1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2020 Facebook */ 3 4 #include <linux/bits.h> 5 #include <linux/err.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/debugfs.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/serial_8250.h> 12 #include <linux/clkdev.h> 13 #include <linux/clk-provider.h> 14 #include <linux/platform_device.h> 15 #include <linux/platform_data/i2c-xiic.h> 16 #include <linux/platform_data/i2c-ocores.h> 17 #include <linux/ptp_clock_kernel.h> 18 #include <linux/spi/spi.h> 19 #include <linux/spi/xilinx_spi.h> 20 #include <linux/spi/altera.h> 21 #include <net/devlink.h> 22 #include <linux/i2c.h> 23 #include <linux/mtd/mtd.h> 24 #include <linux/nvmem-consumer.h> 25 #include <linux/crc16.h> 26 #include <linux/dpll.h> 27 28 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b 29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 30 31 #define PCI_VENDOR_ID_CELESTICA 0x18d4 32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 33 34 #define PCI_VENDOR_ID_OROLIA 0x1ad7 35 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000 36 37 #define PCI_VENDOR_ID_ADVA 0xad5a 38 #define PCI_DEVICE_ID_ADVA_TIMECARD 0x0400 39 40 static struct class timecard_class = { 41 .name = "timecard", 42 }; 43 44 struct ocp_reg { 45 u32 ctrl; 46 u32 status; 47 u32 select; 48 u32 version; 49 u32 time_ns; 50 u32 time_sec; 51 u32 __pad0[2]; 52 u32 adjust_ns; 53 u32 adjust_sec; 54 u32 __pad1[2]; 55 u32 offset_ns; 56 u32 offset_window_ns; 57 u32 __pad2[2]; 58 u32 drift_ns; 59 u32 drift_window_ns; 60 u32 __pad3[6]; 61 u32 servo_offset_p; 62 u32 servo_offset_i; 63 u32 servo_drift_p; 64 u32 servo_drift_i; 65 u32 status_offset; 66 u32 status_drift; 67 }; 68 69 struct ptp_ocp_servo_conf { 70 u32 servo_offset_p; 71 u32 servo_offset_i; 72 u32 servo_drift_p; 73 u32 servo_drift_i; 74 }; 75 76 #define OCP_CTRL_ENABLE BIT(0) 77 #define OCP_CTRL_ADJUST_TIME BIT(1) 78 #define OCP_CTRL_ADJUST_OFFSET BIT(2) 79 #define OCP_CTRL_ADJUST_DRIFT BIT(3) 80 #define OCP_CTRL_ADJUST_SERVO BIT(8) 81 #define OCP_CTRL_READ_TIME_REQ BIT(30) 82 #define OCP_CTRL_READ_TIME_DONE BIT(31) 83 84 #define OCP_STATUS_IN_SYNC BIT(0) 85 #define OCP_STATUS_IN_HOLDOVER BIT(1) 86 87 #define OCP_SELECT_CLK_NONE 0 88 #define OCP_SELECT_CLK_REG 0xfe 89 90 struct tod_reg { 91 u32 ctrl; 92 u32 status; 93 u32 uart_polarity; 94 u32 version; 95 u32 adj_sec; 96 u32 __pad0[3]; 97 u32 uart_baud; 98 u32 __pad1[3]; 99 u32 utc_status; 100 u32 leap; 101 }; 102 103 #define TOD_CTRL_PROTOCOL BIT(28) 104 #define TOD_CTRL_DISABLE_FMT_A BIT(17) 105 #define TOD_CTRL_DISABLE_FMT_B BIT(16) 106 #define TOD_CTRL_ENABLE BIT(0) 107 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) 108 #define TOD_CTRL_GNSS_SHIFT 24 109 110 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) 111 #define TOD_STATUS_UTC_VALID BIT(8) 112 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) 113 #define TOD_STATUS_LEAP_VALID BIT(16) 114 115 struct ts_reg { 116 u32 enable; 117 u32 error; 118 u32 polarity; 119 u32 version; 120 u32 __pad0[4]; 121 u32 cable_delay; 122 u32 __pad1[3]; 123 u32 intr; 124 u32 intr_mask; 125 u32 event_count; 126 u32 __pad2[1]; 127 u32 ts_count; 128 u32 time_ns; 129 u32 time_sec; 130 u32 data_width; 131 u32 data; 132 }; 133 134 struct pps_reg { 135 u32 ctrl; 136 u32 status; 137 u32 __pad0[6]; 138 u32 cable_delay; 139 }; 140 141 #define PPS_STATUS_FILTER_ERR BIT(0) 142 #define PPS_STATUS_SUPERV_ERR BIT(1) 143 144 struct img_reg { 145 u32 version; 146 }; 147 148 struct gpio_reg { 149 u32 gpio1; 150 u32 __pad0; 151 u32 gpio2; 152 u32 __pad1; 153 }; 154 155 struct irig_master_reg { 156 u32 ctrl; 157 u32 status; 158 u32 __pad0; 159 u32 version; 160 u32 adj_sec; 161 u32 mode_ctrl; 162 }; 163 164 #define IRIG_M_CTRL_ENABLE BIT(0) 165 166 struct irig_slave_reg { 167 u32 ctrl; 168 u32 status; 169 u32 __pad0; 170 u32 version; 171 u32 adj_sec; 172 u32 mode_ctrl; 173 }; 174 175 #define IRIG_S_CTRL_ENABLE BIT(0) 176 177 struct dcf_master_reg { 178 u32 ctrl; 179 u32 status; 180 u32 __pad0; 181 u32 version; 182 u32 adj_sec; 183 }; 184 185 #define DCF_M_CTRL_ENABLE BIT(0) 186 187 struct dcf_slave_reg { 188 u32 ctrl; 189 u32 status; 190 u32 __pad0; 191 u32 version; 192 u32 adj_sec; 193 }; 194 195 #define DCF_S_CTRL_ENABLE BIT(0) 196 197 struct signal_reg { 198 u32 enable; 199 u32 status; 200 u32 polarity; 201 u32 version; 202 u32 __pad0[4]; 203 u32 cable_delay; 204 u32 __pad1[3]; 205 u32 intr; 206 u32 intr_mask; 207 u32 __pad2[2]; 208 u32 start_ns; 209 u32 start_sec; 210 u32 pulse_ns; 211 u32 pulse_sec; 212 u32 period_ns; 213 u32 period_sec; 214 u32 repeat_count; 215 }; 216 217 struct frequency_reg { 218 u32 ctrl; 219 u32 status; 220 }; 221 222 struct board_config_reg { 223 u32 mro50_serial_activate; 224 }; 225 226 #define FREQ_STATUS_VALID BIT(31) 227 #define FREQ_STATUS_ERROR BIT(30) 228 #define FREQ_STATUS_OVERRUN BIT(29) 229 #define FREQ_STATUS_MASK GENMASK(23, 0) 230 231 struct ptp_ocp_flash_info { 232 const char *name; 233 int pci_offset; 234 int data_size; 235 void *data; 236 }; 237 238 struct ptp_ocp_firmware_header { 239 char magic[4]; 240 __be16 pci_vendor_id; 241 __be16 pci_device_id; 242 __be32 image_size; 243 __be16 hw_revision; 244 __be16 crc; 245 }; 246 247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" 248 249 struct ptp_ocp_i2c_info { 250 const char *name; 251 unsigned long fixed_rate; 252 size_t data_size; 253 void *data; 254 }; 255 256 struct ptp_ocp_ext_info { 257 int index; 258 irqreturn_t (*irq_fcn)(int irq, void *priv); 259 int (*enable)(void *priv, u32 req, bool enable); 260 }; 261 262 struct ptp_ocp_ext_src { 263 void __iomem *mem; 264 struct ptp_ocp *bp; 265 struct ptp_ocp_ext_info *info; 266 int irq_vec; 267 }; 268 269 enum ptp_ocp_sma_mode { 270 SMA_MODE_IN, 271 SMA_MODE_OUT, 272 }; 273 274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = { 275 DPLL_PIN_FREQUENCY_1PPS, 276 DPLL_PIN_FREQUENCY_10MHZ, 277 DPLL_PIN_FREQUENCY_IRIG_B, 278 DPLL_PIN_FREQUENCY_DCF77, 279 }; 280 281 struct ptp_ocp_sma_connector { 282 enum ptp_ocp_sma_mode mode; 283 bool fixed_fcn; 284 bool fixed_dir; 285 bool disabled; 286 u8 default_fcn; 287 struct dpll_pin *dpll_pin; 288 struct dpll_pin_properties dpll_prop; 289 }; 290 291 struct ocp_attr_group { 292 u64 cap; 293 const struct attribute_group *group; 294 }; 295 296 #define OCP_CAP_BASIC BIT(0) 297 #define OCP_CAP_SIGNAL BIT(1) 298 #define OCP_CAP_FREQ BIT(2) 299 300 struct ptp_ocp_signal { 301 ktime_t period; 302 ktime_t pulse; 303 ktime_t phase; 304 ktime_t start; 305 int duty; 306 bool polarity; 307 bool running; 308 }; 309 310 struct ptp_ocp_serial_port { 311 int line; 312 int baud; 313 }; 314 315 #define OCP_BOARD_ID_LEN 13 316 #define OCP_SERIAL_LEN 6 317 #define OCP_SMA_NUM 4 318 319 enum { 320 PORT_GNSS, 321 PORT_GNSS2, 322 PORT_MAC, /* miniature atomic clock */ 323 PORT_NMEA, 324 325 __PORT_COUNT, 326 }; 327 328 struct ptp_ocp { 329 struct pci_dev *pdev; 330 struct device dev; 331 spinlock_t lock; 332 struct ocp_reg __iomem *reg; 333 struct tod_reg __iomem *tod; 334 struct pps_reg __iomem *pps_to_ext; 335 struct pps_reg __iomem *pps_to_clk; 336 struct board_config_reg __iomem *board_config; 337 struct gpio_reg __iomem *pps_select; 338 struct gpio_reg __iomem *sma_map1; 339 struct gpio_reg __iomem *sma_map2; 340 struct irig_master_reg __iomem *irig_out; 341 struct irig_slave_reg __iomem *irig_in; 342 struct dcf_master_reg __iomem *dcf_out; 343 struct dcf_slave_reg __iomem *dcf_in; 344 struct tod_reg __iomem *nmea_out; 345 struct frequency_reg __iomem *freq_in[4]; 346 struct ptp_ocp_ext_src *signal_out[4]; 347 struct ptp_ocp_ext_src *pps; 348 struct ptp_ocp_ext_src *ts0; 349 struct ptp_ocp_ext_src *ts1; 350 struct ptp_ocp_ext_src *ts2; 351 struct ptp_ocp_ext_src *ts3; 352 struct ptp_ocp_ext_src *ts4; 353 struct ocp_art_gpio_reg __iomem *art_sma; 354 struct img_reg __iomem *image; 355 struct ptp_clock *ptp; 356 struct ptp_clock_info ptp_info; 357 struct platform_device *i2c_ctrl; 358 struct platform_device *spi_flash; 359 struct clk_hw *i2c_clk; 360 struct timer_list watchdog; 361 const struct attribute_group **attr_group; 362 const struct ptp_ocp_eeprom_map *eeprom_map; 363 struct dentry *debug_root; 364 bool sync; 365 time64_t gnss_lost; 366 struct delayed_work sync_work; 367 int id; 368 int n_irqs; 369 struct ptp_ocp_serial_port port[__PORT_COUNT]; 370 bool fw_loader; 371 u8 fw_tag; 372 u16 fw_version; 373 u8 board_id[OCP_BOARD_ID_LEN]; 374 u8 serial[OCP_SERIAL_LEN]; 375 bool has_eeprom_data; 376 u32 pps_req_map; 377 int flash_start; 378 u32 utc_tai_offset; 379 u32 ts_window_adjust; 380 u64 fw_cap; 381 struct ptp_ocp_signal signal[4]; 382 struct ptp_ocp_sma_connector sma[OCP_SMA_NUM]; 383 const struct ocp_sma_op *sma_op; 384 struct dpll_device *dpll; 385 }; 386 387 #define OCP_REQ_TIMESTAMP BIT(0) 388 #define OCP_REQ_PPS BIT(1) 389 390 struct ocp_resource { 391 unsigned long offset; 392 int size; 393 int irq_vec; 394 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); 395 void *extra; 396 unsigned long bp_offset; 397 const char * const name; 398 }; 399 400 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); 401 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); 402 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); 403 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); 404 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); 405 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 406 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); 407 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); 408 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); 409 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 410 struct ptp_perout_request *req); 411 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); 412 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); 413 414 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 415 416 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 417 418 static const struct ocp_attr_group fb_timecard_groups[]; 419 420 static const struct ocp_attr_group art_timecard_groups[]; 421 422 static const struct ocp_attr_group adva_timecard_groups[]; 423 424 struct ptp_ocp_eeprom_map { 425 u16 off; 426 u16 len; 427 u32 bp_offset; 428 const void * const tag; 429 }; 430 431 #define EEPROM_ENTRY(addr, member) \ 432 .off = addr, \ 433 .len = sizeof_field(struct ptp_ocp, member), \ 434 .bp_offset = offsetof(struct ptp_ocp, member) 435 436 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ 437 (void *)((uintptr_t)(bp) + (map)->bp_offset); \ 438 }) 439 440 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { 441 { EEPROM_ENTRY(0x43, board_id) }, 442 { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, 443 { } 444 }; 445 446 static struct ptp_ocp_eeprom_map art_eeprom_map[] = { 447 { EEPROM_ENTRY(0x200 + 0x43, board_id) }, 448 { EEPROM_ENTRY(0x200 + 0x63, serial) }, 449 { } 450 }; 451 452 #define bp_assign_entry(bp, res, val) ({ \ 453 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ 454 *(typeof(val) *)addr = val; \ 455 }) 456 457 #define OCP_RES_LOCATION(member) \ 458 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) 459 460 #define OCP_MEM_RESOURCE(member) \ 461 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem 462 463 #define OCP_SERIAL_RESOURCE(member) \ 464 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial 465 466 #define OCP_I2C_RESOURCE(member) \ 467 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c 468 469 #define OCP_SPI_RESOURCE(member) \ 470 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi 471 472 #define OCP_EXT_RESOURCE(member) \ 473 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext 474 475 /* This is the MSI vector mapping used. 476 * 0: PPS (TS5) 477 * 1: TS0 478 * 2: TS1 479 * 3: GNSS1 480 * 4: GNSS2 481 * 5: MAC 482 * 6: TS2 483 * 7: I2C controller 484 * 8: HWICAP (notused) 485 * 9: SPI Flash 486 * 10: NMEA 487 * 11: Signal Generator 1 488 * 12: Signal Generator 2 489 * 13: Signal Generator 3 490 * 14: Signal Generator 4 491 * 15: TS3 492 * 16: TS4 493 -- 494 * 8: Orolia TS1 495 * 10: Orolia TS2 496 * 11: Orolia TS0 (GNSS) 497 * 12: Orolia PPS 498 * 14: Orolia TS3 499 * 15: Orolia TS4 500 */ 501 502 static struct ocp_resource ocp_fb_resource[] = { 503 { 504 OCP_MEM_RESOURCE(reg), 505 .offset = 0x01000000, .size = 0x10000, 506 }, 507 { 508 OCP_EXT_RESOURCE(ts0), 509 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 510 .extra = &(struct ptp_ocp_ext_info) { 511 .index = 0, 512 .irq_fcn = ptp_ocp_ts_irq, 513 .enable = ptp_ocp_ts_enable, 514 }, 515 }, 516 { 517 OCP_EXT_RESOURCE(ts1), 518 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 519 .extra = &(struct ptp_ocp_ext_info) { 520 .index = 1, 521 .irq_fcn = ptp_ocp_ts_irq, 522 .enable = ptp_ocp_ts_enable, 523 }, 524 }, 525 { 526 OCP_EXT_RESOURCE(ts2), 527 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 528 .extra = &(struct ptp_ocp_ext_info) { 529 .index = 2, 530 .irq_fcn = ptp_ocp_ts_irq, 531 .enable = ptp_ocp_ts_enable, 532 }, 533 }, 534 { 535 OCP_EXT_RESOURCE(ts3), 536 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, 537 .extra = &(struct ptp_ocp_ext_info) { 538 .index = 3, 539 .irq_fcn = ptp_ocp_ts_irq, 540 .enable = ptp_ocp_ts_enable, 541 }, 542 }, 543 { 544 OCP_EXT_RESOURCE(ts4), 545 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, 546 .extra = &(struct ptp_ocp_ext_info) { 547 .index = 4, 548 .irq_fcn = ptp_ocp_ts_irq, 549 .enable = ptp_ocp_ts_enable, 550 }, 551 }, 552 /* Timestamp for PHC and/or PPS generator */ 553 { 554 OCP_EXT_RESOURCE(pps), 555 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 556 .extra = &(struct ptp_ocp_ext_info) { 557 .index = 5, 558 .irq_fcn = ptp_ocp_ts_irq, 559 .enable = ptp_ocp_ts_enable, 560 }, 561 }, 562 { 563 OCP_EXT_RESOURCE(signal_out[0]), 564 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 565 .extra = &(struct ptp_ocp_ext_info) { 566 .index = 1, 567 .irq_fcn = ptp_ocp_signal_irq, 568 .enable = ptp_ocp_signal_enable, 569 }, 570 }, 571 { 572 OCP_EXT_RESOURCE(signal_out[1]), 573 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 574 .extra = &(struct ptp_ocp_ext_info) { 575 .index = 2, 576 .irq_fcn = ptp_ocp_signal_irq, 577 .enable = ptp_ocp_signal_enable, 578 }, 579 }, 580 { 581 OCP_EXT_RESOURCE(signal_out[2]), 582 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, 583 .extra = &(struct ptp_ocp_ext_info) { 584 .index = 3, 585 .irq_fcn = ptp_ocp_signal_irq, 586 .enable = ptp_ocp_signal_enable, 587 }, 588 }, 589 { 590 OCP_EXT_RESOURCE(signal_out[3]), 591 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, 592 .extra = &(struct ptp_ocp_ext_info) { 593 .index = 4, 594 .irq_fcn = ptp_ocp_signal_irq, 595 .enable = ptp_ocp_signal_enable, 596 }, 597 }, 598 { 599 OCP_MEM_RESOURCE(pps_to_ext), 600 .offset = 0x01030000, .size = 0x10000, 601 }, 602 { 603 OCP_MEM_RESOURCE(pps_to_clk), 604 .offset = 0x01040000, .size = 0x10000, 605 }, 606 { 607 OCP_MEM_RESOURCE(tod), 608 .offset = 0x01050000, .size = 0x10000, 609 }, 610 { 611 OCP_MEM_RESOURCE(irig_in), 612 .offset = 0x01070000, .size = 0x10000, 613 }, 614 { 615 OCP_MEM_RESOURCE(irig_out), 616 .offset = 0x01080000, .size = 0x10000, 617 }, 618 { 619 OCP_MEM_RESOURCE(dcf_in), 620 .offset = 0x01090000, .size = 0x10000, 621 }, 622 { 623 OCP_MEM_RESOURCE(dcf_out), 624 .offset = 0x010A0000, .size = 0x10000, 625 }, 626 { 627 OCP_MEM_RESOURCE(nmea_out), 628 .offset = 0x010B0000, .size = 0x10000, 629 }, 630 { 631 OCP_MEM_RESOURCE(image), 632 .offset = 0x00020000, .size = 0x1000, 633 }, 634 { 635 OCP_MEM_RESOURCE(pps_select), 636 .offset = 0x00130000, .size = 0x1000, 637 }, 638 { 639 OCP_MEM_RESOURCE(sma_map1), 640 .offset = 0x00140000, .size = 0x1000, 641 }, 642 { 643 OCP_MEM_RESOURCE(sma_map2), 644 .offset = 0x00220000, .size = 0x1000, 645 }, 646 { 647 OCP_I2C_RESOURCE(i2c_ctrl), 648 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, 649 .extra = &(struct ptp_ocp_i2c_info) { 650 .name = "xiic-i2c", 651 .fixed_rate = 50000000, 652 .data_size = sizeof(struct xiic_i2c_platform_data), 653 .data = &(struct xiic_i2c_platform_data) { 654 .num_devices = 2, 655 .devices = (struct i2c_board_info[]) { 656 { I2C_BOARD_INFO("24c02", 0x50) }, 657 { I2C_BOARD_INFO("24mac402", 0x58), 658 .platform_data = "mac" }, 659 }, 660 }, 661 }, 662 }, 663 { 664 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 665 