp);
2803 
2804 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2805 	if (err)
2806 		return err;
2807 
2808 	return ptp_ocp_init_clock(bp, r->extra);
2809 }
2810 
2811 /* ADVA specific board initializers; last "resource" registered. */
2812 static int
2813 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2814 {
2815 	int err;
2816 	u32 version;
2817 
2818 	bp->flash_start = 0xA00000;
2819 	bp->eeprom_map = fb_eeprom_map;
2820 	bp->sma_op = &ocp_adva_sma_op;
2821 
2822 	version = ioread32(&bp->image->version);
2823 	/* if lower 16 bits are empty, this is the fw loader. */
2824 	if ((version & 0xffff) == 0) {
2825 		version = version >> 16;
2826 		bp->fw_loader = true;
2827 	}
2828 	bp->fw_tag = 3;
2829 	bp->fw_version = version & 0xffff;
2830 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2831 
2832 	ptp_ocp_tod_init(bp);
2833 	ptp_ocp_nmea_out_init(bp);
2834 	ptp_ocp_signal_init(bp);
2835 
2836 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2837 	if (err)
2838 		return err;
2839 
2840 	err = ptp_ocp_set_pins(bp);
2841 	if (err)
2842 		return err;
2843 	ptp_ocp_sma_init(bp);
2844 
2845 	return ptp_ocp_init_clock(bp, r->extra);
2846 }
2847 
2848 static ssize_t
2849 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2850 		    int def_val)
2851 {
2852 	const char *name;
2853 	ssize_t count;
2854 
2855 	count = sysfs_emit(buf, "OUT: ");
2856 	name = ptp_ocp_select_name_from_val(tbl, val);
2857 	if (!name)
2858 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2859 	count += sysfs_emit_at(buf, count, "%s\n", name);
2860 	return count;
2861 }
2862 
2863 static ssize_t
2864 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2865 		    int def_val)
2866 {
2867 	const char *name;
2868 	ssize_t count;
2869 	int i;
2870 
2871 	count = sysfs_emit(buf, "IN: ");
2872 	for (i = 0; tbl[i].name; i++) {
2873 		if (val & tbl[i].value) {
2874 			name = tbl[i].name;
2875 			count += sysfs_emit_at(buf, count, "%s ", name);
2876 		}
2877 	}
2878 	if (!val && def_val >= 0) {
2879 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2880 		count += sysfs_emit_at(buf, count, "%s ", name);
2881 	}
2882 	if (count)
2883 		count--;
2884 	count += sysfs_emit_at(buf, count, "\n");
2885 	return count;
2886 }
2887 
2888 static int
2889 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2890 		 enum ptp_ocp_sma_mode *mode)
2891 {
2892 	int idx, count, dir;
2893 	char **argv;
2894 	int ret;
2895 
2896 	argv = argv_split(GFP_KERNEL, buf, &count);
2897 	if (!argv)
2898 		return -ENOMEM;
2899 
2900 	ret = -EINVAL;
2901 	if (!count)
2902 		goto out;
2903 
2904 	idx = 0;
2905 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2906 	if (!strcasecmp("IN:", argv[0])) {
2907 		dir = 0;
2908 		idx++;
2909 	}
2910 	if (!strcasecmp("OUT:", argv[0])) {
2911 		dir = 1;
2912 		idx++;
2913 	}
2914 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2915 
2916 	ret = 0;
2917 	for (; idx < count; idx++)
2918 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2919 	if (ret < 0)
2920 		ret = -EINVAL;
2921 
2922 out:
2923 	argv_free(argv);
2924 	return ret;
2925 }
2926 
2927 static ssize_t
2928 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2929 		 int default_in_val, int default_out_val)
2930 {
2931 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2932 	const struct ocp_selector * const *tbl;
2933 	u32 val;
2934 
2935 	tbl = bp->sma_op->tbl;
2936 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2937 
2938 	if (sma->mode == SMA_MODE_IN) {
2939 		if (sma->disabled)
2940 			val = SMA_DISABLE;
2941 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2942 	}
2943 
2944 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2945 }
2946 
2947 static ssize_t
2948 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2949 {
2950 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2951 
2952 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2953 }
2954 
2955 static ssize_t
2956 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2957 {
2958 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2959 
2960 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2961 }
2962 
2963 static ssize_t
2964 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2965 {
2966 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2967 
2968 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2969 }
2970 
2971 static ssize_t
2972 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2973 {
2974 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2975 
2976 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2977 }
2978 
2979 static int
2980 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2981 {
2982 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2983 
2984 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2985 		return -EOPNOTSUPP;
2986 
2987 	if (sma->fixed_fcn) {
2988 		if (val != sma->default_fcn)
2989 			return -EOPNOTSUPP;
2990 		return 0;
2991 	}
2992 
2993 	sma->disabled = !!(val & SMA_DISABLE);
2994 
2995 	if (mode != sma->mode) {
2996 		if (mode == SMA_MODE_IN)
2997 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
2998 		else
2999 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3000 		sma->mode = mode;
3001 	}
3002 
3003 	if (!sma->fixed_dir)
3004 		val |= SMA_ENABLE;		/* add enable bit */
3005 
3006 	if (sma->disabled)
3007 		val = 0;
3008 
3009 	if (mode == SMA_MODE_IN)
3010 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3011 	else
3012 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3013 
3014 	return val;
3015 }
3016 
3017 static int
3018 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3019 {
3020 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3021 	enum ptp_ocp_sma_mode mode;
3022 	int val;
3023 
3024 	mode = sma->mode;
3025 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3026 	if (val < 0)
3027 		return val;
3028 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3029 }
3030 
3031 static ssize_t
3032 sma1_store(struct device *dev, struct device_attribute *attr,
3033 	   const char *buf, size_t count)
3034 {
3035 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3036 	int err;
3037 
3038 	err = ptp_ocp_sma_store(bp, buf, 1);
3039 	return err ? err : count;
3040 }
3041 
3042 static ssize_t
3043 sma2_store(struct device *dev, struct device_attribute *attr,
3044 	   const char *buf, size_t count)
3045 {
3046 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3047 	int err;
3048 
3049 	err = ptp_ocp_sma_store(bp, buf, 2);
3050 	return err ? err : count;
3051 }
3052 
3053 static ssize_t
3054 sma3_store(struct device *dev, struct device_attribute *attr,
3055 	   const char *buf, size_t count)
3056 {
3057 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3058 	int err;
3059 
3060 	err = ptp_ocp_sma_store(bp, buf, 3);
3061 	return err ? err : count;
3062 }
3063 
3064 static ssize_t
3065 sma4_store(struct device *dev, struct device_attribute *attr,
3066 	   const char *buf, size_t count)
3067 {
3068 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3069 	int err;
3070 
3071 	err = ptp_ocp_sma_store(bp, buf, 4);
3072 	return err ? err : count;
3073 }
3074 static DEVICE_ATTR_RW(sma1);
3075 static DEVICE_ATTR_RW(sma2);
3076 static DEVICE_ATTR_RW(sma3);
3077 static DEVICE_ATTR_RW(sma4);
3078 
3079 static ssize_t
