xref: /linux/drivers/ptp/ptp_ocp.c (revision 502cc061de6692a9a8ca9bcf486de78e2664e869)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 #define PCI_VENDOR_ID_ADVA			0xad5a
38 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
39 
40 static struct class timecard_class = {
41 	.name		= "timecard",
42 };
43 
44 struct ocp_reg {
45 	u32	ctrl;
46 	u32	status;
47 	u32	select;
48 	u32	version;
49 	u32	time_ns;
50 	u32	time_sec;
51 	u32	__pad0[2];
52 	u32	adjust_ns;
53 	u32	adjust_sec;
54 	u32	__pad1[2];
55 	u32	offset_ns;
56 	u32	offset_window_ns;
57 	u32	__pad2[2];
58 	u32	drift_ns;
59 	u32	drift_window_ns;
60 	u32	__pad3[6];
61 	u32	servo_offset_p;
62 	u32	servo_offset_i;
63 	u32	servo_drift_p;
64 	u32	servo_drift_i;
65 	u32	status_offset;
66 	u32	status_drift;
67 };
68 
69 struct ptp_ocp_servo_conf {
70 	u32	servo_offset_p;
71 	u32	servo_offset_i;
72 	u32	servo_drift_p;
73 	u32	servo_drift_i;
74 };
75 
76 #define OCP_CTRL_ENABLE		BIT(0)
77 #define OCP_CTRL_ADJUST_TIME	BIT(1)
78 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
79 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
80 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
81 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
82 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
83 
84 #define OCP_STATUS_IN_SYNC	BIT(0)
85 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
86 
87 #define OCP_SELECT_CLK_NONE	0
88 #define OCP_SELECT_CLK_REG	0xfe
89 
90 struct tod_reg {
91 	u32	ctrl;
92 	u32	status;
93 	u32	uart_polarity;
94 	u32	version;
95 	u32	adj_sec;
96 	u32	__pad0[3];
97 	u32	uart_baud;
98 	u32	__pad1[3];
99 	u32	utc_status;
100 	u32	leap;
101 };
102 
103 #define TOD_CTRL_PROTOCOL	BIT(28)
104 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
105 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
106 #define TOD_CTRL_ENABLE		BIT(0)
107 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
108 #define TOD_CTRL_GNSS_SHIFT	24
109 
110 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
111 #define TOD_STATUS_UTC_VALID		BIT(8)
112 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
113 #define TOD_STATUS_LEAP_VALID		BIT(16)
114 
115 struct ts_reg {
116 	u32	enable;
117 	u32	error;
118 	u32	polarity;
119 	u32	version;
120 	u32	__pad0[4];
121 	u32	cable_delay;
122 	u32	__pad1[3];
123 	u32	intr;
124 	u32	intr_mask;
125 	u32	event_count;
126 	u32	__pad2[1];
127 	u32	ts_count;
128 	u32	time_ns;
129 	u32	time_sec;
130 	u32	data_width;
131 	u32	data;
132 };
133 
134 struct pps_reg {
135 	u32	ctrl;
136 	u32	status;
137 	u32	__pad0[6];
138 	u32	cable_delay;
139 };
140 
141 #define PPS_STATUS_FILTER_ERR	BIT(0)
142 #define PPS_STATUS_SUPERV_ERR	BIT(1)
143 
144 struct img_reg {
145 	u32	version;
146 };
147 
148 struct gpio_reg {
149 	u32	gpio1;
150 	u32	__pad0;
151 	u32	gpio2;
152 	u32	__pad1;
153 };
154 
155 struct irig_master_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_M_CTRL_ENABLE	BIT(0)
165 
166 struct irig_slave_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 	u32	mode_ctrl;
173 };
174 
175 #define IRIG_S_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_master_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_M_CTRL_ENABLE	BIT(0)
186 
187 struct dcf_slave_reg {
188 	u32	ctrl;
189 	u32	status;
190 	u32	__pad0;
191 	u32	version;
192 	u32	adj_sec;
193 };
194 
195 #define DCF_S_CTRL_ENABLE	BIT(0)
196 
197 struct signal_reg {
198 	u32	enable;
199 	u32	status;
200 	u32	polarity;
201 	u32	version;
202 	u32	__pad0[4];
203 	u32	cable_delay;
204 	u32	__pad1[3];
205 	u32	intr;
206 	u32	intr_mask;
207 	u32	__pad2[2];
208 	u32	start_ns;
209 	u32	start_sec;
210 	u32	pulse_ns;
211 	u32	pulse_sec;
212 	u32	period_ns;
213 	u32	period_sec;
214 	u32	repeat_count;
215 };
216 
217 struct frequency_reg {
218 	u32	ctrl;
219 	u32	status;
220 };
221 
222 struct board_config_reg {
223 	u32 mro50_serial_activate;
224 };
225 
226 #define FREQ_STATUS_VALID	BIT(31)
227 #define FREQ_STATUS_ERROR	BIT(30)
228 #define FREQ_STATUS_OVERRUN	BIT(29)
229 #define FREQ_STATUS_MASK	GENMASK(23, 0)
230 
231 struct ptp_ocp_flash_info {
232 	const char *name;
233 	int pci_offset;
234 	int data_size;
235 	void *data;
236 };
237 
238 struct ptp_ocp_firmware_header {
239 	char magic[4];
240 	__be16 pci_vendor_id;
241 	__be16 pci_device_id;
242 	__be32 image_size;
243 	__be16 hw_revision;
244 	__be16 crc;
245 };
246 
247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
248 
249 struct ptp_ocp_i2c_info {
250 	const char *name;
251 	unsigned long fixed_rate;
252 	size_t data_size;
253 	void *data;
254 };
255 
256 struct ptp_ocp_ext_info {
257 	int index;
258 	irqreturn_t (*irq_fcn)(int irq, void *priv);
259 	int (*enable)(void *priv, u32 req, bool enable);
260 };
261 
262 struct ptp_ocp_ext_src {
263 	void __iomem		*mem;
264 	struct ptp_ocp		*bp;
265 	struct ptp_ocp_ext_info	*info;
266 	int			irq_vec;
267 };
268 
269 enum ptp_ocp_sma_mode {
270 	SMA_MODE_IN,
271 	SMA_MODE_OUT,
272 };
273 
274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
275 	DPLL_PIN_FREQUENCY_1PPS,
276 	DPLL_PIN_FREQUENCY_10MHZ,
277 	DPLL_PIN_FREQUENCY_IRIG_B,
278 	DPLL_PIN_FREQUENCY_DCF77,
279 };
280 
281 struct ptp_ocp_sma_connector {
282 	enum	ptp_ocp_sma_mode mode;
283 	bool	fixed_fcn;
284 	bool	fixed_dir;
285 	bool	disabled;
286 	u8	default_fcn;
287 	struct dpll_pin		   *dpll_pin;
288 	struct dpll_pin_properties dpll_prop;
289 };
290 
291 struct ocp_attr_group {
292 	u64 cap;
293 	const struct attribute_group *group;
294 };
295 
296 #define OCP_CAP_BASIC	BIT(0)
297 #define OCP_CAP_SIGNAL	BIT(1)
298 #define OCP_CAP_FREQ	BIT(2)
299 
300 struct ptp_ocp_signal {
301 	ktime_t		period;
302 	ktime_t		pulse;
303 	ktime_t		phase;
304 	ktime_t		start;
305 	int		duty;
306 	bool		polarity;
307 	bool		running;
308 };
309 
310 struct ptp_ocp_serial_port {
311 	int line;
312 	int baud;
313 };
314 
315 #define OCP_BOARD_ID_LEN		13
316 #define OCP_SERIAL_LEN			6
317 #define OCP_SMA_NUM			4
318 
319 enum {
320 	PORT_GNSS,
321 	PORT_GNSS2,
322 	PORT_MAC, /* miniature atomic clock */
323 	PORT_NMEA,
324 
325 	__PORT_COUNT,
326 };
327 
328 struct ptp_ocp {
329 	struct pci_dev		*pdev;
330 	struct device		dev;
331 	spinlock_t		lock;
332 	struct ocp_reg __iomem	*reg;
333 	struct tod_reg __iomem	*tod;
334 	struct pps_reg __iomem	*pps_to_ext;
335 	struct pps_reg __iomem	*pps_to_clk;
336 	struct board_config_reg __iomem	*board_config;
337 	struct gpio_reg __iomem	*pps_select;
338 	struct gpio_reg __iomem	*sma_map1;
339 	struct gpio_reg __iomem	*sma_map2;
340 	struct irig_master_reg	__iomem *irig_out;
341 	struct irig_slave_reg	__iomem *irig_in;
342 	struct dcf_master_reg	__iomem *dcf_out;
343 	struct dcf_slave_reg	__iomem *dcf_in;
344 	struct tod_reg		__iomem *nmea_out;
345 	struct frequency_reg	__iomem *freq_in[4];
346 	struct ptp_ocp_ext_src	*signal_out[4];
347 	struct ptp_ocp_ext_src	*pps;
348 	struct ptp_ocp_ext_src	*ts0;
349 	struct ptp_ocp_ext_src	*ts1;
350 	struct ptp_ocp_ext_src	*ts2;
351 	struct ptp_ocp_ext_src	*ts3;
352 	struct ptp_ocp_ext_src	*ts4;
353 	struct ocp_art_gpio_reg __iomem *art_sma;
354 	struct img_reg __iomem	*image;
355 	struct ptp_clock	*ptp;
356 	struct ptp_clock_info	ptp_info;
357 	struct platform_device	*i2c_ctrl;
358 	struct platform_device	*spi_flash;
359 	struct clk_hw		*i2c_clk;
360 	struct timer_list	watchdog;
361 	const struct attribute_group **attr_group;
362 	const struct ptp_ocp_eeprom_map *eeprom_map;
363 	struct dentry		*debug_root;
