xref: /linux/drivers/ptp/ptp_ocp.c (revision 7a4ffec9fd54ea27395e24dff726dbf58e2fe06b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 #define PCI_VENDOR_ID_ADVA			0xad5a
38 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
39 
40 static struct class timecard_class = {
41 	.name		= "timecard",
42 };
43 
44 struct ocp_reg {
45 	u32	ctrl;
46 	u32	status;
47 	u32	select;
48 	u32	version;
49 	u32	time_ns;
50 	u32	time_sec;
51 	u32	__pad0[2];
52 	u32	adjust_ns;
53 	u32	adjust_sec;
54 	u32	__pad1[2];
55 	u32	offset_ns;
56 	u32	offset_window_ns;
57 	u32	__pad2[2];
58 	u32	drift_ns;
59 	u32	drift_window_ns;
60 	u32	__pad3[6];
61 	u32	servo_offset_p;
62 	u32	servo_offset_i;
63 	u32	servo_drift_p;
64 	u32	servo_drift_i;
65 	u32	status_offset;
66 	u32	status_drift;
67 };
68 
69 struct ptp_ocp_servo_conf {
70 	u32	servo_offset_p;
71 	u32	servo_offset_i;
72 	u32	servo_drift_p;
73 	u32	servo_drift_i;
74 };
75 
76 #define OCP_CTRL_ENABLE		BIT(0)
77 #define OCP_CTRL_ADJUST_TIME	BIT(1)
78 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
79 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
80 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
81 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
82 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
83 
84 #define OCP_STATUS_IN_SYNC	BIT(0)
85 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
86 
87 #define OCP_SELECT_CLK_NONE	0
88 #define OCP_SELECT_CLK_REG	0xfe
89 
90 struct tod_reg {
91 	u32	ctrl;
92 	u32	status;
93 	u32	uart_polarity;
94 	u32	version;
95 	u32	adj_sec;
96 	u32	__pad0[3];
97 	u32	uart_baud;
98 	u32	__pad1[3];
99 	u32	utc_status;
100 	u32	leap;
101 };
102 
103 #define TOD_CTRL_PROTOCOL	BIT(28)
104 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
105 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
106 #define TOD_CTRL_ENABLE		BIT(0)
107 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
108 #define TOD_CTRL_GNSS_SHIFT	24
109 
110 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
111 #define TOD_STATUS_UTC_VALID		BIT(8)
112 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
113 #define TOD_STATUS_LEAP_VALID		BIT(16)
114 
115 struct ts_reg {
116 	u32	enable;
117 	u32	error;
118 	u32	polarity;
119 	u32	version;
120 	u32	__pad0[4];
121 	u32	cable_delay;
122 	u32	__pad1[3];
123 	u32	intr;
124 	u32	intr_mask;
125 	u32	event_count;
126 	u32	__pad2[1];
127 	u32	ts_count;
128 	u32	time_ns;
129 	u32	time_sec;
130 	u32	data_width;
131 	u32	data;
132 };
133 
134 struct pps_reg {
135 	u32	ctrl;
136 	u32	status;
137 	u32	__pad0[6];
138 	u32	cable_delay;
139 };
140 
141 #define PPS_STATUS_FILTER_ERR	BIT(0)
142 #define PPS_STATUS_SUPERV_ERR	BIT(1)
143 
144 struct img_reg {
145 	u32	version;
146 };
147 
148 struct gpio_reg {
149 	u32	gpio1;
150 	u32	__pad0;
151 	u32	gpio2;
152 	u32	__pad1;
153 };
154 
155 struct irig_master_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_M_CTRL_ENABLE	BIT(0)
165 
166 struct irig_slave_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 	u32	mode_ctrl;
173 };
174 
175 #define IRIG_S_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_master_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_M_CTRL_ENABLE	BIT(0)
186 
187 struct dcf_slave_reg {
188 	u32	ctrl;
189 	u32	status;
190 	u32	__pad0;
191 	u32	version;
192 	u32	adj_sec;
193 };
194 
195 #define DCF_S_CTRL_ENABLE	BIT(0)
196 
197 struct signal_reg {
198 	u32	enable;
199 	u32	status;
200 	u32	polarity;
201 	u32	version;
202 	u32	__pad0[4];
203 	u32	cable_delay;
204 	u32	__pad1[3];
205 	u32	intr;
206 	u32	intr_mask;
207 	u32	__pad2[2];
208 	u32	start_ns;
209 	u32	start_sec;
210 	u32	pulse_ns;
211 	u32	pulse_sec;
212 	u32	period_ns;
213 	u32	period_sec;
214 	u32	repeat_count;
215 };
216 
217 struct frequency_reg {
218 	u32	ctrl;
219 	u32	status;
220 };
221 
222 struct board_config_reg {
223 	u32 mro50_serial_activate;
224 };
225 
226 #define FREQ_STATUS_VALID	BIT(31)
227 #define FREQ_STATUS_ERROR	BIT(30)
228 #define FREQ_STATUS_OVERRUN	BIT(29)
229 #define FREQ_STATUS_MASK	GENMASK(23, 0)
230 
231 struct ptp_ocp_flash_info {
232 	const char *name;
233 	int pci_offset;
234 	int data_size;
235 	void *data;
236 };
237 
238 struct ptp_ocp_firmware_header {
239 	char magic[4];
240 	__be16 pci_vendor_id;
241 	__be16 pci_device_id;
242 	__be32 image_size;
243 	__be16 hw_revision;
244 	__be16 crc;
245 };
246 
247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
248 
249 struct ptp_ocp_i2c_info {
250 	const char *name;
251 	unsigned long fixed_rate;
252 	size_t data_size;
253 	void *data;
254 };
255 
256 struct ptp_ocp_ext_info {
257 	int index;
258 	irqreturn_t (*irq_fcn)(int irq, void *priv);
259 	int (*enable)(void *priv, u32 req, bool enable);
260 };
261 
262 struct ptp_ocp_ext_src {
263 	void __iomem		*mem;
264 	struct ptp_ocp		*bp;
265 	struct ptp_ocp_ext_info	*info;
266 	int			irq_vec;
267 };
268 
269 enum ptp_ocp_sma_mode {
270 	SMA_MODE_IN,
271 	SMA_MODE_OUT,
272 };
273 
274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
275 	DPLL_PIN_FREQUENCY_1PPS,
276 	DPLL_PIN_FREQUENCY_10MHZ,
277 	DPLL_PIN_FREQUENCY_IRIG_B,
278 	DPLL_PIN_FREQUENCY_DCF77,
279 };
280 
281 struct ptp_ocp_sma_connector {
282 	enum	ptp_ocp_sma_mode mode;
283 	bool	fixed_fcn;
284 	bool	fixed_dir;
285 	bool	disabled;
286 	u8	default_fcn;
287 	struct dpll_pin		   *dpll_pin;
288 	struct dpll_pin_properties dpll_prop;
289 };
290 
291 struct ocp_attr_group {
292 	u64 cap;
293 	const struct attribute_group *group;
294 };
295 
296 #define OCP_CAP_BASIC	BIT(0)
297 #define OCP_CAP_SIGNAL	BIT(1)
298 #define OCP_CAP_FREQ	BIT(2)
299 
300 struct ptp_ocp_signal {
301 	ktime_t		period;
302 	ktime_t		pulse;
303 	ktime_t		phase;
304 	ktime_t		start;
305 	int		duty;
306 	bool		polarity;
307 	bool		running;
308 };
309 
310 struct ptp_ocp_serial_port {
311 	int line;
312 	int baud;
313 };
314 
315 #define OCP_BOARD_ID_LEN		13
316 #define OCP_SERIAL_LEN			6
317 #define OCP_SMA_NUM			4
318 
319 enum {
320 	PORT_GNSS,
321 	PORT_GNSS2,
322 	PORT_MAC, /* miniature atomic clock */
323 	PORT_NMEA,
324 
325 	__PORT_COUNT,
326 };
327 
328 struct ptp_ocp {
329 	struct pci_dev		*pdev;
330 	struct device		dev;
331 	spinlock_t		lock;
332 	struct ocp_reg __iomem	*reg;
333 	struct tod_reg __iomem	*tod;
334 	struct pps_reg __iomem	*pps_to_ext;
335 	struct pps_reg __iomem	*pps_to_clk;
336 	struct board_config_reg __iomem	*board_config;
337 	struct gpio_reg __iomem	*pps_select;
338 	struct gpio_reg __iomem	*sma_map1;
339 	struct gpio_reg __iomem	*sma_map2;
340 	struct irig_master_reg	__iomem *irig_out;
341 	struct irig_slave_reg	__iomem *irig_in;
342 	struct dcf_master_reg	__iomem *dcf_out;
343 	struct dcf_slave_reg	__iomem *dcf_in;
344 	struct tod_reg		__iomem *nmea_out;
345 	struct frequency_reg	__iomem *freq_in[4];
346 	struct ptp_ocp_ext_src	*signal_out[4];
347 	struct ptp_ocp_ext_src	*pps;
348 	struct ptp_ocp_ext_src	*ts0;
349 	struct ptp_ocp_ext_src	*ts1;
350 	struct ptp_ocp_ext_src	*ts2;
351 	struct ptp_ocp_ext_src	*ts3;
352 	struct ptp_ocp_ext_src	*ts4;
353 	struct ocp_art_gpio_reg __iomem *art_sma;
354 	struct img_reg __iomem	*image;
355 	struct ptp_clock	*ptp;
356 	struct ptp_clock_info	ptp_info;
357 	struct platform_device	*i2c_ctrl;
358 	struct platform_device	*spi_flash;
359 	struct clk_hw		*i2c_clk;
360 	struct timer_list	watchdog;
361 	const struct attribute_group **attr_group;
362 	const struct ptp_ocp_eeprom_map *eeprom_map;
363 	struct dentry		*debug_root;
364 	bool			sync;
365 	time64_t		gnss_lost;
366 	struct delayed_work	sync_work;
367 	int			id;
368 	int			n_irqs;
369 	struct ptp_ocp_serial_port	port[__PORT_COUNT];
370 	bool			fw_loader;
371 	u8			fw_tag;
372 	u16			fw_version;
373 	u8			board_id[OCP_BOARD_ID_LEN];
374 	u8			serial[OCP_SERIAL_LEN];
375 	bool			has_eeprom_data;
376 	u32			pps_req_map;
377 	int			flash_start;
378 	u32			utc_tai_offset;
379 	u32			ts_window_adjust;
380 	u64			fw_cap;
381 	struct ptp_ocp_signal	signal[4];
382 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
383 	const struct ocp_sma_op *sma_op;
384 	struct dpll_device *dpll;
385 };
386 
387 #define OCP_REQ_TIMESTAMP	BIT(0)
388 #define OCP_REQ_PPS		BIT(1)
389 
390 struct ocp_resource {
391 	unsigned long offset;
392 	int size;
393 	int irq_vec;
394 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
395 	void *extra;
396 	unsigned long bp_offset;
397 	const char * const name;
398 };
399 
400 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
401 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
402 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
403 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
404 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
406 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
407 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
408 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
409 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
410 				      struct ptp_perout_request *req);
411 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
412 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
413 
414 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
415 
416 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
417 
418 static const struct ocp_attr_group fb_timecard_groups[];
419 
420 static const struct ocp_attr_group art_timecard_groups[];
421 
422 static const struct ocp_attr_group adva_timecard_groups[];
423 
424 struct ptp_ocp_eeprom_map {
425 	u16	off;
426 	u16	len;
427 	u32	bp_offset;
428 	const void * const tag;
429 };
430 
431 #define EEPROM_ENTRY(addr, member)				\
432 	.off = addr,						\
433 	.len = sizeof_field(struct ptp_ocp, member),		\
434 	.bp_offset = offsetof(struct ptp_ocp, member)
435 
436 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
437 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
438 })
439 
440 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
441 	{ EEPROM_ENTRY(0x43, board_id) },
442 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
443 	{ }
444 };
445 
446 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
447 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
448 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
449 	{ }
450 };
451 
452 #define bp_assign_entry(bp, res, val) ({				\
453 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
454 	*(typeof(val) *)addr = val;					\
455 })
456 
457 #define OCP_RES_LOCATION(member) \
458 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
459 
460 #define OCP_MEM_RESOURCE(member) \
461 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
462 
463 #define OCP_SERIAL_RESOURCE(member) \
464 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
465 
466 #define OCP_I2C_RESOURCE(member) \
467 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
468 
469 #define OCP_SPI_RESOURCE(member) \
470 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
471 
472 #define OCP_EXT_RESOURCE(member) \
473 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
474 
475 /* This is the MSI vector mapping used.
476  * 0: PPS (TS5)
477  * 1: TS0
478  * 2: TS1
479  * 3: GNSS1
480  * 4: GNSS2
481  * 5: MAC
482  * 6: TS2
483  * 7: I2C controller
484  * 8: HWICAP (notused)
485  * 9: SPI Flash
486  * 10: NMEA
487  * 11: Signal Generator 1
488  * 12: Signal Generator 2
489  * 13: Signal Generator 3
490  * 14: Signal Generator 4
491  * 15: TS3
492  * 16: TS4
493  --
494  * 8: Orolia TS1
495  * 10: Orolia TS2
496  * 11: Orolia TS0 (GNSS)
497  * 12: Orolia PPS
498  * 14: Orolia TS3
499  * 15: Orolia TS4
500  */
501 
502 static struct ocp_resource ocp_fb_resource[] = {
503 	{
504 		OCP_MEM_RESOURCE(reg),
505 		.offset = 0x01000000, .size = 0x10000,
506 	},
507 	{
508 		OCP_EXT_RESOURCE(ts0),
509 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
510 		.extra = &(struct ptp_ocp_ext_info) {
511 			.index = 0,
512 			.irq_fcn = ptp_ocp_ts_irq,
513 			.enable = ptp_ocp_ts_enable,
514 		},
515 	},
516 	{
517 		OCP_EXT_RESOURCE(ts1),
518 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
519 		.extra = &(struct ptp_ocp_ext_info) {
520 			.index = 1,
521 			.irq_fcn = ptp_ocp_ts_irq,
522 			.enable = ptp_ocp_ts_enable,
523 		},
524 	},
525 	{
526 		OCP_EXT_RESOURCE(ts2),
527 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
528 		.extra = &(struct ptp_ocp_ext_info) {
529 			.index = 2,
530 			.irq_fcn = ptp_ocp_ts_irq,
531 			.enable = ptp_ocp_ts_enable,
532 		},
533 	},
534 	{
535 		OCP_EXT_RESOURCE(ts3),
536 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
537 		.extra = &(struct ptp_ocp_ext_info) {
538 			.index = 3,
539 			.irq_fcn = ptp_ocp_ts_irq,
540 			.enable = ptp_ocp_ts_enable,
541 		},
542 	},
543 	{
544 		OCP_EXT_RESOURCE(ts4),
545 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
546 		.extra = &(struct ptp_ocp_ext_info) {
547 			.index = 4,
548 			.irq_fcn = ptp_ocp_ts_irq,
549 			.enable = ptp_ocp_ts_enable,
550 		},
551 	},
552 	/* Timestamp for PHC and/or PPS generator */
553 	{
554 		OCP_EXT_RESOURCE(pps),
555 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
556 		.extra = &(struct ptp_ocp_ext_info) {
557 			.index = 5,
558 			.irq_fcn = ptp_ocp_ts_irq,
559 			.enable = ptp_ocp_ts_enable,
560 		},
561 	},
562 	{
563 		OCP_EXT_RESOURCE(signal_out[0]),
564 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
565 		.extra = &(struct ptp_ocp_ext_info) {
566 			.index = 1,
567 			.irq_fcn = ptp_ocp_signal_irq,
568 			.enable = ptp_ocp_signal_enable,
569 		},
570 	},
571 	{
572 		OCP_EXT_RESOURCE(signal_out[1]),
573 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
574 		.extra = &(struct ptp_ocp_ext_info) {
575 			.index = 2,
576 			.irq_fcn = ptp_ocp_signal_irq,
577 			.enable = ptp_ocp_signal_enable,
578 		},
579 	},
580 	{
581 		OCP_EXT_RESOURCE(signal_out[2]),
582 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
583 		.extra = &(struct ptp_ocp_ext_info) {
584 			.index = 3,
585 			.irq_fcn = ptp_ocp_signal_irq,
586 			.enable = ptp_ocp_signal_enable,
587 		},
588 	},
589 	{
590 		OCP_EXT_RESOURCE(signal_out[3]),
591 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
592 		.extra = &(struct ptp_ocp_ext_info) {
593 			.index = 4,
594 			.irq_fcn = ptp_ocp_signal_irq,
595 			.enable = ptp_ocp_signal_enable,
596 		},
597 	},
598 	{
599 		OCP_MEM_RESOURCE(pps_to_ext),
600 		.offset = 0x01030000, .size = 0x10000,
601 	},
602 	{
603 		OCP_MEM_RESOURCE(pps_to_clk),
604 		.offset = 0x01040000, .size = 0x10000,
605 	},
606 	{
607 		OCP_MEM_RESOURCE(tod),
608 		.offset = 0x01050000, .size = 0x10000,
609 	},
610 	{
611 		OCP_MEM_RESOURCE(irig_in),
612 		.offset = 0x01070000, .size = 0x10000,
613 	},
614 	{
615 		OCP_MEM_RESOURCE(irig_out),
616 		.offset = 0x01080000, .size = 0x10000,
617 	},
618 	{
619 		OCP_MEM_RESOURCE(dcf_in),
620 		.offset = 0x01090000, .size = 0x10000,
621 	},
622 	{
623 		OCP_MEM_RESOURCE(dcf_out),
624 		.offset = 0x010A0000, .size = 0x10000,
625 	},
626 	{
627 		OCP_MEM_RESOURCE(nmea_out),
628 		.offset = 0x010B0000, .size = 0x10000,
629 	},
630 	{
631 		OCP_MEM_RESOURCE(image),
632 		.offset = 0x00020000, .size = 0x1000,
633 	},
634 	{
635 		OCP_MEM_RESOURCE(pps_select),
636 		.offset = 0x00130000, .size = 0x1000,
637 	},
638 	{
639 		OCP_MEM_RESOURCE(sma_map1),
640 		.offset = 0x00140000, .size = 0x1000,
641 	},
642 	{
643 		OCP_MEM_RESOURCE(sma_map2),
644 		.offset = 0x00220000, .size = 0x1000,
645 	},
646 	{
647 		OCP_I2C_RESOURCE(i2c_ctrl),
648 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
649 		.extra = &(struct ptp_ocp_i2c_info) {
650 			.name = "xiic-i2c",
651 			.fixed_rate = 50000000,
652 			.data_size = sizeof(struct xiic_i2c_platform_data),
653 			.data = &(struct xiic_i2c_platform_data) {
654 				.num_devices = 2,
655 				.devices = (struct i2c_board_info[]) {
656 					{ I2C_BOARD_INFO("24c02", 0x50) },
657 					{ I2C_BOARD_INFO("24mac402", 0x58),
658 					  .platform_data = "mac" },
659 				},
660 			},
661 		},
662 	},
663 	{
664 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
665 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
666 		.extra = &(struct ptp_ocp_serial_port) {
667 			.baud = 115200,
668 		},
669 	},
670 	{
671 		OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
672 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
673 		.extra = &(struct ptp_ocp_serial_port) {
674 			.baud = 115200,
675 		},
676 	},
677 	{
678 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
679 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
680 		.extra = &(struct ptp_ocp_serial_port) {
681 			.baud = 57600,
682 		},
683 	},
684 	{
685 		OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
686 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
687 	},
688 	{
689 		OCP_SPI_RESOURCE(spi_flash),
690 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
691 		.extra = &(struct ptp_ocp_flash_info) {
692 			.name = "xilinx_spi", .pci_offset = 0,
693 			.data_size = sizeof(struct xspi_platform_data),
694 			.data = &(struct xspi_platform_data) {
695 				.num_chipselect = 1,
696 				.bits_per_word = 8,
697 				.num_devices = 1,
698 				.force_irq = true,
699 				.devices = &(struct spi_board_info) {
700 					.modalias = "spi-nor",
701 				},
702 			},
703 		},
704 	},
705 	{
706 		OCP_MEM_RESOURCE(freq_in[0]),
707 		.offset = 0x01200000, .size = 0x10000,
708 	},
709 	{
710 		OCP_MEM_RESOURCE(freq_in[1]),
711 		.offset = 0x01210000, .size = 0x10000,
712 	},
713 	{
714 		OCP_MEM_RESOURCE(freq_in[2]),
715 		.offset = 0x01220000, .size = 0x10000,
716 	},
717 	{
718 		OCP_MEM_RESOURCE(freq_in[3]),
719 		.offset = 0x01230000, .size = 0x10000,
720 	},
721 	{
722 		.setup = ptp_ocp_fb_board_init,
723 		.extra = &(struct ptp_ocp_servo_conf) {
724 			.servo_offset_p = 0x2000,
725 			.servo_offset_i = 0x1000,
726 			.servo_drift_p = 0,
727 			.servo_drift_i = 0,
728 		},
729 	},
730 	{ }
731 };
732 
733 #define OCP_ART_CONFIG_SIZE		144
734 #define OCP_ART_TEMP_TABLE_SIZE		368
735 
736 struct ocp_art_gpio_reg {
737 	struct {
738 		u32	gpio;
739 		u32	__pad[3];
740 	} map[4];
741 };
742 
743 static struct ocp_resource ocp_art_resource[] = {
744 	{
745 		OCP_MEM_RESOURCE(reg),
746 		.offset = 0x01000000, .size = 0x10000,
747 	},
748 	{
749 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
750 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
751 		.extra = &(struct ptp_ocp_serial_port) {
752 			.baud = 115200,
753 		},
754 	},
755 	{
756 		OCP_MEM_RESOURCE(art_sma),
757 		.offset = 0x003C0000, .size = 0x1000,
758 	},
759 	/* Timestamp associated with GNSS1 receiver PPS */
760 	{
761 		OCP_EXT_RESOURCE(ts0),
762 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