3080 available_sma_inputs_show(struct device *dev,
3081 			  struct device_attribute *attr, char *buf)
3082 {
3083 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3084 
3085 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3086 }
3087 static DEVICE_ATTR_RO(available_sma_inputs);
3088 
3089 static ssize_t
3090 available_sma_outputs_show(struct device *dev,
3091 			   struct device_attribute *attr, char *buf)
3092 {
3093 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3094 
3095 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3096 }
3097 static DEVICE_ATTR_RO(available_sma_outputs);
3098 
3099 #define EXT_ATTR_RO(_group, _name, _val)				\
3100 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3101 		{ __ATTR_RO(_name), (void *)_val }
3102 #define EXT_ATTR_RW(_group, _name, _val)				\
3103 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3104 		{ __ATTR_RW(_name), (void *)_val }
3105 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3106 
3107 /* period [duty [phase [polarity]]] */
3108 static ssize_t
3109 signal_store(struct device *dev, struct device_attribute *attr,
3110 	     const char *buf, size_t count)
3111 {
3112 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3113 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3114 	struct ptp_ocp_signal s = { };
3115 	int gen = (uintptr_t)ea->var;
3116 	int argc, err;
3117 	char **argv;
3118 
3119 	argv = argv_split(GFP_KERNEL, buf, &argc);
3120 	if (!argv)
3121 		return -ENOMEM;
3122 
3123 	err = -EINVAL;
3124 	s.duty = bp->signal[gen].duty;
3125 	s.phase = bp->signal[gen].phase;
3126 	s.period = bp->signal[gen].period;
3127 	s.polarity = bp->signal[gen].polarity;
3128 
3129 	switch (argc) {
3130 	case 4:
3131 		argc--;
3132 		err = kstrtobool(argv[argc], &s.polarity);
3133 		if (err)
3134 			goto out;
3135 		fallthrough;
3136 	case 3:
3137 		argc--;
3138 		err = kstrtou64(argv[argc], 0, &s.phase);
3139 		if (err)
3140 			goto out;
3141 		fallthrough;
3142 	case 2:
3143 		argc--;
3144 		err = kstrtoint(argv[argc], 0, &s.duty);
3145 		if (err)
3146 			goto out;
3147 		fallthrough;
3148 	case 1:
3149 		argc--;
3150 		err = kstrtou64(argv[argc], 0, &s.period);
3151 		if (err)
3152 			goto out;
3153 		break;
3154 	default:
3155 		goto out;
3156 	}
3157 
3158 	err = ptp_ocp_signal_set(bp, gen, &s);
3159 	if (err)
3160 		goto out;
3161 
3162 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3163 
3164 out:
3165 	argv_free(argv);
3166 	return err ? err : count;
3167 }
3168 
3169 static ssize_t
3170 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3171 {
3172 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3173 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3174 	struct ptp_ocp_signal *signal;
3175 	struct timespec64 ts;
3176 	ssize_t count;
3177 	int i;
3178 
3179 	i = (uintptr_t)ea->var;
3180 	signal = &bp->signal[i];
3181 
3182 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
3183 			   signal->duty, signal->phase, signal->polarity);
3184 
3185 	ts = ktime_to_timespec64(signal->start);
3186 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
3187 
3188 	return count;
3189 }
3190 static EXT_ATTR_RW(signal, signal, 0);
3191 static EXT_ATTR_RW(signal, signal, 1);
3192 static EXT_ATTR_RW(signal, signal, 2);
3193 static EXT_ATTR_RW(signal, signal, 3);
3194 
3195 static ssize_t
3196 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3197 {
3198 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3199 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3200 	int i = (uintptr_t)ea->var;
3201 
3202 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3203 }
3204 static EXT_ATTR_RO(signal, duty, 0);
3205 static EXT_ATTR_RO(signal, duty, 1);
3206 static EXT_ATTR_RO(signal, duty, 2);
3207 static EXT_ATTR_RO(signal, duty, 3);
3208 
3209 static ssize_t
3210 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3211 {
3212 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3213 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3214 	int i = (uintptr_t)ea->var;
3215 
3216 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3217 }
3218 static EXT_ATTR_RO(signal, period, 0);
3219 static EXT_ATTR_RO(signal, period, 1);
3220 static EXT_ATTR_RO(signal, period, 2);
3221 static EXT_ATTR_RO(signal, period, 3);
3222 
3223 static ssize_t
3224 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3225 {
3226 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3227 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3228 	int i = (uintptr_t)ea->var;
3229 
3230 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3231 }
3232 static EXT_ATTR_RO(signal, phase, 0);
3233 static EXT_ATTR_RO(signal, phase, 1);
3234 static EXT_ATTR_RO(signal, phase, 2);
3235 static EXT_ATTR_RO(signal, phase, 3);
3236 
3237 static ssize_t
3238 polarity_show(struct device *dev, struct device_attribute *attr,
3239 	      char *buf)
3240 {
3241 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3242 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3243 	int i = (uintptr_t)ea->var;
3244 
3245 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3246 }
3247 static EXT_ATTR_RO(signal, polarity, 0);
3248 static EXT_ATTR_RO(signal, polarity, 1);
3249 static EXT_ATTR_RO(signal, polarity, 2);
3250 static EXT_ATTR_RO(signal, polarity, 3);
3251 
3252 static ssize_t
3253 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3254 {
3255 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3256 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3257 	int i = (uintptr_t)ea->var;
3258 
3259 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3260 }
3261 static EXT_ATTR_RO(signal, running, 0);
3262 static EXT_ATTR_RO(signal, running, 1);
3263 static EXT_ATTR_RO(signal, running, 2);
3264 static EXT_ATTR_RO(signal, running, 3);
3265 
3266 static ssize_t
3267 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3268 {
3269 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3270 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3271 	int i = (uintptr_t)ea->var;
3272 	struct timespec64 ts;
3273 
3274 	ts = ktime_to_timespec64(bp->signal[i].start);
3275 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3276 }
3277 static EXT_ATTR_RO(signal, start, 0);
3278 static EXT_ATTR_RO(signal, start, 1);
3279 static EXT_ATTR_RO(signal, start, 2);
3280 static EXT_ATTR_RO(signal, start, 3);
3281 
3282 static ssize_t
3283 seconds_store(struct device *dev, struct device_attribute *attr,
3284 	      const char *buf, size_t count)
3285 {
3286 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3287 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3288 	int idx = (uintptr_t)ea->var;
3289 	u32 val;
3290 	int err;
3291 
3292 	err = kstrtou32(buf, 0, &val);
3293 	if (err)
3294 		return err;
3295 	if (val > 0xff)
3296 		return -EINVAL;
3297 
3298 	if (val)
3299 		val = (val << 8) | 0x1;
3300 
3301 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3302 
3303 	return count;
3304 }
3305 
3306 static ssize_t
3307 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3308 {
3309 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3310 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3311 	int idx = (uintptr_t)ea->var;
3312 	u32 val;
3313 
3314 	val = ioread32(&bp->freq_in[idx]->ctrl);
3315 	if (val & 1)
3316 		val = (val >> 8) & 0xff;