364 	bool			sync;
365 	time64_t		gnss_lost;
366 	struct delayed_work	sync_work;
367 	int			id;
368 	int			n_irqs;
369 	struct ptp_ocp_serial_port	port[__PORT_COUNT];
370 	bool			fw_loader;
371 	u8			fw_tag;
372 	u16			fw_version;
373 	u8			board_id[OCP_BOARD_ID_LEN];
374 	u8			serial[OCP_SERIAL_LEN];
375 	bool			has_eeprom_data;
376 	u32			pps_req_map;
377 	int			flash_start;
378 	u32			utc_tai_offset;
379 	u32			ts_window_adjust;
380 	u64			fw_cap;
381 	struct ptp_ocp_signal	signal[4];
382 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
383 	const struct ocp_sma_op *sma_op;
384 	struct dpll_device *dpll;
385 };
386 
387 #define OCP_REQ_TIMESTAMP	BIT(0)
388 #define OCP_REQ_PPS		BIT(1)
389 
390 struct ocp_resource {
391 	unsigned long offset;
392 	int size;
393 	int irq_vec;
394 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
395 	void *extra;
396 	unsigned long bp_offset;
397 	const char * const name;
398 };
399 
400 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
401 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
402 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
403 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
404 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
406 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
407 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
408 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
409 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
410 				      struct ptp_perout_request *req);
411 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
412 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
413 
414 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
415 
416 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
417 
418 static const struct ocp_attr_group fb_timecard_groups[];
419 
420 static const struct ocp_attr_group art_timecard_groups[];
421 
422 static const struct ocp_attr_group adva_timecard_groups[];
423 
424 struct ptp_ocp_eeprom_map {
425 	u16	off;
426 	u16	len;
427 	u32	bp_offset;
428 	const void * const tag;
429 };
430 
431 #define EEPROM_ENTRY(addr, member)				\
432 	.off = addr,						\
433 	.len = sizeof_field(struct ptp_ocp, member),		\
434 	.bp_offset = offsetof(struct ptp_ocp, member)
435 
436 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
437 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
438 })
439 
440 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
441 	{ EEPROM_ENTRY(0x43, board_id) },
442 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
443 	{ }
444 };
445 
446 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
447 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
448 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
449 	{ }
450 };
451 
452 #define bp_assign_entry(bp, res, val) ({				\
453 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
454 	*(typeof(val) *)addr = val;					\
455 })
456 
457 #define OCP_RES_LOCATION(member) \
458 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
459 
460 #define OCP_MEM_RESOURCE(member) \
461 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
462 
463 #define OCP_SERIAL_RESOURCE(member) \
464 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
465 
466 #define OCP_I2C_RESOURCE(member) \
467 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
468 
469 #define OCP_SPI_RESOURCE(member) \
470 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
471 
472 #define OCP_EXT_RESOURCE(member) \
473 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
474 
475 /* This is the MSI vector mapping used.
476  * 0: PPS (TS5)
477  * 1: TS0
478  * 2: TS1
479  * 3: GNSS1
480  * 4: GNSS2
481  * 5: MAC
482  * 6: TS2
483  * 7: I2C controller
484  * 8: HWICAP (notused)
485  * 9: SPI Flash
486  * 10: NMEA
487  * 11: Signal Generator 1
488  * 12: Signal Generator 2
489  * 13: Signal Generator 3
490  * 14: Signal Generator 4
491  * 15: TS3
492  * 16: TS4
493  --
494  * 8: Orolia TS1
495  * 10: Orolia TS2
496  * 11: Orolia TS0 (GNSS)
497  * 12: Orolia PPS
498  * 14: Orolia TS3
499  * 15: Orolia TS4
500  */
501 
502 static struct ocp_resource ocp_fb_resource[] = {
503 	{
504 		OCP_MEM_RESOURCE(reg),
505 		.offset = 0x01000000, .size = 0x10000,
506 	},
507 	{
508 		OCP_EXT_RESOURCE(ts0),
509 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
510 		.extra = &(struct ptp_ocp_ext_info) {
511 			.index = 0,
512 			.irq_fcn = ptp_ocp_ts_irq,
513 			.enable = ptp_ocp_ts_enable,
514 		},
515 	},
516 	{
517 		OCP_EXT_RESOURCE(ts1),
518 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
519 		.extra = &(struct ptp_ocp_ext_info) {
520 			.index = 1,
521 			.irq_fcn = ptp_ocp_ts_irq,
522 			.enable = ptp_ocp_ts_enable,
523 		},
524 	},
525 	{
526 		OCP_EXT_RESOURCE(ts2),
527 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
528 		.extra = &(struct ptp_ocp_ext_info) {
529 			.index = 2,
530 			.irq_fcn = ptp_ocp_ts_irq,
531 			.enable = ptp_ocp_ts_enable,
532 		},
533 	},
534 	{
535 		OCP_EXT_RESOURCE(ts3),
536 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
537 		.extra = &(struct ptp_ocp_ext_info) {
538 			.index = 3,
539 			.irq_fcn = ptp_ocp_ts_irq,
540 			.enable = ptp_ocp_ts_enable,
541 		},
542 	},
543 	{
544 		OCP_EXT_RESOURCE(ts4),
545 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
546 		.extra = &(struct ptp_ocp_ext_info) {
547 			.index = 4,
548 			.irq_fcn = ptp_ocp_ts_irq,
549 			.enable = ptp_ocp_ts_enable,
550 		},
551 	},
552 	/* Timestamp for PHC and/or PPS generator */
553 	{
554 		OCP_EXT_RESOURCE(pps),
555 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
556 		.extra = &(struct ptp_ocp_ext_info) {
557 			.index = 5,
558 			.irq_fcn = ptp_ocp_ts_irq,
559 			.enable = ptp_ocp_ts_enable,
560 		},
561 	},
562 	{
563 		OCP_EXT_RESOURCE(signal_out[0]),
564 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
565 		.extra = &(struct ptp_ocp_ext_info) {
566 			.index = 1,
567 			.irq_fcn = ptp_ocp_signal_irq,
568 			.enable = ptp_ocp_signal_enable,
569 		},
570 	},
571 	{
572 		OCP_EXT_RESOURCE(signal_out[1]),
573 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
574 		.extra = &(struct ptp_ocp_ext_info) {
575 			.index = 2,
576 			.irq_fcn = ptp_ocp_signal_irq,
577 			.enable = ptp_ocp_signal_enable,
578 		},
579 	},
580 	{
581 		OCP_EXT_RESOURCE(signal_out[2]),
582 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
583 		.extra = &(struct ptp_ocp_ext_info) {
584 			.index = 3,
585 			.irq_fcn = ptp_ocp_signal_irq,
586 			.enable = ptp_ocp_signal_enable,
587 		},
588 	},
589 	{
590 		OCP_EXT_RESOURCE(signal_out[3]),
591 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
592 		.extra = &(struct ptp_ocp_ext_info) {
593 			.index = 4,
594 			.irq_fcn = ptp_ocp_signal_irq,
595 			.enable = ptp_ocp_signal_enable,
596 		},
597 	},
598 	{
599 		OCP_MEM_RESOURCE(pps_to_ext),
600 		.offset = 0x01030000, .size = 0x10000,
601 	},
602 	{
603 		OCP_MEM_RESOURCE(pps_to_clk),
604 		.offset = 0x01040000, .size = 0x10000,
605 	},
606 	{
607 		OCP_MEM_RESOURCE(tod),
608 		.offset = 0x01050000, .size = 0x10000,
609 	},
610 	{
611 		OCP_MEM_RESOURCE(irig_in),
612 		.offset = 0x01070000, .size = 0x10000,
613 	},
614 	{
615 		OCP_MEM_RESOURCE(irig_out),
616 		.offset = 0x01080000, .size = 0x10000,
617 	},
618 	{
619 		OCP_MEM_RESOURCE(dcf_in),
620 		.offset = 0x01090000, .size = 0x10000,
621 	},
622 	{
623 		OCP_MEM_RESOURCE(dcf_out),
624 		.offset = 0x010A0000, .size = 0x10000,
625 	},
626 	{