763 		.extra = &(struct ptp_ocp_ext_info) {
764 			.index = 0,
765 			.irq_fcn = ptp_ocp_ts_irq,
766 			.enable = ptp_ocp_ts_enable,
767 		},
768 	},
769 	{
770 		OCP_EXT_RESOURCE(ts1),
771 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
772 		.extra = &(struct ptp_ocp_ext_info) {
773 			.index = 1,
774 			.irq_fcn = ptp_ocp_ts_irq,
775 			.enable = ptp_ocp_ts_enable,
776 		},
777 	},
778 	{
779 		OCP_EXT_RESOURCE(ts2),
780 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
781 		.extra = &(struct ptp_ocp_ext_info) {
782 			.index = 2,
783 			.irq_fcn = ptp_ocp_ts_irq,
784 			.enable = ptp_ocp_ts_enable,
785 		},
786 	},
787 	{
788 		OCP_EXT_RESOURCE(ts3),
789 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
790 		.extra = &(struct ptp_ocp_ext_info) {
791 			.index = 3,
792 			.irq_fcn = ptp_ocp_ts_irq,
793 			.enable = ptp_ocp_ts_enable,
794 		},
795 	},
796 	{
797 		OCP_EXT_RESOURCE(ts4),
798 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
799 		.extra = &(struct ptp_ocp_ext_info) {
800 			.index = 4,
801 			.irq_fcn = ptp_ocp_ts_irq,
802 			.enable = ptp_ocp_ts_enable,
803 		},
804 	},
805 	/* Timestamp associated with Internal PPS of the card */
806 	{
807 		OCP_EXT_RESOURCE(pps),
808 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
809 		.extra = &(struct ptp_ocp_ext_info) {
810 			.index = 5,
811 			.irq_fcn = ptp_ocp_ts_irq,
812 			.enable = ptp_ocp_ts_enable,
813 		},
814 	},
815 	{
816 		OCP_SPI_RESOURCE(spi_flash),
817 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
818 		.extra = &(struct ptp_ocp_flash_info) {
819 			.name = "spi_altera", .pci_offset = 0,
820 			.data_size = sizeof(struct altera_spi_platform_data),
821 			.data = &(struct altera_spi_platform_data) {
822 				.num_chipselect = 1,
823 				.num_devices = 1,
824 				.devices = &(struct spi_board_info) {
825 					.modalias = "spi-nor",
826 				},
827 			},
828 		},
829 	},
830 	{
831 		OCP_I2C_RESOURCE(i2c_ctrl),
832 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
833 		.extra = &(struct ptp_ocp_i2c_info) {
834 			.name = "ocores-i2c",
835 			.fixed_rate = 400000,
836 			.data_size = sizeof(struct ocores_i2c_platform_data),
837 			.data = &(struct ocores_i2c_platform_data) {
838 				.clock_khz = 125000,
839 				.bus_khz = 400,
840 				.num_devices = 1,
841 				.devices = &(struct i2c_board_info) {
842 					I2C_BOARD_INFO("24c08", 0x50),
843 				},
844 			},
845 		},
846 	},
847 	{
848 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
849 		.offset = 0x00190000, .irq_vec = 7,
850 		.extra = &(struct ptp_ocp_serial_port) {
851 			.baud = 9600,
852 		},
853 	},
854 	{
855 		OCP_MEM_RESOURCE(board_config),
856 		.offset = 0x210000, .size = 0x1000,
857 	},
858 	{
859 		.setup = ptp_ocp_art_board_init,
860 		.extra = &(struct ptp_ocp_servo_conf) {
861 			.servo_offset_p = 0x2000,
862 			.servo_offset_i = 0x1000,
863 			.servo_drift_p = 0,
864 			.servo_drift_i = 0,
865 		},
866 	},
867 	{ }
868 };
869 
870 static struct ocp_resource ocp_adva_resource[] = {
871 	{
872 		OCP_MEM_RESOURCE(reg),
873 		.offset = 0x01000000, .size = 0x10000,
874 	},
875 	{
876 		OCP_EXT_RESOURCE(ts0),
877 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
878 		.extra = &(struct ptp_ocp_ext_info) {
879 			.index = 0,
880 			.irq_fcn = ptp_ocp_ts_irq,
881 			.enable = ptp_ocp_ts_enable,
882 		},
883 	},
884 	{
885 		OCP_EXT_RESOURCE(ts1),
886 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
887 		.extra = &(struct ptp_ocp_ext_info) {
888 			.index = 1,
889 			.irq_fcn = ptp_ocp_ts_irq,
890 			.enable = ptp_ocp_ts_enable,
891 		},
892 	},
893 	{
894 		OCP_EXT_RESOURCE(ts2),
895 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
896 		.extra = &(struct ptp_ocp_ext_info) {
897 			.index = 2,
898 			.irq_fcn = ptp_ocp_ts_irq,
899 			.enable = ptp_ocp_ts_enable,
900 		},
901 	},
902 	/* Timestamp for PHC and/or PPS generator */
903 	{
904 		OCP_EXT_RESOURCE(pps),
905 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
906 		.extra = &(struct ptp_ocp_ext_info) {
907 			.index = 5,
908 			.irq_fcn = ptp_ocp_ts_irq,
909 			.enable = ptp_ocp_ts_enable,
910 		},
911 	},
912 	{
913 		OCP_EXT_RESOURCE(signal_out[0]),
914 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
915 		.extra = &(struct ptp_ocp_ext_info) {
916 			.index = 1,
917 			.irq_fcn = ptp_ocp_signal_irq,
918 			.enable = ptp_ocp_signal_enable,
919 		},
920 	},
921 	{
922 		OCP_EXT_RESOURCE(signal_out[1]),
923 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
924 		.extra = &(struct ptp_ocp_ext_info) {
925 			.index = 2,
926 			.irq_fcn = ptp_ocp_signal_irq,
927 			.enable = ptp_ocp_signal_enable,
928 		},
929 	},
930 	{
931 		OCP_MEM_RESOURCE(pps_to_ext),
932 		.offset = 0x01030000, .size = 0x10000,
933 	},
934 	{
935 		OCP_MEM_RESOURCE(pps_to_clk),
936 		.offset = 0x01040000, .size = 0x10000,
937 	},
938 	{
939 		OCP_MEM_RESOURCE(tod),
940 		.offset = 0x01050000, .size = 0x10000,
941 	},
942 	{
943 		OCP_MEM_RESOURCE(image),
944 		.offset = 0x00020000, .size = 0x1000,
945 	},
946 	{
947 		OCP_MEM_RESOURCE(pps_select),
948 		.offset = 0x00130000, .size = 0x1000,
949 	},
950 	{
951 		OCP_MEM_RESOURCE(sma_map1),
952 		.offset = 0x00140000, .size = 0x1000,
953 	},
954 	{
955 		OCP_MEM_RESOURCE(sma_map2),
956 		.offset = 0x00220000, .size = 0x1000,
957 	},
958 	{
959 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
960 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
961 		.extra = &(struct ptp_ocp_serial_port) {
962 			.baud = 9600,
963 		},
964 	},
965 	{
966 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
967 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
968 		.extra = &(struct ptp_ocp_serial_port) {
969 			.baud = 115200,
970 		},
971 	},
972 	{
973 		OCP_MEM_RESOURCE(freq_in[0]),
974 		.offset = 0x01200000, .size = 0x10000,
975 	},
976 	{
977 		OCP_MEM_RESOURCE(freq_in[1]),
978 		.offset = 0x01210000, .size = 0x10000,
979 	},
980 	{
981 		OCP_SPI_RESOURCE(spi_flash),
982 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
983 		.extra = &(struct ptp_ocp_flash_info) {
984 			.name = "spi_altera", .pci_offset = 0,
985 			.data_size = sizeof(struct altera_spi_platform_data),
986 			.data = &(struct altera_spi_platform_data) {
987 				.num_chipselect = 1,
988 				.num_devices = 1,
989 				.devices = &(struct spi_board_info) {
990 					.modalias = "spi-nor",
991 				},
992 			},
993 		},
994 	},
995 	{
996 		OCP_I2C_RESOURCE(i2c_ctrl),
997 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
998 		.extra = &(struct ptp_ocp_i2c_info) {
999 			.name = "ocores-i2c",
1000 			.fixed_rate = 50000000,
1001 			.data_size = sizeof(struct ocores_i2c_platform_data),
1002 			.data = &(struct ocores_i2c_platform_data) {
1003 				.clock_khz = 50000,
1004 				.bus_khz = 100,
1005 				.reg_io_width = 4, // 32-bit/4-byte
1006 				.reg_shift = 2, // 32-bit addressing
1007 				.num_devices = 2,
1008 				.devices = (struct i2c_board_info[]) {
1009 					{ I2C_BOARD_INFO("24c02", 0x50) },
1010 					{ I2C_BOARD_INFO("24mac402", 0x58),
1011 					 .platform_data = "mac" },
1012 				},
1013 			},
1014 		},
1015 	},
1016 	{
1017 		.setup = ptp_ocp_adva_board_init,
1018 		.extra = &(struct ptp_ocp_servo_conf) {
1019 			.servo_offset_p = 0xc000,
1020 			.servo_offset_i = 0x1000,
1021 			.servo_drift_p = 0,
1022 			.servo_drift_i = 0,
1023 		},
1024 	},
1025 	{ }
1026 };
1027 
1028 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1029 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
1030 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1031 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1032 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1033 	{ }
1034 };
1035 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1036 
1037 static DEFINE_MUTEX(ptp_ocp_lock);
1038 static DEFINE_IDR(ptp_ocp_idr);
1039 
1040 struct ocp_selector {
1041 	const char *name;
1042 	int value;
1043 	u64 frequency;
1044 };
1045 
1046 static const struct ocp_selector ptp_ocp_clock[] = {
1047 	{ .name = "NONE",	.value = 0 },
1048 	{ .name = "TOD",	.value = 1 },
1049 	{ .name = "IRIG",	.value = 2 },
1050 	{ .name = "PPS",	.value = 3 },
1051 	{ .name = "PTP",	.value = 4 },
1052 	{ .name = "RTC",	.value = 5 },
1053 	{ .name = "DCF",	.value = 6 },
1054 	{ .name = "REGS",	.value = 0xfe },
1055 	{ .name = "EXT",	.value = 0xff },
1056 	{ }
1057 };
1058 
1059 #define SMA_DISABLE		BIT(16)
1060 #define SMA_ENABLE		BIT(15)
1061 #define SMA_SELECT_MASK		GENMASK(14, 0)
1062 
1063 static const struct ocp_selector ptp_ocp_sma_in[] = {
1064 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1065 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1066 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1067 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1068 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1069 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1070 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1071 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1072 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1073 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1074 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1075 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1076 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1077 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1078 	{ }
1079 };
1080 
1081 static const struct ocp_selector ptp_ocp_sma_out[] = {
1082 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1083 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1084 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1085 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1086 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1087 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1088 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1089 	{ .name = "GEN1",	.value = 0x0040 },
1090 	{ .name = "GEN2",	.value = 0x0080 },
1091 	{ .name = "GEN3",	.value = 0x0100 },
1092 	{ .name = "GEN4",	.value = 0x0200 },
1093 	{ .name = "GND",	.value = 0x2000 },
1094 	{ .name = "VCC",	.value = 0x4000 },
1095 	{ }
1096 };
1097 
1098 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1099 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1100 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1101 	{ }
1102 };
1103 
1104 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1105 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1106 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1107 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1108 	{ }
1109 };
1110 
1111 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1112 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1113 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1114 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1115 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1116 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1117 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1118 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1119 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1120 	{ }
1121 };
1122 
1123 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1124 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1125 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1126 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1127 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1128 	{ .name = "GEN1",	.value = 0x0040 },
1129 	{ .name = "GEN2",	.value = 0x0080 },
1130 	{ .name = "GND",	.value = 0x2000 },
1131 	{ .name = "VCC",	.value = 0x4000 },
1132 	{ }
1133 };
1134 
1135 struct ocp_sma_op {
1136 	const struct ocp_selector *tbl[2];
1137 	void (*init)(struct ptp_ocp *bp);
1138 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1139 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1140 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1141 };
1142 
1143 static void
1144 ptp_ocp_sma_init(struct ptp_ocp *bp)
1145 {
1146 	return bp->sma_op->init(bp);
1147 }
1148 
1149 static u32
1150 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1151 {
1152 	return bp->sma_op->get(bp, sma_nr);
1153 }
1154 
1155 static int
1156 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1157 {
1158 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1159 }
1160 
1161 static int
1162 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1163 {
1164 	return bp->sma_op->set_output(bp, sma_nr, val);
1165 }
1166 
1167 static const char *
1168 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; tbl[i].name; i++)
1173 		if (tbl[i].value == val)
1174 			return tbl[i].name;
1175 	return NULL;
1176 }
1177 
1178 static int
1179 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1180 {
1181 	const char *select;
1182 	int i;
1183 
1184 	for (i = 0; tbl[i].name; i++) {
1185 		select = tbl[i].name;
1186 		if (!strncasecmp(name, select, strlen(select)))
1187 			return tbl[i].value;
1188 	}
1189 	return -EINVAL;
1190 }
1191 
1192 static ssize_t
1193 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1194 {
1195 	ssize_t count;
1196 	int i;
1197 
1198 	count = 0;
1199 	for (i = 0; tbl[i].name; i++)
1200 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1201 	if (count)
1202 		count--;
1203 	count += sysfs_emit_at(buf, count, "\n");
1204 	return count;
1205 }
1206 
1207 static int
1208 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1209 			 struct ptp_system_timestamp *sts)
1210 {
1211 	u32 ctrl, time_sec, time_ns;
1212 	int i;
1213 
1214 	ptp_read_system_prets(sts);
1215 
1216 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1217 	iowrite32(ctrl, &bp->reg->ctrl);
1218 
1219 	for (i = 0; i < 100; i++) {
1220 		ctrl = ioread32(&bp->reg->ctrl);
1221 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1222 			break;
1223 	}
1224 	ptp_read_system_postts(sts);
1225 
1226 	if (sts && bp->ts_window_adjust) {
1227 		s64 ns = timespec64_to_ns(&sts->post_ts);
1228 
1229 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1230 	}
1231 
1232 	time_ns = ioread32(&bp->reg->time_ns);
1233 	time_sec = ioread32(&bp->reg->time_sec);
1234 
1235 	ts->tv_sec = time_sec;
1236 	ts->tv_nsec = time_ns;
1237 
1238 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1239 }
1240 
1241 static int
1242 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1243 		 struct ptp_system_timestamp *sts)
1244 {
1245 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1246 	unsigned long flags;
1247 	int err;
1248 
1249 	spin_lock_irqsave(&bp->lock, flags);
1250 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1251 	spin_unlock_irqrestore(&bp->lock, flags);
1252 
1253 	return err;
1254 }
1255 
1256 static void
1257 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1258 {
1259 	u32 ctrl, time_sec, time_ns;
1260 	u32 select;
1261 
1262 	time_ns = ts->tv_nsec;
1263 	time_sec = ts->tv_sec;
1264 
1265 	select = ioread32(&bp->reg->select);
1266 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1267 
1268 	iowrite32(time_ns, &bp->reg->adjust_ns);
1269 	iowrite32(time_sec, &bp->reg->adjust_sec);
1270 
1271 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1272 	iowrite32(ctrl, &bp->reg->ctrl);
1273 
1274 	/* restore clock selection */
1275 	iowrite32(select >> 16, &bp->reg->select);
1276 }
1277 
1278 static int
1279 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1280 {
1281 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1282 	unsigned long flags;
1283 
1284 	spin_lock_irqsave(&bp->lock, flags);
1285 	__ptp_ocp_settime_locked(bp, ts);
1286 	spin_unlock_irqrestore(&bp->lock, flags);
1287 
1288 	return 0;
1289 }
1290 
1291 static void
1292 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1293 {
1294 	u32 select, ctrl;
1295 
1296 	select = ioread32(&bp->reg->select);
1297 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1298 
1299 	iowrite32(adj_val, &bp->reg->offset_ns);
1300 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1301 
1302 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1303 	iowrite32(ctrl, &bp->reg->ctrl);
1304 
1305 	/* restore clock selection */
1306 	iowrite32(select >> 16, &bp->reg->select);
1307 }
1308 
1309 static void
1310 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1311 {
1312 	struct timespec64 ts;
1313 	unsigned long flags;
1314 	int err;
1315 
1316 	spin_lock_irqsave(&bp->lock, flags);
1317 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1318 	if (likely(!err)) {
1319 		set_normalized_timespec64(&ts, ts.tv_sec,
1320 					  ts.tv_nsec + delta_ns);
1321 		__ptp_ocp_settime_locked(bp, &ts);
1322 	}
1323 	spin_unlock_irqrestore(&bp->lock, flags);
1324 }
1325 
1326 static int
1327 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1328 {
1329 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1330 	unsigned long flags;
1331 	u32 adj_ns, sign;
1332 
1333 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1334 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1335 		return 0;
1336 	}
1337 
1338 	sign = delta_ns < 0 ? BIT(31) : 0;
1339 	adj_ns = sign ? -delta_ns : delta_ns;
1340 
1341 	spin_lock_irqsave(&bp->lock, flags);
1342 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1343 	spin_unlock_irqrestore(&bp->lock, flags);
1344 
1345 	return 0;
1346 }
1347 
1348 static int
1349 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1350 {
1351 	if (scaled_ppm == 0)
1352 		return 0;
1353 
1354 	return -EOPNOTSUPP;
1355 }
1356 
1357 static s32
1358 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1359 {
1360 	return 0;
1361 }
1362 
1363 static int
1364 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1365 {
1366 	return -EOPNOTSUPP;
1367 }
1368 
1369 static int
1370 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1371 	       int on)
1372 {
1373 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1374 	struct ptp_ocp_ext_src *ext = NULL;
1375 	u32 req;
1376 	int err;
1377 
1378 	switch (rq->type) {
1379 	case PTP_CLK_REQ_EXTTS:
1380 		req = OCP_REQ_TIMESTAMP;
1381 		switch (rq->extts.index) {
1382 		case 0:
1383 			ext = bp->ts0;
1384 			break;
1385 		case 1:
1386 			ext = bp->ts1;
1387 			break;
1388 		case 2:
1389 			ext = bp->ts2;
1390 			break;
1391 		case 3:
1392 			ext = bp->ts3;
1393 			break;
1394 		case 4:
1395 			ext = bp->ts4;
1396 			break;
1397 		case 5:
1398 			ext = bp->pps;
1399 			break;
1400 		}
1401 		break;
1402 	case PTP_CLK_REQ_PPS:
1403 		req = OCP_REQ_PPS;
1404 		ext = bp->pps;
1405 		break;
1406 	case PTP_CLK_REQ_PEROUT:
1407 		switch (rq->perout.index) {
1408 		case 0:
1409 			/* This is a request for 1PPS on an output SMA.