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 666 .extra = &(struct ptp_ocp_serial_port) { 667 .baud = 115200, 668 }, 669 }, 670 { 671 OCP_SERIAL_RESOURCE(port[PORT_GNSS2]), 672 .offset = 0x00170000 + 0x1000, .irq_vec = 4, 673 .extra = &(struct ptp_ocp_serial_port) { 674 .baud = 115200, 675 }, 676 }, 677 { 678 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 679 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 680 .extra = &(struct ptp_ocp_serial_port) { 681 .baud = 57600, 682 }, 683 }, 684 { 685 OCP_SERIAL_RESOURCE(port[PORT_NMEA]), 686 .offset = 0x00190000 + 0x1000, .irq_vec = 10, 687 }, 688 { 689 OCP_SPI_RESOURCE(spi_flash), 690 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 691 .extra = &(struct ptp_ocp_flash_info) { 692 .name = "xilinx_spi", .pci_offset = 0, 693 .data_size = sizeof(struct xspi_platform_data), 694 .data = &(struct xspi_platform_data) { 695 .num_chipselect = 1, 696 .bits_per_word = 8, 697 .num_devices = 1, 698 .force_irq = true, 699 .devices = &(struct spi_board_info) { 700 .modalias = "spi-nor", 701 }, 702 }, 703 }, 704 }, 705 { 706 OCP_MEM_RESOURCE(freq_in[0]), 707 .offset = 0x01200000, .size = 0x10000, 708 }, 709 { 710 OCP_MEM_RESOURCE(freq_in[1]), 711 .offset = 0x01210000, .size = 0x10000, 712 }, 713 { 714 OCP_MEM_RESOURCE(freq_in[2]), 715 .offset = 0x01220000, .size = 0x10000, 716 }, 717 { 718 OCP_MEM_RESOURCE(freq_in[3]), 719 .offset = 0x01230000, .size = 0x10000, 720 }, 721 { 722 .setup = ptp_ocp_fb_board_init, 723 .extra = &(struct ptp_ocp_servo_conf) { 724 .servo_offset_p = 0x2000, 725 .servo_offset_i = 0x1000, 726 .servo_drift_p = 0, 727 .servo_drift_i = 0, 728 }, 729 }, 730 { } 731 }; 732 733 #define OCP_ART_CONFIG_SIZE 144 734 #define OCP_ART_TEMP_TABLE_SIZE 368 735 736 struct ocp_art_gpio_reg { 737 struct { 738 u32 gpio; 739 u32 __pad[3]; 740 } map[4]; 741 }; 742 743 static struct ocp_resource ocp_art_resource[] = { 744 { 745 OCP_MEM_RESOURCE(reg), 746 .offset = 0x01000000, .size = 0x10000, 747 }, 748 { 749 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 750 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 751 .extra = &(struct ptp_ocp_serial_port) { 752 .baud = 115200, 753 }, 754 }, 755 { 756 OCP_MEM_RESOURCE(art_sma), 757 .offset = 0x003C0000, .size = 0x1000, 758 }, 759 /* Timestamp associated with GNSS1 receiver PPS */ 760 { 761 OCP_EXT_RESOURCE(ts0), 762 .offset = 0x360000, .size = 0x20, .irq_vec = 12, 763 .extra = &(struct ptp_ocp_ext_info) { 764 .index = 0, 765 .irq_fcn = ptp_ocp_ts_irq, 766 .enable = ptp_ocp_ts_enable, 767 }, 768 }, 769 { 770 OCP_EXT_RESOURCE(ts1), 771 .offset = 0x380000, .size = 0x20, .irq_vec = 8, 772 .extra = &(struct ptp_ocp_ext_info) { 773 .index = 1, 774 .irq_fcn = ptp_ocp_ts_irq, 775 .enable = ptp_ocp_ts_enable, 776 }, 777 }, 778 { 779 OCP_EXT_RESOURCE(ts2), 780 .offset = 0x390000, .size = 0x20, .irq_vec = 10, 781 .extra = &(struct ptp_ocp_ext_info) { 782 .index = 2, 783 .irq_fcn = ptp_ocp_ts_irq, 784 .enable = ptp_ocp_ts_enable, 785 }, 786 }, 787 { 788 OCP_EXT_RESOURCE(ts3), 789 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14, 790 .extra = &(struct ptp_ocp_ext_info) { 791 .index = 3, 792 .irq_fcn = ptp_ocp_ts_irq, 793 .enable = ptp_ocp_ts_enable, 794 }, 795 }, 796 { 797 OCP_EXT_RESOURCE(ts4), 798 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15, 799 .extra = &(struct ptp_ocp_ext_info) { 800 .index = 4, 801 .irq_fcn = ptp_ocp_ts_irq, 802 .enable = ptp_ocp_ts_enable, 803 }, 804 }, 805 /* Timestamp associated with Internal PPS of the card */ 806 { 807 OCP_EXT_RESOURCE(pps), 808 .offset = 0x00330000, .size = 0x20, .irq_vec = 11, 809 .extra = &(struct ptp_ocp_ext_info) { 810 .index = 5, 811 .irq_fcn = ptp_ocp_ts_irq, 812 .enable = ptp_ocp_ts_enable, 813 }, 814 }, 815 { 816 OCP_SPI_RESOURCE(spi_flash), 817 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 818 .extra = &(struct ptp_ocp_flash_info) { 819 .name = "spi_altera", .pci_offset = 0, 820 .data_size = sizeof(struct altera_spi_platform_data), 821 .data = &(struct altera_spi_platform_data) { 822 .num_chipselect = 1, 823 .num_devices = 1, 824 .devices = &(struct spi_board_info) { 825 .modalias = "spi-nor", 826 }, 827 }, 828 }, 829 }, 830 { 831 OCP_I2C_RESOURCE(i2c_ctrl), 832 .offset = 0x350000, .size = 0x100, .irq_vec = 4, 833 .extra = &(struct ptp_ocp_i2c_info) { 834 .name = "ocores-i2c", 835 .fixed_rate = 400000, 836 .data_size = sizeof(struct ocores_i2c_platform_data), 837 .data = &(struct ocores_i2c_platform_data) { 838 .clock_khz = 125000, 839 .bus_khz = 400, 840 .num_devices = 1, 841 .devices = &(struct i2c_board_info) { 842 I2C_BOARD_INFO("24c08", 0x50), 843 }, 844 }, 845 }, 846 }, 847 { 848 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 849 .offset = 0x00190000, .irq_vec = 7, 850 .extra = &(struct ptp_ocp_serial_port) { 851 .baud = 9600, 852 }, 853 }, 854 { 855 OCP_MEM_RESOURCE(board_config), 856 .offset = 0x210000, .size = 0x1000, 857 }, 858 { 859 .setup = ptp_ocp_art_board_init, 860 .extra = &(struct ptp_ocp_servo_conf) { 861 .servo_offset_p = 0x2000, 862 .servo_offset_i = 0x1000, 863 .servo_drift_p = 0, 864 .servo_drift_i = 0, 865 }, 866 }, 867 { } 868 }; 869 870 static struct ocp_resource ocp_adva_resource[] = { 871 { 872 OCP_MEM_RESOURCE(reg), 873 .offset = 0x01000000, .size = 0x10000, 874 }, 875 { 876 OCP_EXT_RESOURCE(ts0), 877 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 878 .extra = &(struct ptp_ocp_ext_info) { 879 .index = 0, 880 .irq_fcn = ptp_ocp_ts_irq, 881 .enable = ptp_ocp_ts_enable, 882 }, 883 }, 884 { 885 OCP_EXT_RESOURCE(ts1), 886 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 887 .extra = &(struct ptp_ocp_ext_info) { 888 .index = 1, 889 .irq_fcn = ptp_ocp_ts_irq, 890 .enable = ptp_ocp_ts_enable, 891 }, 892 }, 893 { 894 OCP_EXT_RESOURCE(ts2), 895 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 896 .extra = &(struct ptp_ocp_ext_info) { 897 .index = 2, 898 .irq_fcn = ptp_ocp_ts_irq, 899 .enable = ptp_ocp_ts_enable, 900 }, 901 }, 902 /* Timestamp for PHC and/or PPS generator */ 903 { 904 OCP_EXT_RESOURCE(pps), 905 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 906 .extra = &(struct ptp_ocp_ext_info) { 907 .index = 5, 908 .irq_fcn = ptp_ocp_ts_irq, 909 .enable = ptp_ocp_ts_enable, 910 }, 911 }, 912 { 913 OCP_EXT_RESOURCE(signal_out[0]), 914 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 915 .extra = &(struct ptp_ocp_ext_info) { 916 .index = 1, 917 .irq_fcn = ptp_ocp_signal_irq, 918 .enable = ptp_ocp_signal_enable, 919 }, 920 }, 921 { 922 OCP_EXT_RESOURCE(signal_out[1]), 923 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 924 .extra = &(struct ptp_ocp_ext_info) { 925 .index = 2, 926 .irq_fcn = ptp_ocp_signal_irq, 927 .enable = ptp_ocp_signal_enable, 928 }, 929 }, 930 { 931 OCP_MEM_RESOURCE(pps_to_ext), 932 .offset = 0x01030000, .size = 0x10000, 933 }, 934 { 935 OCP_MEM_RESOURCE(pps_to_clk), 936 .offset = 0x01040000, .size = 0x10000, 937 }, 938 { 939 OCP_MEM_RESOURCE(tod), 940 .offset = 0x01050000, .size = 0x10000, 941 }, 942 { 943 OCP_MEM_RESOURCE(image), 944 .offset = 0x00020000, .size = 0x1000, 945 }, 946 { 947 OCP_MEM_RESOURCE(pps_select), 948 .offset = 0x00130000, .size = 0x1000, 949 }, 950 { 951 OCP_MEM_RESOURCE(sma_map1), 952 .offset = 0x00140000, .size = 0x1000, 953 }, 954 { 955 OCP_MEM_RESOURCE(sma_map2), 956 .offset = 0x00220000, .size = 0x1000, 957 }, 958 { 959 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 960 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 961 .extra = &(struct ptp_ocp_serial_port) { 962 .baud = 9600, 963 }, 964 }, 965 { 966 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 967 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 968 .extra = &(struct ptp_ocp_serial_port) { 969 .baud = 115200, 970 }, 971 }, 972 { 973 OCP_MEM_RESOURCE(freq_in[0]), 974 .offset = 0x01200000, .size = 0x10000, 975 }, 976 { 977 OCP_MEM_RESOURCE(freq_in[1]), 978 .offset = 0x01210000, .size = 0x10000, 979 }, 980 { 981 OCP_SPI_RESOURCE(spi_flash), 982 .offset = 0x00310400, .size = 0x10000, .irq_vec = 9, 983 .extra = &(struct ptp_ocp_flash_info) { 984 .name = "spi_altera", .pci_offset = 0, 985 .data_size = sizeof(struct altera_spi_platform_data), 986 .data = &(struct altera_spi_platform_data) { 987 .num_chipselect = 1, 988 .num_devices = 1, 989 .devices = &(struct spi_board_info) { 990 .modalias = "spi-nor", 991 }, 992 }, 993 }, 994 }, 995 { 996 OCP_I2C_RESOURCE(i2c_ctrl), 997 .offset = 0x150000, .size = 0x100, .irq_vec = 7, 998 .extra = &(struct ptp_ocp_i2c_info) { 999 .name = "ocores-i2c", 1000 .fixed_rate = 50000000, 1001 .data_size = sizeof(struct ocores_i2c_platform_data), 1002 .data = &(struct ocores_i2c_platform_data) { 1003 .clock_khz = 50000, 1004 .bus_khz = 100, 1005 .reg_io_width = 4, // 32-bit/4-byte 1006 .reg_shift = 2, // 32-bit addressing 1007 .num_devices = 2, 1008 .devices = (struct i2c_board_info[]) { 1009 { I2C_BOARD_INFO("24c02", 0x50) }, 1010 { I2C_BOARD_INFO("24mac402", 0x58), 1011 .platform_data = "mac" }, 1012 }, 1013 }, 1014 }, 1015 }, 1016 { 1017 .setup = ptp_ocp_adva_board_init, 1018 .extra = &(struct ptp_ocp_servo_conf) { 1019 .servo_offset_p = 0xc000, 1020 .servo_offset_i = 0x1000, 1021 .servo_drift_p = 0, 1022 .servo_drift_i = 0, 1023 }, 1024 }, 1025 { } 1026 }; 1027 1028 static const struct pci_device_id ptp_ocp_pcidev_id[] = { 1029 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, 1030 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, 1031 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) }, 1032 { PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) }, 1033 { } 1034 }; 1035 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); 1036 1037 static DEFINE_MUTEX(ptp_ocp_lock); 1038 static DEFINE_IDR(ptp_ocp_idr); 1039 1040 struct ocp_selector { 1041 const char *name; 1042 int value; 1043 u64 frequency; 1044 }; 1045 1046 static const struct ocp_selector ptp_ocp_clock[] = { 1047 { .name = "NONE", .value = 0 }, 1048 { .name = "TOD", .value = 1 }, 1049 { .name = "IRIG", .value = 2 }, 1050 { .name = "PPS", .value = 3 }, 1051 { .name = "PTP", .value = 4 }, 1052 { .name = "RTC", .value = 5 }, 1053 { .name = "DCF", .value = 6 }, 1054 { .name = "REGS", .value = 0xfe }, 1055 { .name = "EXT", .value = 0xff }, 1056 { } 1057 }; 1058 1059 #define SMA_DISABLE BIT(16) 1060 #define SMA_ENABLE BIT(15) 1061 #define SMA_SELECT_MASK GENMASK(14, 0) 1062 1063 static const struct ocp_selector ptp_ocp_sma_in[] = { 1064 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, 1065 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1066 { .name = "PPS2", .value = 0x0002, .frequency = 1 }, 1067 { .name = "TS1", .value = 0x0004, .frequency = 0 }, 1068 { .name = "TS2", .value = 0x0008, .frequency = 0 }, 1069 { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, 1070 { .name = "DCF", .value = 0x0020, .frequency = 77500 }, 1071 { .name = "TS3", .value = 0x0040, .frequency = 0 }, 1072 { .name = "TS4", .value = 0x0080, .frequency = 0 }, 1073 { .name = "FREQ1", .value = 0x0100, .frequency = 0 }, 1074 { .name = "FREQ2", .value = 0x0200, .frequency = 0 }, 1075 { .name = "FREQ3", .value = 0x0400, .frequency = 0 }, 1076 { .name = "FREQ4", .value = 0x0800, .frequency = 0 }, 1077 { .name = "None", .value = SMA_DISABLE, .frequency = 0 }, 1078 { } 1079 }; 1080 1081 static const struct ocp_selector ptp_ocp_sma_out[] = { 1082 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, 1083 { .name = "PHC", .value = 0x0001, .frequency = 1 }, 1084 { .name = "MAC", .value = 0x0002, .frequency = 1 }, 1085 { .name = "GNSS1", .value = 0x0004, .frequency = 1 }, 1086 { .name = "GNSS2", .value = 0x0008, .frequency = 1 }, 1087 { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, 1088 { .name = "DCF", .value = 0x0020, .frequency = 77000 }, 1089 { .name = "GEN1", .value = 0x0040 }, 1090 { .name = "GEN2", .value = 0x0080 }, 1091 { .name = "GEN3", .value = 0x0100 }, 1092 { .name = "GEN4", .value = 0x0200 }, 1093 { .name = "GND", .value = 0x2000 }, 1094 { .name = "VCC", .value = 0x4000 }, 1095 { } 1096 }; 1097 1098 static const struct ocp_selector ptp_ocp_art_sma_in[] = { 1099 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1100 { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 }, 1101 { } 1102 }; 1103 1104 static const struct ocp_selector ptp_ocp_art_sma_out[] = { 1105 { .name = "PHC", .value = 0x0002, .frequency = 1 }, 1106 { .name = "GNSS", .value = 0x0004, .frequency = 1 }, 1107 { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 }, 1108 { } 1109 }; 1110 1111 static const struct ocp_selector ptp_ocp_adva_sma_in[] = { 1112 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000}, 1113 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1114 { .name = "PPS2", .value = 0x0002, .frequency = 1 }, 1115 { .name = "TS1", .value = 0x0004, .frequency = 0 }, 1116 { .name = "TS2", .value = 0x0008, .frequency = 0 }, 1117 { .name = "FREQ1", .value = 0x0100, .frequency = 0 }, 1118 { .name = "FREQ2", .value = 0x0200, .frequency = 0 }, 1119 { .name = "None", .value = SMA_DISABLE, .frequency = 0 }, 1120 { } 1121 }; 1122 1123 static const struct ocp_selector ptp_ocp_adva_sma_out[] = { 1124 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000}, 1125 { .name = "PHC", .value = 0x0001, .frequency = 1 }, 1126 { .name = "MAC", .value = 0x0002, .frequency = 1 }, 1127 { .name = "GNSS1", .value = 0x0004, .frequency = 1 }, 1128 { .name = "GEN1", .value = 0x0040 }, 1129 { .name = "GEN2", .value = 0x0080 }, 1130 { .name = "GND", .value = 0x2000 }, 1131 { .name = "VCC", .value = 0x4000 }, 1132 { } 1133 }; 1134 1135 struct ocp_sma_op { 1136 const struct ocp_selector *tbl[2]; 1137 void (*init)(struct ptp_ocp *bp); 1138 u32 (*get)(struct ptp_ocp *bp, int sma_nr); 1139 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); 1140 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); 1141 }; 1142 1143 static void 1144 ptp_ocp_sma_init(struct ptp_ocp *bp) 1145 { 1146 return bp->sma_op->init(bp); 1147 } 1148 1149 static u32 1150 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) 1151 { 1152 return bp->sma_op->get(bp, sma_nr); 1153 } 1154 1155 static int 1156 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 1157 { 1158 return bp->sma_op->set_inputs(bp, sma_nr, val); 1159 } 1160 1161 static int 1162 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 1163 { 1164 return bp->sma_op->set_output(bp, sma_nr, val); 1165 } 1166 1167 static const char * 1168 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) 1169 { 1170 int i; 1171 1172 for (i = 0; tbl[i].name; i++) 1173 if (tbl[i].value == val) 1174 return tbl[i].name; 1175 return NULL; 1176 } 1177 1178 static int 1179 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) 1180 { 1181 const char *select; 1182 int i; 1183 1184 for (i = 0; tbl[i].name; i++) { 1185 select = tbl[i].name; 1186 if (!strncasecmp(name, select, strlen(select))) 1187 return tbl[i].value; 1188 } 1189 return -EINVAL; 1190 } 1191 1192 static ssize_t 1193 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) 1194 { 1195 ssize_t count; 1196 int i; 1197 1198 count = 0; 1199 for (i = 0; tbl[i].name; i++) 1200 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); 1201 if (count) 1202 count--; 1203 count += sysfs_emit_at(buf, count, "\n"); 1204 return count; 1205 } 1206 1207 static int 1208 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, 1209 struct ptp_system_timestamp *sts) 1210 { 1211 u32 ctrl, time_sec, time_ns; 1212 int i; 1213 1214 ptp_read_system_prets(sts); 1215 1216 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1217 iowrite32(ctrl, &bp->reg->ctrl); 1218 1219 for (i = 0; i < 100; i++) { 1220 ctrl = ioread32(&bp->reg->ctrl); 1221 if (ctrl & OCP_CTRL_READ_TIME_DONE) 1222 break; 1223 } 1224 ptp_read_system_postts(sts); 1225 1226 if (sts && bp->ts_window_adjust) { 1227 s64 ns = timespec64_to_ns(&sts->post_ts); 1228 1229 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); 1230 } 1231 1232 time_ns = ioread32(&bp->reg->time_ns); 1233 time_sec = ioread32(&bp->reg->time_sec); 1234 1235 ts->tv_sec = time_sec; 1236 ts->tv_nsec = time_ns; 1237 1238 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; 1239 } 1240 1241 static int 1242 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, 1243 struct ptp_system_timestamp *sts) 1244 { 1245 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1246 unsigned long flags; 1247 int err; 1248 1249 