3317 	else
3318 		val = 0;
3319 
3320 	return sysfs_emit(buf, "%u\n", val);
3321 }
3322 static EXT_ATTR_RW(freq, seconds, 0);
3323 static EXT_ATTR_RW(freq, seconds, 1);
3324 static EXT_ATTR_RW(freq, seconds, 2);
3325 static EXT_ATTR_RW(freq, seconds, 3);
3326 
3327 static ssize_t
3328 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3329 {
3330 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3331 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3332 	int idx = (uintptr_t)ea->var;
3333 	u32 val;
3334 
3335 	val = ioread32(&bp->freq_in[idx]->status);
3336 	if (val & FREQ_STATUS_ERROR)
3337 		return sysfs_emit(buf, "error\n");
3338 	if (val & FREQ_STATUS_OVERRUN)
3339 		return sysfs_emit(buf, "overrun\n");
3340 	if (val & FREQ_STATUS_VALID)
3341 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3342 	return 0;
3343 }
3344 static EXT_ATTR_RO(freq, frequency, 0);
3345 static EXT_ATTR_RO(freq, frequency, 1);
3346 static EXT_ATTR_RO(freq, frequency, 2);
3347 static EXT_ATTR_RO(freq, frequency, 3);
3348 
3349 static ssize_t
3350 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3351 {
3352 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3353 
3354 	if (!bp->has_eeprom_data)
3355 		ptp_ocp_read_eeprom(bp);
3356 
3357 	return sysfs_emit(buf, "%pM\n", bp->serial);
3358 }
3359 static DEVICE_ATTR_RO(serialnum);
3360 
3361 static ssize_t
3362 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3363 {
3364 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3365 	ssize_t ret;
3366 
3367 	if (bp->gnss_lost)
3368 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3369 	else
3370 		ret = sysfs_emit(buf, "SYNC\n");
3371 
3372 	return ret;
3373 }
3374 static DEVICE_ATTR_RO(gnss_sync);
3375 
3376 static ssize_t
3377 utc_tai_offset_show(struct device *dev,
3378 		    struct device_attribute *attr, char *buf)
3379 {
3380 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3381 
3382 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3383 }
3384 
3385 static ssize_t
3386 utc_tai_offset_store(struct device *dev,
3387 		     struct device_attribute *attr,
3388 		     const char *buf, size_t count)
3389 {
3390 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3391 	int err;
3392 	u32 val;
3393 
3394 	err = kstrtou32(buf, 0, &val);
3395 	if (err)
3396 		return err;
3397 
3398 	ptp_ocp_utc_distribute(bp, val);
3399 
3400 	return count;
3401 }
3402 static DEVICE_ATTR_RW(utc_tai_offset);
3403 
3404 static ssize_t
3405 ts_window_adjust_show(struct device *dev,
3406 		      struct device_attribute *attr, char *buf)
3407 {
3408 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3409 
3410 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3411 }
3412 
3413 static ssize_t
3414 ts_window_adjust_store(struct device *dev,
3415 		       struct device_attribute *attr,
3416 		       const char *buf, size_t count)
3417 {
3418 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3419 	int err;
3420 	u32 val;
3421 
3422 	err = kstrtou32(buf, 0, &val);
3423 	if (err)
3424 		return err;
3425 
3426 	bp->ts_window_adjust = val;
3427 
3428 	return count;
3429 }
3430 static DEVICE_ATTR_RW(ts_window_adjust);
3431 
3432 static ssize_t
3433 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3434 {
3435 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3436 	u32 val;
3437 
3438 	val = ioread32(&bp->irig_out->ctrl);
3439 	val = (val >> 16) & 0x07;
3440 	return sysfs_emit(buf, "%d\n", val);
3441 }
3442 
3443 static ssize_t
3444 irig_b_mode_store(struct device *dev,
3445 		  struct device_attribute *attr,
3446 		  const char *buf, size_t count)
3447 {
3448 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3449 	unsigned long flags;
3450 	int err;
3451 	u32 reg;
3452 	u8 val;
3453 
3454 	err = kstrtou8(buf, 0, &val);
3455 	if (err)
3456 		return err;
3457 	if (val > 7)
3458 		return -EINVAL;
3459 
3460 	reg = ((val & 0x7) << 16);
3461 
3462 	spin_lock_irqsave(&bp->lock, flags);
3463 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3464 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3465 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3466 	spin_unlock_irqrestore(&bp->lock, flags);
3467 
3468 	return count;
3469 }
3470 static DEVICE_ATTR_RW(irig_b_mode);
3471 
3472 static ssize_t
3473 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3474 {
3475 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3476 	const char *p;
3477 	u32 select;
3478 
3479 	select = ioread32(&bp->reg->select);
3480 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3481 
3482 	return sysfs_emit(buf, "%s\n", p);
3483 }
3484 
3485 static ssize_t
3486 clock_source_store(struct device *dev, struct device_attribute *attr,
3487 		   const char *buf, size_t count)
3488 {
3489 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3490 	unsigned long flags;
3491 	int val;
3492 
3493 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3494 	if (val < 0)
3495 		return val;
3496 
3497 	spin_lock_irqsave(&bp->lock, flags);
3498 	iowrite32(val, &bp->reg->select);
3499 	spin_unlock_irqrestore(&bp->lock, flags);
3500 
3501 	return count;
3502 }
3503 static DEVICE_ATTR_RW(clock_source);
3504 
3505 static ssize_t
3506 available_clock_sources_show(struct device *dev,
3507 			     struct device_attribute *attr, char *buf)
3508 {
3509 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3510 }
3511 static DEVICE_ATTR_RO(available_clock_sources);
3512 
3513 static ssize_t
3514 clock_status_drift_show(struct device *dev,
3515 			struct device_attribute *attr, char *buf)
3516 {
3517 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3518 	u32 val;
3519 	int res;
3520 
3521 	val = ioread32(&bp->reg->status_drift);
3522 	res = (val & ~INT_MAX) ? -1 : 1;
3523 	res *= (val & INT_MAX);
3524 	return sysfs_emit(buf, "%d\n", res);
3525 }
3526 static DEVICE_ATTR_RO(clock_status_drift);
3527 
3528 static ssize_t
3529 clock_status_offset_show(struct device *dev,
3530 			 struct device_attribute *attr, char *buf)
3531 {
3532 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3533 	u32 val;
3534 	int res;
3535 
3536 	val = ioread32(&bp->reg->status_offset);
3537 	res = (val & ~INT_MAX) ? -1 : 1;
3538 	res *= (val & INT_MAX);
3539 	return sysfs_emit(buf, "%d\n", res);
3540 }
3541 static DEVICE_ATTR_RO(clock_status_offset);
3542 
3543 static ssize_t
3544 tod_correction_show(struct device *dev,
3545 		    struct device_attribute *attr, char *buf)
3546 {
3547 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3548 	u32 val;
3549 	int res;
3550 
3551 	val = ioread32(&bp->tod->adj_sec);
3552 	res = (val & ~INT_MAX) ? -1 : 1;
3553 	res *= (val & INT_MAX);
3554 	return sysfs_emit(buf, "%d\n", res);
3555 }
3556 
3557 static ssize_t
3558 tod_correction_store(struct device *dev, struct device_attribute *attr,
3559 		     const char *buf, size_t count)
3560 {
3561 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3562 	unsigned long flags;
3563 	int err, res;
3564 	u32 val = 0;
3565 
3566 	err = kstrtos32(buf, 0, &res);
3567 	if (err)
3568 		return err;
3569 	if (res < 0) {
3570 		res *= -1;
3571 		val |= BIT(31);
3572 	}
3573 	val |= res;
3574 
3575 	spin_lock_irqsave(&bp->lock, flags);
3576 	iowrite32(val, &bp->tod->adj_sec);
3577 	spin_unlock_irqrestore(&bp->lock, flags);
3578 
3579 	return count;