1410 			 * Allow, but assume manual configuration.
1411 			 */
1412 			if (on && (rq->perout.period.sec != 1 ||
1413 				   rq->perout.period.nsec != 0))
1414 				return -EINVAL;
1415 			return 0;
1416 		case 1:
1417 		case 2:
1418 		case 3:
1419 		case 4:
1420 			req = rq->perout.index - 1;
1421 			ext = bp->signal_out[req];
1422 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1423 			if (err)
1424 				return err;
1425 			break;
1426 		}
1427 		break;
1428 	default:
1429 		return -EOPNOTSUPP;
1430 	}
1431 
1432 	err = -ENXIO;
1433 	if (ext)
1434 		err = ext->info->enable(ext, req, on);
1435 
1436 	return err;
1437 }
1438 
1439 static int
1440 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1441 	       enum ptp_pin_function func, unsigned chan)
1442 {
1443 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1444 	char buf[16];
1445 
1446 	switch (func) {
1447 	case PTP_PF_NONE:
1448 		snprintf(buf, sizeof(buf), "IN: None");
1449 		break;
1450 	case PTP_PF_EXTTS:
1451 		/* Allow timestamps, but require sysfs configuration. */
1452 		return 0;
1453 	case PTP_PF_PEROUT:
1454 		/* channel 0 is 1PPS from PHC.
1455 		 * channels 1..4 are the frequency generators.
1456 		 */
1457 		if (chan)
1458 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1459 		else
1460 			snprintf(buf, sizeof(buf), "OUT: PHC");
1461 		break;
1462 	default:
1463 		return -EOPNOTSUPP;
1464 	}
1465 
1466 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1467 }
1468 
1469 static const struct ptp_clock_info ptp_ocp_clock_info = {
1470 	.owner		= THIS_MODULE,
1471 	.name		= KBUILD_MODNAME,
1472 	.max_adj	= 100000000,
1473 	.gettimex64	= ptp_ocp_gettimex,
1474 	.settime64	= ptp_ocp_settime,
1475 	.adjtime	= ptp_ocp_adjtime,
1476 	.adjfine	= ptp_ocp_null_adjfine,
1477 	.adjphase	= ptp_ocp_null_adjphase,
1478 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1479 	.enable		= ptp_ocp_enable,
1480 	.verify		= ptp_ocp_verify,
1481 	.pps		= true,
1482 	.n_ext_ts	= 6,
1483 	.n_per_out	= 5,
1484 };
1485 
1486 static void
1487 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1488 {
1489 	u32 ctrl, select;
1490 
1491 	select = ioread32(&bp->reg->select);
1492 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1493 
1494 	iowrite32(0, &bp->reg->drift_ns);
1495 
1496 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1497 	iowrite32(ctrl, &bp->reg->ctrl);
1498 
1499 	/* restore clock selection */
1500 	iowrite32(select >> 16, &bp->reg->select);
1501 }
1502 
1503 static void
1504 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1505 {
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&bp->lock, flags);
1509 
1510 	bp->utc_tai_offset = val;
1511 
1512 	if (bp->irig_out)
1513 		iowrite32(val, &bp->irig_out->adj_sec);
1514 	if (bp->dcf_out)
1515 		iowrite32(val, &bp->dcf_out->adj_sec);
1516 	if (bp->nmea_out)
1517 		iowrite32(val, &bp->nmea_out->adj_sec);
1518 
1519 	spin_unlock_irqrestore(&bp->lock, flags);
1520 }
1521 
1522 static void
1523 ptp_ocp_watchdog(struct timer_list *t)
1524 {
1525 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1526 	unsigned long flags;
1527 	u32 status, utc_offset;
1528 
1529 	status = ioread32(&bp->pps_to_clk->status);
1530 
1531 	if (status & PPS_STATUS_SUPERV_ERR) {
1532 		iowrite32(status, &bp->pps_to_clk->status);
1533 		if (!bp->gnss_lost) {
1534 			spin_lock_irqsave(&bp->lock, flags);
1535 			__ptp_ocp_clear_drift_locked(bp);
1536 			spin_unlock_irqrestore(&bp->lock, flags);
1537 			bp->gnss_lost = ktime_get_real_seconds();
1538 		}
1539 
1540 	} else if (bp->gnss_lost) {
1541 		bp->gnss_lost = 0;
1542 	}
1543 
1544 	/* if GNSS provides correct data we can rely on
1545 	 * it to get leap second information
1546 	 */
1547 	if (bp->tod) {
1548 		status = ioread32(&bp->tod->utc_status);
1549 		utc_offset = status & TOD_STATUS_UTC_MASK;
1550 		if (status & TOD_STATUS_UTC_VALID &&
1551 		    utc_offset != bp->utc_tai_offset)
1552 			ptp_ocp_utc_distribute(bp, utc_offset);
1553 	}
1554 
1555 	mod_timer(&bp->watchdog, jiffies + HZ);
1556 }
1557 
1558 static void
1559 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1560 {
1561 	ktime_t start, end, delay = U64_MAX;
1562 	u32 ctrl;
1563 	int i;
1564 
1565 	for (i = 0; i < 3; i++) {
1566 		ctrl = ioread32(&bp->reg->ctrl);
1567 		ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1568 
1569 		iowrite32(ctrl, &bp->reg->ctrl);
1570 
1571 		start = ktime_get_raw_ns();
1572 
1573 		ctrl = ioread32(&bp->reg->ctrl);
1574 
1575 		end = ktime_get_raw_ns();
1576 
1577 		delay = min(delay, end - start);
1578 	}
1579 	bp->ts_window_adjust = (delay >> 5) * 3;
1580 }
1581 
1582 static int
1583 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1584 {
1585 	struct timespec64 ts;
1586 	u32 ctrl;
1587 
1588 	ctrl = OCP_CTRL_ENABLE;
1589 	iowrite32(ctrl, &bp->reg->ctrl);
1590 
1591 	/* servo configuration */
1592 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1593 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1594 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1595 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1596 
1597 	/* latch servo values */
1598 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1599 	iowrite32(ctrl, &bp->reg->ctrl);
1600 
1601 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1602 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1603 		return -ENODEV;
1604 	}
1605 
1606 	ptp_ocp_estimate_pci_timing(bp);
1607 
1608 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1609 	if (!bp->sync) {
1610 		ktime_get_clocktai_ts64(&ts);
1611 		ptp_ocp_settime(&bp->ptp_info, &ts);
1612 	}
1613 
1614 	/* If there is a clock supervisor, then enable the watchdog */
1615 	if (bp->pps_to_clk) {
1616 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1617 		mod_timer(&bp->watchdog, jiffies + HZ);
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static void
1624 ptp_ocp_tod_init(struct ptp_ocp *bp)
1625 {
1626 	u32 ctrl, reg;
1627 
1628 	ctrl = ioread32(&bp->tod->ctrl);
1629 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1630 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1631 	iowrite32(ctrl, &bp->tod->ctrl);
1632 
1633 	reg = ioread32(&bp->tod->utc_status);
1634 	if (reg & TOD_STATUS_UTC_VALID)
1635 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1636 }
1637 
1638 static const char *
1639 ptp_ocp_tod_proto_name(const int idx)
1640 {
1641 	static const char * const proto_name[] = {
1642 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1643 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1644 	};
1645 	return proto_name[idx];
1646 }
1647 
1648 static const char *
1649 ptp_ocp_tod_gnss_name(int idx)
1650 {
1651 	static const char * const gnss_name[] = {
1652 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1653 		"Unknown"
1654 	};
1655 	if (idx >= ARRAY_SIZE(gnss_name))
1656 		idx = ARRAY_SIZE(gnss_name) - 1;
1657 	return gnss_name[idx];
1658 }
1659 
1660 static const char *
1661 ptp_ocp_tty_port_name(int idx)
1662 {
1663 	static const char * const tty_name[] = {
1664 		"GNSS", "GNSS2", "MAC", "NMEA"
1665 	};
1666 	return tty_name[idx];
1667 }
1668 
1669 struct ptp_ocp_nvmem_match_info {
1670 	struct ptp_ocp *bp;
1671 	const void * const tag;
1672 };
1673 
1674 static int
1675 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1676 {
1677 	const struct ptp_ocp_nvmem_match_info *info = data;
1678 
1679 	dev = dev->parent;
1680 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1681 		return 0;
1682 
1683 	while ((dev = dev->parent))
1684 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1685 			return info->bp == dev_get_drvdata(dev);
1686 	return 0;
1687 }
1688 
1689 static inline struct nvmem_device *
1690 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1691 {
1692 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1693 
1694 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1695 }
1696 
1697 static inline void
1698 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1699 {
1700 	if (!IS_ERR_OR_NULL(*nvmemp))
1701 		nvmem_device_put(*nvmemp);
1702 	*nvmemp = NULL;
1703 }
1704 
1705 static void
1706 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1707 {
1708 	const struct ptp_ocp_eeprom_map *map;
1709 	struct nvmem_device *nvmem;
1710 	const void *tag;
1711 	int ret;
1712 
1713 	if (!bp->i2c_ctrl)
1714 		return;
1715 
1716 	tag = NULL;
1717 	nvmem = NULL;
1718 
1719 	for (map = bp->eeprom_map; map->len; map++) {
1720 		if (map->tag != tag) {
1721 			tag = map->tag;
1722 			ptp_ocp_nvmem_device_put(&nvmem);
1723 		}
1724 		if (!nvmem) {
1725 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1726 			if (IS_ERR(nvmem)) {
1727 				ret = PTR_ERR(nvmem);
1728 				goto fail;
1729 			}
1730 		}
1731 		ret = nvmem_device_read(nvmem, map->off, map->len,
1732 					BP_MAP_ENTRY_ADDR(bp, map));
1733 		if (ret != map->len)
1734 			goto fail;
1735 	}
1736 
1737 	bp->has_eeprom_data = true;
1738 
1739 out:
1740 	ptp_ocp_nvmem_device_put(&nvmem);
1741 	return;
1742 
1743 fail:
1744 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1745 	goto out;
1746 }
1747 
1748 static struct device *
1749 ptp_ocp_find_flash(struct ptp_ocp *bp)
1750 {
1751 	struct device *dev, *last;
1752 
1753 	last = NULL;
1754 	dev = &bp->spi_flash->dev;
1755 
1756 	while ((dev = device_find_any_child(dev))) {
1757 		if (!strcmp("mtd", dev_bus_name(dev)))
1758 			break;
1759 		put_device(last);
1760 		last = dev;
1761 	}
1762 	put_device(last);
1763 
1764 	return dev;
1765 }
1766 
1767 static int
1768 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1769 			 const u8 **data, size_t *size)
1770 {
1771 	struct ptp_ocp *bp = devlink_priv(devlink);
1772 	const struct ptp_ocp_firmware_header *hdr;
1773 	size_t offset, length;
1774 	u16 crc;
1775 
1776 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1777 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1778 		devlink_flash_update_status_notify(devlink,
1779 			"No firmware header found, cancel firmware upgrade",
1780 			NULL, 0, 0);
1781 		return -EINVAL;
1782 	}
1783 
1784 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1785 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1786 		devlink_flash_update_status_notify(devlink,
1787 			"Firmware image compatibility check failed",
1788 			NULL, 0, 0);
1789 		return -EINVAL;
1790 	}
1791 
1792 	offset = sizeof(*hdr);
1793 	length = be32_to_cpu(hdr->image_size);
1794 	if (length != (fw->size - offset)) {
1795 		devlink_flash_update_status_notify(devlink,
1796 			"Firmware image size check failed",
1797 			NULL, 0, 0);
1798 		return -EINVAL;
1799 	}
1800 
1801 	crc = crc16(0xffff, &fw->data[offset], length);
1802 	if (be16_to_cpu(hdr->crc) != crc) {
1803 		devlink_flash_update_status_notify(devlink,
1804 			"Firmware image CRC check failed",
1805 			NULL, 0, 0);
1806 		return -EINVAL;
1807 	}
1808 
1809 	*data = &fw->data[offset];
1810 	*size = length;
1811 
1812 	return 0;
1813 }
1814 
1815 static int
1816 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1817 		      const struct firmware *fw)
1818 {
1819 	struct mtd_info *mtd = dev_get_drvdata(dev);
1820 	struct ptp_ocp *bp = devlink_priv(devlink);
1821 	size_t off, len, size, resid, wrote;
1822 	struct erase_info erase;
1823 	size_t base, blksz;
1824 	const u8 *data;
1825 	int err;
1826 
1827 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1828 	if (err)
1829 		goto out;
1830 
1831 	off = 0;
1832 	base = bp->flash_start;
1833 	blksz = 4096;
1834 	resid = size;
1835 
1836 	while (resid) {
1837 		devlink_flash_update_status_notify(devlink, "Flashing",
1838 						   NULL, off, size);
1839 
1840 		len = min_t(size_t, resid, blksz);
1841 		erase.addr = base + off;
1842 		erase.len = blksz;
1843 
1844 		err = mtd_erase(mtd, &erase);
1845 		if (err)
1846 			goto out;
1847 
1848 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1849 		if (err)
1850 			goto out;
1851 
1852 		off += blksz;
1853 		resid -= len;
1854 	}
1855 out:
1856 	return err;
1857 }
1858 
1859 static int
1860 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1861 			     struct devlink_flash_update_params *params,
1862 			     struct netlink_ext_ack *extack)
1863 {
1864 	struct ptp_ocp *bp = devlink_priv(devlink);
1865 	struct device *dev;
1866 	const char *msg;
1867 	int err;
1868 
1869 	dev = ptp_ocp_find_flash(bp);
1870 	if (!dev) {
1871 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1872 		return -ENODEV;
1873 	}
1874 
1875 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1876 					   NULL, 0, 0);
1877 
1878 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1879 
1880 	msg = err ? "Flash error" : "Flash complete";
1881 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1882 
1883 	put_device(dev);
1884 	return err;
1885 }
1886 
1887 static int
1888 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1889 			 struct netlink_ext_ack *extack)
1890 {
1891 	struct ptp_ocp *bp = devlink_priv(devlink);
1892 	const char *fw_image;
1893 	char buf[32];
1894 	int err;
1895 
1896 	fw_image = bp->fw_loader ? "loader" : "fw";
1897 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1898 	err = devlink_info_version_running_put(req, fw_image, buf);
1899 	if (err)
1900 		return err;
1901 
1902 	if (!bp->has_eeprom_data) {
1903 		ptp_ocp_read_eeprom(bp);
1904 		if (!bp->has_eeprom_data)
1905 			return 0;
1906 	}
1907 
1908 	sprintf(buf, "%pM", bp->serial);
1909 	err = devlink_info_serial_number_put(req, buf);
1910 	if (err)
1911 		return err;
1912 
1913 	err = devlink_info_version_fixed_put(req,
1914 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1915 			bp->board_id);
1916 	if (err)
1917 		return err;
1918 
1919 	return 0;
1920 }
1921 
1922 static const struct devlink_ops ptp_ocp_devlink_ops = {
1923 	.flash_update = ptp_ocp_devlink_flash_update,
1924 	.info_get = ptp_ocp_devlink_info_get,
1925 };
1926 
1927 static void __iomem *
1928 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1929 {
1930 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1931 
1932 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1933 }
1934 
1935 static void __iomem *
1936 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1937 {
1938 	resource_size_t start;
1939 
1940 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1941 	return __ptp_ocp_get_mem(bp, start, r->size);
1942 }
1943 
1944 static int
1945 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1946 {
1947 	struct ptp_ocp_flash_info *info;
1948 	struct pci_dev *pdev = bp->pdev;
1949 	struct platform_device *p;
1950 	struct resource res[2];
1951 	resource_size_t start;
1952 	int id;
1953 
1954 	start = pci_resource_start(pdev, 0) + r->offset;
1955 	res[0] = DEFINE_RES_MEM(start, r->size);
1956 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1957 
1958 	info = r->extra;
1959 	id = pci_dev_id(pdev) << 1;
1960 	id += info->pci_offset;
1961 
1962 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1963 					      res, ARRAY_SIZE(res), info->data,
1964 					      info->data_size);
1965 	if (IS_ERR(p))
1966 		return PTR_ERR(p);
1967 
1968 	bp_assign_entry(bp, r, p);
1969 
1970 	return 0;
1971 }
1972 
1973 static struct platform_device *
1974 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1975 {
1976 	struct ptp_ocp_i2c_info *info;