spin_lock_irqsave(&bp->lock, flags); 1250 err = __ptp_ocp_gettime_locked(bp, ts, sts); 1251 spin_unlock_irqrestore(&bp->lock, flags); 1252 1253 return err; 1254 } 1255 1256 static void 1257 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) 1258 { 1259 u32 ctrl, time_sec, time_ns; 1260 u32 select; 1261 1262 time_ns = ts->tv_nsec; 1263 time_sec = ts->tv_sec; 1264 1265 select = ioread32(&bp->reg->select); 1266 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1267 1268 iowrite32(time_ns, &bp->reg->adjust_ns); 1269 iowrite32(time_sec, &bp->reg->adjust_sec); 1270 1271 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; 1272 iowrite32(ctrl, &bp->reg->ctrl); 1273 1274 /* restore clock selection */ 1275 iowrite32(select >> 16, &bp->reg->select); 1276 } 1277 1278 static int 1279 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) 1280 { 1281 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1282 unsigned long flags; 1283 1284 spin_lock_irqsave(&bp->lock, flags); 1285 __ptp_ocp_settime_locked(bp, ts); 1286 spin_unlock_irqrestore(&bp->lock, flags); 1287 1288 return 0; 1289 } 1290 1291 static void 1292 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) 1293 { 1294 u32 select, ctrl; 1295 1296 select = ioread32(&bp->reg->select); 1297 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1298 1299 iowrite32(adj_val, &bp->reg->offset_ns); 1300 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); 1301 1302 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; 1303 iowrite32(ctrl, &bp->reg->ctrl); 1304 1305 /* restore clock selection */ 1306 iowrite32(select >> 16, &bp->reg->select); 1307 } 1308 1309 static void 1310 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) 1311 { 1312 struct timespec64 ts; 1313 unsigned long flags; 1314 int err; 1315 1316 spin_lock_irqsave(&bp->lock, flags); 1317 err = __ptp_ocp_gettime_locked(bp, &ts, NULL); 1318 if (likely(!err)) { 1319 set_normalized_timespec64(&ts, ts.tv_sec, 1320 ts.tv_nsec + delta_ns); 1321 __ptp_ocp_settime_locked(bp, &ts); 1322 } 1323 spin_unlock_irqrestore(&bp->lock, flags); 1324 } 1325 1326 static int 1327 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) 1328 { 1329 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1330 unsigned long flags; 1331 u32 adj_ns, sign; 1332 1333 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { 1334 ptp_ocp_adjtime_coarse(bp, delta_ns); 1335 return 0; 1336 } 1337 1338 sign = delta_ns < 0 ? BIT(31) : 0; 1339 adj_ns = sign ? -delta_ns : delta_ns; 1340 1341 spin_lock_irqsave(&bp->lock, flags); 1342 __ptp_ocp_adjtime_locked(bp, sign | adj_ns); 1343 spin_unlock_irqrestore(&bp->lock, flags); 1344 1345 return 0; 1346 } 1347 1348 static int 1349 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) 1350 { 1351 if (scaled_ppm == 0) 1352 return 0; 1353 1354 return -EOPNOTSUPP; 1355 } 1356 1357 static s32 1358 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info) 1359 { 1360 return 0; 1361 } 1362 1363 static int 1364 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) 1365 { 1366 return -EOPNOTSUPP; 1367 } 1368 1369 static int 1370 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, 1371 int on) 1372 { 1373 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1374 struct ptp_ocp_ext_src *ext = NULL; 1375 u32 req; 1376 int err; 1377 1378 switch (rq->type) { 1379 case PTP_CLK_REQ_EXTTS: 1380 req = OCP_REQ_TIMESTAMP; 1381 switch (rq->extts.index) { 1382 case 0: 1383 ext = bp->ts0; 1384 break; 1385 case 1: 1386 ext = bp->ts1; 1387 break; 1388 case 2: 1389 ext = bp->ts2; 1390 break; 1391 case 3: 1392 ext = bp->ts3; 1393 break; 1394 case 4: 1395 ext = bp->ts4; 1396 break; 1397 case 5: 1398 ext = bp->pps; 1399 break; 1400 } 1401 break; 1402 case PTP_CLK_REQ_PPS: 1403 req = OCP_REQ_PPS; 1404 ext = bp->pps; 1405 break; 1406 case PTP_CLK_REQ_PEROUT: 1407 switch (rq->perout.index) { 1408 case 0: 1409 /* This is a request for 1PPS on an output SMA. 1410 * Allow, but assume manual configuration. 1411 */ 1412 if (on && (rq->perout.period.sec != 1 || 1413 rq->perout.period.nsec != 0)) 1414 return -EINVAL; 1415 return 0; 1416 case 1: 1417 case 2: 1418 case 3: 1419 case 4: 1420 req = rq->perout.index - 1; 1421 ext = bp->signal_out[req]; 1422 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); 1423 if (err) 1424 return err; 1425 break; 1426 } 1427 break; 1428 default: 1429 return -EOPNOTSUPP; 1430 } 1431 1432 err = -ENXIO; 1433 if (ext) 1434 err = ext->info->enable(ext, req, on); 1435 1436 return err; 1437 } 1438 1439 static int 1440 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, 1441 enum ptp_pin_function func, unsigned chan) 1442 { 1443 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1444 char buf[16]; 1445 1446 switch (func) { 1447 case PTP_PF_NONE: 1448 snprintf(buf, sizeof(buf), "IN: None"); 1449 break; 1450 case PTP_PF_EXTTS: 1451 /* Allow timestamps, but require sysfs configuration. */ 1452 return 0; 1453 case PTP_PF_PEROUT: 1454 /* channel 0 is 1PPS from PHC. 1455 * channels 1..4 are the frequency generators. 1456 */ 1457 if (chan) 1458 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); 1459 else 1460 snprintf(buf, sizeof(buf), "OUT: PHC"); 1461 break; 1462 default: 1463 return -EOPNOTSUPP; 1464 } 1465 1466 return ptp_ocp_sma_store(bp, buf, pin + 1); 1467 } 1468 1469 static const struct ptp_clock_info ptp_ocp_clock_info = { 1470 .owner = THIS_MODULE, 1471 .name = KBUILD_MODNAME, 1472 .max_adj = 100000000, 1473 .gettimex64 = ptp_ocp_gettimex, 1474 .settime64 = ptp_ocp_settime, 1475 .adjtime = ptp_ocp_adjtime, 1476 .adjfine = ptp_ocp_null_adjfine, 1477 .adjphase = ptp_ocp_null_adjphase, 1478 .getmaxphase = ptp_ocp_null_getmaxphase, 1479 .enable = ptp_ocp_enable, 1480 .verify = ptp_ocp_verify, 1481 .pps = true, 1482 .n_ext_ts = 6, 1483 .n_per_out = 5, 1484 }; 1485 1486 static void 1487 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) 1488 { 1489 u32 ctrl, select; 1490 1491 select = ioread32(&bp->reg->select); 1492 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1493 1494 iowrite32(0, &bp->reg->drift_ns); 1495 1496 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; 1497 iowrite32(ctrl, &bp->reg->ctrl); 1498 1499 /* restore clock selection */ 1500 iowrite32(select >> 16, &bp->reg->select); 1501 } 1502 1503 static void 1504 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) 1505 { 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&bp->lock, flags); 1509 1510 bp->utc_tai_offset = val; 1511 1512 if (bp->irig_out) 1513 iowrite32(val, &bp->irig_out->adj_sec); 1514 if (bp->dcf_out) 1515 iowrite32(val, &bp->dcf_out->adj_sec); 1516 if (bp->nmea_out) 1517 iowrite32(val, &bp->nmea_out->adj_sec); 1518 1519 spin_unlock_irqrestore(&bp->lock, flags); 1520 } 1521 1522 static void 1523 ptp_ocp_watchdog(struct timer_list *t) 1524 { 1525 struct ptp_ocp *bp = from_timer(bp, t, watchdog); 1526 unsigned long flags; 1527 u32 status, utc_offset; 1528 1529 status = ioread32(&bp->pps_to_clk->status); 1530 1531 if (status & PPS_STATUS_SUPERV_ERR) { 1532 iowrite32(status, &bp->pps_to_clk->status); 1533 if (!bp->gnss_lost) { 1534 spin_lock_irqsave(&bp->lock, flags); 1535 __ptp_ocp_clear_drift_locked(bp); 1536 spin_unlock_irqrestore(&bp->lock, flags); 1537 bp->gnss_lost = ktime_get_real_seconds(); 1538 } 1539 1540 } else if (bp->gnss_lost) { 1541 bp->gnss_lost = 0; 1542 } 1543 1544 /* if GNSS provides correct data we can rely on 1545 * it to get leap second information 1546 */ 1547 if (bp->tod) { 1548 status = ioread32(&bp->tod->utc_status); 1549 utc_offset = status & TOD_STATUS_UTC_MASK; 1550 if (status & TOD_STATUS_UTC_VALID && 1551 utc_offset != bp->utc_tai_offset) 1552 ptp_ocp_utc_distribute(bp, utc_offset); 1553 } 1554 1555 mod_timer(&bp->watchdog, jiffies + HZ); 1556 } 1557 1558 static void 1559 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) 1560 { 1561 ktime_t start, end, delay = U64_MAX; 1562 u32 ctrl; 1563 int i; 1564 1565 for (i = 0; i < 3; i++) { 1566 ctrl = ioread32(&bp->reg->ctrl); 1567 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1568 1569 iowrite32(ctrl, &bp->reg->ctrl); 1570 1571 start = ktime_get_raw_ns(); 1572 1573 ctrl = ioread32(&bp->reg->ctrl); 1574 1575 end = ktime_get_raw_ns(); 1576 1577 delay = min(delay, end - start); 1578 } 1579 bp->ts_window_adjust = (delay >> 5) * 3; 1580 } 1581 1582 static int 1583 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf) 1584 { 1585 struct timespec64 ts; 1586 u32 ctrl; 1587 1588 ctrl = OCP_CTRL_ENABLE; 1589 iowrite32(ctrl, &bp->reg->ctrl); 1590 1591 /* servo configuration */ 1592 iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p); 1593 iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i); 1594 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p); 1595 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i); 1596 1597 /* latch servo values */ 1598 ctrl |= OCP_CTRL_ADJUST_SERVO; 1599 iowrite32(ctrl, &bp->reg->ctrl); 1600 1601 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { 1602 dev_err(&bp->pdev->dev, "clock not enabled\n"); 1603 return -ENODEV; 1604 } 1605 1606 ptp_ocp_estimate_pci_timing(bp); 1607 1608 bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 1609 if (!bp->sync) { 1610 ktime_get_clocktai_ts64(&ts); 1611 ptp_ocp_settime(&bp->ptp_info, &ts); 1612 } 1613 1614 /* If there is a clock supervisor, then enable the watchdog */ 1615 if (bp->pps_to_clk) { 1616 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); 1617 mod_timer(&bp->watchdog, jiffies + HZ); 1618 } 1619 1620 return 0; 1621 } 1622 1623 static void 1624 ptp_ocp_tod_init(struct ptp_ocp *bp) 1625 { 1626 u32 ctrl, reg; 1627 1628 ctrl = ioread32(&bp->tod->ctrl); 1629 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; 1630 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); 1631 iowrite32(ctrl, &bp->tod->ctrl); 1632 1633 reg = ioread32(&bp->tod->utc_status); 1634 if (reg & TOD_STATUS_UTC_VALID) 1635 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); 1636 } 1637 1638 static const char * 1639 ptp_ocp_tod_proto_name(const int idx) 1640 { 1641 static const char * const proto_name[] = { 1642 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", 1643 "UBX", "UBX_UTC", "UBX_LS", "UBX_none" 1644 }; 1645 return proto_name[idx]; 1646 } 1647 1648 static const char * 1649 ptp_ocp_tod_gnss_name(int idx) 1650 { 1651 static const char * const gnss_name[] = { 1652 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", 1653 "Unknown" 1654 }; 1655 if (idx >= ARRAY_SIZE(gnss_name)) 1656 idx = ARRAY_SIZE(gnss_name) - 1; 1657 return gnss_name[idx]; 1658 } 1659 1660 static const char * 1661 ptp_ocp_tty_port_name(int idx) 1662 { 1663 static const char * const tty_name[] = { 1664 "GNSS", "GNSS2", "MAC", "NMEA" 1665 }; 1666 return tty_name[idx]; 1667 } 1668 1669 struct ptp_ocp_nvmem_match_info { 1670 struct ptp_ocp *bp; 1671 const void * const tag; 1672 }; 1673 1674 static int 1675 ptp_ocp_nvmem_match(struct device *dev, const void *data) 1676 { 1677 const struct ptp_ocp_nvmem_match_info *info = data; 1678 1679 dev = dev->parent; 1680 if (!i2c_verify_client(dev) || info->tag != dev->platform_data) 1681 return 0; 1682 1683 while ((dev = dev->parent)) 1684 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 1685 return info->bp == dev_get_drvdata(dev); 1686 return 0; 1687 } 1688 1689 static inline struct nvmem_device * 1690 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) 1691 { 1692 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; 1693 1694 return nvmem_device_find(&info, ptp_ocp_nvmem_match); 1695 } 1696 1697 static inline void 1698 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) 1699 { 1700 if (!IS_ERR_OR_NULL(*nvmemp)) 1701 nvmem_device_put(*nvmemp); 1702 *nvmemp = NULL; 1703 } 1704 1705 static void 1706 ptp_ocp_read_eeprom(struct ptp_ocp *bp) 1707 { 1708 const struct ptp_ocp_eeprom_map *map; 1709 struct nvmem_device *nvmem; 1710 const void *tag; 1711 int ret; 1712 1713 if (!bp->i2c_ctrl) 1714 return; 1715 1716 tag = NULL; 1717 nvmem = NULL; 1718 1719 for (map = bp->eeprom_map; map->len; map++) { 1720 if (map->tag != tag) { 1721 tag = map->tag; 1722 ptp_ocp_nvmem_device_put(&nvmem); 1723 } 1724 if (!nvmem) { 1725 nvmem = ptp_ocp_nvmem_device_get(bp, tag); 1726 if (IS_ERR(nvmem)) { 1727 ret = PTR_ERR(nvmem); 1728 goto fail; 1729 } 1730 } 1731 ret = nvmem_device_read(nvmem, map->off, map->len, 1732 BP_MAP_ENTRY_ADDR(bp, map)); 1733 if (ret != map->len) 1734 goto fail; 1735 } 1736 1737 bp->has_eeprom_data = true; 1738 1739 out: 1740 ptp_ocp_nvmem_device_put(&nvmem); 1741 return; 1742 1743 fail: 1744 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); 1745 goto out; 1746 } 1747 1748 static struct device * 1749 ptp_ocp_find_flash(struct ptp_ocp *bp) 1750 { 1751 struct device *dev, *last; 1752 1753 last = NULL; 1754 dev = &bp->spi_flash->dev; 1755 1756 while ((dev = device_find_any_child(dev))) { 1757 if (!strcmp("mtd", dev_bus_name(dev))) 1758 break; 1759 put_device(last); 1760 last = dev; 1761 } 1762 put_device(last); 1763 1764 return dev; 1765 } 1766 1767 static int 1768 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, 1769 const u8 **data, size_t *size) 1770 { 1771 struct ptp_ocp *bp = devlink_priv(devlink); 1772 const struct ptp_ocp_firmware_header *hdr; 1773 size_t offset, length; 1774 u16 crc; 1775 1776 hdr = (const struct ptp_ocp_firmware_header *)fw->data; 1777 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { 1778 devlink_flash_update_status_notify(devlink, 1779 "No firmware header found, cancel firmware upgrade", 1780 NULL, 0, 0); 1781 return -EINVAL; 1782 } 1783 1784 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || 1785 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { 1786 devlink_flash_update_status_notify(devlink, 1787 "Firmware image compatibility check failed", 1788 NULL, 0, 0); 1789 return -EINVAL; 1790 } 1791 1792 offset = sizeof(*hdr); 1793 length = be32_to_cpu(hdr->image_size); 1794 if (length != (fw->size - offset)) { 1795 devlink_flash_update_status_notify(devlink, 1796 "Firmware image size check failed", 1797 NULL, 0, 0); 1798 return -EINVAL; 1799 } 1800 1801 crc = crc16(0xffff, &fw->data[offset], length); 1802 if (be16_to_cpu(hdr->crc) != crc) { 1803 devlink_flash_update_status_notify(devlink, 1804 "Firmware image CRC check failed", 1805 NULL, 0, 0); 1806 return -EINVAL; 1807 } 1808 1809 *data = &fw->data[offset]; 1810 *size = length; 1811 1812 return 0; 1813 } 1814 1815 static int 1816 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, 1817 const struct firmware *fw) 1818 { 1819 struct mtd_info *mtd = dev_get_drvdata(dev); 1820 struct ptp_ocp *bp = devlink_priv(devlink); 1821 size_t off, len, size, resid, wrote; 1822 struct erase_info erase; 1823 size_t base, blksz; 1824 const u8 *data; 1825 int err; 1826 1827 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); 1828 if (err) 1829 goto out; 1830 1831 off = 0; 1832 base = bp->flash_start; 1833 blksz = 4096; 1834 resid = size; 1835 1836 while (resid) { 1837 devlink_flash_update_status_notify(devlink, "Flashing", 1838 NULL, off, size); 1839 1840 len = min_t(size_t, resid, blksz); 1841 erase.addr = base + off; 1842 erase.len = blksz; 1843 1844 err = mtd_erase(mtd, &erase); 1845 if (err) 1846 goto out; 1847 1848 err = mtd_write(mtd, base + off, len, &wrote, data + off); 1849 if (err) 1850 goto out; 1851 1852 off += blksz; 1853 resid -= len; 1854 } 1855 out: 1856 return err; 1857 } 1858 1859 static int 1860 ptp_ocp_devlink_flash_update(struct devlink *devlink, 1861 struct devlink_flash_update_params *params, 1862 struct netlink_ext_ack *extack) 1863 { 1864 struct ptp_ocp *bp = devlink_priv(devlink); 1865 struct device *dev; 1866 const char *msg; 1867 int err; 1868 1869 dev = ptp_ocp_find_flash(bp); 1870 if (!dev) { 1871 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); 1872 return -ENODEV; 1873 } 1874 1875 devlink_flash_update_status_notify(devlink, "Preparing to flash", 1876 NULL, 0, 0); 1877 1878 err = ptp_ocp_devlink_flash(devlink, dev, params->fw); 1879 1880 msg = err ? "Flash error" : "Flash complete"; 1881 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); 1882 1883 put_device(dev); 1884 return err; 1885 } 1886 1887 static int 1888 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, 1889 struct netlink_ext_ack *extack) 1890 { 1891 struct ptp_ocp *bp = devlink_priv(devlink); 1892 const char *fw_image; 1893 char