3580 }
3581 static DEVICE_ATTR_RW(tod_correction);
3582 
3583 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3584 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3585 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3586 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3587 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3588 		&dev_attr_signal##_nr##_period.attr.attr,		\
3589 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3590 		&dev_attr_signal##_nr##_running.attr.attr,		\
3591 		&dev_attr_signal##_nr##_start.attr.attr,		\
3592 		NULL,							\
3593 	}
3594 
3595 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3596 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3597 	static const struct attribute_group				\
3598 			fb_timecard_signal##_nr##_group = {		\
3599 		.name = #_name,						\
3600 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3601 }
3602 
3603 DEVICE_SIGNAL_GROUP(gen1, 0);
3604 DEVICE_SIGNAL_GROUP(gen2, 1);
3605 DEVICE_SIGNAL_GROUP(gen3, 2);
3606 DEVICE_SIGNAL_GROUP(gen4, 3);
3607 
3608 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3609 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3610 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3611 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3612 		NULL,							\
3613 	}
3614 
3615 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3616 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3617 	static const struct attribute_group				\
3618 			fb_timecard_freq##_nr##_group = {		\
3619 		.name = #_name,						\
3620 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3621 }
3622 
3623 DEVICE_FREQ_GROUP(freq1, 0);
3624 DEVICE_FREQ_GROUP(freq2, 1);
3625 DEVICE_FREQ_GROUP(freq3, 2);
3626 DEVICE_FREQ_GROUP(freq4, 3);
3627 
3628 static ssize_t
3629 disciplining_config_read(struct file *filp, struct kobject *kobj,
3630 			 struct bin_attribute *bin_attr, char *buf,
3631 			 loff_t off, size_t count)
3632 {
3633 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3634 	size_t size = OCP_ART_CONFIG_SIZE;
3635 	struct nvmem_device *nvmem;
3636 	ssize_t err;
3637 
3638 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3639 	if (IS_ERR(nvmem))
3640 		return PTR_ERR(nvmem);
3641 
3642 	if (off > size) {
3643 		err = 0;
3644 		goto out;
3645 	}
3646 
3647 	if (off + count > size)
3648 		count = size - off;
3649 
3650 	// the configuration is in the very beginning of the EEPROM
3651 	err = nvmem_device_read(nvmem, off, count, buf);
3652 	if (err != count) {
3653 		err = -EFAULT;
3654 		goto out;
3655 	}
3656 
3657 out:
3658 	ptp_ocp_nvmem_device_put(&nvmem);
3659 
3660 	return err;
3661 }
3662 
3663 static ssize_t
3664 disciplining_config_write(struct file *filp, struct kobject *kobj,
3665 			  struct bin_attribute *bin_attr, char *buf,
3666 			  loff_t off, size_t count)
3667 {
3668 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3669 	struct nvmem_device *nvmem;
3670 	ssize_t err;
3671 
3672 	/* Allow write of the whole area only */
3673 	if (off || count != OCP_ART_CONFIG_SIZE)
3674 		return -EFAULT;
3675 
3676 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3677 	if (IS_ERR(nvmem))
3678 		return PTR_ERR(nvmem);
3679 
3680 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3681 	if (err != count)
3682 		err = -EFAULT;
3683 
3684 	ptp_ocp_nvmem_device_put(&nvmem);
3685 
3686 	return err;
3687 }
3688 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3689 
3690 static ssize_t
3691 temperature_table_read(struct file *filp, struct kobject *kobj,
3692 		       struct bin_attribute *bin_attr, char *buf,
3693 		       loff_t off, size_t count)
3694 {
3695 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3696 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3697 	struct nvmem_device *nvmem;
3698 	ssize_t err;
3699 
3700 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3701 	if (IS_ERR(nvmem))
3702 		return PTR_ERR(nvmem);
3703 
3704 	if (off > size) {
3705 		err = 0;
3706 		goto out;
3707 	}
3708 
3709 	if (off + count > size)
3710 		count = size - off;
3711 
3712 	// the configuration is in the very beginning of the EEPROM
3713 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3714 	if (err != count) {
3715 		err = -EFAULT;
3716 		goto out;
3717 	}
3718 
3719 out:
3720 	ptp_ocp_nvmem_device_put(&nvmem);
3721 
3722 	return err;
3723 }
3724 
3725 static ssize_t
3726 temperature_table_write(struct file *filp, struct kobject *kobj,
3727 			struct bin_attribute *bin_attr, char *buf,
3728 			loff_t off, size_t count)
3729 {
3730 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3731 	struct nvmem_device *nvmem;
3732 	ssize_t err;
3733 
3734 	/* Allow write of the whole area only */
3735 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3736 		return -EFAULT;
3737 
3738 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3739 	if (IS_ERR(nvmem))
3740 		return PTR_ERR(nvmem);
3741 
3742 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3743 	if (err != count)
3744 		err = -EFAULT;
3745 
3746 	ptp_ocp_nvmem_device_put(&nvmem);
3747 
3748 	return err;
3749 }
3750 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3751 
3752 static struct attribute *fb_timecard_attrs[] = {
3753 	&dev_attr_serialnum.attr,
3754 	&dev_attr_gnss_sync.attr,
3755 	&dev_attr_clock_source.attr,
3756 	&dev_attr_available_clock_sources.attr,
3757 	&dev_attr_sma1.attr,
3758 	&dev_attr_sma2.attr,
3759 	&dev_attr_sma3.attr,
3760 	&dev_attr_sma4.attr,
3761 	&dev_attr_available_sma_inputs.attr,
3762 	&dev_attr_available_sma_outputs.attr,
3763 	&dev_attr_clock_status_drift.attr,
3764 	&dev_attr_clock_status_offset.attr,
3765 	&dev_attr_irig_b_mode.attr,
3766 	&dev_attr_utc_tai_offset.attr,
3767 	&dev_attr_ts_window_adjust.attr,
3768 	&dev_attr_tod_correction.attr,
3769 	NULL,
3770 };
3771 
3772 static const struct attribute_group fb_timecard_group = {
3773 	.attrs = fb_timecard_attrs,
3774 };
3775 
3776 static const struct ocp_attr_group fb_timecard_groups[] = {
3777 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3778 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3779 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3780 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3781 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3782 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3783 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3784 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3785 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3786 	{ },
3787 };
3788 
3789 static struct attribute *art_timecard_attrs[] = {
3790 	&dev_attr_serialnum.attr,
3791 	&dev_attr_clock_source.attr,
3792 	&dev_attr_available_clock_sources.attr,
3793 	&dev_attr_utc_tai_offset.attr,
3794 	&dev_attr_ts_window_adjust.attr,
3795 	&dev_attr_sma1.attr,
3796 	&dev_attr_sma2.attr,
3797 	&dev_attr_sma3.attr,
3798 	&dev_attr_sma4.attr,
3799 	&dev_attr_available_sma_inputs.attr,
3800 	&dev_attr_available_sma_outputs.attr,
3801 	NULL,
3802 };
3803 
3804 static struct bin_attribute *bin_art_timecard_attrs[] = {
3805 	&bin_attr_disciplining_config,
3806 	&bin_attr_temperature_table,
3807 	NULL,
3808 };
3809 
3810 static const struct attribute_group art_timecard_group = {
3811 	.attrs = art_timecard_attrs,
3812 	.bin_attrs = bin_art_timecard_attrs,
