xref: /linux/drivers/ptp/ptp_ocp.c (revision a4ff64edf9edc8f05e2183610dc8306d3279c6ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 static struct class timecard_class = {
38 	.name		= "timecard",
39 };
40 
41 struct ocp_reg {
42 	u32	ctrl;
43 	u32	status;
44 	u32	select;
45 	u32	version;
46 	u32	time_ns;
47 	u32	time_sec;
48 	u32	__pad0[2];
49 	u32	adjust_ns;
50 	u32	adjust_sec;
51 	u32	__pad1[2];
52 	u32	offset_ns;
53 	u32	offset_window_ns;
54 	u32	__pad2[2];
55 	u32	drift_ns;
56 	u32	drift_window_ns;
57 	u32	__pad3[6];
58 	u32	servo_offset_p;
59 	u32	servo_offset_i;
60 	u32	servo_drift_p;
61 	u32	servo_drift_i;
62 	u32	status_offset;
63 	u32	status_drift;
64 };
65 
66 #define OCP_CTRL_ENABLE		BIT(0)
67 #define OCP_CTRL_ADJUST_TIME	BIT(1)
68 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
69 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
70 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
71 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
72 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
73 
74 #define OCP_STATUS_IN_SYNC	BIT(0)
75 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
76 
77 #define OCP_SELECT_CLK_NONE	0
78 #define OCP_SELECT_CLK_REG	0xfe
79 
80 struct tod_reg {
81 	u32	ctrl;
82 	u32	status;
83 	u32	uart_polarity;
84 	u32	version;
85 	u32	adj_sec;
86 	u32	__pad0[3];
87 	u32	uart_baud;
88 	u32	__pad1[3];
89 	u32	utc_status;
90 	u32	leap;
91 };
92 
93 #define TOD_CTRL_PROTOCOL	BIT(28)
94 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
95 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
96 #define TOD_CTRL_ENABLE		BIT(0)
97 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
98 #define TOD_CTRL_GNSS_SHIFT	24
99 
100 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
101 #define TOD_STATUS_UTC_VALID		BIT(8)
102 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
103 #define TOD_STATUS_LEAP_VALID		BIT(16)
104 
105 struct ts_reg {
106 	u32	enable;
107 	u32	error;
108 	u32	polarity;
109 	u32	version;
110 	u32	__pad0[4];
111 	u32	cable_delay;
112 	u32	__pad1[3];
113 	u32	intr;
114 	u32	intr_mask;
115 	u32	event_count;
116 	u32	__pad2[1];
117 	u32	ts_count;
118 	u32	time_ns;
119 	u32	time_sec;
120 	u32	data_width;
121 	u32	data;
122 };
123 
124 struct pps_reg {
125 	u32	ctrl;
126 	u32	status;
127 	u32	__pad0[6];
128 	u32	cable_delay;
129 };
130 
131 #define PPS_STATUS_FILTER_ERR	BIT(0)
132 #define PPS_STATUS_SUPERV_ERR	BIT(1)
133 
134 struct img_reg {
135 	u32	version;
136 };
137 
138 struct gpio_reg {
139 	u32	gpio1;
140 	u32	__pad0;
141 	u32	gpio2;
142 	u32	__pad1;
143 };
144 
145 struct irig_master_reg {
146 	u32	ctrl;
147 	u32	status;
148 	u32	__pad0;
149 	u32	version;
150 	u32	adj_sec;
151 	u32	mode_ctrl;
152 };
153 
154 #define IRIG_M_CTRL_ENABLE	BIT(0)
155 
156 struct irig_slave_reg {
157 	u32	ctrl;
158 	u32	status;
159 	u32	__pad0;
160 	u32	version;
161 	u32	adj_sec;
162 	u32	mode_ctrl;
163 };
164 
165 #define IRIG_S_CTRL_ENABLE	BIT(0)
166 
167 struct dcf_master_reg {
168 	u32	ctrl;
169 	u32	status;
170 	u32	__pad0;
171 	u32	version;
172 	u32	adj_sec;
173 };
174 
175 #define DCF_M_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_slave_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_S_CTRL_ENABLE	BIT(0)
186 
187 struct signal_reg {
188 	u32	enable;
189 	u32	status;
190 	u32	polarity;
191 	u32	version;
192 	u32	__pad0[4];
193 	u32	cable_delay;
194 	u32	__pad1[3];
195 	u32	intr;
196 	u32	intr_mask;
197 	u32	__pad2[2];
198 	u32	start_ns;
199 	u32	start_sec;
200 	u32	pulse_ns;
201 	u32	pulse_sec;
202 	u32	period_ns;
203 	u32	period_sec;
204 	u32	repeat_count;
205 };
206 
207 struct frequency_reg {
208 	u32	ctrl;
209 	u32	status;
210 };
211 
212 struct board_config_reg {
213 	u32 mro50_serial_activate;
214 };
215 
216 #define FREQ_STATUS_VALID	BIT(31)
217 #define FREQ_STATUS_ERROR	BIT(30)
218 #define FREQ_STATUS_OVERRUN	BIT(29)
219 #define FREQ_STATUS_MASK	GENMASK(23, 0)
220 
221 struct ptp_ocp_flash_info {
222 	const char *name;
223 	int pci_offset;
224 	int data_size;
225 	void *data;
226 };
227 
228 struct ptp_ocp_firmware_header {
229 	char magic[4];
230 	__be16 pci_vendor_id;
231 	__be16 pci_device_id;
232 	__be32 image_size;
233 	__be16 hw_revision;
234 	__be16 crc;
235 };
236 
237 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
238 
239 struct ptp_ocp_i2c_info {
240 	const char *name;
241 	unsigned long fixed_rate;
242 	size_t data_size;
243 	void *data;
244 };
245 
246 struct ptp_ocp_ext_info {
247 	int index;
248 	irqreturn_t (*irq_fcn)(int irq, void *priv);
249 	int (*enable)(void *priv, u32 req, bool enable);
250 };
251 
252 struct ptp_ocp_ext_src {
253 	void __iomem		*mem;
254 	struct ptp_ocp		*bp;
255 	struct ptp_ocp_ext_info	*info;
256 	int			irq_vec;
257 };
258 
259 enum ptp_ocp_sma_mode {
260 	SMA_MODE_IN,
261 	SMA_MODE_OUT,
262 };
263 
264 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
265 	DPLL_PIN_FREQUENCY_1PPS,
266 	DPLL_PIN_FREQUENCY_10MHZ,
267 	DPLL_PIN_FREQUENCY_IRIG_B,
268 	DPLL_PIN_FREQUENCY_DCF77,
269 };
270 
271 struct ptp_ocp_sma_connector {
272 	enum	ptp_ocp_sma_mode mode;
273 	bool	fixed_fcn;
274 	bool	fixed_dir;
275 	bool	disabled;
276 	u8	default_fcn;
277 	struct dpll_pin		   *dpll_pin;
278 	struct dpll_pin_properties dpll_prop;
279 };
280 
281 struct ocp_attr_group {
282 	u64 cap;
283 	const struct attribute_group *group;
284 };
285 
286 #define OCP_CAP_BASIC	BIT(0)
287 #define OCP_CAP_SIGNAL	BIT(1)
288 #define OCP_CAP_FREQ	BIT(2)
289 
290 struct ptp_ocp_signal {
291 	ktime_t		period;
292 	ktime_t		pulse;
293 	ktime_t		phase;
294 	ktime_t		start;
295 	int		duty;
296 	bool		polarity;
297 	bool		running;
298 };
299 
300 struct ptp_ocp_serial_port {
301 	int line;
302 	int baud;
303 };
304 
305 #define OCP_BOARD_ID_LEN		13
306 #define OCP_SERIAL_LEN			6
307 #define OCP_SMA_NUM			4
308 
309 struct ptp_ocp {
310 	struct pci_dev		*pdev;
311 	struct device		dev;
312 	spinlock_t		lock;
313 	struct ocp_reg __iomem	*reg;
314 	struct tod_reg __iomem	*tod;
315 	struct pps_reg __iomem	*pps_to_ext;
316 	struct pps_reg __iomem	*pps_to_clk;
317 	struct board_config_reg __iomem	*board_config;
318 	struct gpio_reg __iomem	*pps_select;
319 	struct gpio_reg __iomem	*sma_map1;
320 	struct gpio_reg __iomem	*sma_map2;
321 	struct irig_master_reg	__iomem *irig_out;
322 	struct irig_slave_reg	__iomem *irig_in;
323 	struct dcf_master_reg	__iomem *dcf_out;
324 	struct dcf_slave_reg	__iomem *dcf_in;
325 	struct tod_reg		__iomem *nmea_out;
326 	struct frequency_reg	__iomem *freq_in[4];
327 	struct ptp_ocp_ext_src	*signal_out[4];
328 	struct ptp_ocp_ext_src	*pps;
329 	struct ptp_ocp_ext_src	*ts0;
330 	struct ptp_ocp_ext_src	*ts1;
331 	struct ptp_ocp_ext_src	*ts2;
332 	struct ptp_ocp_ext_src	*ts3;
333 	struct ptp_ocp_ext_src	*ts4;
334 	struct ocp_art_gpio_reg __iomem *art_sma;
335 	struct img_reg __iomem	*image;
336 	struct ptp_clock	*ptp;
337 	struct ptp_clock_info	ptp_info;
338 	struct platform_device	*i2c_ctrl;
339 	struct platform_device	*spi_flash;
340 	struct clk_hw		*i2c_clk;
341 	struct timer_list	watchdog;
342 	const struct attribute_group **attr_group;
343 	const struct ptp_ocp_eeprom_map *eeprom_map;
344 	struct dentry		*debug_root;
345 	bool			sync;
346 	time64_t		gnss_lost;
347 	struct delayed_work	sync_work;
348 	int			id;
349 	int			n_irqs;
350 	struct ptp_ocp_serial_port	gnss_port;
351 	struct ptp_ocp_serial_port	gnss2_port;
352 	struct ptp_ocp_serial_port	mac_port;   /* miniature atomic clock */
353 	struct ptp_ocp_serial_port	nmea_port;
354 	bool			fw_loader;
355 	u8			fw_tag;
356 	u16			fw_version;
357 	u8			board_id[OCP_BOARD_ID_LEN];
358 	u8			serial[OCP_SERIAL_LEN];
359 	bool			has_eeprom_data;
360 	u32			pps_req_map;
361 	int			flash_start;
362 	u32			utc_tai_offset;
363 	u32			ts_window_adjust;
364 	u64			fw_cap;
365 	struct ptp_ocp_signal	signal[4];
366 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
367 	const struct ocp_sma_op *sma_op;
368 	struct dpll_device *dpll;
369 };
370 
371 #define OCP_REQ_TIMESTAMP	BIT(0)
372 #define OCP_REQ_PPS		BIT(1)
373 
374 struct ocp_resource {
375 	unsigned long offset;
376 	int size;
377 	int irq_vec;
378 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
379 	void *extra;
380 	unsigned long bp_offset;
381 	const char * const name;
382 };
383 
384 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
385 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
386 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
387 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
388 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
389 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
390 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
391 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
392 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
393 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
394 				      struct ptp_perout_request *req);
395 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
396 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
397 
398 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
399 
400 static const struct ocp_attr_group fb_timecard_groups[];
401 
402 static const struct ocp_attr_group art_timecard_groups[];
403 
404 struct ptp_ocp_eeprom_map {
405 	u16	off;
406 	u16	len;
407 	u32	bp_offset;
408 	const void * const tag;
409 };
410 
411 #define EEPROM_ENTRY(addr, member)				\
412 	.off = addr,						\
413 	.len = sizeof_field(struct ptp_ocp, member),		\
414 	.bp_offset = offsetof(struct ptp_ocp, member)
415 
416 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
417 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
418 })
419 
420 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
421 	{ EEPROM_ENTRY(0x43, board_id) },
422 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
423 	{ }
424 };
425 
426 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
427 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
428 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
429 	{ }
430 };
431 
432 #define bp_assign_entry(bp, res, val) ({				\
433 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
434 	*(typeof(val) *)addr = val;					\
435 })
436 
437 #define OCP_RES_LOCATION(member) \
438 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
439 
440 #define OCP_MEM_RESOURCE(member) \
441 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
442 
443 #define OCP_SERIAL_RESOURCE(member) \
444 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
445 
446 #define OCP_I2C_RESOURCE(member) \
447 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
448 
449 #define OCP_SPI_RESOURCE(member) \
450 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
451 
452 #define OCP_EXT_RESOURCE(member) \
453 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
454 
455 /* This is the MSI vector mapping used.