buf[32]; 1894 int err; 1895 1896 fw_image = bp->fw_loader ? "loader" : "fw"; 1897 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); 1898 err = devlink_info_version_running_put(req, fw_image, buf); 1899 if (err) 1900 return err; 1901 1902 if (!bp->has_eeprom_data) { 1903 ptp_ocp_read_eeprom(bp); 1904 if (!bp->has_eeprom_data) 1905 return 0; 1906 } 1907 1908 sprintf(buf, "%pM", bp->serial); 1909 err = devlink_info_serial_number_put(req, buf); 1910 if (err) 1911 return err; 1912 1913 err = devlink_info_version_fixed_put(req, 1914 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, 1915 bp->board_id); 1916 if (err) 1917 return err; 1918 1919 return 0; 1920 } 1921 1922 static const struct devlink_ops ptp_ocp_devlink_ops = { 1923 .flash_update = ptp_ocp_devlink_flash_update, 1924 .info_get = ptp_ocp_devlink_info_get, 1925 }; 1926 1927 static void __iomem * 1928 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) 1929 { 1930 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); 1931 1932 return devm_ioremap_resource(&bp->pdev->dev, &res); 1933 } 1934 1935 static void __iomem * 1936 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1937 { 1938 resource_size_t start; 1939 1940 start = pci_resource_start(bp->pdev, 0) + r->offset; 1941 return __ptp_ocp_get_mem(bp, start, r->size); 1942 } 1943 1944 static int 1945 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) 1946 { 1947 struct ptp_ocp_flash_info *info; 1948 struct pci_dev *pdev = bp->pdev; 1949 struct platform_device *p; 1950 struct resource res[2]; 1951 resource_size_t start; 1952 int id; 1953 1954 start = pci_resource_start(pdev, 0) + r->offset; 1955 res[0] = DEFINE_RES_MEM(start, r->size); 1956 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); 1957 1958 info = r->extra; 1959 id = pci_dev_id(pdev) << 1; 1960 id += info->pci_offset; 1961 1962 p = platform_device_register_resndata(&pdev->dev, info->name, id, 1963 res, ARRAY_SIZE(res), info->data, 1964 info->data_size); 1965 if (IS_ERR(p)) 1966 return PTR_ERR(p); 1967 1968 bp_assign_entry(bp, r, p); 1969 1970 return 0; 1971 } 1972 1973 static struct platform_device * 1974 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) 1975 { 1976 struct ptp_ocp_i2c_info *info; 1977 struct resource res[2]; 1978 resource_size_t start; 1979 1980 info = r->extra; 1981 start = pci_resource_start(pdev, 0) + r->offset; 1982 res[0] = DEFINE_RES_MEM(start, r->size); 1983 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); 1984 1985 return platform_device_register_resndata(&pdev->dev, info->name, 1986 id, res, ARRAY_SIZE(res), 1987 info->data, info->data_size); 1988 } 1989 1990 static int 1991 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) 1992 { 1993 struct pci_dev *pdev = bp->pdev; 1994 struct ptp_ocp_i2c_info *info; 1995 struct platform_device *p; 1996 struct clk_hw *clk; 1997 char buf[32]; 1998 int id; 1999 2000 info = r->extra; 2001 id = pci_dev_id(bp->pdev); 2002 2003 sprintf(buf, "AXI.%d", id); 2004 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 2005 info->fixed_rate); 2006 if (IS_ERR(clk)) 2007 return PTR_ERR(clk); 2008 bp->i2c_clk = clk; 2009 2010 sprintf(buf, "%s.%d", info->name, id); 2011 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); 2012 p = ptp_ocp_i2c_bus(bp->pdev, r, id); 2013 if (IS_ERR(p)) 2014 return PTR_ERR(p); 2015 2016 bp_assign_entry(bp, r, p); 2017 2018 return 0; 2019 } 2020 2021 /* The expectation is that this is triggered only on error. */ 2022 static irqreturn_t 2023 ptp_ocp_signal_irq(int irq, void *priv) 2024 { 2025 struct ptp_ocp_ext_src *ext = priv; 2026 struct signal_reg __iomem *reg = ext->mem; 2027 struct ptp_ocp *bp = ext->bp; 2028 u32 enable, status; 2029 int gen; 2030 2031 gen = ext->info->index - 1; 2032 2033 enable = ioread32(®->enable); 2034 status = ioread32(®->status); 2035 2036 /* disable generator on error */ 2037 if (status || !enable) { 2038 iowrite32(0, ®->intr_mask); 2039 iowrite32(0, ®->enable); 2040 bp->signal[gen].running = false; 2041 } 2042 2043 iowrite32(0, ®->intr); /* ack interrupt */ 2044 2045 return IRQ_HANDLED; 2046 } 2047 2048 static int 2049 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) 2050 { 2051 struct ptp_system_timestamp sts; 2052 struct timespec64 ts; 2053 ktime_t start_ns; 2054 int err; 2055 2056 if (!s->period) 2057 return 0; 2058 2059 if (!s->pulse) 2060 s->pulse = ktime_divns(s->period * s->duty, 100); 2061 2062 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); 2063 if (err) 2064 return err; 2065 2066 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; 2067 if (!s->start) { 2068 /* roundup() does not work on 32-bit systems */ 2069 s->start = DIV64_U64_ROUND_UP(start_ns, s->period); 2070 s->start = ktime_add(s->start, s->phase); 2071 } 2072 2073 if (s->duty < 1 || s->duty > 99) 2074 return -EINVAL; 2075 2076 if (s->pulse < 1 || s->pulse > s->period) 2077 return -EINVAL; 2078 2079 if (s->start < start_ns) 2080 return -EINVAL; 2081 2082 bp->signal[gen] = *s; 2083 2084 return 0; 2085 } 2086 2087 static int 2088 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 2089 struct ptp_perout_request *req) 2090 { 2091 struct ptp_ocp_signal s = { }; 2092 2093 s.polarity = bp->signal[gen].polarity; 2094 s.period = ktime_set(req->period.sec, req->period.nsec); 2095 if (!s.period) 2096 return 0; 2097 2098 if (req->flags & PTP_PEROUT_DUTY_CYCLE) { 2099 s.pulse = ktime_set(req->on.sec, req->on.nsec); 2100 s.duty = ktime_divns(s.pulse * 100, s.period); 2101 } 2102 2103 if (req->flags & PTP_PEROUT_PHASE) 2104 s.phase = ktime_set(req->phase.sec, req->phase.nsec); 2105 else 2106 s.start = ktime_set(req->start.sec, req->start.nsec); 2107 2108 return ptp_ocp_signal_set(bp, gen, &s); 2109 } 2110 2111 static int 2112 ptp_ocp_signal_enable(void *priv, u32 req, bool enable) 2113 { 2114 struct ptp_ocp_ext_src *ext = priv; 2115 struct signal_reg __iomem *reg = ext->mem; 2116 struct ptp_ocp *bp = ext->bp; 2117 struct timespec64 ts; 2118 int gen; 2119 2120 gen = ext->info->index - 1; 2121 2122 iowrite32(0, ®->intr_mask); 2123 iowrite32(0, ®->enable); 2124 bp->signal[gen].running = false; 2125 if (!enable) 2126 return 0; 2127 2128 ts = ktime_to_timespec64(bp->signal[gen].start); 2129 iowrite32(ts.tv_sec, ®->start_sec); 2130 iowrite32(ts.tv_nsec, ®->start_ns); 2131 2132 ts = ktime_to_timespec64(bp->signal[gen].period); 2133 iowrite32(ts.tv_sec, ®->period_sec); 2134 iowrite32(ts.tv_nsec, ®->period_ns); 2135 2136 ts = ktime_to_timespec64(bp->signal[gen].pulse); 2137 iowrite32(ts.tv_sec, ®->pulse_sec); 2138 iowrite32(ts.tv_nsec, ®->pulse_ns); 2139 2140 iowrite32(bp->signal[gen].polarity, ®->polarity); 2141 iowrite32(0, ®->repeat_count); 2142 2143 iowrite32(0, ®->intr); /* clear interrupt state */ 2144 iowrite32(1, ®->intr_mask); /* enable interrupt */ 2145 iowrite32(3, ®->enable); /* valid & enable */ 2146 2147 bp->signal[gen].running = true; 2148 2149 return 0; 2150 } 2151 2152 static irqreturn_t 2153 ptp_ocp_ts_irq(int irq, void *priv) 2154 { 2155 struct ptp_ocp_ext_src *ext = priv; 2156 struct ts_reg __iomem *reg = ext->mem; 2157 struct ptp_clock_event ev; 2158 u32 sec, nsec; 2159 2160 if (ext == ext->bp->pps) { 2161 if (ext->bp->pps_req_map & OCP_REQ_PPS) { 2162 ev.type = PTP_CLOCK_PPS; 2163 ptp_clock_event(ext->bp->ptp, &ev); 2164 } 2165 2166 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) 2167 goto out; 2168 } 2169 2170 /* XXX should fix API - this converts s/ns -> ts -> s/ns */ 2171 sec = ioread32(®->time_sec); 2172 nsec = ioread32(®->time_ns); 2173 2174 ev.type = PTP_CLOCK_EXTTS; 2175 ev.index = ext->info->index; 2176 ev.timestamp = sec * NSEC_PER_SEC + nsec; 2177 2178 ptp_clock_event(ext->bp->ptp, &ev); 2179 2180 out: 2181 iowrite32(1, ®->intr); /* write 1 to ack */ 2182 2183 return IRQ_HANDLED; 2184 } 2185 2186 static int 2187 ptp_ocp_ts_enable(void *priv, u32 req, bool enable) 2188 { 2189 struct ptp_ocp_ext_src *ext = priv; 2190 struct ts_reg __iomem *reg = ext->mem; 2191 struct ptp_ocp *bp = ext->bp; 2192 2193 if (ext == bp->pps) { 2194 u32 old_map = bp->pps_req_map; 2195 2196 if (enable) 2197 bp->pps_req_map |= req; 2198 else 2199 bp->pps_req_map &= ~req; 2200 2201 /* if no state change, just return */ 2202 if ((!!old_map ^ !!bp->pps_req_map) == 0) 2203 return 0; 2204 } 2205 2206 if (enable) { 2207 iowrite32(1, ®->enable); 2208 iowrite32(1, ®->intr_mask); 2209 iowrite32(1, ®->intr); 2210 } else { 2211 iowrite32(0, ®->intr_mask); 2212 iowrite32(0, ®->enable); 2213 } 2214 2215 return 0; 2216 } 2217 2218 static void 2219 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) 2220 { 2221 ext->info->enable(ext, ~0, false); 2222 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); 2223 kfree(ext); 2224 } 2225 2226 static int 2227 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) 2228 { 2229 struct pci_dev *pdev = bp->pdev; 2230 struct ptp_ocp_ext_src *ext; 2231 int err; 2232 2233 ext = kzalloc(sizeof(*ext), GFP_KERNEL); 2234 if (!ext) 2235 return -ENOMEM; 2236 2237 ext->mem = ptp_ocp_get_mem(bp, r); 2238 if (IS_ERR(ext->mem)) { 2239 err = PTR_ERR(ext->mem); 2240 goto out; 2241 } 2242 2243 ext->bp = bp; 2244 ext->info = r->extra; 2245 ext->irq_vec = r->irq_vec; 2246 2247 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, 2248 ext, "ocp%d.%s", bp->id, r->name); 2249 if (err) { 2250 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); 2251 goto out; 2252 } 2253 2254 bp_assign_entry(bp, r, ext); 2255 2256 return 0; 2257 2258 out: 2259 kfree(ext); 2260 return err; 2261 } 2262 2263 static int 2264 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) 2265 { 2266 struct pci_dev *pdev = bp->pdev; 2267 struct uart_8250_port uart; 2268 2269 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets 2270 * the serial port device claim and release the pci resource. 2271 */ 2272 memset(&uart, 0, sizeof(uart)); 2273 uart.port.dev = &pdev->dev; 2274 uart.port.iotype = UPIO_MEM; 2275 uart.port.regshift = 2; 2276 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; 2277 uart.port.irq = pci_irq_vector(pdev, r->irq_vec); 2278 uart.port.uartclk = 50000000; 2279 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; 2280 uart.port.type = PORT_16550A; 2281 2282 return serial8250_register_8250_port(&uart); 2283 } 2284 2285 static int 2286 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) 2287 { 2288 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra; 2289 struct ptp_ocp_serial_port port = {}; 2290 2291 port.line = ptp_ocp_serial_line(bp, r); 2292 if (port.line < 0) 2293 return port.line; 2294 2295 if (p) 2296 port.baud = p->baud; 2297 2298 bp_assign_entry(bp, r, port); 2299 2300 return 0; 2301 } 2302 2303 static int 2304 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) 2305 { 2306 void __iomem *mem; 2307 2308 mem = ptp_ocp_get_mem(bp, r); 2309 if (IS_ERR(mem)) 2310 return PTR_ERR(mem); 2311 2312 bp_assign_entry(bp, r, mem); 2313 2314 return 0; 2315 } 2316 2317 static void 2318 ptp_ocp_nmea_out_init(struct ptp_ocp *bp) 2319 { 2320 if (!bp->nmea_out) 2321 return; 2322 2323 iowrite32(0, &bp->nmea_out->ctrl); /* disable */ 2324 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ 2325 iowrite32(1, &bp->nmea_out->ctrl); /* enable */ 2326 } 2327 2328 static void 2329 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) 2330 { 2331 u32 val; 2332 2333 iowrite32(0, ®->enable); /* disable */ 2334 2335 val = ioread32(®->polarity); 2336 s->polarity = val ? true : false; 2337 s->duty = 50; 2338 } 2339 2340 static void 2341 ptp_ocp_signal_init(struct ptp_ocp *bp) 2342 { 2343 int i; 2344 2345 for (i = 0; i < 4; i++) 2346 if (bp->signal_out[i]) 2347 _ptp_ocp_signal_init(&bp->signal[i], 2348 bp->signal_out[i]->mem); 2349 } 2350 2351 static void 2352 ptp_ocp_attr_group_del(struct ptp_ocp *bp) 2353 { 2354 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); 2355 kfree(bp->attr_group); 2356 } 2357 2358 static int 2359 ptp_ocp_attr_group_add(struct ptp_ocp *bp, 2360 const struct ocp_attr_group *attr_tbl) 2361 { 2362 int count, i; 2363 int err; 2364 2365 count = 0; 2366 for (i = 0; attr_tbl[i].cap; i++) 2367 if (attr_tbl[i].cap & bp->fw_cap) 2368 count++; 2369 2370 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), 2371 GFP_KERNEL); 2372 if (!bp->attr_group) 2373 return -ENOMEM; 2374 2375 count = 0; 2376 for (i = 0; attr_tbl[i].cap; i++) 2377 if (attr_tbl[i].cap & bp->fw_cap) 2378 bp->attr_group[count++] = attr_tbl[i].group; 2379 2380 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); 2381 if (err) 2382 bp->attr_group[0] = NULL; 2383 2384 return err; 2385 } 2386 2387 static void 2388 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) 2389 { 2390 u32 ctrl; 2391 bool on; 2392 2393 ctrl = ioread32(reg); 2394 on = ctrl & bit; 2395 if (on ^ enable) { 2396 ctrl &= ~bit; 2397 ctrl |= enable ? bit : 0; 2398 iowrite32(ctrl, reg); 2399 } 2400 } 2401 2402 static void 2403 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) 2404 { 2405 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, 2406 IRIG_M_CTRL_ENABLE, enable); 2407 } 2408 2409 static void 2410 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) 2411 { 2412 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, 2413 IRIG_S_CTRL_ENABLE, enable); 2414 } 2415 2416 static void 2417 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) 2418 { 2419 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, 2420 DCF_M_CTRL_ENABLE, enable); 2421 } 2422 2423 static void 2424 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) 2425 { 2426 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, 2427 DCF_S_CTRL_ENABLE, enable); 2428 } 2429 2430 static void 2431 __handle_signal_outputs(struct ptp_ocp *bp, u32 val) 2432 { 2433 ptp_ocp_irig_out(bp, val & 0x00100010); 2434 ptp_ocp_dcf_out(bp, val & 0x00200020); 2435 } 2436 2437 static void 2438 __handle_signal_inputs(struct ptp_ocp *bp, u32 val) 2439 { 2440 ptp_ocp_irig_in(bp, val & 0x00100010); 2441 ptp_ocp_dcf_in(bp, val & 0x00200020); 2442 } 2443 2444 static u32 2445 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) 2446 { 2447 u32 __iomem *gpio; 2448 u32 shift; 2449 2450 if (bp->sma[sma_nr - 1].fixed_fcn) 2451 return (sma_nr - 1) & 1; 2452 2453 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) 2454 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2455 else 2456 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2457 shift = sma_nr & 1 ? 0 : 16; 2458 2459 return (ioread32(gpio) >> shift) & 0xffff; 2460 } 2461 2462 static int 2463 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 2464 { 2465 u32 reg, mask, shift; 2466 unsigned long flags; 2467 u32 __iomem *gpio; 2468 2469 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2470 shift = sma_nr & 1 ? 0 : 16; 2471 2472 mask = 0xffff << (16 - shift); 2473 2474 spin_lock_irqsave(&bp->lock, flags); 2475 2476 reg = ioread32(gpio); 2477 reg = (reg & mask) | (val << shift); 2478 2479 __handle_signal_outputs(bp, reg); 2480 2481 iowrite32(reg, gpio); 2482 2483 spin_unlock_irqrestore(&bp->lock, flags); 2484 2485 return 0; 2486 } 2487 2488 static int 2489 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 2490 { 2491 u32 reg, mask, shift; 2492 unsigned long flags; 2493 u32 __iomem *gpio; 2494 2495 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2496 shift = sma_nr & 1 ? 0 : 16; 2497 2498 mask = 0xffff << (16 - shift); 2499 2500 spin_lock_irqsave(&bp->lock, flags); 2501 2502 reg = ioread32(gpio); 2503 reg = (reg & mask) | (val << shift); 2504 2505 __handle_signal_inputs(bp, reg); 2506 2507 iowrite32(reg, gpio); 2508 2509 spin_unlock_irqrestore(&bp->lock, flags); 2510 2511 return 0; 2512 } 2513 2514 static void 2515 ptp_ocp_sma_fb_init(struct ptp_ocp *bp) 2516 { 2517 struct dpll_pin_properties prop = { 2518 .board_label = NULL, 2519 .type = DPLL_PIN_TYPE_EXT, 2520 .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE, 2521 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), 2522 .freq_supported = ptp_ocp_sma_freq, 2523 2524 }; 2525 u32 reg; 2526 int i; 2527 2528 /* defaults */ 2529 for (i = 0; i < OCP_SMA_NUM; i++) { 2530 bp->sma[i].default_fcn = i & 1; 2531 bp->sma[i].dpll_prop = prop; 2532 bp->sma[i].dpll_prop.board_label = 2533 bp->ptp_info.pin_config[i].name; 2534 } 2535 bp->sma[0].mode = SMA_MODE_IN; 2536 bp->sma[1].mode = SMA_MODE_IN; 2537 bp->sma[2].mode = SMA_MODE_OUT; 2538 bp->sma[3].mode = SMA_MODE_OUT; 2539 /* If no SMA1 map, the pin functions and directions are fixed. */ 2540 if (!bp->sma_map1) { 2541 for (i = 0; i < OCP_SMA_NUM; i++) { 2542 bp->sma[i].fixed_fcn = true; 2543 bp->sma[i].fixed_dir = true; 2544 bp->sma[1].dpll_prop.capabilities &= 2545 ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2546 } 2547 return; 2548 } 2549 2550 /* If SMA2 GPIO output map is all 1, it is not present. 