3813 };
3814 
3815 static const struct ocp_attr_group art_timecard_groups[] = {
3816 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3817 	{ },
3818 };
3819 
3820 static struct attribute *adva_timecard_attrs[] = {
3821 	&dev_attr_serialnum.attr,
3822 	&dev_attr_gnss_sync.attr,
3823 	&dev_attr_clock_source.attr,
3824 	&dev_attr_available_clock_sources.attr,
3825 	&dev_attr_sma1.attr,
3826 	&dev_attr_sma2.attr,
3827 	&dev_attr_sma3.attr,
3828 	&dev_attr_sma4.attr,
3829 	&dev_attr_available_sma_inputs.attr,
3830 	&dev_attr_available_sma_outputs.attr,
3831 	&dev_attr_clock_status_drift.attr,
3832 	&dev_attr_clock_status_offset.attr,
3833 	&dev_attr_ts_window_adjust.attr,
3834 	&dev_attr_tod_correction.attr,
3835 	NULL,
3836 };
3837 
3838 static const struct attribute_group adva_timecard_group = {
3839 	.attrs = adva_timecard_attrs,
3840 };
3841 
3842 static const struct ocp_attr_group adva_timecard_groups[] = {
3843 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3844 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3845 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3846 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3847 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3848 	{ },
3849 };
3850 
3851 static void
3852 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3853 	       const char *def)
3854 {
3855 	int i;
3856 
3857 	for (i = 0; i < 4; i++) {
3858 		if (bp->sma[i].mode != SMA_MODE_IN)
3859 			continue;
3860 		if (map[i][0] & (1 << bit)) {
3861 			sprintf(buf, "sma%d", i + 1);
3862 			return;
3863 		}
3864 	}
3865 	if (!def)
3866 		def = "----";
3867 	strcpy(buf, def);
3868 }
3869 
3870 static void
3871 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3872 {
3873 	char *ans = buf;
3874 	int i;
3875 
3876 	strcpy(ans, "----");
3877 	for (i = 0; i < 4; i++) {
3878 		if (bp->sma[i].mode != SMA_MODE_OUT)
3879 			continue;
3880 		if (map[i][1] & (1 << bit))
3881 			ans += sprintf(ans, "sma%d ", i + 1);
3882 	}
3883 }
3884 
3885 static void
3886 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3887 {
3888 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3889 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3890 	char label[8];
3891 	bool on;
3892 	u32 val;
3893 
3894 	if (!signal)
3895 		return;
3896 
3897 	on = signal->running;
3898 	sprintf(label, "GEN%d", nr + 1);
3899 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3900 		   label, on ? " ON" : "OFF",
3901 		   signal->period, signal->duty, signal->phase,
3902 		   signal->polarity);
3903 
3904 	val = ioread32(&reg->enable);
3905 	seq_printf(s, " [%x", val);
3906 	val = ioread32(&reg->status);
3907 	seq_printf(s, " %x]", val);
3908 
3909 	seq_printf(s, " start:%llu\n", signal->start);
3910 }
3911 
3912 static void
3913 _frequency_summary_show(struct seq_file *s, int nr,
3914 			struct frequency_reg __iomem *reg)
3915 {
3916 	char label[8];
3917 	bool on;
3918 	u32 val;
3919 
3920 	if (!reg)
3921 		return;
3922 
3923 	sprintf(label, "FREQ%d", nr + 1);
3924 	val = ioread32(&reg->ctrl);
3925 	on = val & 1;
3926 	val = (val >> 8) & 0xff;
3927 	seq_printf(s, "%7s: %s, sec:%u",
3928 		   label,
3929 		   on ? " ON" : "OFF",
3930 		   val);
3931 
3932 	val = ioread32(&reg->status);
3933 	if (val & FREQ_STATUS_ERROR)
3934 		seq_printf(s, ", error");
3935 	if (val & FREQ_STATUS_OVERRUN)
3936 		seq_printf(s, ", overrun");
3937 	if (val & FREQ_STATUS_VALID)
3938 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3939 	seq_printf(s, "  reg:%x\n", val);
3940 }
3941 
3942 static int
3943 ptp_ocp_summary_show(struct seq_file *s, void *data)
3944 {
3945 	struct device *dev = s->private;
3946 	struct ptp_system_timestamp sts;
3947 	struct ts_reg __iomem *ts_reg;
3948 	char *buf, *src, *mac_src;
3949 	struct timespec64 ts;
3950 	struct ptp_ocp *bp;
3951 	u16 sma_val[4][2];
3952 	u32 ctrl, val;
3953 	bool on, map;
3954 	int i;
3955 
3956 	buf = (char *)__get_free_page(GFP_KERNEL);
3957 	if (!buf)
3958 		return -ENOMEM;
3959 
3960 	bp = dev_get_drvdata(dev);
3961 
3962 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3963 	if (bp->gnss_port.line != -1)
3964 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3965 			   bp->gnss_port.line);
3966 	if (bp->gnss2_port.line != -1)
3967 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3968 			   bp->gnss2_port.line);
3969 	if (bp->mac_port.line != -1)
3970 		seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3971 	if (bp->nmea_port.line != -1)
3972 		seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3973 
3974 	memset(sma_val, 0xff, sizeof(sma_val));
3975 	if (bp->sma_map1) {
3976 		u32 reg;
3977 
3978 		reg = ioread32(&bp->sma_map1->gpio1);
3979 		sma_val[0][0] = reg & 0xffff;
3980 		sma_val[1][0] = reg >> 16;
3981 
3982 		reg = ioread32(&bp->sma_map1->gpio2);
3983 		sma_val[2][1] = reg & 0xffff;
3984 		sma_val[3][1] = reg >> 16;
3985 
3986 		reg = ioread32(&bp->sma_map2->gpio1);
3987 		sma_val[2][0] = reg & 0xffff;
3988 		sma_val[3][0] = reg >> 16;
3989 
3990 		reg = ioread32(&bp->sma_map2->gpio2);
3991 		sma_val[0][1] = reg & 0xffff;
3992 		sma_val[1][1] = reg >> 16;
3993 	}
3994 
3995 	sma1_show(dev, NULL, buf);
3996 	seq_printf(s, "   sma1: %04x,%04x %s",
3997 		   sma_val[0][0], sma_val[0][1], buf);
3998 
3999 	sma2_show(dev, NULL, buf);
4000 	seq_printf(s, "   sma2: %04x,%04x %s",
4001 		   sma_val[1][0], sma_val[1][1], buf);
4002 
4003 	sma3_show(dev, NULL, buf);
4004 	seq_printf(s, "   sma3: %04x,%04x %s",
4005 		   sma_val[2][0], sma_val[2][1], buf);
4006 
4007 	sma4_show(dev, NULL, buf);
4008 	seq_printf(s, "   sma4: %04x,%04x %s",
4009 		   sma_val[3][0], sma_val[3][1], buf);
4010 
4011 	if (bp->ts0) {
4012 		ts_reg = bp->ts0->mem;
4013 		on = ioread32(&ts_reg->enable);
4014 		src = "GNSS1";
4015 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4016 			   on ? " ON" : "OFF", src);
4017 	}
4018 
4019 	if (bp->ts1) {
4020 		ts_reg = bp->ts1->mem;
4021 		on = ioread32(&ts_reg->enable);
4022 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4023 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4024 			   on ? " ON" : "OFF", buf);
4025 	}
4026 
4027 	if (bp->ts2) {
4028 		ts_reg = bp->ts2->mem;
4029 		on = ioread32(&ts_reg->enable);
4030 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4031 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4032 			   on ? " ON" : "OFF", buf);
4033 	}
4034 
4035 	if (bp->ts3) {
4036 		ts_reg = bp->ts3->mem;
4037 		on = ioread32(&ts_reg->enable);
4038 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4039 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4040 			   on ? " ON" : "OFF", buf);
4041 	}
4042 
4043 	if (bp->ts4) {
4044 		ts_reg = bp->ts4->mem;
4045 		on = ioread32(&ts_reg->enable);
4046 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4047 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4048 			   on ? " ON" : "OFF", buf);
4049 	}
4050 
4051 	if (bp->pps) {
4052 		ts_reg = bp->pps->mem;
4053 		src = "PHC";
4054 		on = ioread32(&ts_reg->enable);
4055 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4056 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4057 			   on && map ? " ON" : "OFF", src);
4058 
4059 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4060 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4061 			   on && map ? " ON" : "OFF", src);