456  * 0: PPS (TS5)
457  * 1: TS0
458  * 2: TS1
459  * 3: GNSS1
460  * 4: GNSS2
461  * 5: MAC
462  * 6: TS2
463  * 7: I2C controller
464  * 8: HWICAP (notused)
465  * 9: SPI Flash
466  * 10: NMEA
467  * 11: Signal Generator 1
468  * 12: Signal Generator 2
469  * 13: Signal Generator 3
470  * 14: Signal Generator 4
471  * 15: TS3
472  * 16: TS4
473  --
474  * 8: Orolia TS1
475  * 10: Orolia TS2
476  * 11: Orolia TS0 (GNSS)
477  * 12: Orolia PPS
478  * 14: Orolia TS3
479  * 15: Orolia TS4
480  */
481 
482 static struct ocp_resource ocp_fb_resource[] = {
483 	{
484 		OCP_MEM_RESOURCE(reg),
485 		.offset = 0x01000000, .size = 0x10000,
486 	},
487 	{
488 		OCP_EXT_RESOURCE(ts0),
489 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
490 		.extra = &(struct ptp_ocp_ext_info) {
491 			.index = 0,
492 			.irq_fcn = ptp_ocp_ts_irq,
493 			.enable = ptp_ocp_ts_enable,
494 		},
495 	},
496 	{
497 		OCP_EXT_RESOURCE(ts1),
498 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
499 		.extra = &(struct ptp_ocp_ext_info) {
500 			.index = 1,
501 			.irq_fcn = ptp_ocp_ts_irq,
502 			.enable = ptp_ocp_ts_enable,
503 		},
504 	},
505 	{
506 		OCP_EXT_RESOURCE(ts2),
507 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
508 		.extra = &(struct ptp_ocp_ext_info) {
509 			.index = 2,
510 			.irq_fcn = ptp_ocp_ts_irq,
511 			.enable = ptp_ocp_ts_enable,
512 		},
513 	},
514 	{
515 		OCP_EXT_RESOURCE(ts3),
516 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
517 		.extra = &(struct ptp_ocp_ext_info) {
518 			.index = 3,
519 			.irq_fcn = ptp_ocp_ts_irq,
520 			.enable = ptp_ocp_ts_enable,
521 		},
522 	},
523 	{
524 		OCP_EXT_RESOURCE(ts4),
525 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
526 		.extra = &(struct ptp_ocp_ext_info) {
527 			.index = 4,
528 			.irq_fcn = ptp_ocp_ts_irq,
529 			.enable = ptp_ocp_ts_enable,
530 		},
531 	},
532 	/* Timestamp for PHC and/or PPS generator */
533 	{
534 		OCP_EXT_RESOURCE(pps),
535 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
536 		.extra = &(struct ptp_ocp_ext_info) {
537 			.index = 5,
538 			.irq_fcn = ptp_ocp_ts_irq,
539 			.enable = ptp_ocp_ts_enable,
540 		},
541 	},
542 	{
543 		OCP_EXT_RESOURCE(signal_out[0]),
544 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
545 		.extra = &(struct ptp_ocp_ext_info) {
546 			.index = 1,
547 			.irq_fcn = ptp_ocp_signal_irq,
548 			.enable = ptp_ocp_signal_enable,
549 		},
550 	},
551 	{
552 		OCP_EXT_RESOURCE(signal_out[1]),
553 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
554 		.extra = &(struct ptp_ocp_ext_info) {
555 			.index = 2,
556 			.irq_fcn = ptp_ocp_signal_irq,
557 			.enable = ptp_ocp_signal_enable,
558 		},
559 	},
560 	{
561 		OCP_EXT_RESOURCE(signal_out[2]),
562 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
563 		.extra = &(struct ptp_ocp_ext_info) {
564 			.index = 3,
565 			.irq_fcn = ptp_ocp_signal_irq,
566 			.enable = ptp_ocp_signal_enable,
567 		},
568 	},
569 	{
570 		OCP_EXT_RESOURCE(signal_out[3]),
571 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
572 		.extra = &(struct ptp_ocp_ext_info) {
573 			.index = 4,
574 			.irq_fcn = ptp_ocp_signal_irq,
575 			.enable = ptp_ocp_signal_enable,
576 		},
577 	},
578 	{
579 		OCP_MEM_RESOURCE(pps_to_ext),
580 		.offset = 0x01030000, .size = 0x10000,
581 	},
582 	{
583 		OCP_MEM_RESOURCE(pps_to_clk),
584 		.offset = 0x01040000, .size = 0x10000,
585 	},
586 	{
587 		OCP_MEM_RESOURCE(tod),
588 		.offset = 0x01050000, .size = 0x10000,
589 	},
590 	{
591 		OCP_MEM_RESOURCE(irig_in),
592 		.offset = 0x01070000, .size = 0x10000,
593 	},
594 	{
595 		OCP_MEM_RESOURCE(irig_out),
596 		.offset = 0x01080000, .size = 0x10000,
597 	},
598 	{
599 		OCP_MEM_RESOURCE(dcf_in),
600 		.offset = 0x01090000, .size = 0x10000,
601 	},
602 	{
603 		OCP_MEM_RESOURCE(dcf_out),
604 		.offset = 0x010A0000, .size = 0x10000,
605 	},
606 	{
607 		OCP_MEM_RESOURCE(nmea_out),
608 		.offset = 0x010B0000, .size = 0x10000,
609 	},
610 	{
611 		OCP_MEM_RESOURCE(image),
612 		.offset = 0x00020000, .size = 0x1000,
613 	},
614 	{
615 		OCP_MEM_RESOURCE(pps_select),
616 		.offset = 0x00130000, .size = 0x1000,
617 	},
618 	{
619 		OCP_MEM_RESOURCE(sma_map1),
620 		.offset = 0x00140000, .size = 0x1000,
621 	},
622 	{
623 		OCP_MEM_RESOURCE(sma_map2),
624 		.offset = 0x00220000, .size = 0x1000,
625 	},
626 	{
627 		OCP_I2C_RESOURCE(i2c_ctrl),
628 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
629 		.extra = &(struct ptp_ocp_i2c_info) {
630 			.name = "xiic-i2c",
631 			.fixed_rate = 50000000,
632 			.data_size = sizeof(struct xiic_i2c_platform_data),
633 			.data = &(struct xiic_i2c_platform_data) {
634 				.num_devices = 2,
635 				.devices = (struct i2c_board_info[]) {
636 					{ I2C_BOARD_INFO("24c02", 0x50) },
637 					{ I2C_BOARD_INFO("24mac402", 0x58),
638 					  .platform_data = "mac" },
639 				},
640 			},
641 		},
642 	},
643 	{
644 		OCP_SERIAL_RESOURCE(gnss_port),
645 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
646 		.extra = &(struct ptp_ocp_serial_port) {
647 			.baud = 115200,
648 		},
649 	},
650 	{
651 		OCP_SERIAL_RESOURCE(gnss2_port),
652 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
653 		.extra = &(struct ptp_ocp_serial_port) {
654 			.baud = 115200,
655 		},
656 	},
657 	{
658 		OCP_SERIAL_RESOURCE(mac_port),
659 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
660 		.extra = &(struct ptp_ocp_serial_port) {
661 			.baud = 57600,
662 		},
663 	},
664 	{
665 		OCP_SERIAL_RESOURCE(nmea_port),
666 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
667 	},
668 	{
669 		OCP_SPI_RESOURCE(spi_flash),
670 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
671 		.extra = &(struct ptp_ocp_flash_info) {
672 			.name = "xilinx_spi", .pci_offset = 0,
673 			.data_size = sizeof(struct xspi_platform_data),
674 			.data = &(struct xspi_platform_data) {
675 				.num_chipselect = 1,
676 				.bits_per_word = 8,
677 				.num_devices = 1,
678 				.force_irq = true,
679 				.devices = &(struct spi_board_info) {
680 					.modalias = "spi-nor",
681 				},
682 			},
683 		},
684 	},
685 	{
686 		OCP_MEM_RESOURCE(freq_in[0]),
687 		.offset = 0x01200000, .size = 0x10000,
688 	},
689 	{
690 		OCP_MEM_RESOURCE(freq_in[1]),
691 		.offset = 0x01210000, .size = 0x10000,
692 	},
693 	{
694 		OCP_MEM_RESOURCE(freq_in[2]),
695 		.offset = 0x01220000, .size = 0x10000,
696 	},
697 	{
698 		OCP_MEM_RESOURCE(freq_in[3]),
699 		.offset = 0x01230000, .size = 0x10000,
700 	},
701 	{
702 		.setup = ptp_ocp_fb_board_init,
703 	},
704 	{ }
705 };
706 
707 #define OCP_ART_CONFIG_SIZE		144
708 #define OCP_ART_TEMP_TABLE_SIZE		368
709 
710 struct ocp_art_gpio_reg {
711 	struct {
712 		u32	gpio;
713 		u32	__pad[3];
714 	} map[4];
715 };
716 
717 static struct ocp_resource ocp_art_resource[] = {
718 	{
719 		OCP_MEM_RESOURCE(reg),
720 		.offset = 0x01000000, .size = 0x10000,
721 	},
722 	{
723 		OCP_SERIAL_RESOURCE(gnss_port),
724 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
725 		.extra = &(struct ptp_ocp_serial_port) {
726 			.baud = 115200,
727 		},
728 	},
729 	{
730 		OCP_MEM_RESOURCE(art_sma),
731 		.offset = 0x003C0000, .size = 0x1000,
732 	},
733 	/* Timestamp associated with GNSS1 receiver PPS */
734 	{
735 		OCP_EXT_RESOURCE(ts0),
736 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
737 		.extra = &(struct ptp_ocp_ext_info) {
738 			.index = 0,
739 			.irq_fcn = ptp_ocp_ts_irq,
740 			.enable = ptp_ocp_ts_enable,
741 		},
742 	},
743 	{
744 		OCP_EXT_RESOURCE(ts1),
745 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
746 		.extra = &(struct ptp_ocp_ext_info) {
747 			.index = 1,
748 			.irq_fcn = ptp_ocp_ts_irq,
749 			.enable = ptp_ocp_ts_enable,
750 		},
751 	},
752 	{
753 		OCP_EXT_RESOURCE(ts2),
754 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
755 		.extra = &(struct ptp_ocp_ext_info) {
756 			.index = 2,
757 			.irq_fcn = ptp_ocp_ts_irq,
758 			.enable = ptp_ocp_ts_enable,
759 		},
760 	},
761 	{
762 		OCP_EXT_RESOURCE(ts3),
763 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
764 		.extra = &(struct ptp_ocp_ext_info) {
765 			.index = 3,
766 			.irq_fcn = ptp_ocp_ts_irq,
767 			.enable = ptp_ocp_ts_enable,
768 		},
769 	},
770 	{
771 		OCP_EXT_RESOURCE(ts4),
772 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
773 		.extra = &(struct ptp_ocp_ext_info) {
774 			.index = 4,
775 			.irq_fcn = ptp_ocp_ts_irq,
776 			.enable = ptp_ocp_ts_enable,
777 		},
778 	},
779 	/* Timestamp associated with Internal PPS of the card */
780 	{
781 		OCP_EXT_RESOURCE(pps),
782 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
783 		.extra = &(struct ptp_ocp_ext_info) {
784 			.index = 5,
785 			.irq_fcn = ptp_ocp_ts_irq,
786 			.enable = ptp_ocp_ts_enable,
787 		},
788 	},
789 	{
790 		OCP_SPI_RESOURCE(spi_flash),
791 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
792 		.extra = &(struct ptp_ocp_flash_info) {
793 			.name = "spi_altera", .pci_offset = 0,
794 			.data_size = sizeof(struct altera_spi_platform_data),
795 			.data = &(struct altera_spi_platform_data) {
796 				.num_chipselect = 1,
797 				.num_devices = 1,
798 				.devices = &(struct spi_board_info) {
799 					.modalias = "spi-nor",
800 				},
801 			},
802 		},
803 	},
804 	{
805 		OCP_I2C_RESOURCE(i2c_ctrl),
806 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
807 		.extra = &(struct ptp_ocp_i2c_info) {
808 			.name = "ocores-i2c",
809 			.fixed_rate = 400000,
810 			.data_size = sizeof(struct ocores_i2c_platform_data),
811 			.data = &(struct ocores_i2c_platform_data) {
812 				.clock_khz = 125000,
813 				.bus_khz = 400,
814 				.num_devices = 1,
815 				.devices = &(struct i2c_board_info) {
816 					I2C_BOARD_INFO("24c08", 0x50),
817 				},
818 			},
819 		},
820 	},
821 	{
822 		OCP_SERIAL_RESOURCE(mac_port),
823 		.offset = 0x00190000, .irq_vec = 7,
824 		.extra = &(struct ptp_ocp_serial_port) {
825 			.baud = 9600,
826 		},
827 	},
828 	{
829 		OCP_MEM_RESOURCE(board_config),
830 		.offset = 0x210000, .size = 0x1000,
831 	},
832 	{
833 		.setup = ptp_ocp_art_board_init,
834 	},
835 	{ }
836 };
837 
838 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
839 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
840 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
841 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
842 	{ }
843 };
844 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
845 
846 static DEFINE_MUTEX(ptp_ocp_lock);
847 static DEFINE_IDR(ptp_ocp_idr);
848 
849 struct ocp_selector {
850 	const char *name;
851 	int value;
852 	u64 frequency;
853 };
854 
855 static const struct ocp_selector ptp_ocp_clock[] = {
856 	{ .name = "NONE",	.value = 0 },
857 	{ .name = "TOD",	.value = 1 },
858 	{ .name = "IRIG",	.value = 2 },
859 	{ .name = "PPS",	.value = 3 },
860 	{ .name = "PTP",	.value = 4 },
861 	{ .name = "RTC",	.value = 5 },
862 	{ .name = "DCF",	.value = 6 },
863 	{ .name = "REGS",	.value = 0xfe },
864 	{ .name = "EXT",	.value = 0xff },
865 	{ }
866 };
867 
868 #define SMA_DISABLE		BIT(16)
869 #define SMA_ENABLE		BIT(15)
870 #define SMA_SELECT_MASK		GENMASK(14, 0)
871 
872 static const struct ocp_selector ptp_ocp_sma_in[] = {
873 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
874 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
875 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
876 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
877 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
878 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
879 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
880 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
881 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
882 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
883 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
884 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
885 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
886 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
887 	{ }
888 };
889 
890 static const struct ocp_selector ptp_ocp_sma_out[] = {
891 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
892 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
893 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
894 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
895 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
896 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
897 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
898 	{ .name = "GEN1",	.value = 0x0040 },
899 	{ .name = "GEN2",	.value = 0x0080 },
900 	{ .name = "GEN3",	.value = 0x0100 },
901 	{ .name = "GEN4",	.value = 0x0200 },
902 	{ .name = "GND",	.value = 0x2000 },
903 	{ .name = "VCC",	.value = 0x4000 },
904 	{ }
905 };
906 
907 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
908 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
909 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
910 	{ }
911 };
912 
913 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
914 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
915 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
916 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
917 	{ }
918 };
919 
920 struct ocp_sma_op {
921 	const struct ocp_selector *tbl[2];
922 	void (*init)(struct ptp_ocp *bp);
923 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
924 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
925 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
926 };
927 
928 static void
929 ptp_ocp_sma_init(struct ptp_ocp *bp)
930 {
931 	return bp->sma_op->init(bp);
932 }
933 
934 static u32
935 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
936 {
937 	return bp->sma_op->get(bp, sma_nr);
938 }
939 
940 static int
941 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
942 {
943 	return bp->sma_op->set_inputs(bp, sma_nr, val);
944 }
945 
946 static int
947 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
948 {
949 	return bp->sma_op->set_output(bp, sma_nr, val);
950 }
951 
952 static const char *
953 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
954 {
955 	int i;
956 
957 	for (i = 0; tbl[i].name; i++)
958 		if (tbl[i].value == val)
959 			return tbl[i].name;
960 	return NULL;
961 }
962 
963 static int
964 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
965 {
966 	const char *select;
967 	int i;
968 
969 	for (i = 0; tbl[i].name; i++) {
970 		select = tbl[i].name;
971 		if (!strncasecmp(name, select, strlen(select)))
972 			return tbl[i].value;
973 	}
974 	return -EINVAL;
975 }
976 
977 static ssize_t
978 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
979 {
980 	ssize_t count;
981 	int i;
982 
983 	count = 0;
984 	for (i = 0; tbl[i].name; i++)
985 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
986 	if (count)
987 		count--;
988 	count += sysfs_emit_at(buf, count, "\n");
989 	return count;
990 }
991 
992 static int
993 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
994 			 struct ptp_system_timestamp *sts)
995 {
996 	u32 ctrl, time_sec, time_ns;
997 	int i;
998 
999 	ptp_read_system_prets(sts);
1000 
1001 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1002 	iowrite32(ctrl, &bp->reg->ctrl);
1003 
1004 	for (i = 0; i < 100; i++) {
1005 		ctrl = ioread32(&bp->reg->ctrl);
1006 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1007 			break;
1008 	}
1009 	ptp_read_system_postts(sts);
1010 
1011 	if (sts && bp->ts_window_adjust) {
1012 		s64 ns = timespec64_to_ns(&sts->post_ts);
1013 
1014 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1015 	}
1016 
1017 	time_ns = ioread32(&bp->reg->time_ns);
1018 	time_sec = ioread32(&bp->reg->time_sec);
1019 
1020 	ts->tv_sec = time_sec;
1021 	ts->tv_nsec = time_ns;
1022 
1023 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1024 }
1025 
1026 static int
1027 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1028 		 struct ptp_system_timestamp *sts)
1029 {
1030 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1031 	unsigned long flags;
1032 	int err;
1033 
1034 	spin_lock_irqsave(&bp->lock, flags);
1035 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1036 	spin_unlock_irqrestore(&bp->lock, flags);
1037 
1038 	return err;
1039 }
1040 
1041 static void
1042 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1043 {
1044 	u32 ctrl, time_sec, time_ns;
1045 	u32 select;
1046 
1047 	time_ns = ts->tv_nsec;
1048 	time_sec = ts->tv_sec;
1049 
1050 	select = ioread32(&bp->reg->select);
1051 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1052 
1053 	iowrite32(time_ns, &bp->reg->adjust_ns);
1054 	iowrite32(time_sec, &bp->reg->adjust_sec);
1055 
1056 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1057 	iowrite32(ctrl, &bp->reg->ctrl);
1058 
1059 	/* restore clock selection */
1060 	iowrite32(select >> 16, &bp->reg->select);
1061 }
1062 
1063 static int
1064 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1065 {
1066 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1067 	unsigned long flags;
1068 
1069 	spin_lock_irqsave(&bp->lock, flags);
1070 	__ptp_ocp_settime_locked(bp, ts);
1071 	spin_unlock_irqrestore(&bp->lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 static void
1077 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1078 {
1079 	u32 select, ctrl;
1080 
1081 	select = ioread32(&bp->reg->select);
1082 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1083 
1084 	iowrite32(adj_val, &bp->reg->offset_ns);
1085 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1086 
1087 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1088 	iowrite32(ctrl, &bp->reg->ctrl);
1089 
1090 	/* restore clock selection */
1091 	iowrite32(select >> 16, &bp->reg->select);
1092 }
1093 
1094 static void
1095 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1096 {
1097 	struct timespec64 ts;
1098 	unsigned long flags;
1099 	int err;
1100 
1101 	spin_lock_irqsave(&bp->lock, flags);
1102 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1103 	if (likely(!err)) {
1104 		set_normalized_timespec64(&ts, ts.tv_sec,
1105 					  ts.tv_nsec + delta_ns);
1106 		__ptp_ocp_settime_locked(bp, &ts);
1107 	}
1108 	spin_unlock_irqrestore(&bp->lock, flags);
1109 }
1110 
1111 static int
1112 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1113 {
1114 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1115 	unsigned long flags;
1116 	u32 adj_ns, sign;
1117 
1118 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1119 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1120 		return 0;
1121 	}
1122 
1123 	sign = delta_ns < 0 ? BIT(31) : 0;
1124 	adj_ns = sign ? -delta_ns : delta_ns;
1125 
1126 	spin_lock_irqsave(&bp->lock, flags);
1127 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1128 	spin_unlock_irqrestore(&bp->lock, flags);
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1135 {
1136 	if (scaled_ppm == 0)
1137 		return 0;
1138 
1139 	return -EOPNOTSUPP;
1140 }
1141 
1142 static s32
1143 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1144 {
1145 	return 0;
1146 }
1147 
1148 static int
1149 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1150 {
1151 	return -EOPNOTSUPP;
1152 }
1153 
1154 static int
1155 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1156 	       int on)
1157 {
1158 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1159 	struct ptp_ocp_ext_src *ext = NULL;
1160 	u32 req;
1161 	int err;
1162 
1163 	switch (rq->type) {
1164 	case PTP_CLK_REQ_EXTTS:
1165 		req = OCP_REQ_TIMESTAMP;
1166 		switch (rq->extts.index) {
1167 		case 0:
1168 			ext = bp->ts0;
1169 			break;
1170 		case 1:
1171 			ext = bp->ts1;
1172 			break;
1173 		case 2:
1174 			ext = bp->ts2;
1175 			break;
1176 		case 3:
1177 			ext = bp->ts3;
1178 			break;
1179 		case 4:
1180 			ext = bp->ts4;
1181 			break;
1182 		case 5:
1183 			ext = bp->pps;
1184 			break;
1185 		}
1186 		break;
1187 	case PTP_CLK_REQ_PPS:
1188 		req = OCP_REQ_PPS;
1189 		ext = bp->pps;
1190 		break;
1191 	case PTP_CLK_REQ_PEROUT:
1192 		switch (rq->perout.index) {
1193 		case 0:
1194 			/* This is a request for 1PPS on an output SMA.