1977 	struct resource res[2];
1978 	resource_size_t start;
1979 
1980 	info = r->extra;
1981 	start = pci_resource_start(pdev, 0) + r->offset;
1982 	res[0] = DEFINE_RES_MEM(start, r->size);
1983 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1984 
1985 	return platform_device_register_resndata(&pdev->dev, info->name,
1986 						 id, res, ARRAY_SIZE(res),
1987 						 info->data, info->data_size);
1988 }
1989 
1990 static int
1991 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1992 {
1993 	struct pci_dev *pdev = bp->pdev;
1994 	struct ptp_ocp_i2c_info *info;
1995 	struct platform_device *p;
1996 	struct clk_hw *clk;
1997 	char buf[32];
1998 	int id;
1999 
2000 	info = r->extra;
2001 	id = pci_dev_id(bp->pdev);
2002 
2003 	sprintf(buf, "AXI.%d", id);
2004 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2005 					 info->fixed_rate);
2006 	if (IS_ERR(clk))
2007 		return PTR_ERR(clk);
2008 	bp->i2c_clk = clk;
2009 
2010 	sprintf(buf, "%s.%d", info->name, id);
2011 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2012 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2013 	if (IS_ERR(p))
2014 		return PTR_ERR(p);
2015 
2016 	bp_assign_entry(bp, r, p);
2017 
2018 	return 0;
2019 }
2020 
2021 /* The expectation is that this is triggered only on error. */
2022 static irqreturn_t
2023 ptp_ocp_signal_irq(int irq, void *priv)
2024 {
2025 	struct ptp_ocp_ext_src *ext = priv;
2026 	struct signal_reg __iomem *reg = ext->mem;
2027 	struct ptp_ocp *bp = ext->bp;
2028 	u32 enable, status;
2029 	int gen;
2030 
2031 	gen = ext->info->index - 1;
2032 
2033 	enable = ioread32(&reg->enable);
2034 	status = ioread32(&reg->status);
2035 
2036 	/* disable generator on error */
2037 	if (status || !enable) {
2038 		iowrite32(0, &reg->intr_mask);
2039 		iowrite32(0, &reg->enable);
2040 		bp->signal[gen].running = false;
2041 	}
2042 
2043 	iowrite32(0, &reg->intr);	/* ack interrupt */
2044 
2045 	return IRQ_HANDLED;
2046 }
2047 
2048 static int
2049 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2050 {
2051 	struct ptp_system_timestamp sts;
2052 	struct timespec64 ts;
2053 	ktime_t start_ns;
2054 	int err;
2055 
2056 	if (!s->period)
2057 		return 0;
2058 
2059 	if (!s->pulse)
2060 		s->pulse = ktime_divns(s->period * s->duty, 100);
2061 
2062 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2063 	if (err)
2064 		return err;
2065 
2066 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2067 	if (!s->start) {
2068 		/* roundup() does not work on 32-bit systems */
2069 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2070 		s->start = ktime_add(s->start, s->phase);
2071 	}
2072 
2073 	if (s->duty < 1 || s->duty > 99)
2074 		return -EINVAL;
2075 
2076 	if (s->pulse < 1 || s->pulse > s->period)
2077 		return -EINVAL;
2078 
2079 	if (s->start < start_ns)
2080 		return -EINVAL;
2081 
2082 	bp->signal[gen] = *s;
2083 
2084 	return 0;
2085 }
2086 
2087 static int
2088 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2089 			   struct ptp_perout_request *req)
2090 {
2091 	struct ptp_ocp_signal s = { };
2092 
2093 	s.polarity = bp->signal[gen].polarity;
2094 	s.period = ktime_set(req->period.sec, req->period.nsec);
2095 	if (!s.period)
2096 		return 0;
2097 
2098 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2099 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2100 		s.duty = ktime_divns(s.pulse * 100, s.period);
2101 	}
2102 
2103 	if (req->flags & PTP_PEROUT_PHASE)
2104 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2105 	else
2106 		s.start = ktime_set(req->start.sec, req->start.nsec);
2107 
2108 	return ptp_ocp_signal_set(bp, gen, &s);
2109 }
2110 
2111 static int
2112 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2113 {
2114 	struct ptp_ocp_ext_src *ext = priv;
2115 	struct signal_reg __iomem *reg = ext->mem;
2116 	struct ptp_ocp *bp = ext->bp;
2117 	struct timespec64 ts;
2118 	int gen;
2119 
2120 	gen = ext->info->index - 1;
2121 
2122 	iowrite32(0, &reg->intr_mask);
2123 	iowrite32(0, &reg->enable);
2124 	bp->signal[gen].running = false;
2125 	if (!enable)
2126 		return 0;
2127 
2128 	ts = ktime_to_timespec64(bp->signal[gen].start);
2129 	iowrite32(ts.tv_sec, &reg->start_sec);
2130 	iowrite32(ts.tv_nsec, &reg->start_ns);
2131 
2132 	ts = ktime_to_timespec64(bp->signal[gen].period);
2133 	iowrite32(ts.tv_sec, &reg->period_sec);
2134 	iowrite32(ts.tv_nsec, &reg->period_ns);
2135 
2136 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2137 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2138 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2139 
2140 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2141 	iowrite32(0, &reg->repeat_count);
2142 
2143 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2144 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2145 	iowrite32(3, &reg->enable);		/* valid & enable */
2146 
2147 	bp->signal[gen].running = true;
2148 
2149 	return 0;
2150 }
2151 
2152 static irqreturn_t
2153 ptp_ocp_ts_irq(int irq, void *priv)
2154 {
2155 	struct ptp_ocp_ext_src *ext = priv;
2156 	struct ts_reg __iomem *reg = ext->mem;
2157 	struct ptp_clock_event ev;
2158 	u32 sec, nsec;
2159 
2160 	if (ext == ext->bp->pps) {
2161 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2162 			ev.type = PTP_CLOCK_PPS;
2163 			ptp_clock_event(ext->bp->ptp, &ev);
2164 		}
2165 
2166 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2167 			goto out;
2168 	}
2169 
2170 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2171 	sec = ioread32(&reg->time_sec);
2172 	nsec = ioread32(&reg->time_ns);
2173 
2174 	ev.type = PTP_CLOCK_EXTTS;
2175 	ev.index = ext->info->index;
2176 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2177 
2178 	ptp_clock_event(ext->bp->ptp, &ev);
2179 
2180 out:
2181 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2182 
2183 	return IRQ_HANDLED;
2184 }
2185 
2186 static int
2187 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2188 {
2189 	struct ptp_ocp_ext_src *ext = priv;
2190 	struct ts_reg __iomem *reg = ext->mem;
2191 	struct ptp_ocp *bp = ext->bp;
2192 
2193 	if (ext == bp->pps) {
2194 		u32 old_map = bp->pps_req_map;
2195 
2196 		if (enable)
2197 			bp->pps_req_map |= req;
2198 		else
2199 			bp->pps_req_map &= ~req;
2200 
2201 		/* if no state change, just return */
2202 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2203 			return 0;
2204 	}
2205 
2206 	if (enable) {
2207 		iowrite32(1, &reg->enable);
2208 		iowrite32(1, &reg->intr_mask);
2209 		iowrite32(1, &reg->intr);
2210 	} else {
2211 		iowrite32(0, &reg->intr_mask);
2212 		iowrite32(0, &reg->enable);
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 static void
2219 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2220 {
2221 	ext->info->enable(ext, ~0, false);
2222 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2223 	kfree(ext);
2224 }
2225 
2226 static int
2227 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2228 {
2229 	struct pci_dev *pdev = bp->pdev;
2230 	struct ptp_ocp_ext_src *ext;
2231 	int err;
2232 
2233 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2234 	if (!ext)
2235 		return -ENOMEM;
2236 
2237 	ext->mem = ptp_ocp_get_mem(bp, r);
2238 	if (IS_ERR(ext->mem)) {
2239 		err = PTR_ERR(ext->mem);
2240 		goto out;
2241 	}
2242 
2243 	ext->bp = bp;
2244 	ext->info = r->extra;
2245 	ext->irq_vec = r->irq_vec;
2246 
2247 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2248 			      ext, "ocp%d.%s", bp->id, r->name);
2249 	if (err) {
2250 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2251 		goto out;
2252 	}
2253 
2254 	bp_assign_entry(bp, r, ext);
2255 
2256 	return 0;
2257 
2258 out:
2259 	kfree(ext);
2260 	return err;
2261 }
2262 
2263 static int
2264 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2265 {
2266 	struct pci_dev *pdev = bp->pdev;
2267 	struct uart_8250_port uart;
2268 
2269 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2270 	 * the serial port device claim and release the pci resource.
2271 	 */
2272 	memset(&uart, 0, sizeof(uart));
2273 	uart.port.dev = &pdev->dev;
2274 	uart.port.iotype = UPIO_MEM;
2275 	uart.port.regshift = 2;
2276 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2277 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2278 	uart.port.uartclk = 50000000;
2279 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2280 	uart.port.type = PORT_16550A;
2281 
2282 	return serial8250_register_8250_port(&uart);
2283 }
2284 
2285 static int
2286 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2287 {
2288 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2289 	struct ptp_ocp_serial_port port = {};
2290 
2291 	port.line = ptp_ocp_serial_line(bp, r);
2292 	if (port.line < 0)
2293 		return port.line;
2294 
2295 	if (p)
2296 		port.baud = p->baud;
2297 
2298 	bp_assign_entry(bp, r, port);
2299 
2300 	return 0;
2301 }
2302 
2303 static int
2304 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2305 {
2306 	void __iomem *mem;
2307 
2308 	mem = ptp_ocp_get_mem(bp, r);
2309 	if (IS_ERR(mem))
2310 		return PTR_ERR(mem);
2311 
2312 	bp_assign_entry(bp, r, mem);
2313 
2314 	return 0;
2315 }
2316 
2317 static void
2318 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2319 {
2320 	if (!bp->nmea_out)
2321 		return;
2322 
2323 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2324 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2325 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2326 }
2327 
2328 static void
2329 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2330 {
2331 	u32 val;
2332 
2333 	iowrite32(0, &reg->enable);		/* disable */
2334 
2335 	val = ioread32(&reg->polarity);
2336 	s->polarity = val ? true : false;
2337 	s->duty = 50;
2338 }
2339 
2340 static void
2341 ptp_ocp_signal_init(struct ptp_ocp *bp)
2342 {
2343 	int i;
2344 
2345 	for (i = 0; i < 4; i++)
2346 		if (bp->signal_out[i])
2347 			_ptp_ocp_signal_init(&bp->signal[i],
2348 					     bp->signal_out[i]->mem);
2349 }
2350 
2351 static void
2352 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2353 {
2354 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2355 	kfree(bp->attr_group);
2356 }
2357 
2358 static int
2359 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2360 		       const struct ocp_attr_group *attr_tbl)
2361 {
2362 	int count, i;
2363 	int err;
2364 
2365 	count = 0;
2366 	for (i = 0; attr_tbl[i].cap; i++)
2367 		if (attr_tbl[i].cap & bp->fw_cap)
2368 			count++;
2369 
2370 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2371 				 GFP_KERNEL);
2372 	if (!bp->attr_group)
2373 		return -ENOMEM;
2374 
2375 	count = 0;
2376 	for (i = 0; attr_tbl[i].cap; i++)
2377 		if (attr_tbl[i].cap & bp->fw_cap)
2378 			bp->attr_group[count++] = attr_tbl[i].group;
2379 
2380 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2381 	if (err)
2382 		bp->attr_group[0] = NULL;
2383 
2384 	return err;
2385 }
2386 
2387 static void
2388 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2389 {
2390 	u32 ctrl;
2391 	bool on;
2392 
2393 	ctrl = ioread32(reg);
2394 	on = ctrl & bit;
2395 	if (on ^ enable) {
2396 		ctrl &= ~bit;
2397 		ctrl |= enable ? bit : 0;
2398 		iowrite32(ctrl, reg);
2399 	}
2400 }
2401 
2402 static void
2403 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2404 {
2405 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2406 				   IRIG_M_CTRL_ENABLE, enable);
2407 }
2408 
2409 static void
2410 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2411 {
2412 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2413 				   IRIG_S_CTRL_ENABLE, enable);
2414 }
2415 
2416 static void
2417 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2418 {
2419 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2420 				   DCF_M_CTRL_ENABLE, enable);
2421 }
2422 
2423 static void
2424 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2425 {
2426 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2427 				   DCF_S_CTRL_ENABLE, enable);
2428 }
2429 
2430 static void
2431 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2432 {
2433 	ptp_ocp_irig_out(bp, val & 0x00100010);
2434 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2435 }
2436 
2437 static void
2438 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2439 {
2440 	ptp_ocp_irig_in(bp, val & 0x00100010);
2441 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2442 }
2443 
2444 static u32
2445 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2446 {
2447 	u32 __iomem *gpio;
2448 	u32 shift;
2449 
2450 	if (bp->sma[sma_nr - 1].fixed_fcn)
2451 		return (sma_nr - 1) & 1;
2452 
2453 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2454 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2455 	else
2456 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2457 	shift = sma_nr & 1 ? 0 : 16;
2458 
2459 	return (ioread32(gpio) >> shift) & 0xffff;
2460 }
2461 
2462 static int
2463 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2464 {
2465 	u32 reg, mask, shift;
2466 	unsigned long flags;
2467 	u32 __iomem *gpio;
2468 
2469 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2470 	shift = sma_nr & 1 ? 0 : 16;
2471 
2472 	mask = 0xffff << (16 - shift);
2473 
2474 	spin_lock_irqsave(&bp->lock, flags);
2475 
2476 	reg = ioread32(gpio);
2477 	reg = (reg & mask) | (val << shift);
2478 
2479 	__handle_signal_outputs(bp, reg);
2480 
2481 	iowrite32(reg, gpio);
2482 
2483 	spin_unlock_irqrestore(&bp->lock, flags);
2484 
2485 	return 0;
2486 }
2487 
2488 static int
2489 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2490 {
2491 	u32 reg, mask, shift;
2492 	unsigned long flags;
2493 	u32 __iomem *gpio;
2494 
2495 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2496 	shift = sma_nr & 1 ? 0 : 16;
2497 
2498 	mask = 0xffff << (16 - shift);
2499 
2500 	spin_lock_irqsave(&bp->lock, flags);
2501 
2502 	reg = ioread32(gpio);
2503 	reg = (reg & mask) | (val << shift);
2504 
2505 	__handle_signal_inputs(bp, reg);
2506 
2507 	iowrite32(reg, gpio);
2508 
2509 	spin_unlock_irqrestore(&bp->lock, flags);
2510 
2511 	return 0;
2512 }
2513 
2514 static void
2515 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2516 {
2517 	struct dpll_pin_properties prop = {
2518 		.board_label = NULL,
2519 		.type = DPLL_PIN_TYPE_EXT,
2520 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2521 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2522 		.freq_supported = ptp_ocp_sma_freq,
2523 
2524 	};
2525 	u32 reg;
2526 	int i;
2527 
2528 	/* defaults */
2529 	for (i = 0; i < OCP_SMA_NUM; i++) {
2530 		bp->sma[i].default_fcn = i & 1;
2531 		bp->sma[i].dpll_prop = prop;
2532 		bp->sma[i].dpll_prop.board_label =
2533 			bp->ptp_info.pin_config[i].name;
2534 	}
2535 	bp->sma[0].mode = SMA_MODE_IN;
2536 	bp->sma[1].mode = SMA_MODE_IN;
2537 	bp->sma[2].mode = SMA_MODE_OUT;
2538 	bp->sma[3].mode = SMA_MODE_OUT;
2539 	/* If no SMA1 map, the pin functions and directions are fixed. */
2540 	if (!bp->sma_map1) {
2541 		for (i = 0; i < OCP_SMA_NUM; i++) {
2542 			bp->sma[i].fixed_fcn = true;
2543 			bp->sma[i].fixed_dir = true;
2544 			bp->sma[1].dpll_prop.capabilities &=
2545 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2546 		}
2547 		return;
2548 	}
2549 
2550 	/* If SMA2 GPIO output map is all 1, it is not present.