2551 * This indicates the firmware has fixed direction SMA pins. 2552 */ 2553 reg = ioread32(&bp->sma_map2->gpio2); 2554 if (reg == 0xffffffff) { 2555 for (i = 0; i < OCP_SMA_NUM; i++) 2556 bp->sma[i].fixed_dir = true; 2557 } else { 2558 reg = ioread32(&bp->sma_map1->gpio1); 2559 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; 2560 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; 2561 2562 reg = ioread32(&bp->sma_map1->gpio2); 2563 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; 2564 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; 2565 } 2566 } 2567 2568 static const struct ocp_sma_op ocp_fb_sma_op = { 2569 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, 2570 .init = ptp_ocp_sma_fb_init, 2571 .get = ptp_ocp_sma_fb_get, 2572 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2573 .set_output = ptp_ocp_sma_fb_set_output, 2574 }; 2575 2576 static const struct ocp_sma_op ocp_adva_sma_op = { 2577 .tbl = { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out }, 2578 .init = ptp_ocp_sma_fb_init, 2579 .get = ptp_ocp_sma_fb_get, 2580 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2581 .set_output = ptp_ocp_sma_fb_set_output, 2582 }; 2583 2584 static int 2585 ptp_ocp_set_pins(struct ptp_ocp *bp) 2586 { 2587 struct ptp_pin_desc *config; 2588 int i; 2589 2590 config = kcalloc(4, sizeof(*config), GFP_KERNEL); 2591 if (!config) 2592 return -ENOMEM; 2593 2594 for (i = 0; i < 4; i++) { 2595 sprintf(config[i].name, "sma%d", i + 1); 2596 config[i].index = i; 2597 } 2598 2599 bp->ptp_info.n_pins = 4; 2600 bp->ptp_info.pin_config = config; 2601 2602 return 0; 2603 } 2604 2605 static void 2606 ptp_ocp_fb_set_version(struct ptp_ocp *bp) 2607 { 2608 u64 cap = OCP_CAP_BASIC; 2609 u32 version; 2610 2611 version = ioread32(&bp->image->version); 2612 2613 /* if lower 16 bits are empty, this is the fw loader. */ 2614 if ((version & 0xffff) == 0) { 2615 version = version >> 16; 2616 bp->fw_loader = true; 2617 } 2618 2619 bp->fw_tag = version >> 15; 2620 bp->fw_version = version & 0x7fff; 2621 2622 if (bp->fw_tag) { 2623 /* FPGA firmware */ 2624 if (version >= 5) 2625 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2626 } else { 2627 /* SOM firmware */ 2628 if (version >= 19) 2629 cap |= OCP_CAP_SIGNAL; 2630 if (version >= 20) 2631 cap |= OCP_CAP_FREQ; 2632 } 2633 2634 bp->fw_cap = cap; 2635 } 2636 2637 /* FB specific board initializers; last "resource" registered. */ 2638 static int 2639 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2640 { 2641 int err; 2642 2643 bp->flash_start = 1024 * 4096; 2644 bp->eeprom_map = fb_eeprom_map; 2645 bp->fw_version = ioread32(&bp->image->version); 2646 bp->sma_op = &ocp_fb_sma_op; 2647 2648 ptp_ocp_fb_set_version(bp); 2649 2650 ptp_ocp_tod_init(bp); 2651 ptp_ocp_nmea_out_init(bp); 2652 ptp_ocp_signal_init(bp); 2653 2654 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); 2655 if (err) 2656 return err; 2657 2658 err = ptp_ocp_set_pins(bp); 2659 if (err) 2660 return err; 2661 ptp_ocp_sma_init(bp); 2662 2663 return ptp_ocp_init_clock(bp, r->extra); 2664 } 2665 2666 static bool 2667 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) 2668 { 2669 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; 2670 2671 if (!allow) 2672 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", 2673 r->irq_vec, r->name); 2674 return allow; 2675 } 2676 2677 static int 2678 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) 2679 { 2680 struct ocp_resource *r, *table; 2681 int err = 0; 2682 2683 table = (struct ocp_resource *)driver_data; 2684 for (r = table; r->setup; r++) { 2685 if (!ptp_ocp_allow_irq(bp, r)) 2686 continue; 2687 err = r->setup(bp, r); 2688 if (err) { 2689 dev_err(&bp->pdev->dev, 2690 "Could not register %s: err %d\n", 2691 r->name, err); 2692 break; 2693 } 2694 } 2695 return err; 2696 } 2697 2698 static void 2699 ptp_ocp_art_sma_init(struct ptp_ocp *bp) 2700 { 2701 struct dpll_pin_properties prop = { 2702 .board_label = NULL, 2703 .type = DPLL_PIN_TYPE_EXT, 2704 .capabilities = 0, 2705 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), 2706 .freq_supported = ptp_ocp_sma_freq, 2707 2708 }; 2709 u32 reg; 2710 int i; 2711 2712 /* defaults */ 2713 bp->sma[0].mode = SMA_MODE_IN; 2714 bp->sma[1].mode = SMA_MODE_IN; 2715 bp->sma[2].mode = SMA_MODE_OUT; 2716 bp->sma[3].mode = SMA_MODE_OUT; 2717 2718 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */ 2719 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */ 2720 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */ 2721 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */ 2722 2723 for (i = 0; i < OCP_SMA_NUM; i++) { 2724 /* If no SMA map, the pin functions and directions are fixed. */ 2725 bp->sma[i].dpll_prop = prop; 2726 bp->sma[i].dpll_prop.board_label = 2727 bp->ptp_info.pin_config[i].name; 2728 if (!bp->art_sma) { 2729 bp->sma[i].fixed_fcn = true; 2730 bp->sma[i].fixed_dir = true; 2731 continue; 2732 } 2733 reg = ioread32(&bp->art_sma->map[i].gpio); 2734 2735 switch (reg & 0xff) { 2736 case 0: 2737 bp->sma[i].fixed_fcn = true; 2738 bp->sma[i].fixed_dir = true; 2739 break; 2740 case 1: 2741 case 8: 2742 bp->sma[i].mode = SMA_MODE_IN; 2743 bp->sma[i].dpll_prop.capabilities = 2744 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2745 break; 2746 default: 2747 bp->sma[i].mode = SMA_MODE_OUT; 2748 bp->sma[i].dpll_prop.capabilities = 2749 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2750 break; 2751 } 2752 } 2753 } 2754 2755 static u32 2756 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr) 2757 { 2758 if (bp->sma[sma_nr - 1].fixed_fcn) 2759 return bp->sma[sma_nr - 1].default_fcn; 2760 2761 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff; 2762 } 2763 2764 /* note: store 0 is considered invalid. */ 2765 static int 2766 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val) 2767 { 2768 unsigned long flags; 2769 u32 __iomem *gpio; 2770 int err = 0; 2771 u32 reg; 2772 2773 val &= SMA_SELECT_MASK; 2774 if (hweight32(val) > 1) 2775 return -EINVAL; 2776 2777 gpio = &bp->art_sma->map[sma_nr - 1].gpio; 2778 2779 spin_lock_irqsave(&bp->lock, flags); 2780 reg = ioread32(gpio); 2781 if (((reg >> 16) & val) == 0) { 2782 err = -EOPNOTSUPP; 2783 } else { 2784 reg = (reg & 0xff00) | (val & 0xff); 2785 iowrite32(reg, gpio); 2786 } 2787 spin_unlock_irqrestore(&bp->lock, flags); 2788 2789 return err; 2790 } 2791 2792 static const struct ocp_sma_op ocp_art_sma_op = { 2793 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out }, 2794 .init = ptp_ocp_art_sma_init, 2795 .get = ptp_ocp_art_sma_get, 2796 .set_inputs = ptp_ocp_art_sma_set, 2797 .set_output = ptp_ocp_art_sma_set, 2798 }; 2799 2800 /* ART specific board initializers; last "resource" registered. */ 2801 static int 2802 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2803 { 2804 int err; 2805 2806 bp->flash_start = 0x1000000; 2807 bp->eeprom_map = art_eeprom_map; 2808 bp->fw_cap = OCP_CAP_BASIC; 2809 bp->fw_version = ioread32(&bp->reg->version); 2810 bp->fw_tag = 2; 2811 bp->sma_op = &ocp_art_sma_op; 2812 2813 /* Enable MAC serial port during initialisation */ 2814 iowrite32(1, &bp->board_config->mro50_serial_activate); 2815 2816 err = ptp_ocp_set_pins(bp); 2817 if (err) 2818 return err; 2819 ptp_ocp_sma_init(bp); 2820 2821 err = ptp_ocp_attr_group_add(bp, art_timecard_groups); 2822 if (err) 2823 return err; 2824 2825 return ptp_ocp_init_clock(bp, r->extra); 2826 } 2827 2828 /* ADVA specific board initializers; last "resource" registered. */ 2829 static int 2830 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2831 { 2832 int err; 2833 u32 version; 2834 2835 bp->flash_start = 0xA00000; 2836 bp->eeprom_map = fb_eeprom_map; 2837 bp->sma_op = &ocp_adva_sma_op; 2838 2839 version = ioread32(&bp->image->version); 2840 /* if lower 16 bits are empty, this is the fw loader. */ 2841 if ((version & 0xffff) == 0) { 2842 version = version >> 16; 2843 bp->fw_loader = true; 2844 } 2845 bp->fw_tag = 3; 2846 bp->fw_version = version & 0xffff; 2847 bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2848 2849 ptp_ocp_tod_init(bp); 2850 ptp_ocp_nmea_out_init(bp); 2851 ptp_ocp_signal_init(bp); 2852 2853 err = ptp_ocp_attr_group_add(bp, adva_timecard_groups); 2854 if (err) 2855 return err; 2856 2857 err = ptp_ocp_set_pins(bp); 2858 if (err) 2859 return err; 2860 ptp_ocp_sma_init(bp); 2861 2862 return ptp_ocp_init_clock(bp, r->extra); 2863 } 2864 2865 static ssize_t 2866 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, 2867 int def_val) 2868 { 2869 const char *name; 2870 ssize_t count; 2871 2872 count = sysfs_emit(buf, "OUT: "); 2873 name = ptp_ocp_select_name_from_val(tbl, val); 2874 if (!name) 2875 name = ptp_ocp_select_name_from_val(tbl, def_val); 2876 count += sysfs_emit_at(buf, count, "%s\n", name); 2877 return count; 2878 } 2879 2880 static ssize_t 2881 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, 2882 int def_val) 2883 { 2884 const char *name; 2885 ssize_t count; 2886 int i; 2887 2888 count = sysfs_emit(buf, "IN: "); 2889 for (i = 0; tbl[i].name; i++) { 2890 if (val & tbl[i].value) { 2891 name = tbl[i].name; 2892 count += sysfs_emit_at(buf, count, "%s ", name); 2893 } 2894 } 2895 if (!val && def_val >= 0) { 2896 name = ptp_ocp_select_name_from_val(tbl, def_val); 2897 count += sysfs_emit_at(buf, count, "%s ", name); 2898 } 2899 if (count) 2900 count--; 2901 count += sysfs_emit_at(buf, count, "\n"); 2902 return count; 2903 } 2904 2905 static int 2906 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, 2907 enum ptp_ocp_sma_mode *mode) 2908 { 2909 int idx, count, dir; 2910 char **argv; 2911 int ret; 2912 2913 argv = argv_split(GFP_KERNEL, buf, &count); 2914 if (!argv) 2915 return -ENOMEM; 2916 2917 ret = -EINVAL; 2918 if (!count) 2919 goto out; 2920 2921 idx = 0; 2922 dir = *mode == SMA_MODE_IN ? 0 : 1; 2923 if (!strcasecmp("IN:", argv[0])) { 2924 dir = 0; 2925 idx++; 2926 } 2927 if (!strcasecmp("OUT:", argv[0])) { 2928 dir = 1; 2929 idx++; 2930 } 2931 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; 2932 2933 ret = 0; 2934 for (; idx < count; idx++) 2935 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); 2936 if (ret < 0) 2937 ret = -EINVAL; 2938 2939 out: 2940 argv_free(argv); 2941 return ret; 2942 } 2943 2944 static ssize_t 2945 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, 2946 int default_in_val, int default_out_val) 2947 { 2948 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2949 const struct ocp_selector * const *tbl; 2950 u32 val; 2951 2952 tbl = bp->sma_op->tbl; 2953 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; 2954 2955 if (sma->mode == SMA_MODE_IN) { 2956 if (sma->disabled) 2957 val = SMA_DISABLE; 2958 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); 2959 } 2960 2961 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); 2962 } 2963 2964 static ssize_t 2965 sma1_show(struct device *dev, struct device_attribute *attr, char *buf) 2966 { 2967 struct ptp_ocp *bp = dev_get_drvdata(dev); 2968 2969 return ptp_ocp_sma_show(bp, 1, buf, 0, 1); 2970 } 2971 2972 static ssize_t 2973 sma2_show(struct device *dev, struct device_attribute *attr, char *buf) 2974 { 2975 struct ptp_ocp *bp = dev_get_drvdata(dev); 2976 2977 return ptp_ocp_sma_show(bp, 2, buf, -1, 1); 2978 } 2979 2980 static ssize_t 2981 sma3_show(struct device *dev, struct device_attribute *attr, char *buf) 2982 { 2983 struct ptp_ocp *bp = dev_get_drvdata(dev); 2984 2985 return ptp_ocp_sma_show(bp, 3, buf, -1, 0); 2986 } 2987 2988 static ssize_t 2989 sma4_show(struct device *dev, struct device_attribute *attr, char *buf) 2990 { 2991 struct ptp_ocp *bp = dev_get_drvdata(dev); 2992 2993 return ptp_ocp_sma_show(bp, 4, buf, -1, 1); 2994 } 2995 2996 static int 2997 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr) 2998 { 2999 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 3000 3001 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) 3002 return -EOPNOTSUPP; 3003 3004 if (sma->fixed_fcn) { 3005 if (val != sma->default_fcn) 3006 return -EOPNOTSUPP; 3007 return 0; 3008 } 3009 3010 sma->disabled = !!(val & SMA_DISABLE); 3011 3012 if (mode != sma->mode) { 3013 if (mode == SMA_MODE_IN) 3014 ptp_ocp_sma_set_output(bp, sma_nr, 0); 3015 else 3016 ptp_ocp_sma_set_inputs(bp, sma_nr, 0); 3017 sma->mode = mode; 3018 } 3019 3020 if (!sma->fixed_dir) 3021 val |= SMA_ENABLE; /* add enable bit */ 3022 3023 if (sma->disabled) 3024 val = 0; 3025 3026 if (mode == SMA_MODE_IN) 3027 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); 3028 else 3029 val = ptp_ocp_sma_set_output(bp, sma_nr, val); 3030 3031 return val; 3032 } 3033 3034 static int 3035 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) 3036 { 3037 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 3038 enum ptp_ocp_sma_mode mode; 3039 int val; 3040 3041 mode = sma->mode; 3042 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); 3043 if (val < 0) 3044 return val; 3045 return ptp_ocp_sma_store_val(bp, val, mode, sma_nr); 3046 } 3047 3048 static ssize_t 3049 sma1_store(struct device *dev, struct device_attribute *attr, 3050 const char *buf, size_t count) 3051 { 3052 struct ptp_ocp *bp = dev_get_drvdata(dev); 3053 int err; 3054 3055 err = ptp_ocp_sma_store(bp, buf, 1); 3056 return err ? err : count; 3057 } 3058 3059 static ssize_t 3060 sma2_store(struct device *dev, struct device_attribute *attr, 3061 const char *buf, size_t count) 3062 { 3063 struct ptp_ocp *bp = dev_get_drvdata(dev); 3064 int err; 3065 3066 err = ptp_ocp_sma_store(bp, buf, 2); 3067 return err ? err : count; 3068 } 3069 3070 static ssize_t 3071 sma3_store(struct device *dev, struct device_attribute *attr, 3072 const char *buf, size_t count) 3073 { 3074 struct ptp_ocp *bp = dev_get_drvdata(dev); 3075 int err; 3076 3077 err = ptp_ocp_sma_store(bp, buf, 3); 3078 return err ? err : count; 3079 } 3080 3081 static ssize_t 3082 sma4_store(struct device *dev, struct device_attribute *attr, 3083 const char *buf, size_t count) 3084 { 3085 struct ptp_ocp *bp = dev_get_drvdata(dev); 3086 int err; 3087 3088 err = ptp_ocp_sma_store(bp, buf, 4); 3089 return err ? err : count; 3090 } 3091 static DEVICE_ATTR_RW(sma1); 3092 static DEVICE_ATTR_RW(sma2); 3093 static DEVICE_ATTR_RW(sma3); 3094 static DEVICE_ATTR_RW(sma4); 3095 3096 static ssize_t 3097 available_sma_inputs_show(struct device *dev, 3098 struct device_attribute *attr, char *buf) 3099 { 3100 struct ptp_ocp *bp = dev_get_drvdata(dev); 3101 3102 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); 3103 } 3104 static DEVICE_ATTR_RO(available_sma_inputs); 3105 3106 static ssize_t 3107 available_sma_outputs_show(struct device *dev, 3108 struct device_attribute *attr, char *buf) 3109 { 3110 struct ptp_ocp *bp = dev_get_drvdata(dev); 3111 3112 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); 3113 } 3114 static DEVICE_ATTR_RO(available_sma_outputs); 3115 3116 #define EXT_ATTR_RO(_group, _name, _val) \ 3117 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 3118 { __ATTR_RO(_name), (void *)_val } 3119 #define EXT_ATTR_RW(_group, _name, _val) \ 3120 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 3121 { __ATTR_RW(_name), (void *)_val } 3122 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 3123 3124 /* period [duty [phase [polarity]]] */ 3125 static ssize_t 3126 signal_store(struct device *dev, struct device_attribute *attr, 3127 const char *buf, size_t count) 3128 { 3129 struct dev_ext_attribute *ea = to_ext_attr(attr); 3130 struct ptp_ocp *bp = dev_get_drvdata(dev); 3131 struct ptp_ocp_signal s = { }; 3132 int gen = (uintptr_t)ea->var; 3133 int argc, err; 3134 char **argv; 3135 3136 argv = argv_split(GFP_KERNEL, buf, &argc); 3137 if (!argv) 3138 return -ENOMEM; 3139 3140 err = -EINVAL; 3141 s.duty = bp->signal[gen].duty; 3142 s.phase = bp->signal[gen].phase; 3143 s.period = bp->signal[gen].period; 3144 s.polarity = bp->signal[gen].polarity; 3145 3146 switch (argc) { 3147 case 4: 3148 argc--; 3149 err = kstrtobool(argv[argc], &s.polarity); 