1195 			 * Allow, but assume manual configuration.
1196 			 */
1197 			if (on && (rq->perout.period.sec != 1 ||
1198 				   rq->perout.period.nsec != 0))
1199 				return -EINVAL;
1200 			return 0;
1201 		case 1:
1202 		case 2:
1203 		case 3:
1204 		case 4:
1205 			req = rq->perout.index - 1;
1206 			ext = bp->signal_out[req];
1207 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1208 			if (err)
1209 				return err;
1210 			break;
1211 		}
1212 		break;
1213 	default:
1214 		return -EOPNOTSUPP;
1215 	}
1216 
1217 	err = -ENXIO;
1218 	if (ext)
1219 		err = ext->info->enable(ext, req, on);
1220 
1221 	return err;
1222 }
1223 
1224 static int
1225 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1226 	       enum ptp_pin_function func, unsigned chan)
1227 {
1228 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1229 	char buf[16];
1230 
1231 	switch (func) {
1232 	case PTP_PF_NONE:
1233 		snprintf(buf, sizeof(buf), "IN: None");
1234 		break;
1235 	case PTP_PF_EXTTS:
1236 		/* Allow timestamps, but require sysfs configuration. */
1237 		return 0;
1238 	case PTP_PF_PEROUT:
1239 		/* channel 0 is 1PPS from PHC.
1240 		 * channels 1..4 are the frequency generators.
1241 		 */
1242 		if (chan)
1243 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1244 		else
1245 			snprintf(buf, sizeof(buf), "OUT: PHC");
1246 		break;
1247 	default:
1248 		return -EOPNOTSUPP;
1249 	}
1250 
1251 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1252 }
1253 
1254 static const struct ptp_clock_info ptp_ocp_clock_info = {
1255 	.owner		= THIS_MODULE,
1256 	.name		= KBUILD_MODNAME,
1257 	.max_adj	= 100000000,
1258 	.gettimex64	= ptp_ocp_gettimex,
1259 	.settime64	= ptp_ocp_settime,
1260 	.adjtime	= ptp_ocp_adjtime,
1261 	.adjfine	= ptp_ocp_null_adjfine,
1262 	.adjphase	= ptp_ocp_null_adjphase,
1263 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1264 	.enable		= ptp_ocp_enable,
1265 	.verify		= ptp_ocp_verify,
1266 	.pps		= true,
1267 	.n_ext_ts	= 6,
1268 	.n_per_out	= 5,
1269 };
1270 
1271 static void
1272 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1273 {
1274 	u32 ctrl, select;
1275 
1276 	select = ioread32(&bp->reg->select);
1277 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1278 
1279 	iowrite32(0, &bp->reg->drift_ns);
1280 
1281 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1282 	iowrite32(ctrl, &bp->reg->ctrl);
1283 
1284 	/* restore clock selection */
1285 	iowrite32(select >> 16, &bp->reg->select);
1286 }
1287 
1288 static void
1289 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1290 {
1291 	unsigned long flags;
1292 
1293 	spin_lock_irqsave(&bp->lock, flags);
1294 
1295 	bp->utc_tai_offset = val;
1296 
1297 	if (bp->irig_out)
1298 		iowrite32(val, &bp->irig_out->adj_sec);
1299 	if (bp->dcf_out)
1300 		iowrite32(val, &bp->dcf_out->adj_sec);
1301 	if (bp->nmea_out)
1302 		iowrite32(val, &bp->nmea_out->adj_sec);
1303 
1304 	spin_unlock_irqrestore(&bp->lock, flags);
1305 }
1306 
1307 static void
1308 ptp_ocp_watchdog(struct timer_list *t)
1309 {
1310 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1311 	unsigned long flags;
1312 	u32 status, utc_offset;
1313 
1314 	status = ioread32(&bp->pps_to_clk->status);
1315 
1316 	if (status & PPS_STATUS_SUPERV_ERR) {
1317 		iowrite32(status, &bp->pps_to_clk->status);
1318 		if (!bp->gnss_lost) {
1319 			spin_lock_irqsave(&bp->lock, flags);
1320 			__ptp_ocp_clear_drift_locked(bp);
1321 			spin_unlock_irqrestore(&bp->lock, flags);
1322 			bp->gnss_lost = ktime_get_real_seconds();
1323 		}
1324 
1325 	} else if (bp->gnss_lost) {
1326 		bp->gnss_lost = 0;
1327 	}
1328 
1329 	/* if GNSS provides correct data we can rely on
1330 	 * it to get leap second information
1331 	 */
1332 	if (bp->tod) {
1333 		status = ioread32(&bp->tod->utc_status);
1334 		utc_offset = status & TOD_STATUS_UTC_MASK;
1335 		if (status & TOD_STATUS_UTC_VALID &&
1336 		    utc_offset != bp->utc_tai_offset)
1337 			ptp_ocp_utc_distribute(bp, utc_offset);
1338 	}
1339 
1340 	mod_timer(&bp->watchdog, jiffies + HZ);
1341 }
1342 
1343 static void
1344 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1345 {
1346 	ktime_t start, end;
1347 	ktime_t delay;
1348 	u32 ctrl;
1349 
1350 	ctrl = ioread32(&bp->reg->ctrl);
1351 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1352 
1353 	iowrite32(ctrl, &bp->reg->ctrl);
1354 
1355 	start = ktime_get_ns();
1356 
1357 	ctrl = ioread32(&bp->reg->ctrl);
1358 
1359 	end = ktime_get_ns();
1360 
1361 	delay = end - start;
1362 	bp->ts_window_adjust = (delay >> 5) * 3;
1363 }
1364 
1365 static int
1366 ptp_ocp_init_clock(struct ptp_ocp *bp)
1367 {
1368 	struct timespec64 ts;
1369 	u32 ctrl;
1370 
1371 	ctrl = OCP_CTRL_ENABLE;
1372 	iowrite32(ctrl, &bp->reg->ctrl);
1373 
1374 	/* NO DRIFT Correction */
1375 	/* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1376 	iowrite32(0x2000, &bp->reg->servo_offset_p);
1377 	iowrite32(0x1000, &bp->reg->servo_offset_i);
1378 	iowrite32(0,	  &bp->reg->servo_drift_p);
1379 	iowrite32(0,	  &bp->reg->servo_drift_i);
1380 
1381 	/* latch servo values */
1382 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1383 	iowrite32(ctrl, &bp->reg->ctrl);
1384 
1385 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1386 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1387 		return -ENODEV;
1388 	}
1389 
1390 	ptp_ocp_estimate_pci_timing(bp);
1391 
1392 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1393 	if (!bp->sync) {
1394 		ktime_get_clocktai_ts64(&ts);
1395 		ptp_ocp_settime(&bp->ptp_info, &ts);
1396 	}
1397 
1398 	/* If there is a clock supervisor, then enable the watchdog */
1399 	if (bp->pps_to_clk) {
1400 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1401 		mod_timer(&bp->watchdog, jiffies + HZ);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static void
1408 ptp_ocp_tod_init(struct ptp_ocp *bp)
1409 {
1410 	u32 ctrl, reg;
1411 
1412 	ctrl = ioread32(&bp->tod->ctrl);
1413 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1414 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1415 	iowrite32(ctrl, &bp->tod->ctrl);
1416 
1417 	reg = ioread32(&bp->tod->utc_status);
1418 	if (reg & TOD_STATUS_UTC_VALID)
1419 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1420 }
1421 
1422 static const char *
1423 ptp_ocp_tod_proto_name(const int idx)
1424 {
1425 	static const char * const proto_name[] = {
1426 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1427 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1428 	};
1429 	return proto_name[idx];
1430 }
1431 
1432 static const char *
1433 ptp_ocp_tod_gnss_name(int idx)
1434 {
1435 	static const char * const gnss_name[] = {
1436 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1437 		"Unknown"
1438 	};
1439 	if (idx >= ARRAY_SIZE(gnss_name))
1440 		idx = ARRAY_SIZE(gnss_name) - 1;
1441 	return gnss_name[idx];
1442 }
1443 
1444 struct ptp_ocp_nvmem_match_info {
1445 	struct ptp_ocp *bp;
1446 	const void * const tag;
1447 };
1448 
1449 static int
1450 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1451 {
1452 	const struct ptp_ocp_nvmem_match_info *info = data;
1453 
1454 	dev = dev->parent;
1455 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1456 		return 0;
1457 
1458 	while ((dev = dev->parent))
1459 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1460 			return info->bp == dev_get_drvdata(dev);
1461 	return 0;
1462 }
1463 
1464 static inline struct nvmem_device *
1465 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1466 {
1467 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1468 
1469 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1470 }
1471 
1472 static inline void
1473 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1474 {
1475 	if (!IS_ERR_OR_NULL(*nvmemp))
1476 		nvmem_device_put(*nvmemp);
1477 	*nvmemp = NULL;
1478 }
1479 
1480 static void
1481 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1482 {
1483 	const struct ptp_ocp_eeprom_map *map;
1484 	struct nvmem_device *nvmem;
1485 	const void *tag;
1486 	int ret;
1487 
1488 	if (!bp->i2c_ctrl)
1489 		return;
1490 
1491 	tag = NULL;
1492 	nvmem = NULL;
1493 
1494 	for (map = bp->eeprom_map; map->len; map++) {
1495 		if (map->tag != tag) {
1496 			tag = map->tag;
1497 			ptp_ocp_nvmem_device_put(&nvmem);
1498 		}
1499 		if (!nvmem) {
1500 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1501 			if (IS_ERR(nvmem)) {
1502 				ret = PTR_ERR(nvmem);
1503 				goto fail;
1504 			}
1505 		}
1506 		ret = nvmem_device_read(nvmem, map->off, map->len,
1507 					BP_MAP_ENTRY_ADDR(bp, map));
1508 		if (ret != map->len)
1509 			goto fail;
1510 	}
1511 
1512 	bp->has_eeprom_data = true;
1513 
1514 out:
1515 	ptp_ocp_nvmem_device_put(&nvmem);
1516 	return;
1517 
1518 fail:
1519 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1520 	goto out;
1521 }
1522 
1523 static struct device *
1524 ptp_ocp_find_flash(struct ptp_ocp *bp)
1525 {
1526 	struct device *dev, *last;
1527 
1528 	last = NULL;
1529 	dev = &bp->spi_flash->dev;
1530 
1531 	while ((dev = device_find_any_child(dev))) {
1532 		if (!strcmp("mtd", dev_bus_name(dev)))
1533 			break;
1534 		put_device(last);
1535 		last = dev;
1536 	}
1537 	put_device(last);
1538 
1539 	return dev;
1540 }
1541 
1542 static int
1543 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1544 			 const u8 **data, size_t *size)
1545 {
1546 	struct ptp_ocp *bp = devlink_priv(devlink);
1547 	const struct ptp_ocp_firmware_header *hdr;
1548 	size_t offset, length;
1549 	u16 crc;
1550 
1551 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1552 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1553 		devlink_flash_update_status_notify(devlink,
1554 			"No firmware header found, cancel firmware upgrade",
1555 			NULL, 0, 0);
1556 		return -EINVAL;
1557 	}
1558 
1559 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1560 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1561 		devlink_flash_update_status_notify(devlink,
1562 			"Firmware image compatibility check failed",
1563 			NULL, 0, 0);
1564 		return -EINVAL;
1565 	}
1566 
1567 	offset = sizeof(*hdr);
1568 	length = be32_to_cpu(hdr->image_size);
1569 	if (length != (fw->size - offset)) {
1570 		devlink_flash_update_status_notify(devlink,
1571 			"Firmware image size check failed",
1572 			NULL, 0, 0);
1573 		return -EINVAL;
1574 	}
1575 
1576 	crc = crc16(0xffff, &fw->data[offset], length);
1577 	if (be16_to_cpu(hdr->crc) != crc) {
1578 		devlink_flash_update_status_notify(devlink,
1579 			"Firmware image CRC check failed",
1580 			NULL, 0, 0);
1581 		return -EINVAL;
1582 	}
1583 
1584 	*data = &fw->data[offset];
1585 	*size = length;
1586 
1587 	return 0;
1588 }
1589 
1590 static int
1591 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1592 		      const struct firmware *fw)
1593 {
1594 	struct mtd_info *mtd = dev_get_drvdata(dev);
1595 	struct ptp_ocp *bp = devlink_priv(devlink);
1596 	size_t off, len, size, resid, wrote;
1597 	struct erase_info erase;
1598 	size_t base, blksz;
1599 	const u8 *data;
1600 	int err;
1601 
1602 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1603 	if (err)
1604 		goto out;
1605 
1606 	off = 0;
1607 	base = bp->flash_start;
1608 	blksz = 4096;
1609 	resid = size;
1610 
1611 	while (resid) {
1612 		devlink_flash_update_status_notify(devlink, "Flashing",
1613 						   NULL, off, size);
1614 
1615 		len = min_t(size_t, resid, blksz);
1616 		erase.addr = base + off;
1617 		erase.len = blksz;
1618 
1619 		err = mtd_erase(mtd, &erase);
1620 		if (err)
1621 			goto out;
1622 
1623 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1624 		if (err)
1625 			goto out;
1626 
1627 		off += blksz;
1628 		resid -= len;
1629 	}
1630 out:
1631 	return err;
1632 }
1633 
1634 static int
1635 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1636 			     struct devlink_flash_update_params *params,
1637 			     struct netlink_ext_ack *extack)
1638 {
1639 	struct ptp_ocp *bp = devlink_priv(devlink);
1640 	struct device *dev;
1641 	const char *msg;
1642 	int err;
1643 
1644 	dev = ptp_ocp_find_flash(bp);
1645 	if (!dev) {
1646 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1647 		return -ENODEV;
1648 	}
1649 
1650 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1651 					   NULL, 0, 0);
1652 
1653 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1654 
1655 	msg = err ? "Flash error" : "Flash complete";
1656 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1657 
1658 	put_device(dev);
1659 	return err;
1660 }
1661 
1662 static int
1663 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1664 			 struct netlink_ext_ack *extack)
1665 {
1666 	struct ptp_ocp *bp = devlink_priv(devlink);
1667 	const char *fw_image;
1668 	char buf[32];
1669 	int err;
1670 
1671 	fw_image = bp->fw_loader ? "loader" : "fw";
1672 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1673 	err = devlink_info_version_running_put(req, fw_image, buf);
1674 	if (err)
1675 		return err;
1676 
1677 	if (!bp->has_eeprom_data) {
1678 		ptp_ocp_read_eeprom(bp);
1679 		if (!bp->has_eeprom_data)
1680 			return 0;
1681 	}
1682 
1683 	sprintf(buf, "%pM", bp->serial);
1684 	err = devlink_info_serial_number_put(req, buf);
1685 	if (err)
1686 		return err;
1687 
1688 	err = devlink_info_version_fixed_put(req,
1689 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1690 			bp->board_id);
1691 	if (err)
1692 		return err;
1693 
1694 	return 0;
1695 }
1696 
1697 static const struct devlink_ops ptp_ocp_devlink_ops = {
1698 	.flash_update = ptp_ocp_devlink_flash_update,
1699 	.info_get = ptp_ocp_devlink_info_get,
1700 };
1701 
1702 static void __iomem *
1703 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1704 {
1705 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1706 
1707 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1708 }
1709 
1710 static void __iomem *
1711 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1712 {
1713 	resource_size_t start;
1714 
1715 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1716 	return __ptp_ocp_get_mem(bp, start, r->size);
1717 }
1718 
1719 static void
1720 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1721 {
1722 	struct resource r = DEFINE_RES_IRQ(irq);
1723 	*res = r;
1724 }
1725 
1726 static void
1727 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1728 {
1729 	struct resource r = DEFINE_RES_MEM(start, size);
1730 	*res = r;
1731 }
1732 
1733 static int
1734 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1735 {
1736 	struct ptp_ocp_flash_info *info;
1737 	struct pci_dev *pdev = bp->pdev;
1738 	struct platform_device *p;
1739 	struct resource res[2];
1740 	resource_size_t start;
1741 	int id;
1742 
1743 	start = pci_resource_start(pdev, 0) + r->offset;
1744 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1745 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1746 
1747 	info = r->extra;
1748 	id = pci_dev_id(pdev) << 1;
1749 	id += info->pci_offset;
1750 
1751 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1752 					      res, 2, info->data,
1753 					      info->data_size);
1754 	if (IS_ERR(p))
1755 		return PTR_ERR(p);
1756 
1757 	bp_assign_entry(bp, r, p);
1758 
1759 	return 0;
1760 }
1761 
1762 static struct platform_device *
1763 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1764 {
1765 	struct ptp_ocp_i2c_info *info;