2551 	 * This indicates the firmware has fixed direction SMA pins.
2552 	 */
2553 	reg = ioread32(&bp->sma_map2->gpio2);
2554 	if (reg == 0xffffffff) {
2555 		for (i = 0; i < OCP_SMA_NUM; i++)
2556 			bp->sma[i].fixed_dir = true;
2557 	} else {
2558 		reg = ioread32(&bp->sma_map1->gpio1);
2559 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2560 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2561 
2562 		reg = ioread32(&bp->sma_map1->gpio2);
2563 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2564 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2565 	}
2566 }
2567 
2568 static const struct ocp_sma_op ocp_fb_sma_op = {
2569 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2570 	.init		= ptp_ocp_sma_fb_init,
2571 	.get		= ptp_ocp_sma_fb_get,
2572 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2573 	.set_output	= ptp_ocp_sma_fb_set_output,
2574 };
2575 
2576 static const struct ocp_sma_op ocp_adva_sma_op = {
2577 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2578 	.init		= ptp_ocp_sma_fb_init,
2579 	.get		= ptp_ocp_sma_fb_get,
2580 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2581 	.set_output	= ptp_ocp_sma_fb_set_output,
2582 };
2583 
2584 static int
2585 ptp_ocp_set_pins(struct ptp_ocp *bp)
2586 {
2587 	struct ptp_pin_desc *config;
2588 	int i;
2589 
2590 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2591 	if (!config)
2592 		return -ENOMEM;
2593 
2594 	for (i = 0; i < 4; i++) {
2595 		sprintf(config[i].name, "sma%d", i + 1);
2596 		config[i].index = i;
2597 	}
2598 
2599 	bp->ptp_info.n_pins = 4;
2600 	bp->ptp_info.pin_config = config;
2601 
2602 	return 0;
2603 }
2604 
2605 static void
2606 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2607 {
2608 	u64 cap = OCP_CAP_BASIC;
2609 	u32 version;
2610 
2611 	version = ioread32(&bp->image->version);
2612 
2613 	/* if lower 16 bits are empty, this is the fw loader. */
2614 	if ((version & 0xffff) == 0) {
2615 		version = version >> 16;
2616 		bp->fw_loader = true;
2617 	}
2618 
2619 	bp->fw_tag = version >> 15;
2620 	bp->fw_version = version & 0x7fff;
2621 
2622 	if (bp->fw_tag) {
2623 		/* FPGA firmware */
2624 		if (version >= 5)
2625 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2626 	} else {
2627 		/* SOM firmware */
2628 		if (version >= 19)
2629 			cap |= OCP_CAP_SIGNAL;
2630 		if (version >= 20)
2631 			cap |= OCP_CAP_FREQ;
2632 	}
2633 
2634 	bp->fw_cap = cap;
2635 }
2636 
2637 /* FB specific board initializers; last "resource" registered. */
2638 static int
2639 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2640 {
2641 	int err;
2642 
2643 	bp->flash_start = 1024 * 4096;
2644 	bp->eeprom_map = fb_eeprom_map;
2645 	bp->fw_version = ioread32(&bp->image->version);
2646 	bp->sma_op = &ocp_fb_sma_op;
2647 
2648 	ptp_ocp_fb_set_version(bp);
2649 
2650 	ptp_ocp_tod_init(bp);
2651 	ptp_ocp_nmea_out_init(bp);
2652 	ptp_ocp_signal_init(bp);
2653 
2654 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2655 	if (err)
2656 		return err;
2657 
2658 	err = ptp_ocp_set_pins(bp);
2659 	if (err)
2660 		return err;
2661 	ptp_ocp_sma_init(bp);
2662 
2663 	return ptp_ocp_init_clock(bp, r->extra);
2664 }
2665 
2666 static bool
2667 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2668 {
2669 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2670 
2671 	if (!allow)
2672 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2673 			r->irq_vec, r->name);
2674 	return allow;
2675 }
2676 
2677 static int
2678 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2679 {
2680 	struct ocp_resource *r, *table;
2681 	int err = 0;
2682 
2683 	table = (struct ocp_resource *)driver_data;
2684 	for (r = table; r->setup; r++) {
2685 		if (!ptp_ocp_allow_irq(bp, r))
2686 			continue;
2687 		err = r->setup(bp, r);
2688 		if (err) {
2689 			dev_err(&bp->pdev->dev,
2690 				"Could not register %s: err %d\n",
2691 				r->name, err);
2692 			break;
2693 		}
2694 	}
2695 	return err;
2696 }
2697 
2698 static void
2699 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2700 {
2701 	struct dpll_pin_properties prop = {
2702 		.board_label = NULL,
2703 		.type = DPLL_PIN_TYPE_EXT,
2704 		.capabilities = 0,
2705 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2706 		.freq_supported = ptp_ocp_sma_freq,
2707 
2708 	};
2709 	u32 reg;
2710 	int i;
2711 
2712 	/* defaults */
2713 	bp->sma[0].mode = SMA_MODE_IN;
2714 	bp->sma[1].mode = SMA_MODE_IN;
2715 	bp->sma[2].mode = SMA_MODE_OUT;
2716 	bp->sma[3].mode = SMA_MODE_OUT;
2717 
2718 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2719 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2720 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2721 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2722 
2723 	for (i = 0; i < OCP_SMA_NUM; i++) {
2724 		/* If no SMA map, the pin functions and directions are fixed. */
2725 		bp->sma[i].dpll_prop = prop;
2726 		bp->sma[i].dpll_prop.board_label =
2727 			bp->ptp_info.pin_config[i].name;
2728 		if (!bp->art_sma) {
2729 			bp->sma[i].fixed_fcn = true;
2730 			bp->sma[i].fixed_dir = true;
2731 			continue;
2732 		}
2733 		reg = ioread32(&bp->art_sma->map[i].gpio);
2734 
2735 		switch (reg & 0xff) {
2736 		case 0:
2737 			bp->sma[i].fixed_fcn = true;
2738 			bp->sma[i].fixed_dir = true;
2739 			break;
2740 		case 1:
2741 		case 8:
2742 			bp->sma[i].mode = SMA_MODE_IN;
2743 			bp->sma[i].dpll_prop.capabilities =
2744 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2745 			break;
2746 		default:
2747 			bp->sma[i].mode = SMA_MODE_OUT;
2748 			bp->sma[i].dpll_prop.capabilities =
2749 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2750 			break;
2751 		}
2752 	}
2753 }
2754 
2755 static u32
2756 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2757 {
2758 	if (bp->sma[sma_nr - 1].fixed_fcn)
2759 		return bp->sma[sma_nr - 1].default_fcn;
2760 
2761 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2762 }
2763 
2764 /* note: store 0 is considered invalid. */
2765 static int
2766 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2767 {
2768 	unsigned long flags;
2769 	u32 __iomem *gpio;
2770 	int err = 0;
2771 	u32 reg;
2772 
2773 	val &= SMA_SELECT_MASK;
2774 	if (hweight32(val) > 1)
2775 		return -EINVAL;
2776 
2777 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2778 
2779 	spin_lock_irqsave(&bp->lock, flags);
2780 	reg = ioread32(gpio);
2781 	if (((reg >> 16) & val) == 0) {
2782 		err = -EOPNOTSUPP;
2783 	} else {
2784 		reg = (reg & 0xff00) | (val & 0xff);
2785 		iowrite32(reg, gpio);
2786 	}
2787 	spin_unlock_irqrestore(&bp->lock, flags);
2788 
2789 	return err;
2790 }
2791 
2792 static const struct ocp_sma_op ocp_art_sma_op = {
2793 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2794 	.init		= ptp_ocp_art_sma_init,
2795 	.get		= ptp_ocp_art_sma_get,
2796 	.set_inputs	= ptp_ocp_art_sma_set,
2797 	.set_output	= ptp_ocp_art_sma_set,
2798 };
2799 
2800 /* ART specific board initializers; last "resource" registered. */
2801 static int
2802 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2803 {
2804 	int err;
2805 
2806 	bp->flash_start = 0x1000000;
2807 	bp->eeprom_map = art_eeprom_map;
2808 	bp->fw_cap = OCP_CAP_BASIC;
2809 	bp->fw_version = ioread32(&bp->reg->version);
2810 	bp->fw_tag = 2;
2811 	bp->sma_op = &ocp_art_sma_op;
2812 
2813 	/* Enable MAC serial port during initialisation */
2814 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2815 
2816 	err = ptp_ocp_set_pins(bp);
2817 	if (err)
2818 		return err;
2819 	ptp_ocp_sma_init(bp);
2820 
2821 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2822 	if (err)
2823 		return err;
2824 
2825 	return ptp_ocp_init_clock(bp, r->extra);
2826 }
2827 
2828 /* ADVA specific board initializers; last "resource" registered. */
2829 static int
2830 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2831 {
2832 	int err;
2833 	u32 version;
2834 
2835 	bp->flash_start = 0xA00000;
2836 	bp->eeprom_map = fb_eeprom_map;
2837 	bp->sma_op = &ocp_adva_sma_op;
2838 
2839 	version = ioread32(&bp->image->version);
2840 	/* if lower 16 bits are empty, this is the fw loader. */
2841 	if ((version & 0xffff) == 0) {
2842 		version = version >> 16;
2843 		bp->fw_loader = true;
2844 	}
2845 	bp->fw_tag = 3;
2846 	bp->fw_version = version & 0xffff;
2847 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2848 
2849 	ptp_ocp_tod_init(bp);
2850 	ptp_ocp_nmea_out_init(bp);
2851 	ptp_ocp_signal_init(bp);
2852 
2853 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2854 	if (err)
2855 		return err;
2856 
2857 	err = ptp_ocp_set_pins(bp);
2858 	if (err)
2859 		return err;
2860 	ptp_ocp_sma_init(bp);
2861 
2862 	return ptp_ocp_init_clock(bp, r->extra);
2863 }
2864 
2865 static ssize_t
2866 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2867 		    int def_val)
2868 {
2869 	const char *name;
2870 	ssize_t count;
2871 
2872 	count = sysfs_emit(buf, "OUT: ");
2873 	name = ptp_ocp_select_name_from_val(tbl, val);
2874 	if (!name)
2875 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2876 	count += sysfs_emit_at(buf, count, "%s\n", name);
2877 	return count;
2878 }
2879 
2880 static ssize_t
2881 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2882 		    int def_val)
2883 {
2884 	const char *name;
2885 	ssize_t count;
2886 	int i;
2887 
2888 	count = sysfs_emit(buf, "IN: ");
2889 	for (i = 0; tbl[i].name; i++) {
2890 		if (val & tbl[i].value) {
2891 			name = tbl[i].name;
2892 			count += sysfs_emit_at(buf, count, "%s ", name);
2893 		}
2894 	}
2895 	if (!val && def_val >= 0) {
2896 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2897 		count += sysfs_emit_at(buf, count, "%s ", name);
2898 	}
2899 	if (count)
2900 		count--;
2901 	count += sysfs_emit_at(buf, count, "\n");
2902 	return count;
2903 }
2904 
2905 static int
2906 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2907 		 enum ptp_ocp_sma_mode *mode)
2908 {
2909 	int idx, count, dir;
2910 	char **argv;
2911 	int ret;
2912 
2913 	argv = argv_split(GFP_KERNEL, buf, &count);
2914 	if (!argv)
2915 		return -ENOMEM;
2916 
2917 	ret = -EINVAL;
2918 	if (!count)
2919 		goto out;
2920 
2921 	idx = 0;
2922 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2923 	if (!strcasecmp("IN:", argv[0])) {
2924 		dir = 0;
2925 		idx++;
2926 	}
2927 	if (!strcasecmp("OUT:", argv[0])) {
2928 		dir = 1;
2929 		idx++;
2930 	}
2931 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2932 
2933 	ret = 0;
2934 	for (; idx < count; idx++)
2935 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2936 	if (ret < 0)
2937 		ret = -EINVAL;
2938 
2939 out:
2940 	argv_free(argv);
2941 	return ret;
2942 }
2943 
2944 static ssize_t
2945 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2946 		 int default_in_val, int default_out_val)
2947 {
2948 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2949 	const struct ocp_selector * const *tbl;
2950 	u32 val;
2951 
2952 	tbl = bp->sma_op->tbl;
2953 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2954 
2955 	if (sma->mode == SMA_MODE_IN) {
2956 		if (sma->disabled)
2957 			val = SMA_DISABLE;
2958 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2959 	}
2960 
2961 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2962 }
2963 
2964 static ssize_t
2965 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2966 {
2967 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2968 
2969 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2970 }
2971 
2972 static ssize_t
2973 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2974 {
2975 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2976 
2977 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2978 }
2979 
2980 static ssize_t
2981 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2982 {
2983 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2984 
2985 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2986 }
2987 
2988 static ssize_t
2989 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2990 {
2991 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2992 
2993 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2994 }
2995 
2996 static int
2997 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2998 {
2999 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3000 
3001 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3002 		return -EOPNOTSUPP;
3003 
3004 	if (sma->fixed_fcn) {
3005 		if (val != sma->default_fcn)
3006 			return -EOPNOTSUPP;
3007 		return 0;
3008 	}
3009 
3010 	sma->disabled = !!(val & SMA_DISABLE);
3011 
3012 	if (mode != sma->mode) {
3013 		if (mode == SMA_MODE_IN)
3014 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
3015 		else
3016 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3017 		sma->mode = mode;
3018 	}
3019 
3020 	if (!sma->fixed_dir)
3021 		val |= SMA_ENABLE;		/* add enable bit */
3022 
3023 	if (sma->disabled)
3024 		val = 0;
3025 
3026 	if (mode == SMA_MODE_IN)
3027 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3028 	else
3029 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3030 
3031 	return val;
3032 }
3033 
3034 static int
3035 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3036 {
3037 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3038 	enum ptp_ocp_sma_mode mode;
3039 	int val;
3040 
3041 	mode = sma->mode;
3042 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3043 	if (val < 0)
3044 		return val;
3045 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3046 }
3047 
3048 static ssize_t
3049 sma1_store(struct device *dev, struct device_attribute *attr,
3050 	   const char *buf, size_t count)
3051 {
3052 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3053 	int err;
3054 
3055 	err = ptp_ocp_sma_store(bp, buf, 1);
3056 	return err ? err : count;
3057 }
3058 
3059 static ssize_t
3060 sma2_store(struct device *dev, struct device_attribute *attr,
3061 	   const char *buf, size_t count)
3062 {
3063 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3064 	int err;
3065 
3066 	err = ptp_ocp_sma_store(bp, buf, 2);
3067 	return err ? err : count;
3068 }
3069 
3070 static ssize_t
3071 sma3_store(struct device *dev, struct device_attribute *attr,
3072 	   const char *buf, size_t count)
3073 {
3074 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3075 	int err;
3076 
3077 	err = ptp_ocp_sma_store(bp, buf, 3);
3078 	return err ? err : count;
3079 }
3080 
3081 static ssize_t
3082 sma4_store(struct device *dev, struct device_attribute *attr,
3083 	   const char *buf, size_t count)
3084 {
3085 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3086 	int err;
3087 
3088 	err = ptp_ocp_sma_store(bp, buf, 4);
3089 	return err ? err : count;
3090 }
3091 static DEVICE_ATTR_RW(sma1);
3092 static DEVICE_ATTR_RW(sma2);
3093 static DEVICE_ATTR_RW(sma3);
3094 static DEVICE_ATTR_RW(sma4);
3095 
3096 static ssize_t
3097 available_sma_inputs_show(struct device *dev,
3098 			  struct device_attribute *attr, char *buf)
3099 {
3100 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3101 
3102 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3103 }
3104 static DEVICE_ATTR_RO(available_sma_inputs);
3105 
3106 static ssize_t
3107 available_sma_outputs_show(struct device *dev,
3108 			   struct device_attribute *attr, char *buf)
3109 {
3110 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3111 
3112 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3113 }
3114 static DEVICE_ATTR_RO(available_sma_outputs);
3115 
3116 #define EXT_ATTR_RO(_group, _name, _val)				\
3117 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3118 		{ __ATTR_RO(_name), (void *)_val }
3119 #define EXT_ATTR_RW(_group, _name, _val)				\
3120 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3121 		{ __ATTR_RW(_name), (void *)_val }
3122 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3123 
3124 /* period [duty [phase [polarity]]] */
3125 static ssize_t
3126 signal_store(struct device *dev, struct device_attribute *attr,
3127 	     const char *buf, size_t count)
3128 {
3129 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3130 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3131 	struct ptp_ocp_signal s = { };
3132 	int gen = (uintptr_t)ea->var;
3133 	int argc, err;
3134 	char **argv;
3135 
3136 	argv = argv_split(GFP_KERNEL, buf, &argc);
3137 	if (!argv)
3138 		return -ENOMEM;
3139 
3140 	err = -EINVAL;
3141 	s.duty = bp->signal[gen].duty;
3142 	s.phase = bp->signal[gen].phase;
3143 	s.period = bp->signal[gen].period;
3144 	s.polarity = bp->signal[gen].polarity;
3145 
3146 	switch (argc) {
3147 	case 4:
3148 		argc--;
3149 		err = kstrtobool(argv[argc], &s.polarity);
3150 		if (err)
3151 			goto out;
3152 		fallthrough;
3153 	case 3:
3154 		argc--;
3155 		err = kstrtou64(argv[argc], 0, &s.phase);
3156 		if (err)
3157 			goto out;
3158 		fallthrough;
3159 	case 2:
3160 		argc--;
3161 		err = kstrtoint(argv[argc], 0, &s.duty);
3162 		if (err)
3163 			goto out;
3164 		fallthrough;
3165 	case 1:
3166 		argc--;