3150 if (err) 3151 goto out; 3152 fallthrough; 3153 case 3: 3154 argc--; 3155 err = kstrtou64(argv[argc], 0, &s.phase); 3156 if (err) 3157 goto out; 3158 fallthrough; 3159 case 2: 3160 argc--; 3161 err = kstrtoint(argv[argc], 0, &s.duty); 3162 if (err) 3163 goto out; 3164 fallthrough; 3165 case 1: 3166 argc--; 3167 err = kstrtou64(argv[argc], 0, &s.period); 3168 if (err) 3169 goto out; 3170 break; 3171 default: 3172 goto out; 3173 } 3174 3175 err = ptp_ocp_signal_set(bp, gen, &s); 3176 if (err) 3177 goto out; 3178 3179 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); 3180 3181 out: 3182 argv_free(argv); 3183 return err ? err : count; 3184 } 3185 3186 static ssize_t 3187 signal_show(struct device *dev, struct device_attribute *attr, char *buf) 3188 { 3189 struct dev_ext_attribute *ea = to_ext_attr(attr); 3190 struct ptp_ocp *bp = dev_get_drvdata(dev); 3191 struct ptp_ocp_signal *signal; 3192 struct timespec64 ts; 3193 ssize_t count; 3194 int i; 3195 3196 i = (uintptr_t)ea->var; 3197 signal = &bp->signal[i]; 3198 3199 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, 3200 signal->duty, signal->phase, signal->polarity); 3201 3202 ts = ktime_to_timespec64(signal->start); 3203 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); 3204 3205 return count; 3206 } 3207 static EXT_ATTR_RW(signal, signal, 0); 3208 static EXT_ATTR_RW(signal, signal, 1); 3209 static EXT_ATTR_RW(signal, signal, 2); 3210 static EXT_ATTR_RW(signal, signal, 3); 3211 3212 static ssize_t 3213 duty_show(struct device *dev, struct device_attribute *attr, char *buf) 3214 { 3215 struct dev_ext_attribute *ea = to_ext_attr(attr); 3216 struct ptp_ocp *bp = dev_get_drvdata(dev); 3217 int i = (uintptr_t)ea->var; 3218 3219 return sysfs_emit(buf, "%d\n", bp->signal[i].duty); 3220 } 3221 static EXT_ATTR_RO(signal, duty, 0); 3222 static EXT_ATTR_RO(signal, duty, 1); 3223 static EXT_ATTR_RO(signal, duty, 2); 3224 static EXT_ATTR_RO(signal, duty, 3); 3225 3226 static ssize_t 3227 period_show(struct device *dev, struct device_attribute *attr, char *buf) 3228 { 3229 struct dev_ext_attribute *ea = to_ext_attr(attr); 3230 struct ptp_ocp *bp = dev_get_drvdata(dev); 3231 int i = (uintptr_t)ea->var; 3232 3233 return sysfs_emit(buf, "%llu\n", bp->signal[i].period); 3234 } 3235 static EXT_ATTR_RO(signal, period, 0); 3236 static EXT_ATTR_RO(signal, period, 1); 3237 static EXT_ATTR_RO(signal, period, 2); 3238 static EXT_ATTR_RO(signal, period, 3); 3239 3240 static ssize_t 3241 phase_show(struct device *dev, struct device_attribute *attr, char *buf) 3242 { 3243 struct dev_ext_attribute *ea = to_ext_attr(attr); 3244 struct ptp_ocp *bp = dev_get_drvdata(dev); 3245 int i = (uintptr_t)ea->var; 3246 3247 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); 3248 } 3249 static EXT_ATTR_RO(signal, phase, 0); 3250 static EXT_ATTR_RO(signal, phase, 1); 3251 static EXT_ATTR_RO(signal, phase, 2); 3252 static EXT_ATTR_RO(signal, phase, 3); 3253 3254 static ssize_t 3255 polarity_show(struct device *dev, struct device_attribute *attr, 3256 char *buf) 3257 { 3258 struct dev_ext_attribute *ea = to_ext_attr(attr); 3259 struct ptp_ocp *bp = dev_get_drvdata(dev); 3260 int i = (uintptr_t)ea->var; 3261 3262 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); 3263 } 3264 static EXT_ATTR_RO(signal, polarity, 0); 3265 static EXT_ATTR_RO(signal, polarity, 1); 3266 static EXT_ATTR_RO(signal, polarity, 2); 3267 static EXT_ATTR_RO(signal, polarity, 3); 3268 3269 static ssize_t 3270 running_show(struct device *dev, struct device_attribute *attr, char *buf) 3271 { 3272 struct dev_ext_attribute *ea = to_ext_attr(attr); 3273 struct ptp_ocp *bp = dev_get_drvdata(dev); 3274 int i = (uintptr_t)ea->var; 3275 3276 return sysfs_emit(buf, "%d\n", bp->signal[i].running); 3277 } 3278 static EXT_ATTR_RO(signal, running, 0); 3279 static EXT_ATTR_RO(signal, running, 1); 3280 static EXT_ATTR_RO(signal, running, 2); 3281 static EXT_ATTR_RO(signal, running, 3); 3282 3283 static ssize_t 3284 start_show(struct device *dev, struct device_attribute *attr, char *buf) 3285 { 3286 struct dev_ext_attribute *ea = to_ext_attr(attr); 3287 struct ptp_ocp *bp = dev_get_drvdata(dev); 3288 int i = (uintptr_t)ea->var; 3289 struct timespec64 ts; 3290 3291 ts = ktime_to_timespec64(bp->signal[i].start); 3292 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); 3293 } 3294 static EXT_ATTR_RO(signal, start, 0); 3295 static EXT_ATTR_RO(signal, start, 1); 3296 static EXT_ATTR_RO(signal, start, 2); 3297 static EXT_ATTR_RO(signal, start, 3); 3298 3299 static ssize_t 3300 seconds_store(struct device *dev, struct device_attribute *attr, 3301 const char *buf, size_t count) 3302 { 3303 struct dev_ext_attribute *ea = to_ext_attr(attr); 3304 struct ptp_ocp *bp = dev_get_drvdata(dev); 3305 int idx = (uintptr_t)ea->var; 3306 u32 val; 3307 int err; 3308 3309 err = kstrtou32(buf, 0, &val); 3310 if (err) 3311 return err; 3312 if (val > 0xff) 3313 return -EINVAL; 3314 3315 if (val) 3316 val = (val << 8) | 0x1; 3317 3318 iowrite32(val, &bp->freq_in[idx]->ctrl); 3319 3320 return count; 3321 } 3322 3323 static ssize_t 3324 seconds_show(struct device *dev, struct device_attribute *attr, char *buf) 3325 { 3326 struct dev_ext_attribute *ea = to_ext_attr(attr); 3327 struct ptp_ocp *bp = dev_get_drvdata(dev); 3328 int idx = (uintptr_t)ea->var; 3329 u32 val; 3330 3331 val = ioread32(&bp->freq_in[idx]->ctrl); 3332 if (val & 1) 3333 val = (val >> 8) & 0xff; 3334 else 3335 val = 0; 3336 3337 return sysfs_emit(buf, "%u\n", val); 3338 } 3339 static EXT_ATTR_RW(freq, seconds, 0); 3340 static EXT_ATTR_RW(freq, seconds, 1); 3341 static EXT_ATTR_RW(freq, seconds, 2); 3342 static EXT_ATTR_RW(freq, seconds, 3); 3343 3344 static ssize_t 3345 frequency_show(struct device *dev, struct device_attribute *attr, char *buf) 3346 { 3347 struct dev_ext_attribute *ea = to_ext_attr(attr); 3348 struct ptp_ocp *bp = dev_get_drvdata(dev); 3349 int idx = (uintptr_t)ea->var; 3350 u32 val; 3351 3352 val = ioread32(&bp->freq_in[idx]->status); 3353 if (val & FREQ_STATUS_ERROR) 3354 return sysfs_emit(buf, "error\n"); 3355 if (val & FREQ_STATUS_OVERRUN) 3356 return sysfs_emit(buf, "overrun\n"); 3357 if (val & FREQ_STATUS_VALID) 3358 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); 3359 return 0; 3360 } 3361 static EXT_ATTR_RO(freq, frequency, 0); 3362 static EXT_ATTR_RO(freq, frequency, 1); 3363 static EXT_ATTR_RO(freq, frequency, 2); 3364 static EXT_ATTR_RO(freq, frequency, 3); 3365 3366 static ssize_t 3367 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf) 3368 { 3369 struct dev_ext_attribute *ea = to_ext_attr(attr); 3370 struct ptp_ocp *bp = dev_get_drvdata(dev); 3371 3372 return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line); 3373 } 3374 3375 static umode_t 3376 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n) 3377 { 3378 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3379 struct ptp_ocp_serial_port *port; 3380 struct device_attribute *dattr; 3381 struct dev_ext_attribute *ea; 3382 3383 if (strncmp(attr->name, "tty", 3)) 3384 return attr->mode; 3385 3386 dattr = container_of(attr, struct device_attribute, attr); 3387 ea = container_of(dattr, struct dev_ext_attribute, attr); 3388 port = &bp->port[(uintptr_t)ea->var]; 3389 return port->line == -1 ? 0 : 0444; 3390 } 3391 3392 #define EXT_TTY_ATTR_RO(_name, _val) \ 3393 struct dev_ext_attribute dev_attr_tty##_name = \ 3394 { __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val } 3395 3396 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS); 3397 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2); 3398 static EXT_TTY_ATTR_RO(MAC, PORT_MAC); 3399 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA); 3400 static struct attribute *ptp_ocp_timecard_tty_attrs[] = { 3401 &dev_attr_ttyGNSS.attr.attr, 3402 &dev_attr_ttyGNSS2.attr.attr, 3403 &dev_attr_ttyMAC.attr.attr, 3404 &dev_attr_ttyNMEA.attr.attr, 3405 NULL, 3406 }; 3407 3408 static const struct attribute_group ptp_ocp_timecard_tty_group = { 3409 .name = "tty", 3410 .attrs = ptp_ocp_timecard_tty_attrs, 3411 .is_visible = ptp_ocp_timecard_tty_is_visible, 3412 }; 3413 3414 static ssize_t 3415 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) 3416 { 3417 struct ptp_ocp *bp = dev_get_drvdata(dev); 3418 3419 if (!bp->has_eeprom_data) 3420 ptp_ocp_read_eeprom(bp); 3421 3422 return sysfs_emit(buf, "%pM\n", bp->serial); 3423 } 3424 static DEVICE_ATTR_RO(serialnum); 3425 3426 static ssize_t 3427 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) 3428 { 3429 struct ptp_ocp *bp = dev_get_drvdata(dev); 3430 ssize_t ret; 3431 3432 if (bp->gnss_lost) 3433 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); 3434 else 3435 ret = sysfs_emit(buf, "SYNC\n"); 3436 3437 return ret; 3438 } 3439 static DEVICE_ATTR_RO(gnss_sync); 3440 3441 static ssize_t 3442 utc_tai_offset_show(struct device *dev, 3443 struct device_attribute *attr, char *buf) 3444 { 3445 struct ptp_ocp *bp = dev_get_drvdata(dev); 3446 3447 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); 3448 } 3449 3450 static ssize_t 3451 utc_tai_offset_store(struct device *dev, 3452 struct device_attribute *attr, 3453 const char *buf, size_t count) 3454 { 3455 struct ptp_ocp *bp = dev_get_drvdata(dev); 3456 int err; 3457 u32 val; 3458 3459 err = kstrtou32(buf, 0, &val); 3460 if (err) 3461 return err; 3462 3463 ptp_ocp_utc_distribute(bp, val); 3464 3465 return count; 3466 } 3467 static DEVICE_ATTR_RW(utc_tai_offset); 3468 3469 static ssize_t 3470 ts_window_adjust_show(struct device *dev, 3471 struct device_attribute *attr, char *buf) 3472 { 3473 struct ptp_ocp *bp = dev_get_drvdata(dev); 3474 3475 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); 3476 } 3477 3478 static ssize_t 3479 ts_window_adjust_store(struct device *dev, 3480 struct device_attribute *attr, 3481 const char *buf, size_t count) 3482 { 3483 struct ptp_ocp *bp = dev_get_drvdata(dev); 3484 int err; 3485 u32 val; 3486 3487 err = kstrtou32(buf, 0, &val); 3488 if (err) 3489 return err; 3490 3491 bp->ts_window_adjust = val; 3492 3493 return count; 3494 } 3495 static DEVICE_ATTR_RW(ts_window_adjust); 3496 3497 static ssize_t 3498 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) 3499 { 3500 struct ptp_ocp *bp = dev_get_drvdata(dev); 3501 u32 val; 3502 3503 val = ioread32(&bp->irig_out->ctrl); 3504 val = (val >> 16) & 0x07; 3505 return sysfs_emit(buf, "%d\n", val); 3506 } 3507 3508 static ssize_t 3509 irig_b_mode_store(struct device *dev, 3510 struct device_attribute *attr, 3511 const char *buf, size_t count) 3512 { 3513 struct ptp_ocp *bp = dev_get_drvdata(dev); 3514 unsigned long flags; 3515 int err; 3516 u32 reg; 3517 u8 val; 3518 3519 err = kstrtou8(buf, 0, &val); 3520 if (err) 3521 return err; 3522 if (val > 7) 3523 return -EINVAL; 3524 3525 reg = ((val & 0x7) << 16); 3526 3527 spin_lock_irqsave(&bp->lock, flags); 3528 iowrite32(0, &bp->irig_out->ctrl); /* disable */ 3529 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ 3530 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); 3531 spin_unlock_irqrestore(&bp->lock, flags); 3532 3533 return count; 3534 } 3535 static DEVICE_ATTR_RW(irig_b_mode); 3536 3537 static ssize_t 3538 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) 3539 { 3540 struct ptp_ocp *bp = dev_get_drvdata(dev); 3541 const char *p; 3542 u32 select; 3543 3544 select = ioread32(&bp->reg->select); 3545 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); 3546 3547 return sysfs_emit(buf, "%s\n", p); 3548 } 3549 3550 static ssize_t 3551 clock_source_store(struct device *dev, struct device_attribute *attr, 3552 const char *buf, size_t count) 3553 { 3554 struct ptp_ocp *bp = dev_get_drvdata(dev); 3555 unsigned long flags; 3556 int val; 3557 3558 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); 3559 if (val < 0) 3560 return val; 3561 3562 spin_lock_irqsave(&bp->lock, flags); 3563 iowrite32(val, &bp->reg->select); 3564 spin_unlock_irqrestore(&bp->lock, flags); 3565 3566 return count; 3567 } 3568 static DEVICE_ATTR_RW(clock_source); 3569 3570 static ssize_t 3571 available_clock_sources_show(struct device *dev, 3572 struct device_attribute *attr, char *buf) 3573 { 3574 return ptp_ocp_select_table_show(ptp_ocp_clock, buf); 3575 } 3576 static DEVICE_ATTR_RO(available_clock_sources); 3577 3578 static ssize_t 3579 clock_status_drift_show(struct device *dev, 3580 struct device_attribute *attr, char *buf) 3581 { 3582 struct ptp_ocp *bp = dev_get_drvdata(dev); 3583 u32 val; 3584 int res; 3585 3586 val = ioread32(&bp->reg->status_drift); 3587 res = (val & ~INT_MAX) ? -1 : 1; 3588 res *= (val & INT_MAX); 3589 return sysfs_emit(buf, "%d\n", res); 3590 } 3591 static DEVICE_ATTR_RO(clock_status_drift); 3592 3593 static ssize_t 3594 clock_status_offset_show(struct device *dev, 3595 struct device_attribute *attr, char *buf) 3596 { 3597 struct ptp_ocp *bp = dev_get_drvdata(dev); 3598 u32 val; 3599 int res; 3600 3601 val = ioread32(&bp->reg->status_offset); 3602 res = (val & ~INT_MAX) ? -1 : 1; 3603 res *= (val & INT_MAX); 3604 return sysfs_emit(buf, "%d\n", res); 3605 } 3606 static DEVICE_ATTR_RO(clock_status_offset); 3607 3608 static ssize_t 3609 tod_correction_show(struct device *dev, 3610 struct device_attribute *attr, char *buf) 3611 { 3612 struct ptp_ocp *bp = dev_get_drvdata(dev); 3613 u32 val; 3614 int res; 3615 3616 val = ioread32(&bp->tod->adj_sec); 3617 res = (val & ~INT_MAX) ? -1 : 1; 3618 res *= (val & INT_MAX); 3619 return sysfs_emit(buf, "%d\n", res); 3620 } 3621 3622 static ssize_t 3623 tod_correction_store(struct device *dev, struct device_attribute *attr, 3624 const char *buf, size_t count) 3625 { 3626 struct ptp_ocp *bp = dev_get_drvdata(dev); 3627 unsigned long flags; 3628 int err, res; 3629 u32 val = 0; 3630 3631 err = kstrtos32(buf, 0, &res); 3632 if (err) 3633 return err; 3634 if (res < 0) { 3635 res *= -1; 3636 val |= BIT(31); 3637 } 3638 val |= res; 3639 3640 spin_lock_irqsave(&bp->lock, flags); 3641 iowrite32(val, &bp->tod->adj_sec); 3642 spin_unlock_irqrestore(&bp->lock, flags); 3643 3644 return count; 3645 } 3646 static DEVICE_ATTR_RW(tod_correction); 3647 3648 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ 3649 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ 3650 &dev_attr_signal##_nr##_signal.attr.attr, \ 3651 &dev_attr_signal##_nr##_duty.attr.attr, \ 3652 &dev_attr_signal##_nr##_phase.attr.attr, \ 3653 &dev_attr_signal##_nr##_period.attr.attr, \ 3654 &dev_attr_signal##_nr##_polarity.attr.attr, \ 3655 &dev_attr_signal##_nr##_running.attr.attr, \ 3656 &dev_attr_signal##_nr##_start.attr.attr, \ 3657 NULL, \ 3658 } 3659 3660 #define DEVICE_SIGNAL_GROUP(_name, _nr) \ 3661 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ 3662 static const struct attribute_group \ 3663 fb_timecard_signal##_nr##_group = { \ 3664 .name = #_name, \ 3665 .attrs = fb_timecard_signal##_nr##_attrs, \ 3666 } 3667 3668 DEVICE_SIGNAL_GROUP(gen1, 0); 3669 DEVICE_SIGNAL_GROUP(gen2, 1); 3670 DEVICE_SIGNAL_GROUP(gen3, 2); 3671 DEVICE_SIGNAL_GROUP(gen4, 3); 3672 3673 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ 3674 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ 3675 &dev_attr_freq##_nr##_seconds.attr.attr, \ 3676 &dev_attr_freq##_nr##_frequency.attr.attr, \ 3677 NULL, \ 3678 } 3679 3680 #define DEVICE_FREQ_GROUP(_name, _nr) \ 3681 _DEVICE_FREQ_GROUP_ATTRS(_nr); \ 3682 static const struct attribute_group \ 3683 fb_timecard_freq##_nr##_group = { \ 3684 .name = #_name, \ 3685 .attrs = fb_timecard_freq##_nr##_attrs, \ 3686 } 3687 3688 DEVICE_FREQ_GROUP(freq1, 0); 3689 DEVICE_FREQ_GROUP(freq2, 1); 3690 DEVICE_FREQ_GROUP(freq3, 2); 3691 DEVICE_FREQ_GROUP(freq4, 3); 3692 3693 static ssize_t 3694 disciplining_config_read(struct file *filp, struct kobject *kobj, 3695 struct bin_attribute *bin_attr, char *buf, 3696 loff_t off, size_t count) 3697 { 3698 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3699 size_t size = OCP_ART_CONFIG_SIZE; 3700 struct nvmem_device *nvmem; 3701 ssize_t err; 3702 3703 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3704 if (IS_ERR(nvmem)) 3705 return PTR_ERR(nvmem); 3706 3707 if (off > size) { 3708 err = 0; 3709 goto out; 3710 } 3711 3712 if (off + count > size) 3713 count = size - off; 3714 3715 // the configuration is in the very beginning of the EEPROM 3716 err = nvmem_device_read(nvmem, off, count, buf); 