4062 	}
4063 
4064 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4065 		for (i = 0; i < 4; i++)
4066 			_signal_summary_show(s, bp, i);
4067 
4068 	if (bp->fw_cap & OCP_CAP_FREQ)
4069 		for (i = 0; i < 4; i++)
4070 			_frequency_summary_show(s, i, bp->freq_in[i]);
4071 
4072 	if (bp->irig_out) {
4073 		ctrl = ioread32(&bp->irig_out->ctrl);
4074 		on = ctrl & IRIG_M_CTRL_ENABLE;
4075 		val = ioread32(&bp->irig_out->status);
4076 		gpio_output_map(buf, bp, sma_val, 4);
4077 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4078 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4079 	}
4080 
4081 	if (bp->irig_in) {
4082 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4083 		val = ioread32(&bp->irig_in->status);
4084 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4085 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4086 			   on ? " ON" : "OFF", val, buf);
4087 	}
4088 
4089 	if (bp->dcf_out) {
4090 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4091 		val = ioread32(&bp->dcf_out->status);
4092 		gpio_output_map(buf, bp, sma_val, 5);
4093 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4094 			   on ? " ON" : "OFF", val, buf);
4095 	}
4096 
4097 	if (bp->dcf_in) {
4098 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4099 		val = ioread32(&bp->dcf_in->status);
4100 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4101 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4102 			   on ? " ON" : "OFF", val, buf);
4103 	}
4104 
4105 	if (bp->nmea_out) {
4106 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4107 		val = ioread32(&bp->nmea_out->status);
4108 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4109 			   on ? " ON" : "OFF", val);
4110 	}
4111 
4112 	/* compute src for PPS1, used below. */
4113 	if (bp->pps_select) {
4114 		val = ioread32(&bp->pps_select->gpio1);
4115 		src = &buf[80];
4116 		mac_src = "GNSS1";
4117 		if (val & 0x01) {
4118 			gpio_input_map(src, bp, sma_val, 0, NULL);
4119 			mac_src = src;
4120 		} else if (val & 0x02) {
4121 			src = "MAC";
4122 		} else if (val & 0x04) {
4123 			src = "GNSS1";
4124 		} else {
4125 			src = "----";
4126 			mac_src = src;
4127 		}
4128 	} else {
4129 		src = "?";
4130 		mac_src = src;
4131 	}
4132 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4133 
4134 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4135 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4136 
4137 	/* assumes automatic switchover/selection */
4138 	val = ioread32(&bp->reg->select);
4139 	switch (val >> 16) {
4140 	case 0:
4141 		sprintf(buf, "----");
4142 		break;
4143 	case 2:
4144 		sprintf(buf, "IRIG");
4145 		break;
4146 	case 3:
4147 		sprintf(buf, "%s via PPS1", src);
4148 		break;
4149 	case 6:
4150 		sprintf(buf, "DCF");
4151 		break;
4152 	default:
4153 		strcpy(buf, "unknown");
4154 		break;
4155 	}
4156 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4157 		   bp->sync ? "sync" : "unsynced");
4158 
4159 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4160 		struct timespec64 sys_ts;
4161 		s64 pre_ns, post_ns, ns;
4162 
4163 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4164 		post_ns = timespec64_to_ns(&sts.post_ts);
4165 		ns = (pre_ns + post_ns) / 2;
4166 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4167 		sys_ts = ns_to_timespec64(ns);
4168 
4169 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
4170 			   ts.tv_sec, ts.tv_nsec, &ts);
4171 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
4172 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
4173 			   bp->utc_tai_offset);
4174 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4175 			   timespec64_to_ns(&ts) - ns,
4176 			   post_ns - pre_ns);
4177 	}
4178 
4179 	free_page((unsigned long)buf);
4180 	return 0;
4181 }
4182 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4183 
4184 static int
4185 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4186 {
4187 	struct device *dev = s->private;
4188 	struct ptp_ocp *bp;
4189 	u32 val;
4190 	int idx;
4191 
4192 	bp = dev_get_drvdata(dev);
4193 
4194 	val = ioread32(&bp->tod->ctrl);
4195 	if (!(val & TOD_CTRL_ENABLE)) {
4196 		seq_printf(s, "TOD Slave disabled\n");
4197 		return 0;
4198 	}
4199 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4200 
4201 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4202 	idx += (val >> 16) & 3;
4203 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4204 
4205 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4206 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4207 
4208 	val = ioread32(&bp->tod->version);
4209 	seq_printf(s, "TOD Version %d.%d.%d\n",
4210 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4211 
4212 	val = ioread32(&bp->tod->status);
4213 	seq_printf(s, "Status register: 0x%08X\n", val);
4214 
4215 	val = ioread32(&bp->tod->adj_sec);
4216 	idx = (val & ~INT_MAX) ? -1 : 1;
4217 	idx *= (val & INT_MAX);
4218 	seq_printf(s, "Correction seconds: %d\n", idx);
4219 
4220 	val = ioread32(&bp->tod->utc_status);
4221 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4222 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4223 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4224 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4225 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4226 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4227 
4228 	val = ioread32(&bp->tod->leap);
4229 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4230 
4231 	return 0;
4232 }
4233 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4234 
4235 static struct dentry *ptp_ocp_debugfs_root;
4236 
4237 static void
4238 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4239 {
4240 	struct dentry *d;
4241 
4242 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4243 	bp->debug_root = d;
4244 	debugfs_create_file("summary", 0444, bp->debug_root,
4245 			    &bp->dev, &ptp_ocp_summary_fops);
4246 	if (bp->tod)
4247 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4248 				    &bp->dev, &ptp_ocp_tod_status_fops);
4249 }
4250 
4251 static void
4252 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4253 {
4254 	debugfs_remove_recursive(bp->debug_root);
4255 }
4256 
4257 static void
4258 ptp_ocp_debugfs_init(void)
4259 {
4260 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4261 }
4262 
4263 static void
4264 ptp_ocp_debugfs_fini(void)
4265 {
4266 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4267 }
4268 
4269 static void
4270 ptp_ocp_dev_release(struct device *dev)
4271 {
4272 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4273 
4274 	mutex_lock(&ptp_ocp_lock);
4275 	idr_remove(&ptp_ocp_idr, bp->id);
4276 	mutex_unlock(&ptp_ocp_lock);
4277 }
4278 
4279 static int
4280 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4281 {
4282 	int err;
4283 
4284 	mutex_lock(&ptp_ocp_lock);
4285 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4286 	mutex_unlock(&ptp_ocp_lock);
4287 	if (err < 0) {
4288 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4289 		return err;
4290 	}
4291 	bp->id = err;
4292 
4293 	bp->ptp_info = ptp_ocp_clock_info;
4294 	spin_lock_init(&bp->lock);
4295 	bp->gnss_port.line = -1;
4296 	bp->gnss2_port.line = -1;
4297 	bp->mac_port.line = -1;