3167 		err = kstrtou64(argv[argc], 0, &s.period);
3168 		if (err)
3169 			goto out;
3170 		break;
3171 	default:
3172 		goto out;
3173 	}
3174 
3175 	err = ptp_ocp_signal_set(bp, gen, &s);
3176 	if (err)
3177 		goto out;
3178 
3179 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3180 
3181 out:
3182 	argv_free(argv);
3183 	return err ? err : count;
3184 }
3185 
3186 static ssize_t
3187 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3188 {
3189 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3190 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3191 	struct ptp_ocp_signal *signal;
3192 	struct timespec64 ts;
3193 	ssize_t count;
3194 	int i;
3195 
3196 	i = (uintptr_t)ea->var;
3197 	signal = &bp->signal[i];
3198 
3199 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
3200 			   signal->duty, signal->phase, signal->polarity);
3201 
3202 	ts = ktime_to_timespec64(signal->start);
3203 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
3204 
3205 	return count;
3206 }
3207 static EXT_ATTR_RW(signal, signal, 0);
3208 static EXT_ATTR_RW(signal, signal, 1);
3209 static EXT_ATTR_RW(signal, signal, 2);
3210 static EXT_ATTR_RW(signal, signal, 3);
3211 
3212 static ssize_t
3213 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3214 {
3215 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3216 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3217 	int i = (uintptr_t)ea->var;
3218 
3219 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3220 }
3221 static EXT_ATTR_RO(signal, duty, 0);
3222 static EXT_ATTR_RO(signal, duty, 1);
3223 static EXT_ATTR_RO(signal, duty, 2);
3224 static EXT_ATTR_RO(signal, duty, 3);
3225 
3226 static ssize_t
3227 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3228 {
3229 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3230 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3231 	int i = (uintptr_t)ea->var;
3232 
3233 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3234 }
3235 static EXT_ATTR_RO(signal, period, 0);
3236 static EXT_ATTR_RO(signal, period, 1);
3237 static EXT_ATTR_RO(signal, period, 2);
3238 static EXT_ATTR_RO(signal, period, 3);
3239 
3240 static ssize_t
3241 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3242 {
3243 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3244 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3245 	int i = (uintptr_t)ea->var;
3246 
3247 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3248 }
3249 static EXT_ATTR_RO(signal, phase, 0);
3250 static EXT_ATTR_RO(signal, phase, 1);
3251 static EXT_ATTR_RO(signal, phase, 2);
3252 static EXT_ATTR_RO(signal, phase, 3);
3253 
3254 static ssize_t
3255 polarity_show(struct device *dev, struct device_attribute *attr,
3256 	      char *buf)
3257 {
3258 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3259 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3260 	int i = (uintptr_t)ea->var;
3261 
3262 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3263 }
3264 static EXT_ATTR_RO(signal, polarity, 0);
3265 static EXT_ATTR_RO(signal, polarity, 1);
3266 static EXT_ATTR_RO(signal, polarity, 2);
3267 static EXT_ATTR_RO(signal, polarity, 3);
3268 
3269 static ssize_t
3270 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3271 {
3272 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3273 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3274 	int i = (uintptr_t)ea->var;
3275 
3276 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3277 }
3278 static EXT_ATTR_RO(signal, running, 0);
3279 static EXT_ATTR_RO(signal, running, 1);
3280 static EXT_ATTR_RO(signal, running, 2);
3281 static EXT_ATTR_RO(signal, running, 3);
3282 
3283 static ssize_t
3284 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3285 {
3286 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3287 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3288 	int i = (uintptr_t)ea->var;
3289 	struct timespec64 ts;
3290 
3291 	ts = ktime_to_timespec64(bp->signal[i].start);
3292 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3293 }
3294 static EXT_ATTR_RO(signal, start, 0);
3295 static EXT_ATTR_RO(signal, start, 1);
3296 static EXT_ATTR_RO(signal, start, 2);
3297 static EXT_ATTR_RO(signal, start, 3);
3298 
3299 static ssize_t
3300 seconds_store(struct device *dev, struct device_attribute *attr,
3301 	      const char *buf, size_t count)
3302 {
3303 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3304 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3305 	int idx = (uintptr_t)ea->var;
3306 	u32 val;
3307 	int err;
3308 
3309 	err = kstrtou32(buf, 0, &val);
3310 	if (err)
3311 		return err;
3312 	if (val > 0xff)
3313 		return -EINVAL;
3314 
3315 	if (val)
3316 		val = (val << 8) | 0x1;
3317 
3318 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3319 
3320 	return count;
3321 }
3322 
3323 static ssize_t
3324 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3325 {
3326 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3327 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3328 	int idx = (uintptr_t)ea->var;
3329 	u32 val;
3330 
3331 	val = ioread32(&bp->freq_in[idx]->ctrl);
3332 	if (val & 1)
3333 		val = (val >> 8) & 0xff;
3334 	else
3335 		val = 0;
3336 
3337 	return sysfs_emit(buf, "%u\n", val);
3338 }
3339 static EXT_ATTR_RW(freq, seconds, 0);
3340 static EXT_ATTR_RW(freq, seconds, 1);
3341 static EXT_ATTR_RW(freq, seconds, 2);
3342 static EXT_ATTR_RW(freq, seconds, 3);
3343 
3344 static ssize_t
3345 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3346 {
3347 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3348 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3349 	int idx = (uintptr_t)ea->var;
3350 	u32 val;
3351 
3352 	val = ioread32(&bp->freq_in[idx]->status);
3353 	if (val & FREQ_STATUS_ERROR)
3354 		return sysfs_emit(buf, "error\n");
3355 	if (val & FREQ_STATUS_OVERRUN)
3356 		return sysfs_emit(buf, "overrun\n");
3357 	if (val & FREQ_STATUS_VALID)
3358 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3359 	return 0;
3360 }
3361 static EXT_ATTR_RO(freq, frequency, 0);
3362 static EXT_ATTR_RO(freq, frequency, 1);
3363 static EXT_ATTR_RO(freq, frequency, 2);
3364 static EXT_ATTR_RO(freq, frequency, 3);
3365 
3366 static ssize_t
3367 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3368 {
3369 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3370 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3371 
3372 	return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3373 }
3374 
3375 static umode_t
3376 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3377 {
3378 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3379 	struct ptp_ocp_serial_port *port;
3380 	struct device_attribute *dattr;
3381 	struct dev_ext_attribute *ea;
3382 
3383 	if (strncmp(attr->name, "tty", 3))
3384 		return attr->mode;
3385 
3386 	dattr = container_of(attr, struct device_attribute, attr);
3387 	ea = container_of(dattr, struct dev_ext_attribute, attr);
3388 	port = &bp->port[(uintptr_t)ea->var];
3389 	return port->line == -1 ? 0 : 0444;
3390 }
3391 
3392 #define EXT_TTY_ATTR_RO(_name, _val)			\
3393 	struct dev_ext_attribute dev_attr_tty##_name =	\
3394 		{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3395 
3396 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3397 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3398 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3399 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3400 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3401 	&dev_attr_ttyGNSS.attr.attr,
3402 	&dev_attr_ttyGNSS2.attr.attr,
3403 	&dev_attr_ttyMAC.attr.attr,
3404 	&dev_attr_ttyNMEA.attr.attr,
3405 	NULL,
3406 };
3407 
3408 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3409 	.name = "tty",
3410 	.attrs = ptp_ocp_timecard_tty_attrs,
3411 	.is_visible = ptp_ocp_timecard_tty_is_visible,
3412 };
3413 
3414 static ssize_t
3415 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3416 {
3417 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3418 
3419 	if (!bp->has_eeprom_data)
3420 		ptp_ocp_read_eeprom(bp);
3421 
3422 	return sysfs_emit(buf, "%pM\n", bp->serial);
3423 }
3424 static DEVICE_ATTR_RO(serialnum);
3425 
3426 static ssize_t
3427 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3428 {
3429 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3430 	ssize_t ret;
3431 
3432 	if (bp->gnss_lost)
3433 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3434 	else
3435 		ret = sysfs_emit(buf, "SYNC\n");
3436 
3437 	return ret;
3438 }
3439 static DEVICE_ATTR_RO(gnss_sync);
3440 
3441 static ssize_t
3442 utc_tai_offset_show(struct device *dev,
3443 		    struct device_attribute *attr, char *buf)
3444 {
3445 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3446 
3447 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3448 }
3449 
3450 static ssize_t
3451 utc_tai_offset_store(struct device *dev,
3452 		     struct device_attribute *attr,
3453 		     const char *buf, size_t count)
3454 {
3455 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3456 	int err;
3457 	u32 val;
3458 
3459 	err = kstrtou32(buf, 0, &val);
3460 	if (err)
3461 		return err;
3462 
3463 	ptp_ocp_utc_distribute(bp, val);
3464 
3465 	return count;
3466 }
3467 static DEVICE_ATTR_RW(utc_tai_offset);
3468 
3469 static ssize_t
3470 ts_window_adjust_show(struct device *dev,
3471 		      struct device_attribute *attr, char *buf)
3472 {
3473 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3474 
3475 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3476 }
3477 
3478 static ssize_t
3479 ts_window_adjust_store(struct device *dev,
3480 		       struct device_attribute *attr,
3481 		       const char *buf, size_t count)
3482 {
3483 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3484 	int err;
3485 	u32 val;
3486 
3487 	err = kstrtou32(buf, 0, &val);
3488 	if (err)
3489 		return err;
3490 
3491 	bp->ts_window_adjust = val;
3492 
3493 	return count;
3494 }
3495 static DEVICE_ATTR_RW(ts_window_adjust);
3496 
3497 static ssize_t
3498 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3499 {
3500 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3501 	u32 val;
3502 
3503 	val = ioread32(&bp->irig_out->ctrl);
3504 	val = (val >> 16) & 0x07;
3505 	return sysfs_emit(buf, "%d\n", val);
3506 }
3507 
3508 static ssize_t
3509 irig_b_mode_store(struct device *dev,
3510 		  struct device_attribute *attr,
3511 		  const char *buf, size_t count)
3512 {
3513 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3514 	unsigned long flags;
3515 	int err;
3516 	u32 reg;
3517 	u8 val;
3518 
3519 	err = kstrtou8(buf, 0, &val);
3520 	if (err)
3521 		return err;
3522 	if (val > 7)
3523 		return -EINVAL;
3524 
3525 	reg = ((val & 0x7) << 16);
3526 
3527 	spin_lock_irqsave(&bp->lock, flags);
3528 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3529 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3530 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3531 	spin_unlock_irqrestore(&bp->lock, flags);
3532 
3533 	return count;
3534 }
3535 static DEVICE_ATTR_RW(irig_b_mode);
3536 
3537 static ssize_t
3538 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3539 {
3540 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3541 	const char *p;
3542 	u32 select;
3543 
3544 	select = ioread32(&bp->reg->select);
3545 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3546 
3547 	return sysfs_emit(buf, "%s\n", p);
3548 }
3549 
3550 static ssize_t
3551 clock_source_store(struct device *dev, struct device_attribute *attr,
3552 		   const char *buf, size_t count)
3553 {
3554 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3555 	unsigned long flags;
3556 	int val;
3557 
3558 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3559 	if (val < 0)
3560 		return val;
3561 
3562 	spin_lock_irqsave(&bp->lock, flags);
3563 	iowrite32(val, &bp->reg->select);
3564 	spin_unlock_irqrestore(&bp->lock, flags);
3565 
3566 	return count;
3567 }
3568 static DEVICE_ATTR_RW(clock_source);
3569 
3570 static ssize_t
3571 available_clock_sources_show(struct device *dev,
3572 			     struct device_attribute *attr, char *buf)
3573 {
3574 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3575 }
3576 static DEVICE_ATTR_RO(available_clock_sources);
3577 
3578 static ssize_t
3579 clock_status_drift_show(struct device *dev,
3580 			struct device_attribute *attr, char *buf)
3581 {
3582 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3583 	u32 val;
3584 	int res;
3585 
3586 	val = ioread32(&bp->reg->status_drift);
3587 	res = (val & ~INT_MAX) ? -1 : 1;
3588 	res *= (val & INT_MAX);
3589 	return sysfs_emit(buf, "%d\n", res);
3590 }
3591 static DEVICE_ATTR_RO(clock_status_drift);
3592 
3593 static ssize_t
3594 clock_status_offset_show(struct device *dev,
3595 			 struct device_attribute *attr, char *buf)
3596 {
3597 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3598 	u32 val;
3599 	int res;
3600 
3601 	val = ioread32(&bp->reg->status_offset);
3602 	res = (val & ~INT_MAX) ? -1 : 1;
3603 	res *= (val & INT_MAX);
3604 	return sysfs_emit(buf, "%d\n", res);
3605 }
3606 static DEVICE_ATTR_RO(clock_status_offset);
3607 
3608 static ssize_t
3609 tod_correction_show(struct device *dev,
3610 		    struct device_attribute *attr, char *buf)
3611 {
3612 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3613 	u32 val;
3614 	int res;
3615 
3616 	val = ioread32(&bp->tod->adj_sec);
3617 	res = (val & ~INT_MAX) ? -1 : 1;
3618 	res *= (val & INT_MAX);
3619 	return sysfs_emit(buf, "%d\n", res);
3620 }
3621 
3622 static ssize_t
3623 tod_correction_store(struct device *dev, struct device_attribute *attr,
3624 		     const char *buf, size_t count)
3625 {
3626 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3627 	unsigned long flags;
3628 	int err, res;
3629 	u32 val = 0;
3630 
3631 	err = kstrtos32(buf, 0, &res);
3632 	if (err)
3633 		return err;
3634 	if (res < 0) {
3635 		res *= -1;
3636 		val |= BIT(31);
3637 	}
3638 	val |= res;
3639 
3640 	spin_lock_irqsave(&bp->lock, flags);
3641 	iowrite32(val, &bp->tod->adj_sec);
3642 	spin_unlock_irqrestore(&bp->lock, flags);
3643 
3644 	return count;
3645 }
3646 static DEVICE_ATTR_RW(tod_correction);
3647 
3648 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3649 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3650 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3651 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3652 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3653 		&dev_attr_signal##_nr##_period.attr.attr,		\
3654 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3655 		&dev_attr_signal##_nr##_running.attr.attr,		\
3656 		&dev_attr_signal##_nr##_start.attr.attr,		\
3657 		NULL,							\
3658 	}
3659 
3660 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3661 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3662 	static const struct attribute_group				\
3663 			fb_timecard_signal##_nr##_group = {		\
3664 		.name = #_name,						\
3665 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3666 }
3667 
3668 DEVICE_SIGNAL_GROUP(gen1, 0);
3669 DEVICE_SIGNAL_GROUP(gen2, 1);
3670 DEVICE_SIGNAL_GROUP(gen3, 2);
3671 DEVICE_SIGNAL_GROUP(gen4, 3);
3672 
3673 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3674 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3675 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3676 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3677 		NULL,							\
3678 	}
3679 
3680 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3681 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3682 	static const struct attribute_group				\
3683 			fb_timecard_freq##_nr##_group = {		\
3684 		.name = #_name,						\
3685 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3686 }
3687 
3688 DEVICE_FREQ_GROUP(freq1, 0);
3689 DEVICE_FREQ_GROUP(freq2, 1);
3690 DEVICE_FREQ_GROUP(freq3, 2);
3691 DEVICE_FREQ_GROUP(freq4, 3);
3692 
3693 static ssize_t
3694 disciplining_config_read(struct file *filp, struct kobject *kobj,
3695 			 struct bin_attribute *bin_attr, char *buf,
3696 			 loff_t off, size_t count)
3697 {
3698 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3699 	size_t size = OCP_ART_CONFIG_SIZE;
3700 	struct nvmem_device *nvmem;
3701 	ssize_t err;
3702 
3703 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3704 	if (IS_ERR(nvmem))
3705 		return PTR_ERR(nvmem);
3706 
3707 	if (off > size) {
3708 		err = 0;
3709 		goto out;
3710 	}
3711 
3712 	if (off + count > size)
3713 		count = size - off;
3714 
3715 	// the configuration is in the very beginning of the EEPROM
3716 	err = nvmem_device_read(nvmem, off, count, buf);
3717 	if (err != count) {
3718 		err = -EFAULT;
3719 		goto out;
3720 	}
3721 
3722 out:
3723 	ptp_ocp_nvmem_device_put(&nvmem);
3724 
3725 	return err;
3726 }
3727 
3728 static ssize_t
3729 disciplining_config_write(struct file *filp, struct kobject *kobj,
3730 			  struct bin_attribute *bin_attr, char *buf,
3731 			  loff_t off, size_t count)
3732 {