1766 	struct resource res[2];
1767 	resource_size_t start;
1768 
1769 	info = r->extra;
1770 	start = pci_resource_start(pdev, 0) + r->offset;
1771 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1772 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1773 
1774 	return platform_device_register_resndata(&pdev->dev, info->name,
1775 						 id, res, 2,
1776 						 info->data, info->data_size);
1777 }
1778 
1779 static int
1780 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1781 {
1782 	struct pci_dev *pdev = bp->pdev;
1783 	struct ptp_ocp_i2c_info *info;
1784 	struct platform_device *p;
1785 	struct clk_hw *clk;
1786 	char buf[32];
1787 	int id;
1788 
1789 	info = r->extra;
1790 	id = pci_dev_id(bp->pdev);
1791 
1792 	sprintf(buf, "AXI.%d", id);
1793 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1794 					 info->fixed_rate);
1795 	if (IS_ERR(clk))
1796 		return PTR_ERR(clk);
1797 	bp->i2c_clk = clk;
1798 
1799 	sprintf(buf, "%s.%d", info->name, id);
1800 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1801 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1802 	if (IS_ERR(p))
1803 		return PTR_ERR(p);
1804 
1805 	bp_assign_entry(bp, r, p);
1806 
1807 	return 0;
1808 }
1809 
1810 /* The expectation is that this is triggered only on error. */
1811 static irqreturn_t
1812 ptp_ocp_signal_irq(int irq, void *priv)
1813 {
1814 	struct ptp_ocp_ext_src *ext = priv;
1815 	struct signal_reg __iomem *reg = ext->mem;
1816 	struct ptp_ocp *bp = ext->bp;
1817 	u32 enable, status;
1818 	int gen;
1819 
1820 	gen = ext->info->index - 1;
1821 
1822 	enable = ioread32(&reg->enable);
1823 	status = ioread32(&reg->status);
1824 
1825 	/* disable generator on error */
1826 	if (status || !enable) {
1827 		iowrite32(0, &reg->intr_mask);
1828 		iowrite32(0, &reg->enable);
1829 		bp->signal[gen].running = false;
1830 	}
1831 
1832 	iowrite32(0, &reg->intr);	/* ack interrupt */
1833 
1834 	return IRQ_HANDLED;
1835 }
1836 
1837 static int
1838 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1839 {
1840 	struct ptp_system_timestamp sts;
1841 	struct timespec64 ts;
1842 	ktime_t start_ns;
1843 	int err;
1844 
1845 	if (!s->period)
1846 		return 0;
1847 
1848 	if (!s->pulse)
1849 		s->pulse = ktime_divns(s->period * s->duty, 100);
1850 
1851 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1852 	if (err)
1853 		return err;
1854 
1855 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1856 	if (!s->start) {
1857 		/* roundup() does not work on 32-bit systems */
1858 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1859 		s->start = ktime_add(s->start, s->phase);
1860 	}
1861 
1862 	if (s->duty < 1 || s->duty > 99)
1863 		return -EINVAL;
1864 
1865 	if (s->pulse < 1 || s->pulse > s->period)
1866 		return -EINVAL;
1867 
1868 	if (s->start < start_ns)
1869 		return -EINVAL;
1870 
1871 	bp->signal[gen] = *s;
1872 
1873 	return 0;
1874 }
1875 
1876 static int
1877 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1878 			   struct ptp_perout_request *req)
1879 {
1880 	struct ptp_ocp_signal s = { };
1881 
1882 	s.polarity = bp->signal[gen].polarity;
1883 	s.period = ktime_set(req->period.sec, req->period.nsec);
1884 	if (!s.period)
1885 		return 0;
1886 
1887 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1888 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
1889 		s.duty = ktime_divns(s.pulse * 100, s.period);
1890 	}
1891 
1892 	if (req->flags & PTP_PEROUT_PHASE)
1893 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1894 	else
1895 		s.start = ktime_set(req->start.sec, req->start.nsec);
1896 
1897 	return ptp_ocp_signal_set(bp, gen, &s);
1898 }
1899 
1900 static int
1901 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1902 {
1903 	struct ptp_ocp_ext_src *ext = priv;
1904 	struct signal_reg __iomem *reg = ext->mem;
1905 	struct ptp_ocp *bp = ext->bp;
1906 	struct timespec64 ts;
1907 	int gen;
1908 
1909 	gen = ext->info->index - 1;
1910 
1911 	iowrite32(0, &reg->intr_mask);
1912 	iowrite32(0, &reg->enable);
1913 	bp->signal[gen].running = false;
1914 	if (!enable)
1915 		return 0;
1916 
1917 	ts = ktime_to_timespec64(bp->signal[gen].start);
1918 	iowrite32(ts.tv_sec, &reg->start_sec);
1919 	iowrite32(ts.tv_nsec, &reg->start_ns);
1920 
1921 	ts = ktime_to_timespec64(bp->signal[gen].period);
1922 	iowrite32(ts.tv_sec, &reg->period_sec);
1923 	iowrite32(ts.tv_nsec, &reg->period_ns);
1924 
1925 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
1926 	iowrite32(ts.tv_sec, &reg->pulse_sec);
1927 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
1928 
1929 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
1930 	iowrite32(0, &reg->repeat_count);
1931 
1932 	iowrite32(0, &reg->intr);		/* clear interrupt state */
1933 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
1934 	iowrite32(3, &reg->enable);		/* valid & enable */
1935 
1936 	bp->signal[gen].running = true;
1937 
1938 	return 0;
1939 }
1940 
1941 static irqreturn_t
1942 ptp_ocp_ts_irq(int irq, void *priv)
1943 {
1944 	struct ptp_ocp_ext_src *ext = priv;
1945 	struct ts_reg __iomem *reg = ext->mem;
1946 	struct ptp_clock_event ev;
1947 	u32 sec, nsec;
1948 
1949 	if (ext == ext->bp->pps) {
1950 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1951 			ev.type = PTP_CLOCK_PPS;
1952 			ptp_clock_event(ext->bp->ptp, &ev);
1953 		}
1954 
1955 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1956 			goto out;
1957 	}
1958 
1959 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
1960 	sec = ioread32(&reg->time_sec);
1961 	nsec = ioread32(&reg->time_ns);
1962 
1963 	ev.type = PTP_CLOCK_EXTTS;
1964 	ev.index = ext->info->index;
1965 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
1966 
1967 	ptp_clock_event(ext->bp->ptp, &ev);
1968 
1969 out:
1970 	iowrite32(1, &reg->intr);	/* write 1 to ack */
1971 
1972 	return IRQ_HANDLED;
1973 }
1974 
1975 static int
1976 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1977 {
1978 	struct ptp_ocp_ext_src *ext = priv;
1979 	struct ts_reg __iomem *reg = ext->mem;
1980 	struct ptp_ocp *bp = ext->bp;
1981 
1982 	if (ext == bp->pps) {
1983 		u32 old_map = bp->pps_req_map;
1984 
1985 		if (enable)
1986 			bp->pps_req_map |= req;
1987 		else
1988 			bp->pps_req_map &= ~req;
1989 
1990 		/* if no state change, just return */
1991 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
1992 			return 0;
1993 	}
1994 
1995 	if (enable) {
1996 		iowrite32(1, &reg->enable);
1997 		iowrite32(1, &reg->intr_mask);
1998 		iowrite32(1, &reg->intr);
1999 	} else {
2000 		iowrite32(0, &reg->intr_mask);
2001 		iowrite32(0, &reg->enable);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static void
2008 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2009 {
2010 	ext->info->enable(ext, ~0, false);
2011 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2012 	kfree(ext);
2013 }
2014 
2015 static int
2016 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2017 {
2018 	struct pci_dev *pdev = bp->pdev;
2019 	struct ptp_ocp_ext_src *ext;
2020 	int err;
2021 
2022 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2023 	if (!ext)
2024 		return -ENOMEM;
2025 
2026 	ext->mem = ptp_ocp_get_mem(bp, r);
2027 	if (IS_ERR(ext->mem)) {
2028 		err = PTR_ERR(ext->mem);
2029 		goto out;
2030 	}
2031 
2032 	ext->bp = bp;
2033 	ext->info = r->extra;
2034 	ext->irq_vec = r->irq_vec;
2035 
2036 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2037 			      ext, "ocp%d.%s", bp->id, r->name);
2038 	if (err) {
2039 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2040 		goto out;
2041 	}
2042 
2043 	bp_assign_entry(bp, r, ext);
2044 
2045 	return 0;
2046 
2047 out:
2048 	kfree(ext);
2049 	return err;
2050 }
2051 
2052 static int
2053 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2054 {
2055 	struct pci_dev *pdev = bp->pdev;
2056 	struct uart_8250_port uart;
2057 
2058 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2059 	 * the serial port device claim and release the pci resource.
2060 	 */
2061 	memset(&uart, 0, sizeof(uart));
2062 	uart.port.dev = &pdev->dev;
2063 	uart.port.iotype = UPIO_MEM;
2064 	uart.port.regshift = 2;
2065 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2066 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2067 	uart.port.uartclk = 50000000;
2068 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2069 	uart.port.type = PORT_16550A;
2070 
2071 	return serial8250_register_8250_port(&uart);
2072 }
2073 
2074 static int
2075 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2076 {
2077 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2078 	struct ptp_ocp_serial_port port = {};
2079 
2080 	port.line = ptp_ocp_serial_line(bp, r);
2081 	if (port.line < 0)
2082 		return port.line;
2083 
2084 	if (p)
2085 		port.baud = p->baud;
2086 
2087 	bp_assign_entry(bp, r, port);
2088 
2089 	return 0;
2090 }
2091 
2092 static int
2093 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2094 {
2095 	void __iomem *mem;
2096 
2097 	mem = ptp_ocp_get_mem(bp, r);
2098 	if (IS_ERR(mem))
2099 		return PTR_ERR(mem);
2100 
2101 	bp_assign_entry(bp, r, mem);
2102 
2103 	return 0;
2104 }
2105 
2106 static void
2107 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2108 {
2109 	if (!bp->nmea_out)
2110 		return;
2111 
2112 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2113 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2114 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2115 }
2116 
2117 static void
2118 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2119 {
2120 	u32 val;
2121 
2122 	iowrite32(0, &reg->enable);		/* disable */
2123 
2124 	val = ioread32(&reg->polarity);
2125 	s->polarity = val ? true : false;
2126 	s->duty = 50;
2127 }
2128 
2129 static void
2130 ptp_ocp_signal_init(struct ptp_ocp *bp)
2131 {
2132 	int i;
2133 
2134 	for (i = 0; i < 4; i++)
2135 		if (bp->signal_out[i])
2136 			_ptp_ocp_signal_init(&bp->signal[i],
2137 					     bp->signal_out[i]->mem);
2138 }
2139 
2140 static void
2141 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2142 {
2143 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2144 	kfree(bp->attr_group);
2145 }
2146 
2147 static int
2148 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2149 		       const struct ocp_attr_group *attr_tbl)
2150 {
2151 	int count, i;
2152 	int err;
2153 
2154 	count = 0;
2155 	for (i = 0; attr_tbl[i].cap; i++)
2156 		if (attr_tbl[i].cap & bp->fw_cap)
2157 			count++;
2158 
2159 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2160 				 GFP_KERNEL);
2161 	if (!bp->attr_group)
2162 		return -ENOMEM;
2163 
2164 	count = 0;
2165 	for (i = 0; attr_tbl[i].cap; i++)
2166 		if (attr_tbl[i].cap & bp->fw_cap)
2167 			bp->attr_group[count++] = attr_tbl[i].group;
2168 
2169 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2170 	if (err)
2171 		bp->attr_group[0] = NULL;
2172 
2173 	return err;
2174 }
2175 
2176 static void
2177 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2178 {
2179 	u32 ctrl;
2180 	bool on;
2181 
2182 	ctrl = ioread32(reg);
2183 	on = ctrl & bit;
2184 	if (on ^ enable) {
2185 		ctrl &= ~bit;
2186 		ctrl |= enable ? bit : 0;
2187 		iowrite32(ctrl, reg);
2188 	}
2189 }
2190 
2191 static void
2192 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2193 {
2194 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2195 				   IRIG_M_CTRL_ENABLE, enable);
2196 }
2197 
2198 static void
2199 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2200 {
2201 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2202 				   IRIG_S_CTRL_ENABLE, enable);
2203 }
2204 
2205 static void
2206 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2207 {
2208 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2209 				   DCF_M_CTRL_ENABLE, enable);
2210 }
2211 
2212 static void
2213 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2214 {
2215 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2216 				   DCF_S_CTRL_ENABLE, enable);
2217 }
2218 
2219 static void
2220 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2221 {
2222 	ptp_ocp_irig_out(bp, val & 0x00100010);
2223 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2224 }
2225 
2226 static void
2227 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2228 {
2229 	ptp_ocp_irig_in(bp, val & 0x00100010);
2230 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2231 }
2232 
2233 static u32
2234 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2235 {
2236 	u32 __iomem *gpio;
2237 	u32 shift;
2238 
2239 	if (bp->sma[sma_nr - 1].fixed_fcn)
2240 		return (sma_nr - 1) & 1;
2241 
2242 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2243 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2244 	else
2245 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2246 	shift = sma_nr & 1 ? 0 : 16;
2247 
2248 	return (ioread32(gpio) >> shift) & 0xffff;
2249 }
2250 
2251 static int
2252 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2253 {
2254 	u32 reg, mask, shift;
2255 	unsigned long flags;
2256 	u32 __iomem *gpio;
2257 
2258 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2259 	shift = sma_nr & 1 ? 0 : 16;
2260 
2261 	mask = 0xffff << (16 - shift);
2262 
2263 	spin_lock_irqsave(&bp->lock, flags);
2264 
2265 	reg = ioread32(gpio);
2266 	reg = (reg & mask) | (val << shift);
2267 
2268 	__handle_signal_outputs(bp, reg);
2269 
2270 	iowrite32(reg, gpio);
2271 
2272 	spin_unlock_irqrestore(&bp->lock, flags);
2273 
2274 	return 0;
2275 }
2276 
2277 static int
2278 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2279 {
2280 	u32 reg, mask, shift;
2281 	unsigned long flags;
2282 	u32 __iomem *gpio;
2283 
2284 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2285 	shift = sma_nr & 1 ? 0 : 16;
2286 
2287 	mask = 0xffff << (16 - shift);
2288 
2289 	spin_lock_irqsave(&bp->lock, flags);
2290 
2291 	reg = ioread32(gpio);
2292 	reg = (reg & mask) | (val << shift);
2293 
2294 	__handle_signal_inputs(bp, reg);
2295 
2296 	iowrite32(reg, gpio);
2297 
2298 	spin_unlock_irqrestore(&bp->lock, flags);
2299 
2300 	return 0;
2301 }
2302 
2303 static void
2304 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2305 {
2306 	struct dpll_pin_properties prop = {
2307 		.board_label = NULL,
2308 		.type = DPLL_PIN_TYPE_EXT,
2309 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2310 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2311 		.freq_supported = ptp_ocp_sma_freq,
2312 
2313 	};
2314 	u32 reg;
2315 	int i;
2316 
2317 	/* defaults */
2318 	for (i = 0; i < OCP_SMA_NUM; i++) {
2319 		bp->sma[i].default_fcn = i & 1;
2320 		bp->sma[i].dpll_prop = prop;
2321 		bp->sma[i].dpll_prop.board_label =
2322 			bp->ptp_info.pin_config[i].name;
2323 	}
2324 	bp->sma[0].mode = SMA_MODE_IN;
2325 	bp->sma[1].mode = SMA_MODE_IN;
2326 	bp->sma[2].mode = SMA_MODE_OUT;
2327 	bp->sma[3].mode = SMA_MODE_OUT;
2328 	/* If no SMA1 map, the pin functions and directions are fixed. */
2329 	if (!bp->sma_map1) {
2330 		for (i = 0; i < OCP_SMA_NUM; i++) {
2331 			bp->sma[i].fixed_fcn = true;
2332 			bp->sma[i].fixed_dir = true;
2333 			bp->sma[1].dpll_prop.capabilities &=
2334 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2335 		}
2336 		return;
2337 	}
2338 
2339 	/* If SMA2 GPIO output map is all 1, it is not present.
2340 	 * This indicates the firmware has fixed direction SMA pins.