627 		OCP_MEM_RESOURCE(nmea_out),
628 		.offset = 0x010B0000, .size = 0x10000,
629 	},
630 	{
631 		OCP_MEM_RESOURCE(image),
632 		.offset = 0x00020000, .size = 0x1000,
633 	},
634 	{
635 		OCP_MEM_RESOURCE(pps_select),
636 		.offset = 0x00130000, .size = 0x1000,
637 	},
638 	{
639 		OCP_MEM_RESOURCE(sma_map1),
640 		.offset = 0x00140000, .size = 0x1000,
641 	},
642 	{
643 		OCP_MEM_RESOURCE(sma_map2),
644 		.offset = 0x00220000, .size = 0x1000,
645 	},
646 	{
647 		OCP_I2C_RESOURCE(i2c_ctrl),
648 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
649 		.extra = &(struct ptp_ocp_i2c_info) {
650 			.name = "xiic-i2c",
651 			.fixed_rate = 50000000,
652 			.data_size = sizeof(struct xiic_i2c_platform_data),
653 			.data = &(struct xiic_i2c_platform_data) {
654 				.num_devices = 2,
655 				.devices = (struct i2c_board_info[]) {
656 					{ I2C_BOARD_INFO("24c02", 0x50) },
657 					{ I2C_BOARD_INFO("24mac402", 0x58),
658 					  .platform_data = "mac" },
659 				},
660 			},
661 		},
662 	},
663 	{
664 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
665 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
666 		.extra = &(struct ptp_ocp_serial_port) {
667 			.baud = 115200,
668 		},
669 	},
670 	{
671 		OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
672 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
673 		.extra = &(struct ptp_ocp_serial_port) {
674 			.baud = 115200,
675 		},
676 	},
677 	{
678 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
679 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
680 		.extra = &(struct ptp_ocp_serial_port) {
681 			.baud = 57600,
682 		},
683 	},
684 	{
685 		OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
686 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
687 	},
688 	{
689 		OCP_SPI_RESOURCE(spi_flash),
690 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
691 		.extra = &(struct ptp_ocp_flash_info) {
692 			.name = "xilinx_spi", .pci_offset = 0,
693 			.data_size = sizeof(struct xspi_platform_data),
694 			.data = &(struct xspi_platform_data) {
695 				.num_chipselect = 1,
696 				.bits_per_word = 8,
697 				.num_devices = 1,
698 				.force_irq = true,
699 				.devices = &(struct spi_board_info) {
700 					.modalias = "spi-nor",
701 				},
702 			},
703 		},
704 	},
705 	{
706 		OCP_MEM_RESOURCE(freq_in[0]),
707 		.offset = 0x01200000, .size = 0x10000,
708 	},
709 	{
710 		OCP_MEM_RESOURCE(freq_in[1]),
711 		.offset = 0x01210000, .size = 0x10000,
712 	},
713 	{
714 		OCP_MEM_RESOURCE(freq_in[2]),
715 		.offset = 0x01220000, .size = 0x10000,
716 	},
717 	{
718 		OCP_MEM_RESOURCE(freq_in[3]),
719 		.offset = 0x01230000, .size = 0x10000,
720 	},
721 	{
722 		.setup = ptp_ocp_fb_board_init,
723 		.extra = &(struct ptp_ocp_servo_conf) {
724 			.servo_offset_p = 0x2000,
725 			.servo_offset_i = 0x1000,
726 			.servo_drift_p = 0,
727 			.servo_drift_i = 0,
728 		},
729 	},
730 	{ }
731 };
732 
733 #define OCP_ART_CONFIG_SIZE		144
734 #define OCP_ART_TEMP_TABLE_SIZE		368
735 
736 struct ocp_art_gpio_reg {
737 	struct {
738 		u32	gpio;
739 		u32	__pad[3];
740 	} map[4];
741 };
742 
743 static struct ocp_resource ocp_art_resource[] = {
744 	{
745 		OCP_MEM_RESOURCE(reg),
746 		.offset = 0x01000000, .size = 0x10000,
747 	},
748 	{
749 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
750 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
751 		.extra = &(struct ptp_ocp_serial_port) {
752 			.baud = 115200,
753 		},
754 	},
755 	{
756 		OCP_MEM_RESOURCE(art_sma),
757 		.offset = 0x003C0000, .size = 0x1000,
758 	},
759 	/* Timestamp associated with GNSS1 receiver PPS */
760 	{
761 		OCP_EXT_RESOURCE(ts0),
762 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
763 		.extra = &(struct ptp_ocp_ext_info) {
764 			.index = 0,
765 			.irq_fcn = ptp_ocp_ts_irq,
766 			.enable = ptp_ocp_ts_enable,
767 		},
768 	},
769 	{
770 		OCP_EXT_RESOURCE(ts1),
771 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
772 		.extra = &(struct ptp_ocp_ext_info) {
773 			.index = 1,
774 			.irq_fcn = ptp_ocp_ts_irq,
775 			.enable = ptp_ocp_ts_enable,
776 		},
777 	},
778 	{
779 		OCP_EXT_RESOURCE(ts2),
780 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
781 		.extra = &(struct ptp_ocp_ext_info) {
782 			.index = 2,
783 			.irq_fcn = ptp_ocp_ts_irq,
784 			.enable = ptp_ocp_ts_enable,
785 		},
786 	},
787 	{
788 		OCP_EXT_RESOURCE(ts3),
789 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
790 		.extra = &(struct ptp_ocp_ext_info) {
791 			.index = 3,
792 			.irq_fcn = ptp_ocp_ts_irq,
793 			.enable = ptp_ocp_ts_enable,
794 		},
795 	},
796 	{
797 		OCP_EXT_RESOURCE(ts4),
798 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
799 		.extra = &(struct ptp_ocp_ext_info) {
800 			.index = 4,
801 			.irq_fcn = ptp_ocp_ts_irq,
802 			.enable = ptp_ocp_ts_enable,
803 		},
804 	},
805 	/* Timestamp associated with Internal PPS of the card */
806 	{
807 		OCP_EXT_RESOURCE(pps),
808 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
809 		.extra = &(struct ptp_ocp_ext_info) {
810 			.index = 5,
811 			.irq_fcn = ptp_ocp_ts_irq,
812 			.enable = ptp_ocp_ts_enable,
813 		},
814 	},
815 	{
816 		OCP_SPI_RESOURCE(spi_flash),
817 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
818 		.extra = &(struct ptp_ocp_flash_info) {
819 			.name = "spi_altera", .pci_offset = 0,
820 			.data_size = sizeof(struct altera_spi_platform_data),
821 			.data = &(struct altera_spi_platform_data) {
822 				.num_chipselect = 1,
823 				.num_devices = 1,
824 				.devices = &(struct spi_board_info) {
825 					.modalias = "spi-nor",
826 				},
827 			},
828 		},
829 	},
830 	{
831 		OCP_I2C_RESOURCE(i2c_ctrl),
832 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
833 		.extra = &(struct ptp_ocp_i2c_info) {
834 			.name = "ocores-i2c",
835 			.fixed_rate = 400000,
836 			.data_size = sizeof(struct ocores_i2c_platform_data),
837 			.data = &(struct ocores_i2c_platform_data) {
838 				.clock_khz = 125000,
839 				.bus_khz = 400,
840 				.num_devices = 1,
841 				.devices = &(struct i2c_board_info) {
842 					I2C_BOARD_INFO("24c08", 0x50),
843 				},
844 			},
845 		},
846 	},
847 	{
848 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
849 		.offset = 0x00190000, .irq_vec = 7,
850 		.extra = &(struct ptp_ocp_serial_port) {
851 			.baud = 9600,
852 		},
853 	},
854 	{
855 		OCP_MEM_RESOURCE(board_config),
856 		.offset = 0x210000, .size = 0x1000,
857 	},
858 	{
859 		.setup = ptp_ocp_art_board_init,
860 		.extra = &(struct ptp_ocp_servo_conf) {
861 			.servo_offset_p = 0x2000,
862 			.servo_offset_i = 0x1000,
863 			.servo_drift_p = 0,
864 			.servo_drift_i = 0,
865 		},
866 	},
867 	{ }
868 };
869 
870 static struct ocp_resource ocp_adva_resource[] = {
871 	{
872 		OCP_MEM_RESOURCE(reg),
873 		.offset = 0x01000000, .size = 0x10000,
874 	},
875 	{
876 		OCP_EXT_RESOURCE(ts0),
877 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
878 		.extra = &(struct ptp_ocp_ext_info) {
879 			.index = 0,
880 			.irq_fcn = ptp_ocp_ts_irq,
881 			.enable = ptp_ocp_ts_enable,
882 		},
883 	},
884 	{
885 		OCP_EXT_RESOURCE(ts1),
886 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
887 		.extra = &(struct ptp_ocp_ext_info) {
888 			.index = 1,
889 			.irq_fcn = ptp_ocp_ts_irq,
890 			.enable = ptp_ocp_ts_enable,
891 		},
892 	},
893 	{
894 		OCP_EXT_RESOURCE(ts2),
895 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
896 		.extra = &(struct ptp_ocp_ext_info) {