3733 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3734 	struct nvmem_device *nvmem;
3735 	ssize_t err;
3736 
3737 	/* Allow write of the whole area only */
3738 	if (off || count != OCP_ART_CONFIG_SIZE)
3739 		return -EFAULT;
3740 
3741 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3742 	if (IS_ERR(nvmem))
3743 		return PTR_ERR(nvmem);
3744 
3745 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3746 	if (err != count)
3747 		err = -EFAULT;
3748 
3749 	ptp_ocp_nvmem_device_put(&nvmem);
3750 
3751 	return err;
3752 }
3753 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3754 
3755 static ssize_t
3756 temperature_table_read(struct file *filp, struct kobject *kobj,
3757 		       struct bin_attribute *bin_attr, char *buf,
3758 		       loff_t off, size_t count)
3759 {
3760 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3761 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3762 	struct nvmem_device *nvmem;
3763 	ssize_t err;
3764 
3765 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3766 	if (IS_ERR(nvmem))
3767 		return PTR_ERR(nvmem);
3768 
3769 	if (off > size) {
3770 		err = 0;
3771 		goto out;
3772 	}
3773 
3774 	if (off + count > size)
3775 		count = size - off;
3776 
3777 	// the configuration is in the very beginning of the EEPROM
3778 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3779 	if (err != count) {
3780 		err = -EFAULT;
3781 		goto out;
3782 	}
3783 
3784 out:
3785 	ptp_ocp_nvmem_device_put(&nvmem);
3786 
3787 	return err;
3788 }
3789 
3790 static ssize_t
3791 temperature_table_write(struct file *filp, struct kobject *kobj,
3792 			struct bin_attribute *bin_attr, char *buf,
3793 			loff_t off, size_t count)
3794 {
3795 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3796 	struct nvmem_device *nvmem;
3797 	ssize_t err;
3798 
3799 	/* Allow write of the whole area only */
3800 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3801 		return -EFAULT;
3802 
3803 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3804 	if (IS_ERR(nvmem))
3805 		return PTR_ERR(nvmem);
3806 
3807 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3808 	if (err != count)
3809 		err = -EFAULT;
3810 
3811 	ptp_ocp_nvmem_device_put(&nvmem);
3812 
3813 	return err;
3814 }
3815 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3816 
3817 static struct attribute *fb_timecard_attrs[] = {
3818 	&dev_attr_serialnum.attr,
3819 	&dev_attr_gnss_sync.attr,
3820 	&dev_attr_clock_source.attr,
3821 	&dev_attr_available_clock_sources.attr,
3822 	&dev_attr_sma1.attr,
3823 	&dev_attr_sma2.attr,
3824 	&dev_attr_sma3.attr,
3825 	&dev_attr_sma4.attr,
3826 	&dev_attr_available_sma_inputs.attr,
3827 	&dev_attr_available_sma_outputs.attr,
3828 	&dev_attr_clock_status_drift.attr,
3829 	&dev_attr_clock_status_offset.attr,
3830 	&dev_attr_irig_b_mode.attr,
3831 	&dev_attr_utc_tai_offset.attr,
3832 	&dev_attr_ts_window_adjust.attr,
3833 	&dev_attr_tod_correction.attr,
3834 	NULL,
3835 };
3836 
3837 static const struct attribute_group fb_timecard_group = {
3838 	.attrs = fb_timecard_attrs,
3839 };
3840 
3841 static const struct ocp_attr_group fb_timecard_groups[] = {
3842 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3843 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3844 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3845 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3846 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3847 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3848 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3849 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3850 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3851 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3852 	{ },
3853 };
3854 
3855 static struct attribute *art_timecard_attrs[] = {
3856 	&dev_attr_serialnum.attr,
3857 	&dev_attr_clock_source.attr,
3858 	&dev_attr_available_clock_sources.attr,
3859 	&dev_attr_utc_tai_offset.attr,
3860 	&dev_attr_ts_window_adjust.attr,
3861 	&dev_attr_sma1.attr,
3862 	&dev_attr_sma2.attr,
3863 	&dev_attr_sma3.attr,
3864 	&dev_attr_sma4.attr,
3865 	&dev_attr_available_sma_inputs.attr,
3866 	&dev_attr_available_sma_outputs.attr,
3867 	NULL,
3868 };
3869 
3870 static struct bin_attribute *bin_art_timecard_attrs[] = {
3871 	&bin_attr_disciplining_config,
3872 	&bin_attr_temperature_table,
3873 	NULL,
3874 };
3875 
3876 static const struct attribute_group art_timecard_group = {
3877 	.attrs = art_timecard_attrs,
3878 	.bin_attrs = bin_art_timecard_attrs,
3879 };
3880 
3881 static const struct ocp_attr_group art_timecard_groups[] = {
3882 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3883 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3884 	{ },
3885 };
3886 
3887 static struct attribute *adva_timecard_attrs[] = {
3888 	&dev_attr_serialnum.attr,
3889 	&dev_attr_gnss_sync.attr,
3890 	&dev_attr_clock_source.attr,
3891 	&dev_attr_available_clock_sources.attr,
3892 	&dev_attr_sma1.attr,
3893 	&dev_attr_sma2.attr,
3894 	&dev_attr_sma3.attr,
3895 	&dev_attr_sma4.attr,
3896 	&dev_attr_available_sma_inputs.attr,
3897 	&dev_attr_available_sma_outputs.attr,
3898 	&dev_attr_clock_status_drift.attr,
3899 	&dev_attr_clock_status_offset.attr,
3900 	&dev_attr_ts_window_adjust.attr,
3901 	&dev_attr_tod_correction.attr,
3902 	NULL,
3903 };
3904 
3905 static const struct attribute_group adva_timecard_group = {
3906 	.attrs = adva_timecard_attrs,
3907 };
3908 
3909 static const struct ocp_attr_group adva_timecard_groups[] = {
3910 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3911 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3912 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3913 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3914 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3915 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3916 	{ },
3917 };
3918 
3919 static void
3920 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3921 	       const char *def)
3922 {
3923 	int i;
3924 
3925 	for (i = 0; i < 4; i++) {
3926 		if (bp->sma[i].mode != SMA_MODE_IN)
3927 			continue;
3928 		if (map[i][0] & (1 << bit)) {
3929 			sprintf(buf, "sma%d", i + 1);
3930 			return;
3931 		}
3932 	}
3933 	if (!def)
3934 		def = "----";
3935 	strcpy(buf, def);
3936 }
3937 
3938 static void
3939 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3940 {
3941 	char *ans = buf;
3942 	int i;
3943 
3944 	strcpy(ans, "----");
3945 	for (i = 0; i < 4; i++) {
3946 		if (bp->sma[i].mode != SMA_MODE_OUT)
3947 			continue;
3948 		if (map[i][1] & (1 << bit))
3949 			ans += sprintf(ans, "sma%d ", i + 1);
3950 	}
3951 }
3952 
3953 static void
3954 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3955 {
3956 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3957 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3958 	char label[8];
3959 	bool on;
3960 	u32 val;
3961 
3962 	if (!signal)
3963 		return;
3964 
3965 	on = signal->running;
3966 	sprintf(label, "GEN%d", nr + 1);
3967 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3968 		   label, on ? " ON" : "OFF",
3969 		   signal->period, signal->duty, signal->phase,
3970 		   signal->polarity);
3971 
3972 	val = ioread32(&reg->enable);
3973 	seq_printf(s, " [%x", val);
3974 	val = ioread32(&reg->status);
3975 	seq_printf(s, " %x]", val);
3976 
3977 	seq_printf(s, " start:%llu\n", signal->start);
3978 }
3979 
3980 static void
3981 _frequency_summary_show(struct seq_file *s, int nr,
3982 			struct frequency_reg __iomem *reg)
3983 {
3984 	char label[8];
3985 	bool on;
3986 	u32 val;
3987 
3988 	if (!reg)
3989 		return;
3990 
3991 	sprintf(label, "FREQ%d", nr + 1);
3992 	val = ioread32(&reg->ctrl);
3993 	on = val & 1;
3994 	val = (val >> 8) & 0xff;
3995 	seq_printf(s, "%7s: %s, sec:%u",
3996 		   label,
3997 		   on ? " ON" : "OFF",
3998 		   val);
3999 
4000 	val = ioread32(&reg->status);
4001 	if (val & FREQ_STATUS_ERROR)
4002 		seq_printf(s, ", error");
4003 	if (val & FREQ_STATUS_OVERRUN)
4004 		seq_printf(s, ", overrun");
4005 	if (val & FREQ_STATUS_VALID)
4006 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4007 	seq_printf(s, "  reg:%x\n", val);
4008 }
4009 
4010 static int
4011 ptp_ocp_summary_show(struct seq_file *s, void *data)
4012 {
4013 	struct device *dev = s->private;
4014 	struct ptp_system_timestamp sts;
4015 	struct ts_reg __iomem *ts_reg;
4016 	char *buf, *src, *mac_src;
4017 	struct timespec64 ts;
4018 	struct ptp_ocp *bp;
4019 	u16 sma_val[4][2];
4020 	u32 ctrl, val;
4021 	bool on, map;
4022 	int i;
4023 
4024 	buf = (char *)__get_free_page(GFP_KERNEL);
4025 	if (!buf)
4026 		return -ENOMEM;
4027 
4028 	bp = dev_get_drvdata(dev);
4029 
4030 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4031 	for (i = 0; i < __PORT_COUNT; i++) {
4032 		if (bp->port[i].line != -1)
4033 			seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4034 				   bp->port[i].line);
4035 	}
4036 
4037 	memset(sma_val, 0xff, sizeof(sma_val));
4038 	if (bp->sma_map1) {
4039 		u32 reg;
4040 
4041 		reg = ioread32(&bp->sma_map1->gpio1);
4042 		sma_val[0][0] = reg & 0xffff;
4043 		sma_val[1][0] = reg >> 16;
4044 
4045 		reg = ioread32(&bp->sma_map1->gpio2);
4046 		sma_val[2][1] = reg & 0xffff;
4047 		sma_val[3][1] = reg >> 16;
4048 
4049 		reg = ioread32(&bp->sma_map2->gpio1);
4050 		sma_val[2][0] = reg & 0xffff;
4051 		sma_val[3][0] = reg >> 16;
4052 
4053 		reg = ioread32(&bp->sma_map2->gpio2);
4054 		sma_val[0][1] = reg & 0xffff;
4055 		sma_val[1][1] = reg >> 16;
4056 	}
4057 
4058 	sma1_show(dev, NULL, buf);
4059 	seq_printf(s, "   sma1: %04x,%04x %s",
4060 		   sma_val[0][0], sma_val[0][1], buf);
4061 
4062 	sma2_show(dev, NULL, buf);
4063 	seq_printf(s, "   sma2: %04x,%04x %s",
4064 		   sma_val[1][0], sma_val[1][1], buf);
4065 
4066 	sma3_show(dev, NULL, buf);
4067 	seq_printf(s, "   sma3: %04x,%04x %s",
4068 		   sma_val[2][0], sma_val[2][1], buf);
4069 
4070 	sma4_show(dev, NULL, buf);
4071 	seq_printf(s, "   sma4: %04x,%04x %s",
4072 		   sma_val[3][0], sma_val[3][1], buf);
4073 
4074 	if (bp->ts0) {
4075 		ts_reg = bp->ts0->mem;
4076 		on = ioread32(&ts_reg->enable);
4077 		src = "GNSS1";
4078 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4079 			   on ? " ON" : "OFF", src);
4080 	}
4081 
4082 	if (bp->ts1) {
4083 		ts_reg = bp->ts1->mem;
4084 		on = ioread32(&ts_reg->enable);
4085 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4086 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4087 			   on ? " ON" : "OFF", buf);
4088 	}
4089 
4090 	if (bp->ts2) {
4091 		ts_reg = bp->ts2->mem;
4092 		on = ioread32(&ts_reg->enable);
4093 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4094 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4095 			   on ? " ON" : "OFF", buf);
4096 	}
4097 
4098 	if (bp->ts3) {
4099 		ts_reg = bp->ts3->mem;
4100 		on = ioread32(&ts_reg->enable);
4101 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4102 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4103 			   on ? " ON" : "OFF", buf);
4104 	}
4105 
4106 	if (bp->ts4) {
4107 		ts_reg = bp->ts4->mem;
4108 		on = ioread32(&ts_reg->enable);
4109 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4110 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4111 			   on ? " ON" : "OFF", buf);
4112 	}
4113 
4114 	if (bp->pps) {
4115 		ts_reg = bp->pps->mem;
4116 		src = "PHC";
4117 		on = ioread32(&ts_reg->enable);
4118 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4119 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4120 			   on && map ? " ON" : "OFF", src);
4121 
4122 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4123 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4124 			   on && map ? " ON" : "OFF", src);
4125 	}
4126 
4127 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4128 		for (i = 0; i < 4; i++)
4129 			_signal_summary_show(s, bp, i);
4130 
4131 	if (bp->fw_cap & OCP_CAP_FREQ)
4132 		for (i = 0; i < 4; i++)
4133 			_frequency_summary_show(s, i, bp->freq_in[i]);
4134 
4135 	if (bp->irig_out) {
4136 		ctrl = ioread32(&bp->irig_out->ctrl);
4137 		on = ctrl & IRIG_M_CTRL_ENABLE;
4138 		val = ioread32(&bp->irig_out->status);
4139 		gpio_output_map(buf, bp, sma_val, 4);
4140 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4141 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4142 	}
4143 
4144 	if (bp->irig_in) {
4145 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4146 		val = ioread32(&bp->irig_in->status);
4147 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4148 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4149 			   on ? " ON" : "OFF", val, buf);
4150 	}
4151 
4152 	if (bp->dcf_out) {
4153 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4154 		val = ioread32(&bp->dcf_out->status);
4155 		gpio_output_map(buf, bp, sma_val, 5);
4156 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4157 			   on ? " ON" : "OFF", val, buf);
4158 	}
4159 
4160 	if (bp->dcf_in) {
4161 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4162 		val = ioread32(&bp->dcf_in->status);
4163 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4164 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4165 			   on ? " ON" : "OFF", val, buf);
4166 	}
4167 
4168 	if (bp->nmea_out) {
4169 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4170 		val = ioread32(&bp->nmea_out->status);
4171 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4172 			   on ? " ON" : "OFF", val);
4173 	}
4174 
4175 	/* compute src for PPS1, used below. */
4176 	if (bp->pps_select) {
4177 		val = ioread32(&bp->pps_select->gpio1);
4178 		src = &buf[80];
4179 		mac_src = "GNSS1";
4180 		if (val & 0x01) {
4181 			gpio_input_map(src, bp, sma_val, 0, NULL);
4182 			mac_src = src;
4183 		} else if (val & 0x02) {
4184 			src = "MAC";
4185 		} else if (val & 0x04) {
4186 			src = "GNSS1";
4187 		} else {
4188 			src = "----";
4189 			mac_src = src;
4190 		}
4191 	} else {
4192 		src = "?";
4193 		mac_src = src;
4194 	}
4195 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4196 
4197 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4198 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4199 
4200 	/* assumes automatic switchover/selection */
4201 	val = ioread32(&bp->reg->select);
4202 	switch (val >> 16) {
4203 	case 0:
4204 		sprintf(buf, "----");
4205 		break;
4206 	case 2:
4207 		sprintf(buf, "IRIG");
4208 		break;
4209 	case 3:
4210 		sprintf(buf, "%s via PPS1", src);
4211 		break;
4212 	case 6:
4213 		sprintf(buf, "DCF");
4214 		break;
4215 	default:
4216 		strcpy(buf, "unknown");
4217 		break;
4218 	}
4219 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4220 		   bp->sync ? "sync" : "unsynced");
4221 
4222 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4223 		struct timespec64 sys_ts;
4224 		s64 pre_ns, post_ns, ns;
4225 
4226 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4227 		post_ns = timespec64_to_ns(&sts.post_ts);
4228 		ns = (pre_ns + post_ns) / 2;
4229 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4230 		sys_ts = ns_to_timespec64(ns);
4231 
4232 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
4233 			   ts.tv_sec, ts.tv_nsec, &ts);
4234 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
4235 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
4236 			   bp->utc_tai_offset);
4237 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4238 			   timespec64_to_ns(&ts) - ns,
4239 			   post_ns - pre_ns);
4240 	}
4241 
4242 	free_page((unsigned long)buf);
4243 	return 0;
4244 }
4245 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4246 
4247 static int
4248 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4249 {
4250 	struct device *dev = s->private;
4251 	struct ptp_ocp *bp;
4252 	u32 val;
4253 	int idx;
4254 
4255 	bp = dev_get_drvdata(dev);
4256 
4257 	val = ioread32(&bp->tod->ctrl);
4258 	if (!(val & TOD_CTRL_ENABLE)) {
4259 		seq_printf(s, "TOD Slave disabled\n");
4260 		return 0;
4261 	}
4262 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4263 
4264 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4265 	idx += (val >> 16) & 3;
4266 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4267 
4268 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4269 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4270 
4271 	val = ioread32(&bp->tod->version);
4272 	seq_printf(s, "TOD Version %d.%d.%d\n",
4273 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4274 
4275 	val = ioread32(&bp->tod->status);
4276 	seq_printf(s, "Status register: 0x%08X\n", val);
4277 
4278 	val = ioread32(&bp->tod->adj_sec);
4279 	idx = (val & ~INT_MAX) ? -1 : 1;
4280 	idx *= (val & INT_MAX);
4281 	seq_printf(s, "Correction seconds: %d\n", idx);
4282 
4283 	val = ioread32(&bp->tod->utc_status);
4284 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4285 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4286 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4287 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4288 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4289 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4290 