2341 	 */
2342 	reg = ioread32(&bp->sma_map2->gpio2);
2343 	if (reg == 0xffffffff) {
2344 		for (i = 0; i < OCP_SMA_NUM; i++)
2345 			bp->sma[i].fixed_dir = true;
2346 	} else {
2347 		reg = ioread32(&bp->sma_map1->gpio1);
2348 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2349 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2350 
2351 		reg = ioread32(&bp->sma_map1->gpio2);
2352 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2353 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2354 	}
2355 }
2356 
2357 static const struct ocp_sma_op ocp_fb_sma_op = {
2358 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2359 	.init		= ptp_ocp_sma_fb_init,
2360 	.get		= ptp_ocp_sma_fb_get,
2361 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2362 	.set_output	= ptp_ocp_sma_fb_set_output,
2363 };
2364 
2365 static int
2366 ptp_ocp_set_pins(struct ptp_ocp *bp)
2367 {
2368 	struct ptp_pin_desc *config;
2369 	int i;
2370 
2371 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2372 	if (!config)
2373 		return -ENOMEM;
2374 
2375 	for (i = 0; i < 4; i++) {
2376 		sprintf(config[i].name, "sma%d", i + 1);
2377 		config[i].index = i;
2378 	}
2379 
2380 	bp->ptp_info.n_pins = 4;
2381 	bp->ptp_info.pin_config = config;
2382 
2383 	return 0;
2384 }
2385 
2386 static void
2387 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2388 {
2389 	u64 cap = OCP_CAP_BASIC;
2390 	u32 version;
2391 
2392 	version = ioread32(&bp->image->version);
2393 
2394 	/* if lower 16 bits are empty, this is the fw loader. */
2395 	if ((version & 0xffff) == 0) {
2396 		version = version >> 16;
2397 		bp->fw_loader = true;
2398 	}
2399 
2400 	bp->fw_tag = version >> 15;
2401 	bp->fw_version = version & 0x7fff;
2402 
2403 	if (bp->fw_tag) {
2404 		/* FPGA firmware */
2405 		if (version >= 5)
2406 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2407 	} else {
2408 		/* SOM firmware */
2409 		if (version >= 19)
2410 			cap |= OCP_CAP_SIGNAL;
2411 		if (version >= 20)
2412 			cap |= OCP_CAP_FREQ;
2413 	}
2414 
2415 	bp->fw_cap = cap;
2416 }
2417 
2418 /* FB specific board initializers; last "resource" registered. */
2419 static int
2420 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2421 {
2422 	int err;
2423 
2424 	bp->flash_start = 1024 * 4096;
2425 	bp->eeprom_map = fb_eeprom_map;
2426 	bp->fw_version = ioread32(&bp->image->version);
2427 	bp->sma_op = &ocp_fb_sma_op;
2428 
2429 	ptp_ocp_fb_set_version(bp);
2430 
2431 	ptp_ocp_tod_init(bp);
2432 	ptp_ocp_nmea_out_init(bp);
2433 	ptp_ocp_signal_init(bp);
2434 
2435 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2436 	if (err)
2437 		return err;
2438 
2439 	err = ptp_ocp_set_pins(bp);
2440 	if (err)
2441 		return err;
2442 	ptp_ocp_sma_init(bp);
2443 
2444 	return ptp_ocp_init_clock(bp);
2445 }
2446 
2447 static bool
2448 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2449 {
2450 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2451 
2452 	if (!allow)
2453 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2454 			r->irq_vec, r->name);
2455 	return allow;
2456 }
2457 
2458 static int
2459 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2460 {
2461 	struct ocp_resource *r, *table;
2462 	int err = 0;
2463 
2464 	table = (struct ocp_resource *)driver_data;
2465 	for (r = table; r->setup; r++) {
2466 		if (!ptp_ocp_allow_irq(bp, r))
2467 			continue;
2468 		err = r->setup(bp, r);
2469 		if (err) {
2470 			dev_err(&bp->pdev->dev,
2471 				"Could not register %s: err %d\n",
2472 				r->name, err);
2473 			break;
2474 		}
2475 	}
2476 	return err;
2477 }
2478 
2479 static void
2480 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2481 {
2482 	struct dpll_pin_properties prop = {
2483 		.board_label = NULL,
2484 		.type = DPLL_PIN_TYPE_EXT,
2485 		.capabilities = 0,
2486 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2487 		.freq_supported = ptp_ocp_sma_freq,
2488 
2489 	};
2490 	u32 reg;
2491 	int i;
2492 
2493 	/* defaults */
2494 	bp->sma[0].mode = SMA_MODE_IN;
2495 	bp->sma[1].mode = SMA_MODE_IN;
2496 	bp->sma[2].mode = SMA_MODE_OUT;
2497 	bp->sma[3].mode = SMA_MODE_OUT;
2498 
2499 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2500 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2501 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2502 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2503 
2504 	for (i = 0; i < OCP_SMA_NUM; i++) {
2505 		/* If no SMA map, the pin functions and directions are fixed. */
2506 		bp->sma[i].dpll_prop = prop;
2507 		bp->sma[i].dpll_prop.board_label =
2508 			bp->ptp_info.pin_config[i].name;
2509 		if (!bp->art_sma) {
2510 			bp->sma[i].fixed_fcn = true;
2511 			bp->sma[i].fixed_dir = true;
2512 			continue;
2513 		}
2514 		reg = ioread32(&bp->art_sma->map[i].gpio);
2515 
2516 		switch (reg & 0xff) {
2517 		case 0:
2518 			bp->sma[i].fixed_fcn = true;
2519 			bp->sma[i].fixed_dir = true;
2520 			break;
2521 		case 1:
2522 		case 8:
2523 			bp->sma[i].mode = SMA_MODE_IN;
2524 			bp->sma[i].dpll_prop.capabilities =
2525 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2526 			break;
2527 		default:
2528 			bp->sma[i].mode = SMA_MODE_OUT;
2529 			bp->sma[i].dpll_prop.capabilities =
2530 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2531 			break;
2532 		}
2533 	}
2534 }
2535 
2536 static u32
2537 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2538 {
2539 	if (bp->sma[sma_nr - 1].fixed_fcn)
2540 		return bp->sma[sma_nr - 1].default_fcn;
2541 
2542 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2543 }
2544 
2545 /* note: store 0 is considered invalid. */
2546 static int
2547 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2548 {
2549 	unsigned long flags;
2550 	u32 __iomem *gpio;
2551 	int err = 0;
2552 	u32 reg;
2553 
2554 	val &= SMA_SELECT_MASK;
2555 	if (hweight32(val) > 1)
2556 		return -EINVAL;
2557 
2558 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2559 
2560 	spin_lock_irqsave(&bp->lock, flags);
2561 	reg = ioread32(gpio);
2562 	if (((reg >> 16) & val) == 0) {
2563 		err = -EOPNOTSUPP;
2564 	} else {
2565 		reg = (reg & 0xff00) | (val & 0xff);
2566 		iowrite32(reg, gpio);
2567 	}
2568 	spin_unlock_irqrestore(&bp->lock, flags);
2569 
2570 	return err;
2571 }
2572 
2573 static const struct ocp_sma_op ocp_art_sma_op = {
2574 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2575 	.init		= ptp_ocp_art_sma_init,
2576 	.get		= ptp_ocp_art_sma_get,
2577 	.set_inputs	= ptp_ocp_art_sma_set,
2578 	.set_output	= ptp_ocp_art_sma_set,
2579 };
2580 
2581 /* ART specific board initializers; last "resource" registered. */
2582 static int
2583 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2584 {
2585 	int err;
2586 
2587 	bp->flash_start = 0x1000000;
2588 	bp->eeprom_map = art_eeprom_map;
2589 	bp->fw_cap = OCP_CAP_BASIC;
2590 	bp->fw_version = ioread32(&bp->reg->version);
2591 	bp->fw_tag = 2;
2592 	bp->sma_op = &ocp_art_sma_op;
2593 
2594 	/* Enable MAC serial port during initialisation */
2595 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2596 
2597 	err = ptp_ocp_set_pins(bp);
2598 	if (err)
2599 		return err;
2600 	ptp_ocp_sma_init(bp);
2601 
2602 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2603 	if (err)
2604 		return err;
2605 
2606 	return ptp_ocp_init_clock(bp);
2607 }
2608 
2609 static ssize_t
2610 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2611 		    int def_val)
2612 {
2613 	const char *name;
2614 	ssize_t count;
2615 
2616 	count = sysfs_emit(buf, "OUT: ");
2617 	name = ptp_ocp_select_name_from_val(tbl, val);
2618 	if (!name)
2619 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2620 	count += sysfs_emit_at(buf, count, "%s\n", name);
2621 	return count;
2622 }
2623 
2624 static ssize_t
2625 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2626 		    int def_val)
2627 {
2628 	const char *name;
2629 	ssize_t count;
2630 	int i;
2631 
2632 	count = sysfs_emit(buf, "IN: ");
2633 	for (i = 0; tbl[i].name; i++) {
2634 		if (val & tbl[i].value) {
2635 			name = tbl[i].name;
2636 			count += sysfs_emit_at(buf, count, "%s ", name);
2637 		}
2638 	}
2639 	if (!val && def_val >= 0) {
2640 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2641 		count += sysfs_emit_at(buf, count, "%s ", name);
2642 	}
2643 	if (count)
2644 		count--;
2645 	count += sysfs_emit_at(buf, count, "\n");
2646 	return count;
2647 }
2648 
2649 static int
2650 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2651 		 enum ptp_ocp_sma_mode *mode)
2652 {
2653 	int idx, count, dir;
2654 	char **argv;
2655 	int ret;
2656 
2657 	argv = argv_split(GFP_KERNEL, buf, &count);
2658 	if (!argv)
2659 		return -ENOMEM;
2660 
2661 	ret = -EINVAL;
2662 	if (!count)
2663 		goto out;
2664 
2665 	idx = 0;
2666 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2667 	if (!strcasecmp("IN:", argv[0])) {
2668 		dir = 0;
2669 		idx++;
2670 	}
2671 	if (!strcasecmp("OUT:", argv[0])) {
2672 		dir = 1;
2673 		idx++;
2674 	}
2675 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2676 
2677 	ret = 0;
2678 	for (; idx < count; idx++)
2679 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2680 	if (ret < 0)
2681 		ret = -EINVAL;
2682 
2683 out:
2684 	argv_free(argv);
2685 	return ret;
2686 }
2687 
2688 static ssize_t
2689 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2690 		 int default_in_val, int default_out_val)
2691 {
2692 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2693 	const struct ocp_selector * const *tbl;
2694 	u32 val;
2695 
2696 	tbl = bp->sma_op->tbl;
2697 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2698 
2699 	if (sma->mode == SMA_MODE_IN) {
2700 		if (sma->disabled)
2701 			val = SMA_DISABLE;
2702 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2703 	}
2704 
2705 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2706 }
2707 
2708 static ssize_t
2709 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2710 {
2711 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2712 
2713 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2714 }
2715 
2716 static ssize_t
2717 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2718 {
2719 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2720 
2721 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2722 }
2723 
2724 static ssize_t
2725 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2726 {
2727 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2728 
2729 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2730 }
2731 
2732 static ssize_t
2733 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2734 {
2735 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2736 
2737 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2738 }
2739 
2740 static int
2741 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2742 {
2743 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2744 
2745 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2746 		return -EOPNOTSUPP;
2747 
2748 	if (sma->fixed_fcn) {
2749 		if (val != sma->default_fcn)
2750 			return -EOPNOTSUPP;
2751 		return 0;
2752 	}
2753 
2754 	sma->disabled = !!(val & SMA_DISABLE);
2755 
2756 	if (mode != sma->mode) {
2757 		if (mode == SMA_MODE_IN)
2758 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
2759 		else
2760 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2761 		sma->mode = mode;
2762 	}
2763 
2764 	if (!sma->fixed_dir)
2765 		val |= SMA_ENABLE;		/* add enable bit */
2766 
2767 	if (sma->disabled)
2768 		val = 0;
2769 
2770 	if (mode == SMA_MODE_IN)
2771 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2772 	else
2773 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2774 
2775 	return val;
2776 }
2777 
2778 static int
2779 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2780 {
2781 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2782 	enum ptp_ocp_sma_mode mode;
2783 	int val;
2784 
2785 	mode = sma->mode;
2786 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2787 	if (val < 0)
2788 		return val;
2789 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
2790 }
2791 
2792 static ssize_t
2793 sma1_store(struct device *dev, struct device_attribute *attr,
2794 	   const char *buf, size_t count)
2795 {
2796 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2797 	int err;
2798 
2799 	err = ptp_ocp_sma_store(bp, buf, 1);
2800 	return err ? err : count;
2801 }
2802 
2803 static ssize_t
2804 sma2_store(struct device *dev, struct device_attribute *attr,
2805 	   const char *buf, size_t count)
2806 {
2807 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2808 	int err;
2809 
2810 	err = ptp_ocp_sma_store(bp, buf, 2);
2811 	return err ? err : count;
2812 }
2813 
2814 static ssize_t
2815 sma3_store(struct device *dev, struct device_attribute *attr,
2816 	   const char *buf, size_t count)
2817 {
2818 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2819 	int err;
2820 
2821 	err = ptp_ocp_sma_store(bp, buf, 3);
2822 	return err ? err : count;
2823 }
2824 
2825 static ssize_t
2826 sma4_store(struct device *dev, struct device_attribute *attr,
2827 	   const char *buf, size_t count)
2828 {
2829 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2830 	int err;
2831 
2832 	err = ptp_ocp_sma_store(bp, buf, 4);
2833 	return err ? err : count;
2834 }
2835 static DEVICE_ATTR_RW(sma1);
2836 static DEVICE_ATTR_RW(sma2);
2837 static DEVICE_ATTR_RW(sma3);
2838 static DEVICE_ATTR_RW(sma4);
2839 
2840 static ssize_t
2841 available_sma_inputs_show(struct device *dev,
2842 			  struct device_attribute *attr, char *buf)
2843 {
2844 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2845 
2846 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2847 }
2848 static DEVICE_ATTR_RO(available_sma_inputs);
2849 
2850 static ssize_t
2851 available_sma_outputs_show(struct device *dev,
2852 			   struct device_attribute *attr, char *buf)
2853 {
2854 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2855 
2856 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2857 }
2858 static DEVICE_ATTR_RO(available_sma_outputs);
2859 
2860 #define EXT_ATTR_RO(_group, _name, _val)				\
2861 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2862 		{ __ATTR_RO(_name), (void *)_val }
2863 #define EXT_ATTR_RW(_group, _name, _val)				\
2864 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2865 		{ __ATTR_RW(_name), (void *)_val }
2866 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2867 
2868 /* period [duty [phase [polarity]]] */
2869 static ssize_t
2870 signal_store(struct device *dev, struct device_attribute *attr,
2871 	     const char *buf, size_t count)
2872 {
2873 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2874 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2875 	struct ptp_ocp_signal s = { };
2876 	int gen = (uintptr_t)ea->var;
2877 	int argc, err;
2878 	char **argv;
2879 
2880 	argv = argv_split(GFP_KERNEL, buf, &argc);
2881 	if (!argv)
2882 		return -ENOMEM;
2883 
2884 	err = -EINVAL;
2885 	s.duty = bp->signal[gen].duty;
2886 	s.phase = bp->signal[gen].phase;
2887 	s.period = bp->signal[gen].period;
2888 	s.polarity = bp->signal[gen].polarity;
2889 
2890 	switch (argc) {
2891 	case 4:
2892 		argc--;
2893 		err = kstrtobool(argv[argc], &s.polarity);
2894 		if (err)
2895 			goto out;
2896 		fallthrough;
2897 	case 3:
2898 		argc--;
2899 		err = kstrtou64(argv[argc], 0, &s.phase);
2900 		if (err)
2901 			goto out;
2902 		fallthrough;
2903 	case 2:
2904 		argc--;
2905 		err = kstrtoint(argv[argc], 0, &s.duty);
2906 		if (err)
2907 			goto out;
2908 		fallthrough;
2909 	case 1:
2910 		argc--;
2911 		err = kstrtou64(argv[argc], 0, &s.period);
2912 		if (err)
2913 			goto out;
2914 		break;
2915 	default:
2916 		goto out;
2917 	}
2918 
2919 	err = ptp_ocp_signal_set(bp, gen, &s);
2920 	if (err)
2921 		goto out;
2922 
2923 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2924 
2925 out:
2926 	argv_free(argv);
2927 	return err ? err : count;
2928 }
2929 
2930 static ssize_t
2931 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2932 {
2933 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2934 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2935 	struct ptp_ocp_signal *signal;
2936 	struct timespec64 ts;
2937 	ssize_t count;
2938 	int i;
2939 
2940 	i = (uintptr_t)ea->var;
2941 	signal = &bp->signal[i];
2942 