3717 if (err != count) { 3718 err = -EFAULT; 3719 goto out; 3720 } 3721 3722 out: 3723 ptp_ocp_nvmem_device_put(&nvmem); 3724 3725 return err; 3726 } 3727 3728 static ssize_t 3729 disciplining_config_write(struct file *filp, struct kobject *kobj, 3730 struct bin_attribute *bin_attr, char *buf, 3731 loff_t off, size_t count) 3732 { 3733 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3734 struct nvmem_device *nvmem; 3735 ssize_t err; 3736 3737 /* Allow write of the whole area only */ 3738 if (off || count != OCP_ART_CONFIG_SIZE) 3739 return -EFAULT; 3740 3741 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3742 if (IS_ERR(nvmem)) 3743 return PTR_ERR(nvmem); 3744 3745 err = nvmem_device_write(nvmem, 0x00, count, buf); 3746 if (err != count) 3747 err = -EFAULT; 3748 3749 ptp_ocp_nvmem_device_put(&nvmem); 3750 3751 return err; 3752 } 3753 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE); 3754 3755 static ssize_t 3756 temperature_table_read(struct file *filp, struct kobject *kobj, 3757 struct bin_attribute *bin_attr, char *buf, 3758 loff_t off, size_t count) 3759 { 3760 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3761 size_t size = OCP_ART_TEMP_TABLE_SIZE; 3762 struct nvmem_device *nvmem; 3763 ssize_t err; 3764 3765 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3766 if (IS_ERR(nvmem)) 3767 return PTR_ERR(nvmem); 3768 3769 if (off > size) { 3770 err = 0; 3771 goto out; 3772 } 3773 3774 if (off + count > size) 3775 count = size - off; 3776 3777 // the configuration is in the very beginning of the EEPROM 3778 err = nvmem_device_read(nvmem, 0x90 + off, count, buf); 3779 if (err != count) { 3780 err = -EFAULT; 3781 goto out; 3782 } 3783 3784 out: 3785 ptp_ocp_nvmem_device_put(&nvmem); 3786 3787 return err; 3788 } 3789 3790 static ssize_t 3791 temperature_table_write(struct file *filp, struct kobject *kobj, 3792 struct bin_attribute *bin_attr, char *buf, 3793 loff_t off, size_t count) 3794 { 3795 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3796 struct nvmem_device *nvmem; 3797 ssize_t err; 3798 3799 /* Allow write of the whole area only */ 3800 if (off || count != OCP_ART_TEMP_TABLE_SIZE) 3801 return -EFAULT; 3802 3803 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3804 if (IS_ERR(nvmem)) 3805 return PTR_ERR(nvmem); 3806 3807 err = nvmem_device_write(nvmem, 0x90, count, buf); 3808 if (err != count) 3809 err = -EFAULT; 3810 3811 ptp_ocp_nvmem_device_put(&nvmem); 3812 3813 return err; 3814 } 3815 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE); 3816 3817 static struct attribute *fb_timecard_attrs[] = { 3818 &dev_attr_serialnum.attr, 3819 &dev_attr_gnss_sync.attr, 3820 &dev_attr_clock_source.attr, 3821 &dev_attr_available_clock_sources.attr, 3822 &dev_attr_sma1.attr, 3823 &dev_attr_sma2.attr, 3824 &dev_attr_sma3.attr, 3825 &dev_attr_sma4.attr, 3826 &dev_attr_available_sma_inputs.attr, 3827 &dev_attr_available_sma_outputs.attr, 3828 &dev_attr_clock_status_drift.attr, 3829 &dev_attr_clock_status_offset.attr, 3830 &dev_attr_irig_b_mode.attr, 3831 &dev_attr_utc_tai_offset.attr, 3832 &dev_attr_ts_window_adjust.attr, 3833 &dev_attr_tod_correction.attr, 3834 NULL, 3835 }; 3836 3837 static const struct attribute_group fb_timecard_group = { 3838 .attrs = fb_timecard_attrs, 3839 }; 3840 3841 static const struct ocp_attr_group fb_timecard_groups[] = { 3842 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, 3843 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3844 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3845 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3846 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, 3847 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, 3848 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3849 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3850 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, 3851 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, 3852 { }, 3853 }; 3854 3855 static struct attribute *art_timecard_attrs[] = { 3856 &dev_attr_serialnum.attr, 3857 &dev_attr_clock_source.attr, 3858 &dev_attr_available_clock_sources.attr, 3859 &dev_attr_utc_tai_offset.attr, 3860 &dev_attr_ts_window_adjust.attr, 3861 &dev_attr_sma1.attr, 3862 &dev_attr_sma2.attr, 3863 &dev_attr_sma3.attr, 3864 &dev_attr_sma4.attr, 3865 &dev_attr_available_sma_inputs.attr, 3866 &dev_attr_available_sma_outputs.attr, 3867 NULL, 3868 }; 3869 3870 static struct bin_attribute *bin_art_timecard_attrs[] = { 3871 &bin_attr_disciplining_config, 3872 &bin_attr_temperature_table, 3873 NULL, 3874 }; 3875 3876 static const struct attribute_group art_timecard_group = { 3877 .attrs = art_timecard_attrs, 3878 .bin_attrs = bin_art_timecard_attrs, 3879 }; 3880 3881 static const struct ocp_attr_group art_timecard_groups[] = { 3882 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group }, 3883 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3884 { }, 3885 }; 3886 3887 static struct attribute *adva_timecard_attrs[] = { 3888 &dev_attr_serialnum.attr, 3889 &dev_attr_gnss_sync.attr, 3890 &dev_attr_clock_source.attr, 3891 &dev_attr_available_clock_sources.attr, 3892 &dev_attr_sma1.attr, 3893 &dev_attr_sma2.attr, 3894 &dev_attr_sma3.attr, 3895 &dev_attr_sma4.attr, 3896 &dev_attr_available_sma_inputs.attr, 3897 &dev_attr_available_sma_outputs.attr, 3898 &dev_attr_clock_status_drift.attr, 3899 &dev_attr_clock_status_offset.attr, 3900 &dev_attr_ts_window_adjust.attr, 3901 &dev_attr_tod_correction.attr, 3902 NULL, 3903 }; 3904 3905 static const struct attribute_group adva_timecard_group = { 3906 .attrs = adva_timecard_attrs, 3907 }; 3908 3909 static const struct ocp_attr_group adva_timecard_groups[] = { 3910 { .cap = OCP_CAP_BASIC, .group = &adva_timecard_group }, 3911 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3912 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3913 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3914 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3915 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3916 { }, 3917 }; 3918 3919 static void 3920 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, 3921 const char *def) 3922 { 3923 int i; 3924 3925 for (i = 0; i < 4; i++) { 3926 if (bp->sma[i].mode != SMA_MODE_IN) 3927 continue; 3928 if (map[i][0] & (1 << bit)) { 3929 sprintf(buf, "sma%d", i + 1); 3930 return; 3931 } 3932 } 3933 if (!def) 3934 def = "----"; 3935 strcpy(buf, def); 3936 } 3937 3938 static void 3939 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) 3940 { 3941 char *ans = buf; 3942 int i; 3943 3944 strcpy(ans, "----"); 3945 for (i = 0; i < 4; i++) { 3946 if (bp->sma[i].mode != SMA_MODE_OUT) 3947 continue; 3948 if (map[i][1] & (1 << bit)) 3949 ans += sprintf(ans, "sma%d ", i + 1); 3950 } 3951 } 3952 3953 static void 3954 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) 3955 { 3956 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; 3957 struct ptp_ocp_signal *signal = &bp->signal[nr]; 3958 char label[8]; 3959 bool on; 3960 u32 val; 3961 3962 if (!signal) 3963 return; 3964 3965 on = signal->running; 3966 sprintf(label, "GEN%d", nr + 1); 3967 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", 3968 label, on ? " ON" : "OFF", 3969 signal->period, signal->duty, signal->phase, 3970 signal->polarity); 3971 3972 val = ioread32(®->enable); 3973 seq_printf(s, " [%x", val); 3974 val = ioread32(®->status); 3975 seq_printf(s, " %x]", val); 3976 3977 seq_printf(s, " start:%llu\n", signal->start); 3978 } 3979 3980 static void 3981 _frequency_summary_show(struct seq_file *s, int nr, 3982 struct frequency_reg __iomem *reg) 3983 { 3984 char label[8]; 3985 bool on; 3986 u32 val; 3987 3988 if (!reg) 3989 return; 3990 3991 sprintf(label, "FREQ%d", nr + 1); 3992 val = ioread32(®->ctrl); 3993 on = val & 1; 3994 val = (val >> 8) & 0xff; 3995 seq_printf(s, "%7s: %s, sec:%u", 3996 label, 3997 on ? " ON" : "OFF", 3998 val); 3999 4000 val = ioread32(®->status); 4001 if (val & FREQ_STATUS_ERROR) 4002 seq_printf(s, ", error"); 4003 if (val & FREQ_STATUS_OVERRUN) 4004 seq_printf(s, ", overrun"); 4005 if (val & FREQ_STATUS_VALID) 4006 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); 4007 seq_printf(s, " reg:%x\n", val); 4008 } 4009 4010 static int 4011 ptp_ocp_summary_show(struct seq_file *s, void *data) 4012 { 4013 struct device *dev = s->private; 4014 struct ptp_system_timestamp sts; 4015 struct ts_reg __iomem *ts_reg; 4016 char *buf, *src, *mac_src; 4017 struct timespec64 ts; 4018 struct ptp_ocp *bp; 4019 u16 sma_val[4][2]; 4020 u32 ctrl, val; 4021 bool on, map; 4022 int i; 4023 4024 buf = (char *)__get_free_page(GFP_KERNEL); 4025 if (!buf) 4026 return -ENOMEM; 4027 4028 bp = dev_get_drvdata(dev); 4029 4030 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); 4031 for (i = 0; i < __PORT_COUNT; i++) { 4032 if (bp->port[i].line != -1) 4033 seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i), 4034 bp->port[i].line); 4035 } 4036 4037 memset(sma_val, 0xff, sizeof(sma_val)); 4038 if (bp->sma_map1) { 4039 u32 reg; 4040 4041 reg = ioread32(&bp->sma_map1->gpio1); 4042 sma_val[0][0] = reg & 0xffff; 4043 sma_val[1][0] = reg >> 16; 4044 4045 reg = ioread32(&bp->sma_map1->gpio2); 4046 sma_val[2][1] = reg & 0xffff; 4047 sma_val[3][1] = reg >> 16; 4048 4049 reg = ioread32(&bp->sma_map2->gpio1); 4050 sma_val[2][0] = reg & 0xffff; 4051 sma_val[3][0] = reg >> 16; 4052 4053 reg = ioread32(&bp->sma_map2->gpio2); 4054 sma_val[0][1] = reg & 0xffff; 4055 sma_val[1][1] = reg >> 16; 4056 } 4057 4058 sma1_show(dev, NULL, buf); 4059 seq_printf(s, " sma1: %04x,%04x %s", 4060 sma_val[0][0], sma_val[0][1], buf); 4061 4062 sma2_show(dev, NULL, buf); 4063 seq_printf(s, " sma2: %04x,%04x %s", 4064 sma_val[1][0], sma_val[1][1], buf); 4065 4066 sma3_show(dev, NULL, buf); 4067 seq_printf(s, " sma3: %04x,%04x %s", 4068 sma_val[2][0], sma_val[2][1], buf); 4069 4070 sma4_show(dev, NULL, buf); 4071 seq_printf(s, " sma4: %04x,%04x %s", 4072 sma_val[3][0], sma_val[3][1], buf); 4073 4074 if (bp->ts0) { 4075 ts_reg = bp->ts0->mem; 4076 on = ioread32(&ts_reg->enable); 4077 src = "GNSS1"; 4078 seq_printf(s, "%7s: %s, src: %s\n", "TS0", 4079 on ? " ON" : "OFF", src); 4080 } 4081 4082 if (bp->ts1) { 4083 ts_reg = bp->ts1->mem; 4084 on = ioread32(&ts_reg->enable); 4085 gpio_input_map(buf, bp, sma_val, 2, NULL); 4086 seq_printf(s, "%7s: %s, src: %s\n", "TS1", 4087 on ? " ON" : "OFF", buf); 4088 } 4089 4090 if (bp->ts2) { 4091 ts_reg = bp->ts2->mem; 4092 on = ioread32(&ts_reg->enable); 4093 gpio_input_map(buf, bp, sma_val, 3, NULL); 4094 seq_printf(s, "%7s: %s, src: %s\n", "TS2", 4095 on ? " ON" : "OFF", buf); 4096 } 4097 4098 if (bp->ts3) { 4099 ts_reg = bp->ts3->mem; 4100 on = ioread32(&ts_reg->enable); 4101 gpio_input_map(buf, bp, sma_val, 6, NULL); 4102 seq_printf(s, "%7s: %s, src: %s\n", "TS3", 4103 on ? " ON" : "OFF", buf); 4104 } 4105 4106 if (bp->ts4) { 4107 ts_reg = bp->ts4->mem; 4108 on = ioread32(&ts_reg->enable); 4109 gpio_input_map(buf, bp, sma_val, 7, NULL); 4110 seq_printf(s, "%7s: %s, src: %s\n", "TS4", 4111 on ? " ON" : "OFF", buf); 4112 } 4113 4114 if (bp->pps) { 4115 ts_reg = bp->pps->mem; 4116 src = "PHC"; 4117 on = ioread32(&ts_reg->enable); 4118 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); 4119 seq_printf(s, "%7s: %s, src: %s\n", "TS5", 4120 on && map ? " ON" : "OFF", src); 4121 4122 map = !!(bp->pps_req_map & OCP_REQ_PPS); 4123 seq_printf(s, "%7s: %s, src: %s\n", "PPS", 4124 on && map ? " ON" : "OFF", src); 4125 } 4126 4127 if (bp->fw_cap & OCP_CAP_SIGNAL) 4128 for (i = 0; i < 4; i++) 4129 _signal_summary_show(s, bp, i); 4130 4131 if (bp->fw_cap & OCP_CAP_FREQ) 4132 for (i = 0; i < 4; i++) 4133 _frequency_summary_show(s, i, bp->freq_in[i]); 4134 4135 if (bp->irig_out) { 4136 ctrl = ioread32(&bp->irig_out->ctrl); 4137 on = ctrl & IRIG_M_CTRL_ENABLE; 4138 val = ioread32(&bp->irig_out->status); 4139 gpio_output_map(buf, bp, sma_val, 4); 4140 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", 4141 on ? " ON" : "OFF", val, (ctrl >> 16), buf); 4142 } 4143 4144 if (bp->irig_in) { 4145 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; 4146 val = ioread32(&bp->irig_in->status); 4147 gpio_input_map(buf, bp, sma_val, 4, NULL); 4148 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", 4149 on ? " ON" : "OFF", val, buf); 4150 } 4151 4152 if (bp->dcf_out) { 4153 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; 4154 val = ioread32(&bp->dcf_out->status); 4155 gpio_output_map(buf, bp, sma_val, 5); 4156 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", 4157 on ? " ON" : "OFF", val, buf); 4158 } 4159 4160 if (bp->dcf_in) { 4161 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; 4162 val = ioread32(&bp->dcf_in->status); 4163 gpio_input_map(buf, bp, sma_val, 5, NULL); 4164 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", 4165 on ? " ON" : "OFF", val, buf); 4166 } 4167 4168 if (bp->nmea_out) { 4169 on = ioread32(&bp->nmea_out->ctrl) & 1; 4170 val = ioread32(&bp->nmea_out->status); 4171 seq_printf(s, "%7s: %s, error: %d\n", "NMEA", 4172 on ? " ON" : "OFF", val); 4173 } 4174 4175 /* compute src for PPS1, used below. */ 4176 if (bp->pps_select) { 4177 val = ioread32(&bp->pps_select->gpio1); 4178 src = &buf[80]; 4179 mac_src = "GNSS1"; 4180 if (val & 0x01) { 4181 gpio_input_map(src, bp, sma_val, 0, NULL); 4182 mac_src = src; 4183 } else if (val & 0x02) { 4184 src = "MAC"; 4185 } else if (val & 0x04) { 4186 src = "GNSS1"; 4187 } else { 4188 src = "----"; 4189 mac_src = src; 4190 } 4191 } else { 4192 src = "?"; 4193 mac_src = src; 4194 } 4195 seq_printf(s, "MAC PPS1 src: %s\n", mac_src); 4196 4197 gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); 4198 seq_printf(s, "MAC PPS2 src: %s\n", buf); 4199 4200 /* assumes automatic switchover/selection */ 4201 val = ioread32(&bp->reg->select); 4202 switch (val >> 16) { 4203 case 0: 4204 sprintf(buf, "----"); 4205 break; 4206 case 2: 4207 sprintf(buf, "IRIG"); 4208 break; 4209 case 3: 4210 sprintf(buf, "%s via PPS1", src); 4211 break; 4212 case 6: 4213 sprintf(buf, "DCF"); 4214 break; 4215 default: 4216 strcpy(buf, "unknown"); 4217 break; 4218 } 4219 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, 4220 bp->sync ? "sync" : "unsynced"); 4221 4222 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { 4223 struct timespec64 sys_ts; 4224 s64 pre_ns, post_ns, ns; 4225 4226 pre_ns = timespec64_to_ns(&sts.pre_ts); 4227 post_ns = timespec64_to_ns(&sts.post_ts); 4228 ns = (pre_ns + post_ns) / 2; 4229 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; 4230 sys_ts = ns_to_timespec64(ns); 4231 4232 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", 4233 ts.tv_sec, ts.tv_nsec, &ts); 4234 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", 4235 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, 4236 bp->utc_tai_offset); 4237 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", 4238 timespec64_to_ns(&ts) - ns, 4239 post_ns - pre_ns); 4240 } 4241 4242 free_page((unsigned long)buf); 4243 return 0; 4244 } 4245 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); 4246 4247 static int 4248 ptp_ocp_tod_status_show(struct seq_file *s, void *data) 4249 { 4250 struct device *dev = s->private; 4251 struct ptp_ocp *bp; 4252 u32 val; 4253 int idx; 4254 4255 bp = dev_get_drvdata(dev); 4256 4257 val = ioread32(&bp->tod->ctrl); 4258 if (!(val & TOD_CTRL_ENABLE)) { 4259 seq_printf(s, "TOD Slave disabled\n"); 4260 return 0; 4261 } 4262 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); 4263 4264 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; 4265 idx += (val >> 16) & 3; 4266 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); 4267 4268 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; 4269 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); 4270 4271 val = ioread32(&bp->tod->version); 4272 seq_printf(s, "TOD Version %d.%d.%d\n", 4273 val >> 24, (val >> 16) & 0xff, val & 0xffff); 4274 4275 val = ioread32(&bp->tod->status); 4276 seq_printf(s, "Status register: 0x%08X\n", val); 4277 4278 val = ioread32(&bp->tod->adj_sec); 4279 idx = (val & ~INT_MAX) ? -1 : 1; 4280 idx *= (val & INT_MAX); 4281 seq_printf(s, "Correction seconds: %d\n", idx); 4282 4283 val = ioread32(&bp->tod->utc_status); 4284 seq_printf(s, "UTC status register: 0x%08X\n", val); 4285 seq_printf(s, "UTC offset: %ld valid:%d\n", 4286 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); 4287 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", 4288 val & TOD_STATUS_LEAP_VALID ? 