897 			.index = 2,
898 			.irq_fcn = ptp_ocp_ts_irq,
899 			.enable = ptp_ocp_ts_enable,
900 		},
901 	},
902 	/* Timestamp for PHC and/or PPS generator */
903 	{
904 		OCP_EXT_RESOURCE(pps),
905 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
906 		.extra = &(struct ptp_ocp_ext_info) {
907 			.index = 5,
908 			.irq_fcn = ptp_ocp_ts_irq,
909 			.enable = ptp_ocp_ts_enable,
910 		},
911 	},
912 	{
913 		OCP_EXT_RESOURCE(signal_out[0]),
914 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
915 		.extra = &(struct ptp_ocp_ext_info) {
916 			.index = 1,
917 			.irq_fcn = ptp_ocp_signal_irq,
918 			.enable = ptp_ocp_signal_enable,
919 		},
920 	},
921 	{
922 		OCP_EXT_RESOURCE(signal_out[1]),
923 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
924 		.extra = &(struct ptp_ocp_ext_info) {
925 			.index = 2,
926 			.irq_fcn = ptp_ocp_signal_irq,
927 			.enable = ptp_ocp_signal_enable,
928 		},
929 	},
930 	{
931 		OCP_MEM_RESOURCE(pps_to_ext),
932 		.offset = 0x01030000, .size = 0x10000,
933 	},
934 	{
935 		OCP_MEM_RESOURCE(pps_to_clk),
936 		.offset = 0x01040000, .size = 0x10000,
937 	},
938 	{
939 		OCP_MEM_RESOURCE(tod),
940 		.offset = 0x01050000, .size = 0x10000,
941 	},
942 	{
943 		OCP_MEM_RESOURCE(image),
944 		.offset = 0x00020000, .size = 0x1000,
945 	},
946 	{
947 		OCP_MEM_RESOURCE(pps_select),
948 		.offset = 0x00130000, .size = 0x1000,
949 	},
950 	{
951 		OCP_MEM_RESOURCE(sma_map1),
952 		.offset = 0x00140000, .size = 0x1000,
953 	},
954 	{
955 		OCP_MEM_RESOURCE(sma_map2),
956 		.offset = 0x00220000, .size = 0x1000,
957 	},
958 	{
959 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
960 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
961 		.extra = &(struct ptp_ocp_serial_port) {
962 			.baud = 9600,
963 		},
964 	},
965 	{
966 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
967 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
968 		.extra = &(struct ptp_ocp_serial_port) {
969 			.baud = 115200,
970 		},
971 	},
972 	{
973 		OCP_MEM_RESOURCE(freq_in[0]),
974 		.offset = 0x01200000, .size = 0x10000,
975 	},
976 	{
977 		OCP_MEM_RESOURCE(freq_in[1]),
978 		.offset = 0x01210000, .size = 0x10000,
979 	},
980 	{
981 		OCP_SPI_RESOURCE(spi_flash),
982 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
983 		.extra = &(struct ptp_ocp_flash_info) {
984 			.name = "spi_altera", .pci_offset = 0,
985 			.data_size = sizeof(struct altera_spi_platform_data),
986 			.data = &(struct altera_spi_platform_data) {
987 				.num_chipselect = 1,
988 				.num_devices = 1,
989 				.devices = &(struct spi_board_info) {
990 					.modalias = "spi-nor",
991 				},
992 			},
993 		},
994 	},
995 	{
996 		OCP_I2C_RESOURCE(i2c_ctrl),
997 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
998 		.extra = &(struct ptp_ocp_i2c_info) {
999 			.name = "ocores-i2c",
1000 			.fixed_rate = 50000000,
1001 			.data_size = sizeof(struct ocores_i2c_platform_data),
1002 			.data = &(struct ocores_i2c_platform_data) {
1003 				.clock_khz = 50000,
1004 				.bus_khz = 100,
1005 				.reg_io_width = 4, // 32-bit/4-byte
1006 				.reg_shift = 2, // 32-bit addressing
1007 				.num_devices = 2,
1008 				.devices = (struct i2c_board_info[]) {
1009 					{ I2C_BOARD_INFO("24c02", 0x50) },
1010 					{ I2C_BOARD_INFO("24mac402", 0x58),
1011 					 .platform_data = "mac" },
1012 				},
1013 			},
1014 		},
1015 	},
1016 	{
1017 		.setup = ptp_ocp_adva_board_init,
1018 		.extra = &(struct ptp_ocp_servo_conf) {
1019 			.servo_offset_p = 0xc000,
1020 			.servo_offset_i = 0x1000,
1021 			.servo_drift_p = 0,
1022 			.servo_drift_i = 0,
1023 		},
1024 	},
1025 	{ }
1026 };
1027 
1028 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1029 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
1030 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1031 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1032 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1033 	{ }
1034 };
1035 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1036 
1037 static DEFINE_MUTEX(ptp_ocp_lock);
1038 static DEFINE_IDR(ptp_ocp_idr);
1039 
1040 struct ocp_selector {
1041 	const char *name;
1042 	int value;
1043 	u64 frequency;
1044 };
1045 
1046 static const struct ocp_selector ptp_ocp_clock[] = {
1047 	{ .name = "NONE",	.value = 0 },
1048 	{ .name = "TOD",	.value = 1 },
1049 	{ .name = "IRIG",	.value = 2 },
1050 	{ .name = "PPS",	.value = 3 },
1051 	{ .name = "PTP",	.value = 4 },
1052 	{ .name = "RTC",	.value = 5 },
1053 	{ .name = "DCF",	.value = 6 },
1054 	{ .name = "REGS",	.value = 0xfe },
1055 	{ .name = "EXT",	.value = 0xff },
1056 	{ }
1057 };
1058 
1059 #define SMA_DISABLE		BIT(16)
1060 #define SMA_ENABLE		BIT(15)
1061 #define SMA_SELECT_MASK		GENMASK(14, 0)
1062 
1063 static const struct ocp_selector ptp_ocp_sma_in[] = {
1064 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1065 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1066 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1067 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1068 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1069 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1070 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1071 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1072 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1073 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1074 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1075 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1076 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1077 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1078 	{ }
1079 };
1080 
1081 static const struct ocp_selector ptp_ocp_sma_out[] = {
1082 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1083 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1084 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1085 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1086 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1087 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1088 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1089 	{ .name = "GEN1",	.value = 0x0040 },
1090 	{ .name = "GEN2",	.value = 0x0080 },
1091 	{ .name = "GEN3",	.value = 0x0100 },
1092 	{ .name = "GEN4",	.value = 0x0200 },
1093 	{ .name = "GND",	.value = 0x2000 },
1094 	{ .name = "VCC",	.value = 0x4000 },
1095 	{ }
1096 };
1097 
1098 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1099 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1100 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1101 	{ }
1102 };
1103 
1104 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1105 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1106 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1107 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1108 	{ }
1109 };
1110 
1111 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1112 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1113 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1114 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1115 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1116 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1117 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1118 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1119 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1120 	{ }
1121 };
1122 