2943 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2944 			   signal->duty, signal->phase, signal->polarity);
2945 
2946 	ts = ktime_to_timespec64(signal->start);
2947 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2948 
2949 	return count;
2950 }
2951 static EXT_ATTR_RW(signal, signal, 0);
2952 static EXT_ATTR_RW(signal, signal, 1);
2953 static EXT_ATTR_RW(signal, signal, 2);
2954 static EXT_ATTR_RW(signal, signal, 3);
2955 
2956 static ssize_t
2957 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2958 {
2959 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2960 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2961 	int i = (uintptr_t)ea->var;
2962 
2963 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2964 }
2965 static EXT_ATTR_RO(signal, duty, 0);
2966 static EXT_ATTR_RO(signal, duty, 1);
2967 static EXT_ATTR_RO(signal, duty, 2);
2968 static EXT_ATTR_RO(signal, duty, 3);
2969 
2970 static ssize_t
2971 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2972 {
2973 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2974 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2975 	int i = (uintptr_t)ea->var;
2976 
2977 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2978 }
2979 static EXT_ATTR_RO(signal, period, 0);
2980 static EXT_ATTR_RO(signal, period, 1);
2981 static EXT_ATTR_RO(signal, period, 2);
2982 static EXT_ATTR_RO(signal, period, 3);
2983 
2984 static ssize_t
2985 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2986 {
2987 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2988 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2989 	int i = (uintptr_t)ea->var;
2990 
2991 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2992 }
2993 static EXT_ATTR_RO(signal, phase, 0);
2994 static EXT_ATTR_RO(signal, phase, 1);
2995 static EXT_ATTR_RO(signal, phase, 2);
2996 static EXT_ATTR_RO(signal, phase, 3);
2997 
2998 static ssize_t
2999 polarity_show(struct device *dev, struct device_attribute *attr,
3000 	      char *buf)
3001 {
3002 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3003 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3004 	int i = (uintptr_t)ea->var;
3005 
3006 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3007 }
3008 static EXT_ATTR_RO(signal, polarity, 0);
3009 static EXT_ATTR_RO(signal, polarity, 1);
3010 static EXT_ATTR_RO(signal, polarity, 2);
3011 static EXT_ATTR_RO(signal, polarity, 3);
3012 
3013 static ssize_t
3014 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3015 {
3016 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3017 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3018 	int i = (uintptr_t)ea->var;
3019 
3020 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3021 }
3022 static EXT_ATTR_RO(signal, running, 0);
3023 static EXT_ATTR_RO(signal, running, 1);
3024 static EXT_ATTR_RO(signal, running, 2);
3025 static EXT_ATTR_RO(signal, running, 3);
3026 
3027 static ssize_t
3028 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3029 {
3030 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3031 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3032 	int i = (uintptr_t)ea->var;
3033 	struct timespec64 ts;
3034 
3035 	ts = ktime_to_timespec64(bp->signal[i].start);
3036 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3037 }
3038 static EXT_ATTR_RO(signal, start, 0);
3039 static EXT_ATTR_RO(signal, start, 1);
3040 static EXT_ATTR_RO(signal, start, 2);
3041 static EXT_ATTR_RO(signal, start, 3);
3042 
3043 static ssize_t
3044 seconds_store(struct device *dev, struct device_attribute *attr,
3045 	      const char *buf, size_t count)
3046 {
3047 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3048 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3049 	int idx = (uintptr_t)ea->var;
3050 	u32 val;
3051 	int err;
3052 
3053 	err = kstrtou32(buf, 0, &val);
3054 	if (err)
3055 		return err;
3056 	if (val > 0xff)
3057 		return -EINVAL;
3058 
3059 	if (val)
3060 		val = (val << 8) | 0x1;
3061 
3062 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3063 
3064 	return count;
3065 }
3066 
3067 static ssize_t
3068 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3069 {
3070 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3071 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3072 	int idx = (uintptr_t)ea->var;
3073 	u32 val;
3074 
3075 	val = ioread32(&bp->freq_in[idx]->ctrl);
3076 	if (val & 1)
3077 		val = (val >> 8) & 0xff;
3078 	else
3079 		val = 0;
3080 
3081 	return sysfs_emit(buf, "%u\n", val);
3082 }
3083 static EXT_ATTR_RW(freq, seconds, 0);
3084 static EXT_ATTR_RW(freq, seconds, 1);
3085 static EXT_ATTR_RW(freq, seconds, 2);
3086 static EXT_ATTR_RW(freq, seconds, 3);
3087 
3088 static ssize_t
3089 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3090 {
3091 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3092 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3093 	int idx = (uintptr_t)ea->var;
3094 	u32 val;
3095 
3096 	val = ioread32(&bp->freq_in[idx]->status);
3097 	if (val & FREQ_STATUS_ERROR)
3098 		return sysfs_emit(buf, "error\n");
3099 	if (val & FREQ_STATUS_OVERRUN)
3100 		return sysfs_emit(buf, "overrun\n");
3101 	if (val & FREQ_STATUS_VALID)
3102 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3103 	return 0;
3104 }
3105 static EXT_ATTR_RO(freq, frequency, 0);
3106 static EXT_ATTR_RO(freq, frequency, 1);
3107 static EXT_ATTR_RO(freq, frequency, 2);
3108 static EXT_ATTR_RO(freq, frequency, 3);
3109 
3110 static ssize_t
3111 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3112 {
3113 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3114 
3115 	if (!bp->has_eeprom_data)
3116 		ptp_ocp_read_eeprom(bp);
3117 
3118 	return sysfs_emit(buf, "%pM\n", bp->serial);
3119 }
3120 static DEVICE_ATTR_RO(serialnum);
3121 
3122 static ssize_t
3123 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3124 {
3125 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3126 	ssize_t ret;
3127 
3128 	if (bp->gnss_lost)
3129 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3130 	else
3131 		ret = sysfs_emit(buf, "SYNC\n");
3132 
3133 	return ret;
3134 }
3135 static DEVICE_ATTR_RO(gnss_sync);
3136 
3137 static ssize_t
3138 utc_tai_offset_show(struct device *dev,
3139 		    struct device_attribute *attr, char *buf)
3140 {
3141 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3142 
3143 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3144 }
3145 
3146 static ssize_t
3147 utc_tai_offset_store(struct device *dev,
3148 		     struct device_attribute *attr,
3149 		     const char *buf, size_t count)
3150 {
3151 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3152 	int err;
3153 	u32 val;
3154 
3155 	err = kstrtou32(buf, 0, &val);
3156 	if (err)
3157 		return err;
3158 
3159 	ptp_ocp_utc_distribute(bp, val);
3160 
3161 	return count;
3162 }
3163 static DEVICE_ATTR_RW(utc_tai_offset);
3164 
3165 static ssize_t
3166 ts_window_adjust_show(struct device *dev,
3167 		      struct device_attribute *attr, char *buf)
3168 {
3169 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3170 
3171 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3172 }
3173 
3174 static ssize_t
3175 ts_window_adjust_store(struct device *dev,
3176 		       struct device_attribute *attr,
3177 		       const char *buf, size_t count)
3178 {
3179 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3180 	int err;
3181 	u32 val;
3182 
3183 	err = kstrtou32(buf, 0, &val);
3184 	if (err)
3185 		return err;
3186 
3187 	bp->ts_window_adjust = val;
3188 
3189 	return count;
3190 }
3191 static DEVICE_ATTR_RW(ts_window_adjust);
3192 
3193 static ssize_t
3194 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3195 {
3196 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3197 	u32 val;
3198 
3199 	val = ioread32(&bp->irig_out->ctrl);
3200 	val = (val >> 16) & 0x07;
3201 	return sysfs_emit(buf, "%d\n", val);
3202 }
3203 
3204 static ssize_t
3205 irig_b_mode_store(struct device *dev,
3206 		  struct device_attribute *attr,
3207 		  const char *buf, size_t count)
3208 {
3209 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3210 	unsigned long flags;
3211 	int err;
3212 	u32 reg;
3213 	u8 val;
3214 
3215 	err = kstrtou8(buf, 0, &val);
3216 	if (err)
3217 		return err;
3218 	if (val > 7)
3219 		return -EINVAL;
3220 
3221 	reg = ((val & 0x7) << 16);
3222 
3223 	spin_lock_irqsave(&bp->lock, flags);
3224 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3225 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3226 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3227 	spin_unlock_irqrestore(&bp->lock, flags);
3228 
3229 	return count;
3230 }
3231 static DEVICE_ATTR_RW(irig_b_mode);
3232 
3233 static ssize_t
3234 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3235 {
3236 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3237 	const char *p;
3238 	u32 select;
3239 
3240 	select = ioread32(&bp->reg->select);
3241 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3242 
3243 	return sysfs_emit(buf, "%s\n", p);
3244 }
3245 
3246 static ssize_t
3247 clock_source_store(struct device *dev, struct device_attribute *attr,
3248 		   const char *buf, size_t count)
3249 {
3250 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3251 	unsigned long flags;
3252 	int val;
3253 
3254 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3255 	if (val < 0)
3256 		return val;
3257 
3258 	spin_lock_irqsave(&bp->lock, flags);
3259 	iowrite32(val, &bp->reg->select);
3260 	spin_unlock_irqrestore(&bp->lock, flags);
3261 
3262 	return count;
3263 }
3264 static DEVICE_ATTR_RW(clock_source);
3265 
3266 static ssize_t
3267 available_clock_sources_show(struct device *dev,
3268 			     struct device_attribute *attr, char *buf)
3269 {
3270 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3271 }
3272 static DEVICE_ATTR_RO(available_clock_sources);
3273 
3274 static ssize_t
3275 clock_status_drift_show(struct device *dev,
3276 			struct device_attribute *attr, char *buf)
3277 {
3278 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3279 	u32 val;
3280 	int res;
3281 
3282 	val = ioread32(&bp->reg->status_drift);
3283 	res = (val & ~INT_MAX) ? -1 : 1;
3284 	res *= (val & INT_MAX);
3285 	return sysfs_emit(buf, "%d\n", res);
3286 }
3287 static DEVICE_ATTR_RO(clock_status_drift);
3288 
3289 static ssize_t
3290 clock_status_offset_show(struct device *dev,
3291 			 struct device_attribute *attr, char *buf)
3292 {
3293 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3294 	u32 val;
3295 	int res;
3296 
3297 	val = ioread32(&bp->reg->status_offset);
3298 	res = (val & ~INT_MAX) ? -1 : 1;
3299 	res *= (val & INT_MAX);
3300 	return sysfs_emit(buf, "%d\n", res);
3301 }
3302 static DEVICE_ATTR_RO(clock_status_offset);
3303 
3304 static ssize_t
3305 tod_correction_show(struct device *dev,
3306 		    struct device_attribute *attr, char *buf)
3307 {
3308 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3309 	u32 val;
3310 	int res;
3311 
3312 	val = ioread32(&bp->tod->adj_sec);
3313 	res = (val & ~INT_MAX) ? -1 : 1;
3314 	res *= (val & INT_MAX);
3315 	return sysfs_emit(buf, "%d\n", res);
3316 }
3317 
3318 static ssize_t
3319 tod_correction_store(struct device *dev, struct device_attribute *attr,
3320 		     const char *buf, size_t count)
3321 {
3322 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3323 	unsigned long flags;
3324 	int err, res;
3325 	u32 val = 0;
3326 
3327 	err = kstrtos32(buf, 0, &res);
3328 	if (err)
3329 		return err;
3330 	if (res < 0) {
3331 		res *= -1;
3332 		val |= BIT(31);
3333 	}
3334 	val |= res;
3335 
3336 	spin_lock_irqsave(&bp->lock, flags);
3337 	iowrite32(val, &bp->tod->adj_sec);
3338 	spin_unlock_irqrestore(&bp->lock, flags);
3339 
3340 	return count;
3341 }
3342 static DEVICE_ATTR_RW(tod_correction);
3343 
3344 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3345 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3346 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3347 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3348 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3349 		&dev_attr_signal##_nr##_period.attr.attr,		\
3350 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3351 		&dev_attr_signal##_nr##_running.attr.attr,		\
3352 		&dev_attr_signal##_nr##_start.attr.attr,		\
3353 		NULL,							\
3354 	}
3355 
3356 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3357 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3358 	static const struct attribute_group				\
3359 			fb_timecard_signal##_nr##_group = {		\
3360 		.name = #_name,						\
3361 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3362 }
3363 
3364 DEVICE_SIGNAL_GROUP(gen1, 0);
3365 DEVICE_SIGNAL_GROUP(gen2, 1);
3366 DEVICE_SIGNAL_GROUP(gen3, 2);
3367 DEVICE_SIGNAL_GROUP(gen4, 3);
3368 
3369 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3370 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3371 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3372 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3373 		NULL,							\
3374 	}
3375 
3376 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3377 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3378 	static const struct attribute_group				\
3379 			fb_timecard_freq##_nr##_group = {		\
3380 		.name = #_name,						\
3381 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3382 }
3383 
3384 DEVICE_FREQ_GROUP(freq1, 0);
3385 DEVICE_FREQ_GROUP(freq2, 1);
3386 DEVICE_FREQ_GROUP(freq3, 2);
3387 DEVICE_FREQ_GROUP(freq4, 3);
3388 
3389 static ssize_t
3390 disciplining_config_read(struct file *filp, struct kobject *kobj,
3391 			 struct bin_attribute *bin_attr, char *buf,
3392 			 loff_t off, size_t count)
3393 {
3394 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3395 	size_t size = OCP_ART_CONFIG_SIZE;
3396 	struct nvmem_device *nvmem;
3397 	ssize_t err;
3398 
3399 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3400 	if (IS_ERR(nvmem))
3401 		return PTR_ERR(nvmem);
3402 
3403 	if (off > size) {
3404 		err = 0;
3405 		goto out;
3406 	}
3407 
3408 	if (off + count > size)
3409 		count = size - off;
3410 
3411 	// the configuration is in the very beginning of the EEPROM
3412 	err = nvmem_device_read(nvmem, off, count, buf);
3413 	if (err != count) {
3414 		err = -EFAULT;
3415 		goto out;
3416 	}
3417 
3418 out:
3419 	ptp_ocp_nvmem_device_put(&nvmem);
3420 
3421 	return err;
3422 }
3423 
3424 static ssize_t
3425 disciplining_config_write(struct file *filp, struct kobject *kobj,
3426 			  struct bin_attribute *bin_attr, char *buf,
3427 			  loff_t off, size_t count)
3428 {
3429 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3430 	struct nvmem_device *nvmem;
3431 	ssize_t err;
3432 
3433 	/* Allow write of the whole area only */
3434 	if (off || count != OCP_ART_CONFIG_SIZE)
3435 		return -EFAULT;
3436 
3437 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3438 	if (IS_ERR(nvmem))
3439 		return PTR_ERR(nvmem);
3440 
3441 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3442 	if (err != count)
3443 		err = -EFAULT;
3444 
3445 	ptp_ocp_nvmem_device_put(&nvmem);
3446 
3447 	return err;
3448 }
3449 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3450 
3451 static ssize_t
3452 temperature_table_read(struct file *filp, struct kobject *kobj,
3453 		       struct bin_attribute *bin_attr, char *buf,
3454 		       loff_t off, size_t count)
3455 {
3456 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3457 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3458 	struct nvmem_device *nvmem;
3459 	ssize_t err;
3460 
3461 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3462 	if (IS_ERR(nvmem))
3463 		return PTR_ERR(nvmem);
3464 
3465 	if (off > size) {
3466 		err = 0;
3467 		goto out;
3468 	}
3469 
3470 	if (off + count > size)
3471 		count = size - off;
3472 
3473 	// the configuration is in the very beginning of the EEPROM
3474 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3475 	if (err != count) {
3476 		err = -EFAULT;
3477 		goto out;
3478 	}
3479 
3480 out:
3481 	ptp_ocp_nvmem_device_put(&nvmem);
3482 
3483 	return err;
3484 }
3485 
3486 static ssize_t
3487 temperature_table_write(struct file *filp, struct kobject *kobj,
3488 			struct bin_attribute *bin_attr, char *buf,
3489 			loff_t off, size_t count)
3490 {