1 : 0, 4289 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); 4290 4291 val = ioread32(&bp->tod->leap); 4292 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); 4293 4294 return 0; 4295 } 4296 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); 4297 4298 static struct dentry *ptp_ocp_debugfs_root; 4299 4300 static void 4301 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) 4302 { 4303 struct dentry *d; 4304 4305 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); 4306 bp->debug_root = d; 4307 debugfs_create_file("summary", 0444, bp->debug_root, 4308 &bp->dev, &ptp_ocp_summary_fops); 4309 if (bp->tod) 4310 debugfs_create_file("tod_status", 0444, bp->debug_root, 4311 &bp->dev, &ptp_ocp_tod_status_fops); 4312 } 4313 4314 static void 4315 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) 4316 { 4317 debugfs_remove_recursive(bp->debug_root); 4318 } 4319 4320 static void 4321 ptp_ocp_debugfs_init(void) 4322 { 4323 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); 4324 } 4325 4326 static void 4327 ptp_ocp_debugfs_fini(void) 4328 { 4329 debugfs_remove_recursive(ptp_ocp_debugfs_root); 4330 } 4331 4332 static void 4333 ptp_ocp_dev_release(struct device *dev) 4334 { 4335 struct ptp_ocp *bp = dev_get_drvdata(dev); 4336 4337 mutex_lock(&ptp_ocp_lock); 4338 idr_remove(&ptp_ocp_idr, bp->id); 4339 mutex_unlock(&ptp_ocp_lock); 4340 } 4341 4342 static int 4343 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) 4344 { 4345 int i, err; 4346 4347 mutex_lock(&ptp_ocp_lock); 4348 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); 4349 mutex_unlock(&ptp_ocp_lock); 4350 if (err < 0) { 4351 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); 4352 return err; 4353 } 4354 bp->id = err; 4355 4356 bp->ptp_info = ptp_ocp_clock_info; 4357 spin_lock_init(&bp->lock); 4358 4359 for (i = 0; i < __PORT_COUNT; i++) 4360 bp->port[i].line = -1; 4361 4362 bp->pdev = pdev; 4363 4364 device_initialize(&bp->dev); 4365 dev_set_name(&bp->dev, "ocp%d", bp->id); 4366 bp->dev.class = &timecard_class; 4367 bp->dev.parent = &pdev->dev; 4368 bp->dev.release = ptp_ocp_dev_release; 4369 dev_set_drvdata(&bp->dev, bp); 4370 4371 err = device_add(&bp->dev); 4372 if (err) { 4373 dev_err(&bp->dev, "device add failed: %d\n", err); 4374 goto out; 4375 } 4376 4377 pci_set_drvdata(pdev, bp); 4378 4379 return 0; 4380 4381 out: 4382 put_device(&bp->dev); 4383 return err; 4384 } 4385 4386 static void 4387 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) 4388 { 4389 struct device *dev = &bp->dev; 4390 4391 if (sysfs_create_link(&dev->kobj, &child->kobj, link)) 4392 dev_err(dev, "%s symlink failed\n", link); 4393 } 4394 4395 static void 4396 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) 4397 { 4398 struct device *dev, *child; 4399 4400 dev = &bp->pdev->dev; 4401 4402 child = device_find_child_by_name(dev, name); 4403 if (!child) { 4404 dev_err(dev, "Could not find device %s\n", name); 4405 return; 4406 } 4407 4408 ptp_ocp_symlink(bp, child, link); 4409 put_device(child); 4410 } 4411 4412 static int 4413 ptp_ocp_complete(struct ptp_ocp *bp) 4414 { 4415 struct pps_device *pps; 4416 char buf[32]; 4417 4418 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); 4419 ptp_ocp_link_child(bp, buf, "ptp"); 4420 4421 pps = pps_lookup_dev(bp->ptp); 4422 if (pps) 4423 ptp_ocp_symlink(bp, pps->dev, "pps"); 4424 4425 ptp_ocp_debugfs_add_device(bp); 4426 4427 return 0; 4428 } 4429 4430 static void 4431 ptp_ocp_phc_info(struct ptp_ocp *bp) 4432 { 4433 struct timespec64 ts; 4434 u32 version, select; 4435 4436 version = ioread32(&bp->reg->version); 4437 select = ioread32(&bp->reg->select); 4438 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", 4439 version >> 24, (version >> 16) & 0xff, version & 0xffff, 4440 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), 4441 ptp_clock_index(bp->ptp)); 4442 4443 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) 4444 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", 4445 ts.tv_sec, ts.tv_nsec, 4446 bp->sync ? "in-sync" : "UNSYNCED"); 4447 } 4448 4449 static void 4450 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) 4451 { 4452 if (port != -1) 4453 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); 4454 } 4455 4456 static void 4457 ptp_ocp_info(struct ptp_ocp *bp) 4458 { 4459 static int nmea_baud[] = { 4460 1200, 2400, 4800, 9600, 19200, 38400, 4461 57600, 115200, 230400, 460800, 921600, 4462 1000000, 2000000 4463 }; 4464 struct device *dev = &bp->pdev->dev; 4465 u32 reg; 4466 int i; 4467 4468 ptp_ocp_phc_info(bp); 4469 4470 for (i = 0; i < __PORT_COUNT; i++) { 4471 if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) { 4472 bp->port[PORT_NMEA].baud = -1; 4473 4474 reg = ioread32(&bp->nmea_out->uart_baud); 4475 if (reg < ARRAY_SIZE(nmea_baud)) 4476 bp->port[PORT_NMEA].baud = nmea_baud[reg]; 4477 } 4478 ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line, 4479 bp->port[i].baud); 4480 } 4481 } 4482 4483 static void 4484 ptp_ocp_detach_sysfs(struct ptp_ocp *bp) 4485 { 4486 struct device *dev = &bp->dev; 4487 4488 sysfs_remove_link(&dev->kobj, "ptp"); 4489 sysfs_remove_link(&dev->kobj, "pps"); 4490 } 4491 4492 static void 4493 ptp_ocp_detach(struct ptp_ocp *bp) 4494 { 4495 int i; 4496 4497 ptp_ocp_debugfs_remove_device(bp); 4498 ptp_ocp_detach_sysfs(bp); 4499 ptp_ocp_attr_group_del(bp); 4500 if (timer_pending(&bp->watchdog)) 4501 del_timer_sync(&bp->watchdog); 4502 if (bp->ts0) 4503 ptp_ocp_unregister_ext(bp->ts0); 4504 if (bp->ts1) 4505 ptp_ocp_unregister_ext(bp->ts1); 4506 if (bp->ts2) 4507 ptp_ocp_unregister_ext(bp->ts2); 4508 if (bp->ts3) 4509 ptp_ocp_unregister_ext(bp->ts3); 4510 if (bp->ts4) 4511 ptp_ocp_unregister_ext(bp->ts4); 4512 if (bp->pps) 4513 ptp_ocp_unregister_ext(bp->pps); 4514 for (i = 0; i < 4; i++) 4515 if (bp->signal_out[i]) 4516 ptp_ocp_unregister_ext(bp->signal_out[i]); 4517 for (i = 0; i < __PORT_COUNT; i++) 4518 if (bp->port[i].line != -1) 4519 serial8250_unregister_port(bp->port[i].line); 4520 platform_device_unregister(bp->spi_flash); 4521 platform_device_unregister(bp->i2c_ctrl); 4522 if (bp->i2c_clk) 4523 clk_hw_unregister_fixed_rate(bp->i2c_clk); 4524 if (bp->n_irqs) 4525 pci_free_irq_vectors(bp->pdev); 4526 if (bp->ptp) 4527 ptp_clock_unregister(bp->ptp); 4528 kfree(bp->ptp_info.pin_config); 4529 device_unregister(&bp->dev); 4530 } 4531 4532 static int 4533 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv, 4534 enum dpll_lock_status *status, 4535 enum dpll_lock_status_error *status_error, 4536 struct netlink_ext_ack *extack) 4537 { 4538 struct ptp_ocp *bp = priv; 4539 4540 *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED; 4541 4542 return 0; 4543 } 4544 4545 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv, 4546 const struct dpll_device *dpll, void *priv, 4547 enum dpll_pin_state *state, 4548 struct netlink_ext_ack *extack) 4549 { 4550 struct ptp_ocp *bp = priv; 4551 int idx; 4552 4553 if (bp->pps_select) { 4554 idx = ioread32(&bp->pps_select->gpio1); 4555 *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED : 4556 DPLL_PIN_STATE_SELECTABLE; 4557 return 0; 4558 } 4559 NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW"); 4560 return -EINVAL; 4561 } 4562 4563 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv, 4564 enum dpll_mode *mode, struct netlink_ext_ack *extack) 4565 { 4566 *mode = DPLL_MODE_AUTOMATIC; 4567 return 0; 4568 } 4569 4570 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin, 4571 void *pin_priv, 4572 const struct dpll_device *dpll, 4573 void *priv, 4574 enum dpll_pin_direction *direction, 4575 struct netlink_ext_ack *extack) 4576 { 4577 struct ptp_ocp_sma_connector *sma = pin_priv; 4578 4579 *direction = sma->mode == SMA_MODE_IN ? 4580 DPLL_PIN_DIRECTION_INPUT : 4581 DPLL_PIN_DIRECTION_OUTPUT; 4582 return 0; 4583 } 4584 4585 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin, 4586 void *pin_priv, 4587 const struct dpll_device *dpll, 4588 void *dpll_priv, 4589 enum dpll_pin_direction direction, 4590 struct netlink_ext_ack *extack) 4591 { 4592 struct ptp_ocp_sma_connector *sma = pin_priv; 4593 struct ptp_ocp *bp = dpll_priv; 4594 enum ptp_ocp_sma_mode mode; 4595 int sma_nr = (sma - bp->sma); 4596 4597 if (sma->fixed_dir) 4598 return -EOPNOTSUPP; 4599 mode = direction == DPLL_PIN_DIRECTION_INPUT ? 4600 SMA_MODE_IN : SMA_MODE_OUT; 4601 return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1); 4602 } 4603 4604 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin, 4605 void *pin_priv, 4606 const struct dpll_device *dpll, 4607 void *dpll_priv, u64 frequency, 4608 struct netlink_ext_ack *extack) 4609 { 4610 struct ptp_ocp_sma_connector *sma = pin_priv; 4611 struct ptp_ocp *bp = dpll_priv; 4612 const struct ocp_selector *tbl; 4613 int sma_nr = (sma - bp->sma); 4614 int i; 4615 4616 if (sma->fixed_fcn) 4617 return -EOPNOTSUPP; 4618 4619 tbl = bp->sma_op->tbl[sma->mode]; 4620 for (i = 0; tbl[i].name; i++) 4621 if (tbl[i].frequency == frequency) 4622 return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1); 4623 return -EINVAL; 4624 } 4625 4626 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin, 4627 void *pin_priv, 4628 const struct dpll_device *dpll, 4629 void *dpll_priv, u64 *frequency, 4630 struct netlink_ext_ack *extack) 4631 { 4632 struct ptp_ocp_sma_connector *sma = pin_priv; 4633 struct ptp_ocp *bp = dpll_priv; 4634 const struct ocp_selector *tbl; 4635 int sma_nr = (sma - bp->sma); 4636 u32 val; 4637 int i; 4638 4639 val = bp->sma_op->get(bp, sma_nr + 1); 4640 tbl = bp->sma_op->tbl[sma->mode]; 4641 for (i = 0; tbl[i].name; i++) 4642 if (val == tbl[i].value) { 4643 *frequency = tbl[i].frequency; 4644 return 0; 4645 } 4646 4647 return -EINVAL; 4648 } 4649 4650 static const struct dpll_device_ops dpll_ops = { 4651 .lock_status_get = ptp_ocp_dpll_lock_status_get, 4652 .mode_get = ptp_ocp_dpll_mode_get, 4653 }; 4654 4655 static const struct dpll_pin_ops dpll_pins_ops = { 4656 .frequency_get = ptp_ocp_dpll_frequency_get, 4657 .frequency_set = ptp_ocp_dpll_frequency_set, 4658 .direction_get = ptp_ocp_dpll_direction_get, 4659 .direction_set = ptp_ocp_dpll_direction_set, 4660 .state_on_dpll_get = ptp_ocp_dpll_state_get, 4661 }; 4662 4663 static void 4664 ptp_ocp_sync_work(struct work_struct *work) 4665 { 4666 struct ptp_ocp *bp; 4667 bool sync; 4668 4669 bp = container_of(work, struct ptp_ocp, sync_work.work); 4670 sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC); 4671 4672 if (bp->sync != sync) 4673 dpll_device_change_ntf(bp->dpll); 4674 4675 bp->sync = sync; 4676 4677 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); 4678 } 4679 4680 static int 4681 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) 4682 { 4683 struct devlink *devlink; 4684 struct ptp_ocp *bp; 4685 int err, i; 4686 u64 clkid; 4687 4688 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); 4689 if (!devlink) { 4690 dev_err(&pdev->dev, "devlink_alloc failed\n"); 4691 return -ENOMEM; 4692 } 4693 4694 err = pci_enable_device(pdev); 4695 if (err) { 4696 dev_err(&pdev->dev, "pci_enable_device\n"); 4697 goto out_free; 4698 } 4699 4700 bp = devlink_priv(devlink); 4701 err = ptp_ocp_device_init(bp, pdev); 4702 if (err) 4703 goto out_disable; 4704 4705 INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work); 4706 4707 /* compat mode. 4708 * Older FPGA firmware only returns 2 irq's. 4709 * allow this - if not all of the IRQ's are returned, skip the 4710 * extra devices and just register the clock. 4711 */ 4712 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); 4713 if (err < 0) { 4714 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); 4715 goto out; 4716 } 4717 bp->n_irqs = err; 4718 pci_set_master(pdev); 4719 4720 err = ptp_ocp_register_resources(bp, id->driver_data); 4721 if (err) 4722 goto out; 4723 4724 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); 4725 if (IS_ERR(bp->ptp)) { 4726 err = PTR_ERR(bp->ptp); 4727 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); 4728 bp->ptp = NULL; 4729 goto out; 4730 } 4731 4732 err = ptp_ocp_complete(bp); 4733 if (err) 4734 goto out; 4735 4736 ptp_ocp_info(bp); 4737 devlink_register(devlink); 4738 4739 clkid = pci_get_dsn(pdev); 4740 bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE); 4741 if (IS_ERR(bp->dpll)) { 4742 err = PTR_ERR(bp->dpll); 4743 dev_err(&pdev->dev, "dpll_device_alloc failed\n"); 4744 goto out; 4745 } 4746 4747 err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp); 4748 if (err) 4749 goto out; 4750 4751 for (i = 0; i < OCP_SMA_NUM; i++) { 4752 bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop); 4753 if (IS_ERR(bp->sma[i].dpll_pin)) { 4754 err = PTR_ERR(bp->sma[i].dpll_pin); 4755 goto out_dpll; 4756 } 4757 4758 err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, 4759 &bp->sma[i]); 4760 if (err) { 4761 dpll_pin_put(bp->sma[i].dpll_pin); 4762 goto out_dpll; 4763 } 4764 } 4765 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); 4766 4767 return 0; 4768 out_dpll: 4769 while (i) { 4770 --i; 4771 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); 4772 dpll_pin_put(bp->sma[i].dpll_pin); 4773 } 4774 dpll_device_put(bp->dpll); 4775 out: 4776 ptp_ocp_detach(bp); 4777 out_disable: 4778 pci_disable_device(pdev); 4779 out_free: 4780 devlink_free(devlink); 4781 return err; 4782 } 4783 4784 static void 4785 ptp_ocp_remove(struct pci_dev *pdev) 4786 { 4787 struct ptp_ocp *bp = pci_get_drvdata(pdev); 4788 struct devlink *devlink = priv_to_devlink(bp); 4789 int i; 4790 4791 cancel_delayed_work_sync(&bp->sync_work); 4792 for (i = 0; i < OCP_SMA_NUM; i++) { 4793 if (bp->sma[i].dpll_pin) { 4794 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); 4795 dpll_pin_put(bp->sma[i].dpll_pin); 4796 } 4797 } 4798 dpll_device_unregister(bp->dpll, &dpll_ops, bp); 4799 dpll_device_put(bp->dpll); 4800 devlink_unregister(devlink); 4801 ptp_ocp_detach(bp); 4802 pci_disable_device(pdev); 4803 4804 devlink_free(devlink); 4805 } 4806 4807 static struct pci_driver ptp_ocp_driver = { 4808 .name = KBUILD_MODNAME, 4809 .id_table = ptp_ocp_pcidev_id, 4810 .probe = ptp_ocp_probe, 4811 .remove = ptp_ocp_remove, 4812 }; 4813 4814 static int 4815 ptp_ocp_i2c_notifier_call(struct notifier_block *nb, 4816 unsigned long action, void *data) 4817 { 4818 struct device *dev, *child = data; 4819 struct ptp_ocp *bp; 4820 bool add; 4821 4822 switch (action) { 4823 case BUS_NOTIFY_ADD_DEVICE: 4824 case BUS_NOTIFY_DEL_DEVICE: 4825 add = action == BUS_NOTIFY_ADD_DEVICE; 4826 break; 4827 default: 4828 return 0; 4829 } 4830 4831 if (!i2c_verify_adapter(child)) 4832 return 0; 4833 4834 dev = child; 4835 while ((dev = dev->parent)) 4836 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 4837 goto found; 4838 return 0; 4839 4840 found: 4841 bp = dev_get_drvdata(dev); 4842 if (add) 4843 ptp_ocp_symlink(bp, child, "i2c"); 4844 else 4845 sysfs_remove_link(&bp->dev.kobj, "i2c"); 4846 4847 return 0; 4848 } 4849 4850 static struct notifier_block ptp_ocp_i2c_notifier = { 4851 .notifier_call = ptp_ocp_i2c_notifier_call, 4852 }; 4853 4854 static int __init 4855 ptp_ocp_init(void) 4856 { 4857 const char *what; 4858 int err; 4859 4860 ptp_ocp_debugfs_init(); 4861 4862 what = "timecard class"; 4863 err = class_register(&timecard_class); 4864 if (err) 4865 goto out; 4866 4867 what = "i2c notifier"; 4868 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4869 if (err) 4870 goto out_notifier; 4871 4872 what = "ptp_ocp driver"; 4873 err = pci_register_driver(&ptp_ocp_driver); 4874 if (err) 4875 goto out_register; 4876 4877 return 0; 4878 4879 out_register: 4880 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4881 out_notifier: 4882 class_unregister(&timecard_class); 4883 out: 4884 ptp_ocp_debugfs_fini(); 4885 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); 4886 return err; 4887 } 4888 4889 static void __exit 4890 ptp_ocp_fini(void) 4891 { 4892 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4893 pci_unregister_driver(&ptp_ocp_driver); 4894 class_unregister(&timecard_class); 4895 ptp_ocp_debugfs_fini(); 4896 } 4897 4898 module_init(ptp_ocp_init); 4899 module_exit(ptp_ocp_fini); 4900 4901 MODULE_DESCRIPTION("OpenCompute TimeCard driver"); 4902 MODULE_LICENSE("GPL v2"); 4903