1123 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1124 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1125 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1126 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1127 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1128 	{ .name = "GEN1",	.value = 0x0040 },
1129 	{ .name = "GEN2",	.value = 0x0080 },
1130 	{ .name = "GND",	.value = 0x2000 },
1131 	{ .name = "VCC",	.value = 0x4000 },
1132 	{ }
1133 };
1134 
1135 struct ocp_sma_op {
1136 	const struct ocp_selector *tbl[2];
1137 	void (*init)(struct ptp_ocp *bp);
1138 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1139 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1140 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1141 };
1142 
1143 static void
1144 ptp_ocp_sma_init(struct ptp_ocp *bp)
1145 {
1146 	return bp->sma_op->init(bp);
1147 }
1148 
1149 static u32
1150 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1151 {
1152 	return bp->sma_op->get(bp, sma_nr);
1153 }
1154 
1155 static int
1156 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1157 {
1158 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1159 }
1160 
1161 static int
1162 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1163 {
1164 	return bp->sma_op->set_output(bp, sma_nr, val);
1165 }
1166 
1167 static const char *
1168 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1169 {
1170 	int i;
1171 
1172 	for (i = 0; tbl[i].name; i++)
1173 		if (tbl[i].value == val)
1174 			return tbl[i].name;
1175 	return NULL;
1176 }
1177 
1178 static int
1179 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1180 {
1181 	const char *select;
1182 	int i;
1183 
1184 	for (i = 0; tbl[i].name; i++) {
1185 		select = tbl[i].name;
1186 		if (!strncasecmp(name, select, strlen(select)))
1187 			return tbl[i].value;
1188 	}
1189 	return -EINVAL;
1190 }
1191 
1192 static ssize_t
1193 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1194 {
1195 	ssize_t count;
1196 	int i;
1197 
1198 	count = 0;
1199 	for (i = 0; tbl[i].name; i++)
1200 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1201 	if (count)
1202 		count--;
1203 	count += sysfs_emit_at(buf, count, "\n");
1204 	return count;
1205 }
1206 
1207 static int
1208 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1209 			 struct ptp_system_timestamp *sts)
1210 {
1211 	u32 ctrl, time_sec, time_ns;
1212 	int i;
1213 
1214 	ptp_read_system_prets(sts);
1215 
1216 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1217 	iowrite32(ctrl, &bp->reg->ctrl);
1218 
1219 	for (i = 0; i < 100; i++) {
1220 		ctrl = ioread32(&bp->reg->ctrl);
1221 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1222 			break;
1223 	}
1224 	ptp_read_system_postts(sts);
1225 
1226 	if (sts && bp->ts_window_adjust) {
1227 		s64 ns = timespec64_to_ns(&sts->post_ts);
1228 
1229 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1230 	}
1231 
1232 	time_ns = ioread32(&bp->reg->time_ns);
1233 	time_sec = ioread32(&bp->reg->time_sec);
1234 
1235 	ts->tv_sec = time_sec;
1236 	ts->tv_nsec = time_ns;
1237 
1238 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1239 }
1240 
1241 static int
1242 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1243 		 struct ptp_system_timestamp *sts)
1244 {
1245 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1246 	unsigned long flags;
1247 	int err;
1248 
1249 	spin_lock_irqsave(&bp->lock, flags);
1250 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1251 	spin_unlock_irqrestore(&bp->lock, flags);
1252 
1253 	return err;
1254 }
1255 
1256 static void
1257 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1258 {
1259 	u32 ctrl, time_sec, time_ns;
1260 	u32 select;
1261 
1262 	time_ns = ts->tv_nsec;
1263 	time_sec = ts->tv_sec;
1264 
1265 	select = ioread32(&bp->reg->select);
1266 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1267 
1268 	iowrite32(time_ns, &bp->reg->adjust_ns);
1269 	iowrite32(time_sec, &bp->reg->adjust_sec);
1270 
1271 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1272 	iowrite32(ctrl, &bp->reg->ctrl);
1273 
1274 	/* restore clock selection */
1275 	iowrite32(select >> 16, &bp->reg->select);
1276 }
1277 
1278 static int
1279 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1280 {
1281 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1282 	unsigned long flags;
1283 
1284 	spin_lock_irqsave(&bp->lock, flags);
1285 	__ptp_ocp_settime_locked(bp, ts);
1286 	spin_unlock_irqrestore(&bp->lock, flags);
1287 
1288 	return 0;
1289 }
1290 
1291 static void
1292 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1293 {
1294 	u32 select, ctrl;
1295 
1296 	select = ioread32(&bp->reg->select);
1297 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1298 
1299 	iowrite32(adj_val, &bp->reg->offset_ns);
1300 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1301 
1302 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1303 	iowrite32(ctrl, &bp->reg->ctrl);
1304 
1305 	/* restore clock selection */
1306 	iowrite32(select >> 16, &bp->reg->select);
1307 }
1308 
1309 static void
1310 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1311 {
1312 	struct timespec64 ts;
1313 	unsigned long flags;
1314 	int err;
1315 
1316 	spin_lock_irqsave(&bp->lock, flags);
1317 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1318 	if (likely(!err)) {
1319 		set_normalized_timespec64(&ts, ts.tv_sec,
1320 					  ts.tv_nsec + delta_ns);
1321 		__ptp_ocp_settime_locked(bp, &ts);
1322 	}
1323 	spin_unlock_irqrestore(&bp->lock, flags);
1324 }
1325 
1326 static int
1327 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1328 {
1329 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1330 	unsigned long flags;
1331 	u32 adj_ns, sign;
1332 
1333 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1334 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1335 		return 0;
1336 	}
1337 
1338 	sign = delta_ns < 0 ? BIT(31) : 0;
1339 	adj_ns = sign ? -delta_ns : delta_ns;
1340 
1341 	spin_lock_irqsave(&bp->lock, flags);
1342 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1343 	spin_unlock_irqrestore(&bp->lock, flags);
1344 
1345 	return 0;
1346 }
1347 
1348 static int
1349 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1350 {
1351 	if (scaled_ppm == 0)
1352 		return 0;
1353 
1354 	return -EOPNOTSUPP;
1355 }
1356 
1357 static s32
1358 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1359 {
1360 	return 0;
1361 }
1362 
1363 static int
1364 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1365 {
1366 	return -EOPNOTSUPP;
1367 }
1368 
1369 static int
1370 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1371 	       int on)
1372 {
1373 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1374 	struct ptp_ocp_ext_src *ext = NULL;
1375 	u32 req;
1376 	int err;
1377 
1378 	switch (rq->type) {
1379 	case PTP_CLK_REQ_EXTTS:
1380 		req = OCP_REQ_TIMESTAMP;
1381 		switch (rq->extts.index) {
1382 		case 0:
1383 			ext = bp->ts0;
1384 			break;
1385 		case 1:
1386 			ext = bp->ts1;
1387 			break;
1388 		case 2:
1389 			ext = bp->ts2;
1390 			break;
1391 		case 3:
1392 			ext = bp->ts3;
1393 			break;
1394 		case 4:
1395 			ext = bp->ts4;
1396 			break;
1397 		case 5:
1398 			ext = bp->pps;
1399 			break;
1400 		}
1401 		break;
1402 	case PTP_CLK_REQ_PPS:
1403 		req = OCP_REQ_PPS;
1404 		ext = bp->pps;
1405 		break;
1406 	case PTP_CLK_REQ_PEROUT:
1407 		switch (rq->perout.index) {
1408 		case 0:
1409 			/* This is a request for 1PPS on an output SMA.