3491 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3492 	struct nvmem_device *nvmem;
3493 	ssize_t err;
3494 
3495 	/* Allow write of the whole area only */
3496 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3497 		return -EFAULT;
3498 
3499 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3500 	if (IS_ERR(nvmem))
3501 		return PTR_ERR(nvmem);
3502 
3503 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3504 	if (err != count)
3505 		err = -EFAULT;
3506 
3507 	ptp_ocp_nvmem_device_put(&nvmem);
3508 
3509 	return err;
3510 }
3511 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3512 
3513 static struct attribute *fb_timecard_attrs[] = {
3514 	&dev_attr_serialnum.attr,
3515 	&dev_attr_gnss_sync.attr,
3516 	&dev_attr_clock_source.attr,
3517 	&dev_attr_available_clock_sources.attr,
3518 	&dev_attr_sma1.attr,
3519 	&dev_attr_sma2.attr,
3520 	&dev_attr_sma3.attr,
3521 	&dev_attr_sma4.attr,
3522 	&dev_attr_available_sma_inputs.attr,
3523 	&dev_attr_available_sma_outputs.attr,
3524 	&dev_attr_clock_status_drift.attr,
3525 	&dev_attr_clock_status_offset.attr,
3526 	&dev_attr_irig_b_mode.attr,
3527 	&dev_attr_utc_tai_offset.attr,
3528 	&dev_attr_ts_window_adjust.attr,
3529 	&dev_attr_tod_correction.attr,
3530 	NULL,
3531 };
3532 
3533 static const struct attribute_group fb_timecard_group = {
3534 	.attrs = fb_timecard_attrs,
3535 };
3536 
3537 static const struct ocp_attr_group fb_timecard_groups[] = {
3538 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3539 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3540 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3541 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3542 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3543 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3544 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3545 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3546 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3547 	{ },
3548 };
3549 
3550 static struct attribute *art_timecard_attrs[] = {
3551 	&dev_attr_serialnum.attr,
3552 	&dev_attr_clock_source.attr,
3553 	&dev_attr_available_clock_sources.attr,
3554 	&dev_attr_utc_tai_offset.attr,
3555 	&dev_attr_ts_window_adjust.attr,
3556 	&dev_attr_sma1.attr,
3557 	&dev_attr_sma2.attr,
3558 	&dev_attr_sma3.attr,
3559 	&dev_attr_sma4.attr,
3560 	&dev_attr_available_sma_inputs.attr,
3561 	&dev_attr_available_sma_outputs.attr,
3562 	NULL,
3563 };
3564 
3565 static struct bin_attribute *bin_art_timecard_attrs[] = {
3566 	&bin_attr_disciplining_config,
3567 	&bin_attr_temperature_table,
3568 	NULL,
3569 };
3570 
3571 static const struct attribute_group art_timecard_group = {
3572 	.attrs = art_timecard_attrs,
3573 	.bin_attrs = bin_art_timecard_attrs,
3574 };
3575 
3576 static const struct ocp_attr_group art_timecard_groups[] = {
3577 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3578 	{ },
3579 };
3580 
3581 static void
3582 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3583 	       const char *def)
3584 {
3585 	int i;
3586 
3587 	for (i = 0; i < 4; i++) {
3588 		if (bp->sma[i].mode != SMA_MODE_IN)
3589 			continue;
3590 		if (map[i][0] & (1 << bit)) {
3591 			sprintf(buf, "sma%d", i + 1);
3592 			return;
3593 		}
3594 	}
3595 	if (!def)
3596 		def = "----";
3597 	strcpy(buf, def);
3598 }
3599 
3600 static void
3601 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3602 {
3603 	char *ans = buf;
3604 	int i;
3605 
3606 	strcpy(ans, "----");
3607 	for (i = 0; i < 4; i++) {
3608 		if (bp->sma[i].mode != SMA_MODE_OUT)
3609 			continue;
3610 		if (map[i][1] & (1 << bit))
3611 			ans += sprintf(ans, "sma%d ", i + 1);
3612 	}
3613 }
3614 
3615 static void
3616 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3617 {
3618 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3619 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3620 	char label[8];
3621 	bool on;
3622 	u32 val;
3623 
3624 	if (!signal)
3625 		return;
3626 
3627 	on = signal->running;
3628 	sprintf(label, "GEN%d", nr + 1);
3629 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3630 		   label, on ? " ON" : "OFF",
3631 		   signal->period, signal->duty, signal->phase,
3632 		   signal->polarity);
3633 
3634 	val = ioread32(&reg->enable);
3635 	seq_printf(s, " [%x", val);
3636 	val = ioread32(&reg->status);
3637 	seq_printf(s, " %x]", val);
3638 
3639 	seq_printf(s, " start:%llu\n", signal->start);
3640 }
3641 
3642 static void
3643 _frequency_summary_show(struct seq_file *s, int nr,
3644 			struct frequency_reg __iomem *reg)
3645 {
3646 	char label[8];
3647 	bool on;
3648 	u32 val;
3649 
3650 	if (!reg)
3651 		return;
3652 
3653 	sprintf(label, "FREQ%d", nr + 1);
3654 	val = ioread32(&reg->ctrl);
3655 	on = val & 1;
3656 	val = (val >> 8) & 0xff;
3657 	seq_printf(s, "%7s: %s, sec:%u",
3658 		   label,
3659 		   on ? " ON" : "OFF",
3660 		   val);
3661 
3662 	val = ioread32(&reg->status);
3663 	if (val & FREQ_STATUS_ERROR)
3664 		seq_printf(s, ", error");
3665 	if (val & FREQ_STATUS_OVERRUN)
3666 		seq_printf(s, ", overrun");
3667 	if (val & FREQ_STATUS_VALID)
3668 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3669 	seq_printf(s, "  reg:%x\n", val);
3670 }
3671 
3672 static int
3673 ptp_ocp_summary_show(struct seq_file *s, void *data)
3674 {
3675 	struct device *dev = s->private;
3676 	struct ptp_system_timestamp sts;
3677 	struct ts_reg __iomem *ts_reg;
3678 	char *buf, *src, *mac_src;
3679 	struct timespec64 ts;
3680 	struct ptp_ocp *bp;
3681 	u16 sma_val[4][2];
3682 	u32 ctrl, val;
3683 	bool on, map;
3684 	int i;
3685 
3686 	buf = (char *)__get_free_page(GFP_KERNEL);
3687 	if (!buf)
3688 		return -ENOMEM;
3689 
3690 	bp = dev_get_drvdata(dev);
3691 
3692 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3693 	if (bp->gnss_port.line != -1)
3694 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3695 			   bp->gnss_port.line);
3696 	if (bp->gnss2_port.line != -1)
3697 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3698 			   bp->gnss2_port.line);
3699 	if (bp->mac_port.line != -1)
3700 		seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3701 	if (bp->nmea_port.line != -1)
3702 		seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3703 
3704 	memset(sma_val, 0xff, sizeof(sma_val));
3705 	if (bp->sma_map1) {
3706 		u32 reg;
3707 
3708 		reg = ioread32(&bp->sma_map1->gpio1);
3709 		sma_val[0][0] = reg & 0xffff;
3710 		sma_val[1][0] = reg >> 16;
3711 
3712 		reg = ioread32(&bp->sma_map1->gpio2);
3713 		sma_val[2][1] = reg & 0xffff;
3714 		sma_val[3][1] = reg >> 16;
3715 
3716 		reg = ioread32(&bp->sma_map2->gpio1);
3717 		sma_val[2][0] = reg & 0xffff;
3718 		sma_val[3][0] = reg >> 16;
3719 
3720 		reg = ioread32(&bp->sma_map2->gpio2);
3721 		sma_val[0][1] = reg & 0xffff;
3722 		sma_val[1][1] = reg >> 16;
3723 	}
3724 
3725 	sma1_show(dev, NULL, buf);
3726 	seq_printf(s, "   sma1: %04x,%04x %s",
3727 		   sma_val[0][0], sma_val[0][1], buf);
3728 
3729 	sma2_show(dev, NULL, buf);
3730 	seq_printf(s, "   sma2: %04x,%04x %s",
3731 		   sma_val[1][0], sma_val[1][1], buf);
3732 
3733 	sma3_show(dev, NULL, buf);
3734 	seq_printf(s, "   sma3: %04x,%04x %s",
3735 		   sma_val[2][0], sma_val[2][1], buf);
3736 
3737 	sma4_show(dev, NULL, buf);
3738 	seq_printf(s, "   sma4: %04x,%04x %s",
3739 		   sma_val[3][0], sma_val[3][1], buf);
3740 
3741 	if (bp->ts0) {
3742 		ts_reg = bp->ts0->mem;
3743 		on = ioread32(&ts_reg->enable);
3744 		src = "GNSS1";
3745 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3746 			   on ? " ON" : "OFF", src);
3747 	}
3748 
3749 	if (bp->ts1) {
3750 		ts_reg = bp->ts1->mem;
3751 		on = ioread32(&ts_reg->enable);
3752 		gpio_input_map(buf, bp, sma_val, 2, NULL);
3753 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3754 			   on ? " ON" : "OFF", buf);
3755 	}
3756 
3757 	if (bp->ts2) {
3758 		ts_reg = bp->ts2->mem;
3759 		on = ioread32(&ts_reg->enable);
3760 		gpio_input_map(buf, bp, sma_val, 3, NULL);
3761 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3762 			   on ? " ON" : "OFF", buf);
3763 	}
3764 
3765 	if (bp->ts3) {
3766 		ts_reg = bp->ts3->mem;
3767 		on = ioread32(&ts_reg->enable);
3768 		gpio_input_map(buf, bp, sma_val, 6, NULL);
3769 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3770 			   on ? " ON" : "OFF", buf);
3771 	}
3772 
3773 	if (bp->ts4) {
3774 		ts_reg = bp->ts4->mem;
3775 		on = ioread32(&ts_reg->enable);
3776 		gpio_input_map(buf, bp, sma_val, 7, NULL);
3777 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3778 			   on ? " ON" : "OFF", buf);
3779 	}
3780 
3781 	if (bp->pps) {
3782 		ts_reg = bp->pps->mem;
3783 		src = "PHC";
3784 		on = ioread32(&ts_reg->enable);
3785 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3786 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3787 			   on && map ? " ON" : "OFF", src);
3788 
3789 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
3790 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3791 			   on && map ? " ON" : "OFF", src);
3792 	}
3793 
3794 	if (bp->fw_cap & OCP_CAP_SIGNAL)
3795 		for (i = 0; i < 4; i++)
3796 			_signal_summary_show(s, bp, i);
3797 
3798 	if (bp->fw_cap & OCP_CAP_FREQ)
3799 		for (i = 0; i < 4; i++)
3800 			_frequency_summary_show(s, i, bp->freq_in[i]);
3801 
3802 	if (bp->irig_out) {
3803 		ctrl = ioread32(&bp->irig_out->ctrl);
3804 		on = ctrl & IRIG_M_CTRL_ENABLE;
3805 		val = ioread32(&bp->irig_out->status);
3806 		gpio_output_map(buf, bp, sma_val, 4);
3807 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3808 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3809 	}
3810 
3811 	if (bp->irig_in) {
3812 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3813 		val = ioread32(&bp->irig_in->status);
3814 		gpio_input_map(buf, bp, sma_val, 4, NULL);
3815 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3816 			   on ? " ON" : "OFF", val, buf);
3817 	}
3818 
3819 	if (bp->dcf_out) {
3820 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3821 		val = ioread32(&bp->dcf_out->status);
3822 		gpio_output_map(buf, bp, sma_val, 5);
3823 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3824 			   on ? " ON" : "OFF", val, buf);
3825 	}
3826 
3827 	if (bp->dcf_in) {
3828 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3829 		val = ioread32(&bp->dcf_in->status);
3830 		gpio_input_map(buf, bp, sma_val, 5, NULL);
3831 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3832 			   on ? " ON" : "OFF", val, buf);
3833 	}
3834 
3835 	if (bp->nmea_out) {
3836 		on = ioread32(&bp->nmea_out->ctrl) & 1;
3837 		val = ioread32(&bp->nmea_out->status);
3838 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3839 			   on ? " ON" : "OFF", val);
3840 	}
3841 
3842 	/* compute src for PPS1, used below. */
3843 	if (bp->pps_select) {
3844 		val = ioread32(&bp->pps_select->gpio1);
3845 		src = &buf[80];
3846 		mac_src = "GNSS1";
3847 		if (val & 0x01) {
3848 			gpio_input_map(src, bp, sma_val, 0, NULL);
3849 			mac_src = src;
3850 		} else if (val & 0x02) {
3851 			src = "MAC";
3852 		} else if (val & 0x04) {
3853 			src = "GNSS1";
3854 		} else {
3855 			src = "----";
3856 			mac_src = src;
3857 		}
3858 	} else {
3859 		src = "?";
3860 		mac_src = src;
3861 	}
3862 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3863 
3864 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3865 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
3866 
3867 	/* assumes automatic switchover/selection */
3868 	val = ioread32(&bp->reg->select);
3869 	switch (val >> 16) {
3870 	case 0:
3871 		sprintf(buf, "----");
3872 		break;
3873 	case 2:
3874 		sprintf(buf, "IRIG");
3875 		break;
3876 	case 3:
3877 		sprintf(buf, "%s via PPS1", src);
3878 		break;
3879 	case 6:
3880 		sprintf(buf, "DCF");
3881 		break;
3882 	default:
3883 		strcpy(buf, "unknown");
3884 		break;
3885 	}
3886 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3887 		   bp->sync ? "sync" : "unsynced");
3888 
3889 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3890 		struct timespec64 sys_ts;
3891 		s64 pre_ns, post_ns, ns;
3892 
3893 		pre_ns = timespec64_to_ns(&sts.pre_ts);
3894 		post_ns = timespec64_to_ns(&sts.post_ts);
3895 		ns = (pre_ns + post_ns) / 2;
3896 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3897 		sys_ts = ns_to_timespec64(ns);
3898 
3899 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3900 			   ts.tv_sec, ts.tv_nsec, &ts);
3901 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3902 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3903 			   bp->utc_tai_offset);
3904 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
3905 			   timespec64_to_ns(&ts) - ns,
3906 			   post_ns - pre_ns);
3907 	}
3908 
3909 	free_page((unsigned long)buf);
3910 	return 0;
3911 }
3912 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3913 
3914 static int
3915 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3916 {
3917 	struct device *dev = s->private;
3918 	struct ptp_ocp *bp;
3919 	u32 val;
3920 	int idx;
3921 
3922 	bp = dev_get_drvdata(dev);
3923 
3924 	val = ioread32(&bp->tod->ctrl);
3925 	if (!(val & TOD_CTRL_ENABLE)) {
3926 		seq_printf(s, "TOD Slave disabled\n");
3927 		return 0;
3928 	}
3929 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3930 
3931 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3932 	idx += (val >> 16) & 3;
3933 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3934 
3935 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3936 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3937 
3938 	val = ioread32(&bp->tod->version);
3939 	seq_printf(s, "TOD Version %d.%d.%d\n",
3940 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
3941 
3942 	val = ioread32(&bp->tod->status);
3943 	seq_printf(s, "Status register: 0x%08X\n", val);
3944 
3945 	val = ioread32(&bp->tod->adj_sec);
3946 	idx = (val & ~INT_MAX) ? -1 : 1;
3947 	idx *= (val & INT_MAX);
3948 	seq_printf(s, "Correction seconds: %d\n", idx);
3949 
3950 	val = ioread32(&bp->tod->utc_status);
3951 	seq_printf(s, "UTC status register: 0x%08X\n", val);
3952 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
3953 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3954 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3955 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3956 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3957 
3958 	val = ioread32(&bp->tod->leap);
3959 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3960 
3961 	return 0;
3962 }
3963 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3964 
3965 static struct dentry *ptp_ocp_debugfs_root;
3966 
3967 static void
3968 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3969 {
3970 	struct dentry *d;
3971 
3972 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3973 	bp->debug_root = d;
3974 	debugfs_create_file("summary", 0444, bp->debug_root,
3975 			    &bp->dev, &ptp_ocp_summary_fops);
3976 	if (bp->tod)
3977 		debugfs_create_file("tod_status", 0444, bp->debug_root,
3978 				    &bp->dev, &ptp_ocp_tod_status_fops);
3979 }
3980 
3981 static void
3982 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3983 {
3984 	debugfs_remove_recursive(bp->debug_root);
3985 }
3986 
3987 static void
3988 ptp_ocp_debugfs_init(void)
3989 {
3990 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3991 }
3992 
3993 static void
3994 ptp_ocp_debugfs_fini(void)
3995 {
3996 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
3997 }
3998 
3999 static void
4000 ptp_ocp_dev_release(struct device *dev)
4001 {
4002 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4003 
4004 	mutex_lock(&ptp_ocp_lock);
4005 	idr_remove(&ptp_ocp_idr, bp->id);
4006 	mutex_unlock(&ptp_ocp_lock);
4007 }
4008 
4009 static int
4010 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4011 {
4012 	int err;
4013 
4014 	mutex_lock(&ptp_ocp_lock);
4015 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4016 	mutex_unlock(&ptp_ocp_lock);
4017 	if (err < 0) {
4018 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4019 		return err;
4020 	}
4021 	bp->id = err;
4022 
4023 	bp->ptp_info = ptp_ocp_clock_info;
4024 	spin_lock_init(&bp->lock);
4025 	bp->gnss_port.line = -1;
4026 	bp->gnss2_port.line = -1;
4027 	bp->mac_port.line = -1;
4028 	bp->nmea_port.line = -1;
4029 	bp->pdev = pdev;
4030 
4031 	device_initialize(&bp->dev);