4298 	bp->nmea_port.line = -1;
4299 	bp->pdev = pdev;
4300 
4301 	device_initialize(&bp->dev);
4302 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4303 	bp->dev.class = &timecard_class;
4304 	bp->dev.parent = &pdev->dev;
4305 	bp->dev.release = ptp_ocp_dev_release;
4306 	dev_set_drvdata(&bp->dev, bp);
4307 
4308 	err = device_add(&bp->dev);
4309 	if (err) {
4310 		dev_err(&bp->dev, "device add failed: %d\n", err);
4311 		goto out;
4312 	}
4313 
4314 	pci_set_drvdata(pdev, bp);
4315 
4316 	return 0;
4317 
4318 out:
4319 	put_device(&bp->dev);
4320 	return err;
4321 }
4322 
4323 static void
4324 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4325 {
4326 	struct device *dev = &bp->dev;
4327 
4328 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4329 		dev_err(dev, "%s symlink failed\n", link);
4330 }
4331 
4332 static void
4333 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4334 {
4335 	struct device *dev, *child;
4336 
4337 	dev = &bp->pdev->dev;
4338 
4339 	child = device_find_child_by_name(dev, name);
4340 	if (!child) {
4341 		dev_err(dev, "Could not find device %s\n", name);
4342 		return;
4343 	}
4344 
4345 	ptp_ocp_symlink(bp, child, link);
4346 	put_device(child);
4347 }
4348 
4349 static int
4350 ptp_ocp_complete(struct ptp_ocp *bp)
4351 {
4352 	struct pps_device *pps;
4353 	char buf[32];
4354 
4355 	if (bp->gnss_port.line != -1) {
4356 		sprintf(buf, "ttyS%d", bp->gnss_port.line);
4357 		ptp_ocp_link_child(bp, buf, "ttyGNSS");
4358 	}
4359 	if (bp->gnss2_port.line != -1) {
4360 		sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4361 		ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4362 	}
4363 	if (bp->mac_port.line != -1) {
4364 		sprintf(buf, "ttyS%d", bp->mac_port.line);
4365 		ptp_ocp_link_child(bp, buf, "ttyMAC");
4366 	}
4367 	if (bp->nmea_port.line != -1) {
4368 		sprintf(buf, "ttyS%d", bp->nmea_port.line);
4369 		ptp_ocp_link_child(bp, buf, "ttyNMEA");
4370 	}
4371 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4372 	ptp_ocp_link_child(bp, buf, "ptp");
4373 
4374 	pps = pps_lookup_dev(bp->ptp);
4375 	if (pps)
4376 		ptp_ocp_symlink(bp, pps->dev, "pps");
4377 
4378 	ptp_ocp_debugfs_add_device(bp);
4379 
4380 	return 0;
4381 }
4382 
4383 static void
4384 ptp_ocp_phc_info(struct ptp_ocp *bp)
4385 {
4386 	struct timespec64 ts;
4387 	u32 version, select;
4388 
4389 	version = ioread32(&bp->reg->version);
4390 	select = ioread32(&bp->reg->select);
4391 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4392 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4393 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4394 		 ptp_clock_index(bp->ptp));
4395 
4396 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4397 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4398 			 ts.tv_sec, ts.tv_nsec,
4399 			 bp->sync ? "in-sync" : "UNSYNCED");
4400 }
4401 
4402 static void
4403 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4404 {
4405 	if (port != -1)
4406 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4407 }
4408 
4409 static void
4410 ptp_ocp_info(struct ptp_ocp *bp)
4411 {
4412 	static int nmea_baud[] = {
4413 		1200, 2400, 4800, 9600, 19200, 38400,
4414 		57600, 115200, 230400, 460800, 921600,
4415 		1000000, 2000000
4416 	};
4417 	struct device *dev = &bp->pdev->dev;
4418 	u32 reg;
4419 
4420 	ptp_ocp_phc_info(bp);
4421 
4422 	ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4423 			    bp->gnss_port.baud);
4424 	ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4425 			    bp->gnss2_port.baud);
4426 	ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4427 	if (bp->nmea_out && bp->nmea_port.line != -1) {
4428 		bp->nmea_port.baud = -1;
4429 
4430 		reg = ioread32(&bp->nmea_out->uart_baud);
4431 		if (reg < ARRAY_SIZE(nmea_baud))
4432 			bp->nmea_port.baud = nmea_baud[reg];
4433 
4434 		ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4435 				    bp->nmea_port.baud);
4436 	}
4437 }
4438 
4439 static void
4440 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4441 {
4442 	struct device *dev = &bp->dev;
4443 
4444 	sysfs_remove_link(&dev->kobj, "ttyGNSS");
4445 	sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4446 	sysfs_remove_link(&dev->kobj, "ttyMAC");
4447 	sysfs_remove_link(&dev->kobj, "ptp");
4448 	sysfs_remove_link(&dev->kobj, "pps");
4449 }
4450 
4451 static void
4452 ptp_ocp_detach(struct ptp_ocp *bp)
4453 {
4454 	int i;
4455 
4456 	ptp_ocp_debugfs_remove_device(bp);
4457 	ptp_ocp_detach_sysfs(bp);
4458 	ptp_ocp_attr_group_del(bp);
4459 	if (timer_pending(&bp->watchdog))
4460 		del_timer_sync(&bp->watchdog);
4461 	if (bp->ts0)
4462 		ptp_ocp_unregister_ext(bp->ts0);
4463 	if (bp->ts1)
4464 		ptp_ocp_unregister_ext(bp->ts1);
4465 	if (bp->ts2)
4466 		ptp_ocp_unregister_ext(bp->ts2);
4467 	if (bp->ts3)
4468 		ptp_ocp_unregister_ext(bp->ts3);
4469 	if (bp->ts4)
4470 		ptp_ocp_unregister_ext(bp->ts4);
4471 	if (bp->pps)
4472 		ptp_ocp_unregister_ext(bp->pps);
4473 	for (i = 0; i < 4; i++)
4474 		if (bp->signal_out[i])
4475 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4476 	if (bp->gnss_port.line != -1)
4477 		serial8250_unregister_port(bp->gnss_port.line);
4478 	if (bp->gnss2_port.line != -1)
4479 		serial8250_unregister_port(bp->gnss2_port.line);
4480 	if (bp->mac_port.line != -1)
4481 		serial8250_unregister_port(bp->mac_port.line);
4482 	if (bp->nmea_port.line != -1)
4483 		serial8250_unregister_port(bp->nmea_port.line);
4484 	platform_device_unregister(bp->spi_flash);
4485 	platform_device_unregister(bp->i2c_ctrl);
4486 	if (bp->i2c_clk)
4487 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4488 	if (bp->n_irqs)
4489 		pci_free_irq_vectors(bp->pdev);
4490 	if (bp->ptp)
4491 		ptp_clock_unregister(bp->ptp);
4492 	kfree(bp->ptp_info.pin_config);
4493 	device_unregister(&bp->dev);
4494 }
4495 
4496 static int
4497 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4498 			     enum dpll_lock_status *status,
4499 			     enum dpll_lock_status_error *status_error,
4500 			     struct netlink_ext_ack *extack)
4501 {
4502 	struct ptp_ocp *bp = priv;
4503 
4504 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4505 
4506 	return 0;
4507 }
4508 
4509 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4510 				  const struct dpll_device *dpll, void *priv,
4511 				  enum dpll_pin_state *state,
4512 				  struct netlink_ext_ack *extack)
4513 {
4514 	struct ptp_ocp *bp = priv;
4515 	int idx;
4516 
4517 	if (bp->pps_select) {
4518 		idx = ioread32(&bp->pps_select->gpio1);
4519 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4520 						      DPLL_PIN_STATE_SELECTABLE;
4521 		return 0;
4522 	}
4523 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4524 	return -EINVAL;
4525 }
4526 
4527 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4528 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4529 {
4530 	*mode = DPLL_MODE_AUTOMATIC;
4531 	return 0;
4532 }
4533 
4534 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4535 				      void *pin_priv,
4536 				      const struct dpll_device *dpll,
4537 				      void *priv,
4538 				      enum dpll_pin_direction *direction,
4539 				      struct netlink_ext_ack *extack)
4540 {
4541 	struct ptp_ocp_sma_connector *sma = pin_priv;
4542 
4543 	*direction = sma->mode == SMA_MODE_IN ?