1410 			 * Allow, but assume manual configuration.
1411 			 */
1412 			if (on && (rq->perout.period.sec != 1 ||
1413 				   rq->perout.period.nsec != 0))
1414 				return -EINVAL;
1415 			return 0;
1416 		case 1:
1417 		case 2:
1418 		case 3:
1419 		case 4:
1420 			req = rq->perout.index - 1;
1421 			ext = bp->signal_out[req];
1422 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1423 			if (err)
1424 				return err;
1425 			break;
1426 		}
1427 		break;
1428 	default:
1429 		return -EOPNOTSUPP;
1430 	}
1431 
1432 	err = -ENXIO;
1433 	if (ext)
1434 		err = ext->info->enable(ext, req, on);
1435 
1436 	return err;
1437 }
1438 
1439 static int
1440 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1441 	       enum ptp_pin_function func, unsigned chan)
1442 {
1443 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1444 	char buf[16];
1445 
1446 	switch (func) {
1447 	case PTP_PF_NONE:
1448 		snprintf(buf, sizeof(buf), "IN: None");
1449 		break;
1450 	case PTP_PF_EXTTS:
1451 		/* Allow timestamps, but require sysfs configuration. */
1452 		return 0;
1453 	case PTP_PF_PEROUT:
1454 		/* channel 0 is 1PPS from PHC.
1455 		 * channels 1..4 are the frequency generators.
1456 		 */
1457 		if (chan)
1458 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1459 		else
1460 			snprintf(buf, sizeof(buf), "OUT: PHC");
1461 		break;
1462 	default:
1463 		return -EOPNOTSUPP;
1464 	}
1465 
1466 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1467 }
1468 
1469 static const struct ptp_clock_info ptp_ocp_clock_info = {
1470 	.owner		= THIS_MODULE,
1471 	.name		= KBUILD_MODNAME,
1472 	.max_adj	= 100000000,
1473 	.gettimex64	= ptp_ocp_gettimex,
1474 	.settime64	= ptp_ocp_settime,
1475 	.adjtime	= ptp_ocp_adjtime,
1476 	.adjfine	= ptp_ocp_null_adjfine,
1477 	.adjphase	= ptp_ocp_null_adjphase,
1478 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1479 	.enable		= ptp_ocp_enable,
1480 	.verify		= ptp_ocp_verify,
1481 	.pps		= true,
1482 	.n_ext_ts	= 6,
1483 	.n_per_out	= 5,
1484 };
1485 
1486 static void
1487 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1488 {
1489 	u32 ctrl, select;
1490 
1491 	select = ioread32(&bp->reg->select);
1492 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1493 
1494 	iowrite32(0, &bp->reg->drift_ns);
1495 
1496 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1497 	iowrite32(ctrl, &bp->reg->ctrl);
1498 
1499 	/* restore clock selection */
1500 	iowrite32(select >> 16, &bp->reg->select);
1501 }
1502 
1503 static void
1504 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1505 {
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&bp->lock, flags);
1509 
1510 	bp->utc_tai_offset = val;
1511 
1512 	if (bp->irig_out)
1513 		iowrite32(val, &bp->irig_out->adj_sec);
1514 	if (bp->dcf_out)
1515 		iowrite32(val, &bp->dcf_out->adj_sec);
1516 	if (bp->nmea_out)
1517 		iowrite32(val, &bp->nmea_out->adj_sec);
1518 
1519 	spin_unlock_irqrestore(&bp->lock, flags);
1520 }
1521 
1522 static void
1523 ptp_ocp_watchdog(struct timer_list *t)
1524 {
1525 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1526 	unsigned long flags;
1527 	u32 status, utc_offset;
1528 
1529 	status = ioread32(&bp->pps_to_clk->status);
1530 
1531 	if (status & PPS_STATUS_SUPERV_ERR) {
1532 		iowrite32(status, &bp->pps_to_clk->status);
1533 		if (!bp->gnss_lost) {
1534 			spin_lock_irqsave(&bp->lock, flags);
1535 			__ptp_ocp_clear_drift_locked(bp);
1536 			spin_unlock_irqrestore(&bp->lock, flags);
1537 			bp->gnss_lost = ktime_get_real_seconds();
1538 		}
1539 
1540 	} else if (bp->gnss_lost) {
1541 		bp->gnss_lost = 0;
1542 	}
1543 
1544 	/* if GNSS provides correct data we can rely on
1545 	 * it to get leap second information
1546 	 */
1547 	if (bp->tod) {
1548 		status = ioread32(&bp->tod->utc_status);
1549 		utc_offset = status & TOD_STATUS_UTC_MASK;
1550 		if (status & TOD_STATUS_UTC_VALID &&
1551 		    utc_offset != bp->utc_tai_offset)
1552 			ptp_ocp_utc_distribute(bp, utc_offset);
1553 	}
1554 
1555 	mod_timer(&bp->watchdog, jiffies + HZ);
1556 }
1557 
1558 static void
1559 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1560 {
1561 	ktime_t start, end;
1562 	ktime_t delay;
1563 	u32 ctrl;
1564 
1565 	ctrl = ioread32(&bp->reg->ctrl);
1566 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1567 
1568 	iowrite32(ctrl, &bp->reg->ctrl);
1569 
1570 	start = ktime_get_ns();
1571 
1572 	ctrl = ioread32(&bp->reg->ctrl);
1573 
1574 	end = ktime_get_ns();
1575 
1576 	delay = end - start;
1577 	bp->ts_window_adjust = (delay >> 5) * 3;
1578 }
1579 
1580 static int
1581 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1582 {
1583 	struct timespec64 ts;
1584 	u32 ctrl;
1585 
1586 	ctrl = OCP_CTRL_ENABLE;
1587 	iowrite32(ctrl, &bp->reg->ctrl);
1588 
1589 	/* servo configuration */
1590 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1591 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1592 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1593 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1594 
1595 	/* latch servo values */
1596 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1597 	iowrite32(ctrl, &bp->reg->ctrl);
1598 
1599 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1600 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1601 		return -ENODEV;
1602 	}
1603 
1604 	ptp_ocp_estimate_pci_timing(bp);
1605 
1606 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1607 	if (!bp->sync) {
1608 		ktime_get_clocktai_ts64(&ts);
1609 		ptp_ocp_settime(&bp->ptp_info, &ts);
1610 	}
1611 
1612 	/* If there is a clock supervisor, then enable the watchdog */
1613 	if (bp->pps_to_clk) {
1614 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1615 		mod_timer(&bp->watchdog, jiffies + HZ);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static void
1622 ptp_ocp_tod_init(struct ptp_ocp *bp)
1623 {
1624 	u32 ctrl, reg;
1625 
1626 	ctrl = ioread32(&bp->tod->ctrl);
1627 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1628 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1629 	iowrite32(ctrl, &bp->tod->ctrl);
1630 
1631 	reg = ioread32(&bp->tod->utc_status);
1632 	if (reg & TOD_STATUS_UTC_VALID)
1633 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1634 }
1635 
1636 static const char *
1637 ptp_ocp_tod_proto_name(const int idx)
1638 {
1639 	static const char * const proto_name[] = {
1640 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1641 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1642 	};