4291 	val = ioread32(&bp->tod->leap);
4292 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4293 
4294 	return 0;
4295 }
4296 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4297 
4298 static struct dentry *ptp_ocp_debugfs_root;
4299 
4300 static void
4301 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4302 {
4303 	struct dentry *d;
4304 
4305 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4306 	bp->debug_root = d;
4307 	debugfs_create_file("summary", 0444, bp->debug_root,
4308 			    &bp->dev, &ptp_ocp_summary_fops);
4309 	if (bp->tod)
4310 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4311 				    &bp->dev, &ptp_ocp_tod_status_fops);
4312 }
4313 
4314 static void
4315 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4316 {
4317 	debugfs_remove_recursive(bp->debug_root);
4318 }
4319 
4320 static void
4321 ptp_ocp_debugfs_init(void)
4322 {
4323 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4324 }
4325 
4326 static void
4327 ptp_ocp_debugfs_fini(void)
4328 {
4329 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4330 }
4331 
4332 static void
4333 ptp_ocp_dev_release(struct device *dev)
4334 {
4335 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4336 
4337 	mutex_lock(&ptp_ocp_lock);
4338 	idr_remove(&ptp_ocp_idr, bp->id);
4339 	mutex_unlock(&ptp_ocp_lock);
4340 }
4341 
4342 static int
4343 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4344 {
4345 	int i, err;
4346 
4347 	mutex_lock(&ptp_ocp_lock);
4348 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4349 	mutex_unlock(&ptp_ocp_lock);
4350 	if (err < 0) {
4351 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4352 		return err;
4353 	}
4354 	bp->id = err;
4355 
4356 	bp->ptp_info = ptp_ocp_clock_info;
4357 	spin_lock_init(&bp->lock);
4358 
4359 	for (i = 0; i < __PORT_COUNT; i++)
4360 		bp->port[i].line = -1;
4361 
4362 	bp->pdev = pdev;
4363 
4364 	device_initialize(&bp->dev);
4365 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4366 	bp->dev.class = &timecard_class;
4367 	bp->dev.parent = &pdev->dev;
4368 	bp->dev.release = ptp_ocp_dev_release;
4369 	dev_set_drvdata(&bp->dev, bp);
4370 
4371 	err = device_add(&bp->dev);
4372 	if (err) {
4373 		dev_err(&bp->dev, "device add failed: %d\n", err);
4374 		goto out;
4375 	}
4376 
4377 	pci_set_drvdata(pdev, bp);
4378 
4379 	return 0;
4380 
4381 out:
4382 	put_device(&bp->dev);
4383 	return err;
4384 }
4385 
4386 static void
4387 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4388 {
4389 	struct device *dev = &bp->dev;
4390 
4391 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4392 		dev_err(dev, "%s symlink failed\n", link);
4393 }
4394 
4395 static void
4396 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4397 {
4398 	struct device *dev, *child;
4399 
4400 	dev = &bp->pdev->dev;
4401 
4402 	child = device_find_child_by_name(dev, name);
4403 	if (!child) {
4404 		dev_err(dev, "Could not find device %s\n", name);
4405 		return;
4406 	}
4407 
4408 	ptp_ocp_symlink(bp, child, link);
4409 	put_device(child);
4410 }
4411 
4412 static int
4413 ptp_ocp_complete(struct ptp_ocp *bp)
4414 {
4415 	struct pps_device *pps;
4416 	char buf[32];
4417 
4418 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4419 	ptp_ocp_link_child(bp, buf, "ptp");
4420 
4421 	pps = pps_lookup_dev(bp->ptp);
4422 	if (pps)
4423 		ptp_ocp_symlink(bp, pps->dev, "pps");
4424 
4425 	ptp_ocp_debugfs_add_device(bp);
4426 
4427 	return 0;
4428 }
4429 
4430 static void
4431 ptp_ocp_phc_info(struct ptp_ocp *bp)
4432 {
4433 	struct timespec64 ts;
4434 	u32 version, select;
4435 
4436 	version = ioread32(&bp->reg->version);
4437 	select = ioread32(&bp->reg->select);
4438 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4439 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4440 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4441 		 ptp_clock_index(bp->ptp));
4442 
4443 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4444 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4445 			 ts.tv_sec, ts.tv_nsec,
4446 			 bp->sync ? "in-sync" : "UNSYNCED");
4447 }
4448 
4449 static void
4450 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4451 {
4452 	if (port != -1)
4453 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4454 }
4455 
4456 static void
4457 ptp_ocp_info(struct ptp_ocp *bp)
4458 {
4459 	static int nmea_baud[] = {
4460 		1200, 2400, 4800, 9600, 19200, 38400,
4461 		57600, 115200, 230400, 460800, 921600,
4462 		1000000, 2000000
4463 	};
4464 	struct device *dev = &bp->pdev->dev;
4465 	u32 reg;
4466 	int i;
4467 
4468 	ptp_ocp_phc_info(bp);
4469 
4470 	for (i = 0; i < __PORT_COUNT; i++) {
4471 		if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4472 			bp->port[PORT_NMEA].baud = -1;
4473 
4474 			reg = ioread32(&bp->nmea_out->uart_baud);
4475 			if (reg < ARRAY_SIZE(nmea_baud))
4476 				bp->port[PORT_NMEA].baud = nmea_baud[reg];
4477 		}
4478 		ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4479 				    bp->port[i].baud);
4480 	}
4481 }
4482 
4483 static void
4484 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4485 {
4486 	struct device *dev = &bp->dev;
4487 
4488 	sysfs_remove_link(&dev->kobj, "ptp");
4489 	sysfs_remove_link(&dev->kobj, "pps");
4490 }
4491 
4492 static void
4493 ptp_ocp_detach(struct ptp_ocp *bp)
4494 {
4495 	int i;
4496 
4497 	ptp_ocp_debugfs_remove_device(bp);
4498 	ptp_ocp_detach_sysfs(bp);
4499 	ptp_ocp_attr_group_del(bp);
4500 	if (timer_pending(&bp->watchdog))
4501 		del_timer_sync(&bp->watchdog);
4502 	if (bp->ts0)
4503 		ptp_ocp_unregister_ext(bp->ts0);
4504 	if (bp->ts1)
4505 		ptp_ocp_unregister_ext(bp->ts1);
4506 	if (bp->ts2)
4507 		ptp_ocp_unregister_ext(bp->ts2);
4508 	if (bp->ts3)
4509 		ptp_ocp_unregister_ext(bp->ts3);
4510 	if (bp->ts4)
4511 		ptp_ocp_unregister_ext(bp->ts4);
4512 	if (bp->pps)
4513 		ptp_ocp_unregister_ext(bp->pps);
4514 	for (i = 0; i < 4; i++)
4515 		if (bp->signal_out[i])
4516 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4517 	for (i = 0; i < __PORT_COUNT; i++)
4518 		if (bp->port[i].line != -1)
4519 			serial8250_unregister_port(bp->port[i].line);
4520 	platform_device_unregister(bp->spi_flash);
4521 	platform_device_unregister(bp->i2c_ctrl);
4522 	if (bp->i2c_clk)
4523 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4524 	if (bp->n_irqs)
4525 		pci_free_irq_vectors(bp->pdev);
4526 	if (bp->ptp)
4527 		ptp_clock_unregister(bp->ptp);
4528 	kfree(bp->ptp_info.pin_config);
4529 	device_unregister(&bp->dev);
4530 }
4531 
4532 static int
4533 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4534 			     enum dpll_lock_status *status,
4535 			     enum dpll_lock_status_error *status_error,
4536 			     struct netlink_ext_ack *extack)
4537 {
4538 	struct ptp_ocp *bp = priv;
4539 
4540 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4541 
4542 	return 0;
4543 }
4544 
4545 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4546 				  const struct dpll_device *dpll, void *priv,
4547 				  enum dpll_pin_state *state,
4548 				  struct netlink_ext_ack *extack)
4549 {
4550 	struct ptp_ocp *bp = priv;
4551 	int idx;
4552 
4553 	if (bp->pps_select) {
4554 		idx = ioread32(&bp->pps_select->gpio1);
4555 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4556 						      DPLL_PIN_STATE_SELECTABLE;
4557 		return 0;
4558 	}
4559 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4560 	return -EINVAL;
4561 }
4562 
4563 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4564 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4565 {
4566 	*mode = DPLL_MODE_AUTOMATIC;
4567 	return 0;
4568 }
4569 
4570 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4571 				      void *pin_priv,
4572 				      const struct dpll_device *dpll,
4573 				      void *priv,
4574 				      enum dpll_pin_direction *direction,
4575 				      struct netlink_ext_ack *extack)
4576 {
4577 	struct ptp_ocp_sma_connector *sma = pin_priv;
4578 
4579 	*direction = sma->mode == SMA_MODE_IN ?
4580 				  DPLL_PIN_DIRECTION_INPUT :
4581 				  DPLL_PIN_DIRECTION_OUTPUT;
4582 	return 0;
4583 }
4584 
4585 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4586 				      void *pin_priv,
4587 				      const struct dpll_device *dpll,
4588 				      void *dpll_priv,
4589 				      enum dpll_pin_direction direction,
4590 				      struct netlink_ext_ack *extack)
4591 {
4592 	struct ptp_ocp_sma_connector *sma = pin_priv;
4593 	struct ptp_ocp *bp = dpll_priv;
4594 	enum ptp_ocp_sma_mode mode;
4595 	int sma_nr = (sma - bp->sma);
4596 
4597 	if (sma->fixed_dir)
4598 		return -EOPNOTSUPP;
4599 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4600 			    SMA_MODE_IN : SMA_MODE_OUT;
4601 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4602 }
4603 
4604 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4605 				      void *pin_priv,
4606 				      const struct dpll_device *dpll,
4607 				      void *dpll_priv, u64 frequency,
4608 				      struct netlink_ext_ack *extack)
4609 {
4610 	struct ptp_ocp_sma_connector *sma = pin_priv;
4611 	struct ptp_ocp *bp = dpll_priv;
4612 	const struct ocp_selector *tbl;
4613 	int sma_nr = (sma - bp->sma);
4614 	int i;
4615 
4616 	if (sma->fixed_fcn)
4617 		return -EOPNOTSUPP;
4618 
4619 	tbl = bp->sma_op->tbl[sma->mode];
4620 	for (i = 0; tbl[i].name; i++)
4621 		if (tbl[i].frequency == frequency)
4622 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4623 	return -EINVAL;
4624 }
4625 
4626 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4627 				      void *pin_priv,
4628 				      const struct dpll_device *dpll,
4629 				      void *dpll_priv, u64 *frequency,
4630 				      struct netlink_ext_ack *extack)
4631 {
4632 	struct ptp_ocp_sma_connector *sma = pin_priv;
4633 	struct ptp_ocp *bp = dpll_priv;
4634 	const struct ocp_selector *tbl;
4635 	int sma_nr = (sma - bp->sma);
4636 	u32 val;
4637 	int i;
4638 
4639 	val = bp->sma_op->get(bp, sma_nr + 1);
4640 	tbl = bp->sma_op->tbl[sma->mode];
4641 	for (i = 0; tbl[i].name; i++)
4642 		if (val == tbl[i].value) {
4643 			*frequency = tbl[i].frequency;
4644 			return 0;
4645 		}
4646 
4647 	return -EINVAL;
4648 }
4649 
4650 static const struct dpll_device_ops dpll_ops = {
4651 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4652 	.mode_get = ptp_ocp_dpll_mode_get,
4653 };
4654 
4655 static const struct dpll_pin_ops dpll_pins_ops = {
4656 	.frequency_get = ptp_ocp_dpll_frequency_get,
4657 	.frequency_set = ptp_ocp_dpll_frequency_set,
4658 	.direction_get = ptp_ocp_dpll_direction_get,
4659 	.direction_set = ptp_ocp_dpll_direction_set,
4660 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4661 };
4662 
4663 static void
4664 ptp_ocp_sync_work(struct work_struct *work)
4665 {
4666 	struct ptp_ocp *bp;
4667 	bool sync;
4668 
4669 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4670 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4671 
4672 	if (bp->sync != sync)
4673 		dpll_device_change_ntf(bp->dpll);
4674 
4675 	bp->sync = sync;
4676 
4677 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4678 }
4679 
4680 static int
4681 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4682 {
4683 	struct devlink *devlink;
4684 	struct ptp_ocp *bp;
4685 	int err, i;
4686 	u64 clkid;
4687 
4688 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4689 	if (!devlink) {
4690 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4691 		return -ENOMEM;
4692 	}
4693 
4694 	err = pci_enable_device(pdev);
4695 	if (err) {
4696 		dev_err(&pdev->dev, "pci_enable_device\n");
4697 		goto out_free;
4698 	}
4699 
4700 	bp = devlink_priv(devlink);
4701 	err = ptp_ocp_device_init(bp, pdev);
4702 	if (err)
4703 		goto out_disable;
4704 
4705 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4706 
4707 	/* compat mode.
4708 	 * Older FPGA firmware only returns 2 irq's.
4709 	 * allow this - if not all of the IRQ's are returned, skip the
4710 	 * extra devices and just register the clock.
4711 	 */
4712 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4713 	if (err < 0) {
4714 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4715 		goto out;
4716 	}
4717 	bp->n_irqs = err;
4718 	pci_set_master(pdev);
4719 
4720 	err = ptp_ocp_register_resources(bp, id->driver_data);
4721 	if (err)
4722 		goto out;
4723 
4724 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4725 	if (IS_ERR(bp->ptp)) {
4726 		err = PTR_ERR(bp->ptp);
4727 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4728 		bp->ptp = NULL;
4729 		goto out;
4730 	}
4731 
4732 	err = ptp_ocp_complete(bp);
4733 	if (err)
4734 		goto out;
4735 
4736 	ptp_ocp_info(bp);
4737 	devlink_register(devlink);
4738 
4739 	clkid = pci_get_dsn(pdev);
4740 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4741 	if (IS_ERR(bp->dpll)) {
4742 		err = PTR_ERR(bp->dpll);
4743 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4744 		goto out;
4745 	}
4746 
4747 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4748 	if (err)
4749 		goto out;
4750 
4751 	for (i = 0; i < OCP_SMA_NUM; i++) {
4752 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4753 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4754 			err = PTR_ERR(bp->sma[i].dpll_pin);
4755 			goto out_dpll;
4756 		}
4757 
4758 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4759 					&bp->sma[i]);
4760 		if (err) {
4761 			dpll_pin_put(bp->sma[i].dpll_pin);
4762 			goto out_dpll;
4763 		}
4764 	}
4765 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4766 
4767 	return 0;
4768 out_dpll:
4769 	while (i) {
4770 		--i;
4771 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4772 		dpll_pin_put(bp->sma[i].dpll_pin);
4773 	}
4774 	dpll_device_put(bp->dpll);
4775 out:
4776 	ptp_ocp_detach(bp);
4777 out_disable:
4778 	pci_disable_device(pdev);
4779 out_free:
4780 	devlink_free(devlink);
4781 	return err;
4782 }
4783 
4784 static void
4785 ptp_ocp_remove(struct pci_dev *pdev)
4786 {
4787 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4788 	struct devlink *devlink = priv_to_devlink(bp);
4789 	int i;
4790 
4791 	cancel_delayed_work_sync(&bp->sync_work);
4792 	for (i = 0; i < OCP_SMA_NUM; i++) {
4793 		if (bp->sma[i].dpll_pin) {
4794 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4795 			dpll_pin_put(bp->sma[i].dpll_pin);
4796 		}
4797 	}
4798 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4799 	dpll_device_put(bp->dpll);
4800 	devlink_unregister(devlink);
4801 	ptp_ocp_detach(bp);
4802 	pci_disable_device(pdev);
4803 
4804 	devlink_free(devlink);
4805 }
4806 
4807 static struct pci_driver ptp_ocp_driver = {
4808 	.name		= KBUILD_MODNAME,
4809 	.id_table	= ptp_ocp_pcidev_id,
4810 	.probe		= ptp_ocp_probe,
4811 	.remove		= ptp_ocp_remove,
4812 };
4813 
4814 static int
4815 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4816 			  unsigned long action, void *data)
4817 {
4818 	struct device *dev, *child = data;
4819 	struct ptp_ocp *bp;
4820 	bool add;
4821 
4822 	switch (action) {
4823 	case BUS_NOTIFY_ADD_DEVICE:
4824 	case BUS_NOTIFY_DEL_DEVICE:
4825 		add = action == BUS_NOTIFY_ADD_DEVICE;
4826 		break;
4827 	default:
4828 		return 0;
4829 	}
4830 
4831 	if (!i2c_verify_adapter(child))
4832 		return 0;
4833 
4834 	dev = child;
4835 	while ((dev = dev->parent))
4836 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4837 			goto found;
4838 	return 0;
4839 
4840 found:
4841 	bp = dev_get_drvdata(dev);
4842 	if (add)
4843 		ptp_ocp_symlink(bp, child, "i2c");
4844 	else
4845 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4846 
4847 	return 0;
4848 }
4849 
4850 static struct notifier_block ptp_ocp_i2c_notifier = {
4851 	.notifier_call = ptp_ocp_i2c_notifier_call,
4852 };
4853 
4854 static int __init
4855 ptp_ocp_init(void)
4856 {
4857 	const char *what;
4858 	int err;
4859 
4860 	ptp_ocp_debugfs_init();
4861 
4862 	what = "timecard class";
4863 	err = class_register(&timecard_class);
4864 	if (err)
4865 		goto out;
4866 
4867 	what = "i2c notifier";
4868 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4869 	if (err)
4870 		goto out_notifier;
4871 
4872 	what = "ptp_ocp driver";
4873 	err = pci_register_driver(&ptp_ocp_driver);
4874 	if (err)
4875 		goto out_register;
4876 
4877 	return 0;
4878 
4879 out_register:
4880 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4881 out_notifier:
4882 	class_unregister(&timecard_class);
4883 out:
4884 	ptp_ocp_debugfs_fini();
4885 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4886 	return err;
4887 }
4888 
4889 static void __exit
4890 ptp_ocp_fini(void)
4891 {
4892 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4893 	pci_unregister_driver(&ptp_ocp_driver);
4894 	class_unregister(&timecard_class);
4895 	ptp_ocp_debugfs_fini();
4896 }
4897 
4898 module_init(ptp_ocp_init);
4899 module_exit(ptp_ocp_fini);
4900 
4901 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4902 MODULE_LICENSE("GPL v2");
4903