4544 				  DPLL_PIN_DIRECTION_INPUT :
4545 				  DPLL_PIN_DIRECTION_OUTPUT;
4546 	return 0;
4547 }
4548 
4549 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4550 				      void *pin_priv,
4551 				      const struct dpll_device *dpll,
4552 				      void *dpll_priv,
4553 				      enum dpll_pin_direction direction,
4554 				      struct netlink_ext_ack *extack)
4555 {
4556 	struct ptp_ocp_sma_connector *sma = pin_priv;
4557 	struct ptp_ocp *bp = dpll_priv;
4558 	enum ptp_ocp_sma_mode mode;
4559 	int sma_nr = (sma - bp->sma);
4560 
4561 	if (sma->fixed_dir)
4562 		return -EOPNOTSUPP;
4563 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4564 			    SMA_MODE_IN : SMA_MODE_OUT;
4565 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr);
4566 }
4567 
4568 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4569 				      void *pin_priv,
4570 				      const struct dpll_device *dpll,
4571 				      void *dpll_priv, u64 frequency,
4572 				      struct netlink_ext_ack *extack)
4573 {
4574 	struct ptp_ocp_sma_connector *sma = pin_priv;
4575 	struct ptp_ocp *bp = dpll_priv;
4576 	const struct ocp_selector *tbl;
4577 	int sma_nr = (sma - bp->sma);
4578 	int i;
4579 
4580 	if (sma->fixed_fcn)
4581 		return -EOPNOTSUPP;
4582 
4583 	tbl = bp->sma_op->tbl[sma->mode];
4584 	for (i = 0; tbl[i].name; i++)
4585 		if (tbl[i].frequency == frequency)
4586 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr);
4587 	return -EINVAL;
4588 }
4589 
4590 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4591 				      void *pin_priv,
4592 				      const struct dpll_device *dpll,
4593 				      void *dpll_priv, u64 *frequency,
4594 				      struct netlink_ext_ack *extack)
4595 {
4596 	struct ptp_ocp_sma_connector *sma = pin_priv;
4597 	struct ptp_ocp *bp = dpll_priv;
4598 	const struct ocp_selector *tbl;
4599 	int sma_nr = (sma - bp->sma);
4600 	u32 val;
4601 	int i;
4602 
4603 	val = bp->sma_op->get(bp, sma_nr);
4604 	tbl = bp->sma_op->tbl[sma->mode];
4605 	for (i = 0; tbl[i].name; i++)
4606 		if (val == tbl[i].value) {
4607 			*frequency = tbl[i].frequency;
4608 			return 0;
4609 		}
4610 
4611 	return -EINVAL;
4612 }
4613 
4614 static const struct dpll_device_ops dpll_ops = {
4615 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4616 	.mode_get = ptp_ocp_dpll_mode_get,
4617 };
4618 
4619 static const struct dpll_pin_ops dpll_pins_ops = {
4620 	.frequency_get = ptp_ocp_dpll_frequency_get,
4621 	.frequency_set = ptp_ocp_dpll_frequency_set,
4622 	.direction_get = ptp_ocp_dpll_direction_get,
4623 	.direction_set = ptp_ocp_dpll_direction_set,
4624 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4625 };
4626 
4627 static void
4628 ptp_ocp_sync_work(struct work_struct *work)
4629 {
4630 	struct ptp_ocp *bp;
4631 	bool sync;
4632 
4633 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4634 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4635 
4636 	if (bp->sync != sync)
4637 		dpll_device_change_ntf(bp->dpll);
4638 
4639 	bp->sync = sync;
4640 
4641 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4642 }
4643 
4644 static int
4645 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4646 {
4647 	struct devlink *devlink;
4648 	struct ptp_ocp *bp;
4649 	int err, i;
4650 	u64 clkid;
4651 
4652 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4653 	if (!devlink) {
4654 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4655 		return -ENOMEM;
4656 	}
4657 
4658 	err = pci_enable_device(pdev);
4659 	if (err) {
4660 		dev_err(&pdev->dev, "pci_enable_device\n");
4661 		goto out_free;
4662 	}
4663 
4664 	bp = devlink_priv(devlink);
4665 	err = ptp_ocp_device_init(bp, pdev);
4666 	if (err)
4667 		goto out_disable;
4668 
4669 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4670 
4671 	/* compat mode.
4672 	 * Older FPGA firmware only returns 2 irq's.
4673 	 * allow this - if not all of the IRQ's are returned, skip the
4674 	 * extra devices and just register the clock.
4675 	 */
4676 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4677 	if (err < 0) {
4678 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4679 		goto out;
4680 	}
4681 	bp->n_irqs = err;
4682 	pci_set_master(pdev);
4683 
4684 	err = ptp_ocp_register_resources(bp, id->driver_data);
4685 	if (err)
4686 		goto out;
4687 
4688 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4689 	if (IS_ERR(bp->ptp)) {
4690 		err = PTR_ERR(bp->ptp);
4691 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4692 		bp->ptp = NULL;
4693 		goto out;
4694 	}
4695 
4696 	err = ptp_ocp_complete(bp);
4697 	if (err)
4698 		goto out;
4699 
4700 	ptp_ocp_info(bp);
4701 	devlink_register(devlink);
4702 
4703 	clkid = pci_get_dsn(pdev);
4704 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4705 	if (IS_ERR(bp->dpll)) {
4706 		err = PTR_ERR(bp->dpll);
4707 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4708 		goto out;
4709 	}
4710 
4711 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4712 	if (err)
4713 		goto out;
4714 
4715 	for (i = 0; i < OCP_SMA_NUM; i++) {
4716 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4717 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4718 			err = PTR_ERR(bp->sma[i].dpll_pin);
4719 			goto out_dpll;
4720 		}
4721 
4722 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4723 					&bp->sma[i]);
4724 		if (err) {
4725 			dpll_pin_put(bp->sma[i].dpll_pin);
4726 			goto out_dpll;
4727 		}
4728 	}
4729 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4730 
4731 	return 0;
4732 out_dpll:
4733 	while (i) {
4734 		--i;
4735 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4736 		dpll_pin_put(bp->sma[i].dpll_pin);
4737 	}
4738 	dpll_device_put(bp->dpll);
4739 out:
4740 	ptp_ocp_detach(bp);
4741 out_disable:
4742 	pci_disable_device(pdev);
4743 out_free:
4744 	devlink_free(devlink);
4745 	return err;
4746 }
4747 
4748 static void
4749 ptp_ocp_remove(struct pci_dev *pdev)
4750 {
4751 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4752 	struct devlink *devlink = priv_to_devlink(bp);
4753 	int i;
4754 
4755 	cancel_delayed_work_sync(&bp->sync_work);
4756 	for (i = 0; i < OCP_SMA_NUM; i++) {
4757 		if (bp->sma[i].dpll_pin) {
4758 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4759 			dpll_pin_put(bp->sma[i].dpll_pin);
4760 		}
4761 	}
4762 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4763 	dpll_device_put(bp->dpll);
4764 	devlink_unregister(devlink);
4765 	ptp_ocp_detach(bp);
4766 	pci_disable_device(pdev);
4767 
4768 	devlink_free(devlink);
4769 }
4770 
4771 static struct pci_driver ptp_ocp_driver = {
4772 	.name		= KBUILD_MODNAME,
4773 	.id_table	= ptp_ocp_pcidev_id,
4774 	.probe		= ptp_ocp_probe,
4775 	.remove		= ptp_ocp_remove,
4776 };
4777 
4778 static int
4779 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4780 			  unsigned long action, void *data)
4781 {
4782 	struct device *dev, *child = data;
4783 	struct ptp_ocp *bp;
4784 	bool add;
4785 
4786 	switch (action) {
4787 	case BUS_NOTIFY_ADD_DEVICE:
4788 	case BUS_NOTIFY_DEL_DEVICE:
4789 		add = action == BUS_NOTIFY_ADD_DEVICE;
4790 		break;
4791 	default:
4792 		return 0;
4793 	}
4794 
4795 	if (!i2c_verify_adapter(child))
4796 		return 0;
4797 
4798 	dev = child;
4799 	while ((dev = dev->parent))
4800 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4801 			goto found;
4802 	return 0;
4803 
4804 found:
4805 	bp = dev_get_drvdata(dev);
4806 	if (add)
4807 		ptp_ocp_symlink(bp, child, "i2c");
4808 	else
4809 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4810 
4811 	return 0;
4812 }
4813 
4814 static struct notifier_block ptp_ocp_i2c_notifier = {
4815 	.notifier_call = ptp_ocp_i2c_notifier_call,
4816 };
4817 
4818 static int __init
4819 ptp_ocp_init(void)
4820 {
4821 	const char *what;
4822 	int err;
4823 
4824 	ptp_ocp_debugfs_init();
4825 
4826 	what = "timecard class";
4827 	err = class_register(&timecard_class);
4828 	if (err)
4829 		goto out;
4830 
4831 	what = "i2c notifier";
4832 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4833 	if (err)
4834 		goto out_notifier;
4835 
4836 	what = "ptp_ocp driver";
4837 	err = pci_register_driver(&ptp_ocp_driver);
4838 	if (err)
4839 		goto out_register;
4840 
4841 	return 0;
4842 
4843 out_register:
4844 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4845 out_notifier:
4846 	class_unregister(&timecard_class);
4847 out:
4848 	ptp_ocp_debugfs_fini();
4849 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4850 	return err;
4851 }
4852 
4853 static void __exit
4854 ptp_ocp_fini(void)
4855 {
4856 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4857 	pci_unregister_driver(&ptp_ocp_driver);
4858 	class_unregister(&timecard_class);
4859 	ptp_ocp_debugfs_fini();
4860 }
4861 
4862 module_init(ptp_ocp_init);
4863 module_exit(ptp_ocp_fini);
4864 
4865 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4866 MODULE_LICENSE("GPL v2");
4867