1643 	return proto_name[idx];
1644 }
1645 
1646 static const char *
1647 ptp_ocp_tod_gnss_name(int idx)
1648 {
1649 	static const char * const gnss_name[] = {
1650 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1651 		"Unknown"
1652 	};
1653 	if (idx >= ARRAY_SIZE(gnss_name))
1654 		idx = ARRAY_SIZE(gnss_name) - 1;
1655 	return gnss_name[idx];
1656 }
1657 
1658 static const char *
1659 ptp_ocp_tty_port_name(int idx)
1660 {
1661 	static const char * const tty_name[] = {
1662 		"GNSS", "GNSS2", "MAC", "NMEA"
1663 	};
1664 	return tty_name[idx];
1665 }
1666 
1667 struct ptp_ocp_nvmem_match_info {
1668 	struct ptp_ocp *bp;
1669 	const void * const tag;
1670 };
1671 
1672 static int
1673 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1674 {
1675 	const struct ptp_ocp_nvmem_match_info *info = data;
1676 
1677 	dev = dev->parent;
1678 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1679 		return 0;
1680 
1681 	while ((dev = dev->parent))
1682 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1683 			return info->bp == dev_get_drvdata(dev);
1684 	return 0;
1685 }
1686 
1687 static inline struct nvmem_device *
1688 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1689 {
1690 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1691 
1692 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1693 }
1694 
1695 static inline void
1696 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1697 {
1698 	if (!IS_ERR_OR_NULL(*nvmemp))
1699 		nvmem_device_put(*nvmemp);
1700 	*nvmemp = NULL;
1701 }
1702 
1703 static void
1704 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1705 {
1706 	const struct ptp_ocp_eeprom_map *map;
1707 	struct nvmem_device *nvmem;
1708 	const void *tag;
1709 	int ret;
1710 
1711 	if (!bp->i2c_ctrl)
1712 		return;
1713 
1714 	tag = NULL;
1715 	nvmem = NULL;
1716 
1717 	for (map = bp->eeprom_map; map->len; map++) {
1718 		if (map->tag != tag) {
1719 			tag = map->tag;
1720 			ptp_ocp_nvmem_device_put(&nvmem);
1721 		}
1722 		if (!nvmem) {
1723 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1724 			if (IS_ERR(nvmem)) {
1725 				ret = PTR_ERR(nvmem);
1726 				goto fail;
1727 			}
1728 		}
1729 		ret = nvmem_device_read(nvmem, map->off, map->len,
1730 					BP_MAP_ENTRY_ADDR(bp, map));
1731 		if (ret != map->len)
1732 			goto fail;
1733 	}
1734 
1735 	bp->has_eeprom_data = true;
1736 
1737 out:
1738 	ptp_ocp_nvmem_device_put(&nvmem);
1739 	return;
1740 
1741 fail:
1742 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1743 	goto out;
1744 }
1745 
1746 static struct device *
1747 ptp_ocp_find_flash(struct ptp_ocp *bp)
1748 {
1749 	struct device *dev, *last;
1750 
1751 	last = NULL;
1752 	dev = &bp->spi_flash->dev;
1753 
1754 	while ((dev = device_find_any_child(dev))) {
1755 		if (!strcmp("mtd", dev_bus_name(dev)))
1756 			break;
1757 		put_device(last);
1758 		last = dev;
1759 	}
1760 	put_device(last);
1761 
1762 	return dev;
1763 }
1764 
1765 static int
1766 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1767 			 const u8 **data, size_t *size)
1768 {
1769 	struct ptp_ocp *bp = devlink_priv(devlink);
1770 	const struct ptp_ocp_firmware_header *hdr;
1771 	size_t offset, length;
1772 	u16 crc;
1773 
1774 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1775 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1776 		devlink_flash_update_status_notify(devlink,
1777 			"No firmware header found, cancel firmware upgrade",
1778 			NULL, 0, 0);
1779 		return -EINVAL;
1780 	}
1781 
1782 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1783 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1784 		devlink_flash_update_status_notify(devlink,
1785 			"Firmware image compatibility check failed",
1786 			NULL, 0, 0);
1787 		return -EINVAL;
1788 	}
1789 
1790 	offset = sizeof(*hdr);
1791 	length = be32_to_cpu(hdr->image_size);
1792 	if (length != (fw->size - offset)) {
1793 		devlink_flash_update_status_notify(devlink,
1794 			"Firmware image size check failed",
1795 			NULL, 0, 0);
1796 		return -EINVAL;
1797 	}
1798 
1799 	crc = crc16(0xffff, &fw->data[offset], length);
1800 	if (be16_to_cpu(hdr->crc) != crc) {
1801 		devlink_flash_update_status_notify(devlink,
1802 			"Firmware image CRC check failed",
1803 			NULL, 0, 0);
1804 		return -EINVAL;
1805 	}
1806 
1807 	*data = &fw->data[offset];
1808 	*size = length;
1809 
1810 	return 0;
1811 }
1812 
1813 static int
1814 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1815 		      const struct firmware *fw)
1816 {
1817 	struct mtd_info *mtd = dev_get_drvdata(dev);
1818 	struct ptp_ocp *bp = devlink_priv(devlink);
1819 	size_t off, len, size, resid, wrote;
1820 	struct erase_info erase;
1821 	size_t base, blksz;
1822 	const u8 *data;
1823 	int err;
1824 
1825 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1826 	if (err)
1827 		goto out;
1828 
1829 	off = 0;
1830 	base = bp->flash_start;
1831 	blksz = 4096;
1832 	resid = size;
1833 
1834 	while (resid) {
1835 		devlink_flash_update_status_notify(devlink, "Flashing",
1836 						   NULL, off, size);
1837 
1838 		len = min_t(size_t, resid, blksz);
1839 		erase.addr = base + off;
1840 		erase.len = blksz;
1841 
1842 		err = mtd_erase(mtd, &erase);
1843 		if (err)
1844 			goto out;
1845 
1846 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1847 		if (err)
1848 			goto out;
1849 
1850 		off += blksz;
1851 		resid -= len;
1852 	}
1853 out:
1854 	return err;
1855 }
1856 
1857 static int
1858 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1859 			     struct devlink_flash_update_params *params,
1860 			     struct netlink_ext_ack *extack)
1861 {
1862 	struct ptp_ocp *bp = devlink_priv(devlink);
1863 	struct device *dev;
1864 	const char *msg;
1865 	int err;
1866 
1867 	dev = ptp_ocp_find_flash(bp);
1868 	if (!dev) {
1869 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1870 		return -ENODEV;
1871 	}
1872 
1873 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1874 					   NULL, 0, 0);
1875 
1876 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1877 
1878 	msg = err ? "Flash error" : "Flash complete";
1879 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1880 
1881 	put_device(dev);
1882 	return err;
1883 }
1884 
1885 static int
1886 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1887 			 struct netlink_ext_ack *extack)
1888 {
1889 	struct ptp_ocp *bp = devlink_priv(devlink);
1890 	const char *fw_image;
1891 	char buf[32];
1892 	int err;