4032 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4033 	bp->dev.class = &timecard_class;
4034 	bp->dev.parent = &pdev->dev;
4035 	bp->dev.release = ptp_ocp_dev_release;
4036 	dev_set_drvdata(&bp->dev, bp);
4037 
4038 	err = device_add(&bp->dev);
4039 	if (err) {
4040 		dev_err(&bp->dev, "device add failed: %d\n", err);
4041 		goto out;
4042 	}
4043 
4044 	pci_set_drvdata(pdev, bp);
4045 
4046 	return 0;
4047 
4048 out:
4049 	put_device(&bp->dev);
4050 	return err;
4051 }
4052 
4053 static void
4054 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4055 {
4056 	struct device *dev = &bp->dev;
4057 
4058 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4059 		dev_err(dev, "%s symlink failed\n", link);
4060 }
4061 
4062 static void
4063 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4064 {
4065 	struct device *dev, *child;
4066 
4067 	dev = &bp->pdev->dev;
4068 
4069 	child = device_find_child_by_name(dev, name);
4070 	if (!child) {
4071 		dev_err(dev, "Could not find device %s\n", name);
4072 		return;
4073 	}
4074 
4075 	ptp_ocp_symlink(bp, child, link);
4076 	put_device(child);
4077 }
4078 
4079 static int
4080 ptp_ocp_complete(struct ptp_ocp *bp)
4081 {
4082 	struct pps_device *pps;
4083 	char buf[32];
4084 
4085 	if (bp->gnss_port.line != -1) {
4086 		sprintf(buf, "ttyS%d", bp->gnss_port.line);
4087 		ptp_ocp_link_child(bp, buf, "ttyGNSS");
4088 	}
4089 	if (bp->gnss2_port.line != -1) {
4090 		sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4091 		ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4092 	}
4093 	if (bp->mac_port.line != -1) {
4094 		sprintf(buf, "ttyS%d", bp->mac_port.line);
4095 		ptp_ocp_link_child(bp, buf, "ttyMAC");
4096 	}
4097 	if (bp->nmea_port.line != -1) {
4098 		sprintf(buf, "ttyS%d", bp->nmea_port.line);
4099 		ptp_ocp_link_child(bp, buf, "ttyNMEA");
4100 	}
4101 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4102 	ptp_ocp_link_child(bp, buf, "ptp");
4103 
4104 	pps = pps_lookup_dev(bp->ptp);
4105 	if (pps)
4106 		ptp_ocp_symlink(bp, pps->dev, "pps");
4107 
4108 	ptp_ocp_debugfs_add_device(bp);
4109 
4110 	return 0;
4111 }
4112 
4113 static void
4114 ptp_ocp_phc_info(struct ptp_ocp *bp)
4115 {
4116 	struct timespec64 ts;
4117 	u32 version, select;
4118 
4119 	version = ioread32(&bp->reg->version);
4120 	select = ioread32(&bp->reg->select);
4121 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4122 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4123 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4124 		 ptp_clock_index(bp->ptp));
4125 
4126 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4127 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4128 			 ts.tv_sec, ts.tv_nsec,
4129 			 bp->sync ? "in-sync" : "UNSYNCED");
4130 }
4131 
4132 static void
4133 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4134 {
4135 	if (port != -1)
4136 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4137 }
4138 
4139 static void
4140 ptp_ocp_info(struct ptp_ocp *bp)
4141 {
4142 	static int nmea_baud[] = {
4143 		1200, 2400, 4800, 9600, 19200, 38400,
4144 		57600, 115200, 230400, 460800, 921600,
4145 		1000000, 2000000
4146 	};
4147 	struct device *dev = &bp->pdev->dev;
4148 	u32 reg;
4149 
4150 	ptp_ocp_phc_info(bp);
4151 
4152 	ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4153 			    bp->gnss_port.baud);
4154 	ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4155 			    bp->gnss2_port.baud);
4156 	ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4157 	if (bp->nmea_out && bp->nmea_port.line != -1) {
4158 		bp->nmea_port.baud = -1;
4159 
4160 		reg = ioread32(&bp->nmea_out->uart_baud);
4161 		if (reg < ARRAY_SIZE(nmea_baud))
4162 			bp->nmea_port.baud = nmea_baud[reg];
4163 
4164 		ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4165 				    bp->nmea_port.baud);
4166 	}
4167 }
4168 
4169 static void
4170 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4171 {
4172 	struct device *dev = &bp->dev;
4173 
4174 	sysfs_remove_link(&dev->kobj, "ttyGNSS");
4175 	sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4176 	sysfs_remove_link(&dev->kobj, "ttyMAC");
4177 	sysfs_remove_link(&dev->kobj, "ptp");
4178 	sysfs_remove_link(&dev->kobj, "pps");
4179 }
4180 
4181 static void
4182 ptp_ocp_detach(struct ptp_ocp *bp)
4183 {
4184 	int i;
4185 
4186 	ptp_ocp_debugfs_remove_device(bp);
4187 	ptp_ocp_detach_sysfs(bp);
4188 	ptp_ocp_attr_group_del(bp);
4189 	if (timer_pending(&bp->watchdog))
4190 		del_timer_sync(&bp->watchdog);
4191 	if (bp->ts0)
4192 		ptp_ocp_unregister_ext(bp->ts0);
4193 	if (bp->ts1)
4194 		ptp_ocp_unregister_ext(bp->ts1);
4195 	if (bp->ts2)
4196 		ptp_ocp_unregister_ext(bp->ts2);
4197 	if (bp->ts3)
4198 		ptp_ocp_unregister_ext(bp->ts3);
4199 	if (bp->ts4)
4200 		ptp_ocp_unregister_ext(bp->ts4);
4201 	if (bp->pps)
4202 		ptp_ocp_unregister_ext(bp->pps);
4203 	for (i = 0; i < 4; i++)
4204 		if (bp->signal_out[i])
4205 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4206 	if (bp->gnss_port.line != -1)
4207 		serial8250_unregister_port(bp->gnss_port.line);
4208 	if (bp->gnss2_port.line != -1)
4209 		serial8250_unregister_port(bp->gnss2_port.line);
4210 	if (bp->mac_port.line != -1)
4211 		serial8250_unregister_port(bp->mac_port.line);
4212 	if (bp->nmea_port.line != -1)
4213 		serial8250_unregister_port(bp->nmea_port.line);
4214 	platform_device_unregister(bp->spi_flash);
4215 	platform_device_unregister(bp->i2c_ctrl);
4216 	if (bp->i2c_clk)
4217 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4218 	if (bp->n_irqs)
4219 		pci_free_irq_vectors(bp->pdev);
4220 	if (bp->ptp)
4221 		ptp_clock_unregister(bp->ptp);
4222 	kfree(bp->ptp_info.pin_config);
4223 	device_unregister(&bp->dev);
4224 }
4225 
4226 static int ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll,
4227 					void *priv,
4228 					enum dpll_lock_status *status,
4229 					struct netlink_ext_ack *extack)
4230 {
4231 	struct ptp_ocp *bp = priv;
4232 
4233 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4234 
4235 	return 0;
4236 }
4237 
4238 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4239 				  const struct dpll_device *dpll, void *priv,
4240 				  enum dpll_pin_state *state,
4241 				  struct netlink_ext_ack *extack)
4242 {
4243 	struct ptp_ocp *bp = priv;
4244 	int idx;
4245 
4246 	if (bp->pps_select) {
4247 		idx = ioread32(&bp->pps_select->gpio1);
4248 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4249 						      DPLL_PIN_STATE_SELECTABLE;
4250 		return 0;
4251 	}
4252 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4253 	return -EINVAL;
4254 }
4255 
4256 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4257 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4258 {
4259 	*mode = DPLL_MODE_AUTOMATIC;
4260 	return 0;
4261 }
4262 
4263 static bool ptp_ocp_dpll_mode_supported(const struct dpll_device *dpll,
4264 					void *priv, const enum dpll_mode mode,
4265 					struct netlink_ext_ack *extack)
4266 {
4267 	return mode == DPLL_MODE_AUTOMATIC;
4268 }
4269 
4270 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4271 				      void *pin_priv,
4272 				      const struct dpll_device *dpll,
4273 				      void *priv,
4274 				      enum dpll_pin_direction *direction,
4275 				      struct netlink_ext_ack *extack)
4276 {
4277 	struct ptp_ocp_sma_connector *sma = pin_priv;
4278 
4279 	*direction = sma->mode == SMA_MODE_IN ?
4280 				  DPLL_PIN_DIRECTION_INPUT :
4281 				  DPLL_PIN_DIRECTION_OUTPUT;
4282 	return 0;
4283 }
4284 
4285 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4286 				      void *pin_priv,
4287 				      const struct dpll_device *dpll,
4288 				      void *dpll_priv,
4289 				      enum dpll_pin_direction direction,
4290 				      struct netlink_ext_ack *extack)
4291 {
4292 	struct ptp_ocp_sma_connector *sma = pin_priv;
4293 	struct ptp_ocp *bp = dpll_priv;
4294 	enum ptp_ocp_sma_mode mode;
4295 	int sma_nr = (sma - bp->sma);
4296 
4297 	if (sma->fixed_dir)
4298 		return -EOPNOTSUPP;
4299 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4300 			    SMA_MODE_IN : SMA_MODE_OUT;
4301 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr);
4302 }
4303 
4304 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4305 				      void *pin_priv,
4306 				      const struct dpll_device *dpll,
4307 				      void *dpll_priv, u64 frequency,
4308 				      struct netlink_ext_ack *extack)
4309 {
4310 	struct ptp_ocp_sma_connector *sma = pin_priv;
4311 	struct ptp_ocp *bp = dpll_priv;
4312 	const struct ocp_selector *tbl;
4313 	int sma_nr = (sma - bp->sma);
4314 	int i;
4315 
4316 	if (sma->fixed_fcn)
4317 		return -EOPNOTSUPP;
4318 
4319 	tbl = bp->sma_op->tbl[sma->mode];
4320 	for (i = 0; tbl[i].name; i++)
4321 		if (tbl[i].frequency == frequency)
4322 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr);
4323 	return -EINVAL;
4324 }
4325 
4326 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4327 				      void *pin_priv,
4328 				      const struct dpll_device *dpll,
4329 				      void *dpll_priv, u64 *frequency,
4330 				      struct netlink_ext_ack *extack)
4331 {
4332 	struct ptp_ocp_sma_connector *sma = pin_priv;
4333 	struct ptp_ocp *bp = dpll_priv;
4334 	const struct ocp_selector *tbl;
4335 	int sma_nr = (sma - bp->sma);
4336 	u32 val;
4337 	int i;
4338 
4339 	val = bp->sma_op->get(bp, sma_nr);
4340 	tbl = bp->sma_op->tbl[sma->mode];
4341 	for (i = 0; tbl[i].name; i++)
4342 		if (val == tbl[i].value) {
4343 			*frequency = tbl[i].frequency;
4344 			return 0;
4345 		}
4346 
4347 	return -EINVAL;
4348 }
4349 
4350 static const struct dpll_device_ops dpll_ops = {
4351 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4352 	.mode_get = ptp_ocp_dpll_mode_get,
4353 	.mode_supported = ptp_ocp_dpll_mode_supported,
4354 };
4355 
4356 static const struct dpll_pin_ops dpll_pins_ops = {
4357 	.frequency_get = ptp_ocp_dpll_frequency_get,
4358 	.frequency_set = ptp_ocp_dpll_frequency_set,
4359 	.direction_get = ptp_ocp_dpll_direction_get,
4360 	.direction_set = ptp_ocp_dpll_direction_set,
4361 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4362 };
4363 
4364 static void
4365 ptp_ocp_sync_work(struct work_struct *work)
4366 {
4367 	struct ptp_ocp *bp;
4368 	bool sync;
4369 
4370 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4371 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4372 
4373 	if (bp->sync != sync)
4374 		dpll_device_change_ntf(bp->dpll);
4375 
4376 	bp->sync = sync;
4377 
4378 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4379 }
4380 
4381 static int
4382 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4383 {
4384 	struct devlink *devlink;
4385 	struct ptp_ocp *bp;
4386 	int err, i;
4387 	u64 clkid;
4388 
4389 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4390 	if (!devlink) {
4391 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4392 		return -ENOMEM;
4393 	}
4394 
4395 	err = pci_enable_device(pdev);
4396 	if (err) {
4397 		dev_err(&pdev->dev, "pci_enable_device\n");
4398 		goto out_free;
4399 	}
4400 
4401 	bp = devlink_priv(devlink);
4402 	err = ptp_ocp_device_init(bp, pdev);
4403 	if (err)
4404 		goto out_disable;
4405 
4406 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4407 
4408 	/* compat mode.
4409 	 * Older FPGA firmware only returns 2 irq's.
4410 	 * allow this - if not all of the IRQ's are returned, skip the
4411 	 * extra devices and just register the clock.
4412 	 */
4413 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4414 	if (err < 0) {
4415 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4416 		goto out;
4417 	}
4418 	bp->n_irqs = err;
4419 	pci_set_master(pdev);
4420 
4421 	err = ptp_ocp_register_resources(bp, id->driver_data);
4422 	if (err)
4423 		goto out;
4424 
4425 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4426 	if (IS_ERR(bp->ptp)) {
4427 		err = PTR_ERR(bp->ptp);
4428 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4429 		bp->ptp = NULL;
4430 		goto out;
4431 	}
4432 
4433 	err = ptp_ocp_complete(bp);
4434 	if (err)
4435 		goto out;
4436 
4437 	ptp_ocp_info(bp);
4438 	devlink_register(devlink);
4439 
4440 	clkid = pci_get_dsn(pdev);
4441 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4442 	if (IS_ERR(bp->dpll)) {
4443 		err = PTR_ERR(bp->dpll);
4444 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4445 		goto out;
4446 	}
4447 
4448 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4449 	if (err)
4450 		goto out;
4451 
4452 	for (i = 0; i < OCP_SMA_NUM; i++) {
4453 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4454 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4455 			err = PTR_ERR(bp->sma[i].dpll_pin);
4456 			goto out_dpll;
4457 		}
4458 
4459 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4460 					&bp->sma[i]);
4461 		if (err) {
4462 			dpll_pin_put(bp->sma[i].dpll_pin);
4463 			goto out_dpll;
4464 		}
4465 	}
4466 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4467 
4468 	return 0;
4469 out_dpll:
4470 	while (i) {
4471 		--i;
4472 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4473 		dpll_pin_put(bp->sma[i].dpll_pin);
4474 	}
4475 	dpll_device_put(bp->dpll);
4476 out:
4477 	ptp_ocp_detach(bp);
4478 out_disable:
4479 	pci_disable_device(pdev);
4480 out_free:
4481 	devlink_free(devlink);
4482 	return err;
4483 }
4484 
4485 static void
4486 ptp_ocp_remove(struct pci_dev *pdev)
4487 {
4488 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4489 	struct devlink *devlink = priv_to_devlink(bp);
4490 	int i;
4491 
4492 	cancel_delayed_work_sync(&bp->sync_work);
4493 	for (i = 0; i < OCP_SMA_NUM; i++) {
4494 		if (bp->sma[i].dpll_pin) {
4495 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, bp);
4496 			dpll_pin_put(bp->sma[i].dpll_pin);
4497 		}
4498 	}
4499 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4500 	dpll_device_put(bp->dpll);
4501 	devlink_unregister(devlink);
4502 	ptp_ocp_detach(bp);
4503 	pci_disable_device(pdev);
4504 
4505 	devlink_free(devlink);
4506 }
4507 
4508 static struct pci_driver ptp_ocp_driver = {
4509 	.name		= KBUILD_MODNAME,
4510 	.id_table	= ptp_ocp_pcidev_id,
4511 	.probe		= ptp_ocp_probe,
4512 	.remove		= ptp_ocp_remove,
4513 };
4514 
4515 static int
4516 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4517 			  unsigned long action, void *data)
4518 {
4519 	struct device *dev, *child = data;
4520 	struct ptp_ocp *bp;
4521 	bool add;
4522 
4523 	switch (action) {
4524 	case BUS_NOTIFY_ADD_DEVICE:
4525 	case BUS_NOTIFY_DEL_DEVICE:
4526 		add = action == BUS_NOTIFY_ADD_DEVICE;
4527 		break;
4528 	default:
4529 		return 0;
4530 	}
4531 
4532 	if (!i2c_verify_adapter(child))
4533 		return 0;
4534 
4535 	dev = child;
4536 	while ((dev = dev->parent))
4537 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4538 			goto found;
4539 	return 0;
4540 
4541 found:
4542 	bp = dev_get_drvdata(dev);
4543 	if (add)
4544 		ptp_ocp_symlink(bp, child, "i2c");
4545 	else
4546 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4547 
4548 	return 0;
4549 }
4550 
4551 static struct notifier_block ptp_ocp_i2c_notifier = {
4552 	.notifier_call = ptp_ocp_i2c_notifier_call,
4553 };
4554 
4555 static int __init
4556 ptp_ocp_init(void)
4557 {
4558 	const char *what;
4559 	int err;
4560 
4561 	ptp_ocp_debugfs_init();
4562 
4563 	what = "timecard class";
4564 	err = class_register(&timecard_class);
4565 	if (err)
4566 		goto out;
4567 
4568 	what = "i2c notifier";
4569 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4570 	if (err)
4571 		goto out_notifier;
4572 
4573 	what = "ptp_ocp driver";
4574 	err = pci_register_driver(&ptp_ocp_driver);
4575 	if (err)
4576 		goto out_register;
4577 
4578 	return 0;
4579 
4580 out_register:
4581 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4582 out_notifier:
4583 	class_unregister(&timecard_class);
4584 out:
4585 	ptp_ocp_debugfs_fini();
4586 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4587 	return err;
4588 }
4589 
4590 static void __exit
4591 ptp_ocp_fini(void)
4592 {
4593 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4594 	pci_unregister_driver(&ptp_ocp_driver);
4595 	class_unregister(&timecard_class);
4596 	ptp_ocp_debugfs_fini();
4597 }
4598 
4599 module_init(ptp_ocp_init);
4600 module_exit(ptp_ocp_fini);
4601 
4602 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4603 MODULE_LICENSE("GPL v2");
4604