1893 
1894 	fw_image = bp->fw_loader ? "loader" : "fw";
1895 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1896 	err = devlink_info_version_running_put(req, fw_image, buf);
1897 	if (err)
1898 		return err;
1899 
1900 	if (!bp->has_eeprom_data) {
1901 		ptp_ocp_read_eeprom(bp);
1902 		if (!bp->has_eeprom_data)
1903 			return 0;
1904 	}
1905 
1906 	sprintf(buf, "%pM", bp->serial);
1907 	err = devlink_info_serial_number_put(req, buf);
1908 	if (err)
1909 		return err;
1910 
1911 	err = devlink_info_version_fixed_put(req,
1912 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1913 			bp->board_id);
1914 	if (err)
1915 		return err;
1916 
1917 	return 0;
1918 }
1919 
1920 static const struct devlink_ops ptp_ocp_devlink_ops = {
1921 	.flash_update = ptp_ocp_devlink_flash_update,
1922 	.info_get = ptp_ocp_devlink_info_get,
1923 };
1924 
1925 static void __iomem *
1926 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1927 {
1928 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1929 
1930 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1931 }
1932 
1933 static void __iomem *
1934 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1935 {
1936 	resource_size_t start;
1937 
1938 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1939 	return __ptp_ocp_get_mem(bp, start, r->size);
1940 }
1941 
1942 static int
1943 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1944 {
1945 	struct ptp_ocp_flash_info *info;
1946 	struct pci_dev *pdev = bp->pdev;
1947 	struct platform_device *p;
1948 	struct resource res[2];
1949 	resource_size_t start;
1950 	int id;
1951 
1952 	start = pci_resource_start(pdev, 0) + r->offset;
1953 	res[0] = DEFINE_RES_MEM(start, r->size);
1954 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1955 
1956 	info = r->extra;
1957 	id = pci_dev_id(pdev) << 1;
1958 	id += info->pci_offset;
1959 
1960 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1961 					      res, ARRAY_SIZE(res), info->data,
1962 					      info->data_size);
1963 	if (IS_ERR(p))
1964 		return PTR_ERR(p);
1965 
1966 	bp_assign_entry(bp, r, p);
1967 
1968 	return 0;
1969 }
1970 
1971 static struct platform_device *
1972 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1973 {
1974 	struct ptp_ocp_i2c_info *info;
1975 	struct resource res[2];
1976 	resource_size_t start;
1977 
1978 	info = r->extra;
1979 	start = pci_resource_start(pdev, 0) + r->offset;
1980 	res[0] = DEFINE_RES_MEM(start, r->size);
1981 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1982 
1983 	return platform_device_register_resndata(&pdev->dev, info->name,
1984 						 id, res, ARRAY_SIZE(res),
1985 						 info->data, info->data_size);
1986 }
1987 
1988 static int
1989 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1990 {
1991 	struct pci_dev *pdev = bp->pdev;
1992 	struct ptp_ocp_i2c_info *info;
1993 	struct platform_device *p;
1994 	struct clk_hw *clk;
1995 	char buf[32];
1996 	int id;
1997 
1998 	info = r->extra;
1999 	id = pci_dev_id(bp->pdev);
2000 
2001 	sprintf(buf, "AXI.%d", id);
2002 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2003 					 info->fixed_rate);
2004 	if (IS_ERR(clk))
2005 		return PTR_ERR(clk);
2006 	bp->i2c_clk = clk;
2007 
2008 	sprintf(buf, "%s.%d", info->name, id);
2009 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2010 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2011 	if (IS_ERR(p))
2012 		return PTR_ERR(p);
2013 
2014 	bp_assign_entry(bp, r, p);
2015 
2016 	return 0;
2017 }
2018 
2019 /* The expectation is that this is triggered only on error. */
2020 static irqreturn_t
2021 ptp_ocp_signal_irq(int irq, void *priv)
2022 {
2023 	struct ptp_ocp_ext_src *ext = priv;
2024 	struct signal_reg __iomem *reg = ext->mem;
2025 	struct ptp_ocp *bp = ext->bp;
2026 	u32 enable, status;
2027 	int gen;
2028 
2029 	gen = ext->info->index - 1;
2030 
2031 	enable = ioread32(&reg->enable);
2032 	status = ioread32(&reg->status);
2033 
2034 	/* disable generator on error */
2035 	if (status || !enable) {
2036 		iowrite32(0, &reg->intr_mask);
2037 		iowrite32(0, &reg->enable);
2038 		bp->signal[gen].running = false;
2039 	}
2040 
2041 	iowrite32(0, &reg->intr);	/* ack interrupt */
2042 
2043 	return IRQ_HANDLED;
2044 }
2045 
2046 static int
2047 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2048 {
2049 	struct ptp_system_timestamp sts;
2050 	struct timespec64 ts;
2051 	ktime_t start_ns;
2052 	int err;
2053 
2054 	if (!s->period)
2055 		return 0;
2056 
2057 	if (!s->pulse)
2058 		s->pulse = ktime_divns(s->period * s->duty, 100);
2059 
2060 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2061 	if (err)
2062 		return err;
2063 
2064 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2065 	if (!s->start) {
2066 		/* roundup() does not work on 32-bit systems */
2067 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2068 		s->start = ktime_add(s->start, s->phase);
2069 	}
2070 
2071 	if (s->duty < 1 || s->duty > 99)
2072 		return -EINVAL;
2073 
2074 	if (s->pulse < 1 || s->pulse > s->period)
2075 		return -EINVAL;
2076 
2077 	if (s->start < start_ns)
2078 		return -EINVAL;
2079 
2080 	bp->signal[gen] = *s;
2081 
2082 	return 0;
2083 }
2084 
2085 static int
2086 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2087 			   struct ptp_perout_request *req)
2088 {
2089 	struct ptp_ocp_signal s = { };
2090 
2091 	s.polarity = bp->signal[gen].polarity;
2092 	s.period = ktime_set(req->period.sec, req->period.nsec);
2093 	if (!s.period)
2094 		return 0;
2095 
2096 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2097 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2098 		s.duty = ktime_divns(s.pulse * 100, s.period);
2099 	}
2100 
2101 	if (req->flags & PTP_PEROUT_PHASE)
2102 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2103 	else
2104 		s.start = ktime_set(req->start.sec, req->start.nsec);
2105 
2106 	return ptp_ocp_signal_set(bp, gen, &s);
2107 }
2108 
2109 static int
2110 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2111 {
2112 	struct ptp_ocp_ext_src *ext = priv;
2113 	struct signal_reg __iomem *reg = ext->mem;
2114 	struct ptp_ocp *bp = ext->bp;
2115 	struct timespec64 ts;
2116 	int gen;
2117 
2118 	gen = ext->info->index - 1;
2119 
2120 	iowrite32(0, &reg->intr_mask);
2121 	iowrite32(0, &reg->enable);
2122 	bp->signal[gen].running = false;
2123 	if (!enable)
2124 		return 0;
2125 
2126 	ts = ktime_to_timespec64(bp->signal[gen].start);
2127 	iowrite32(ts.tv_sec, &reg->start_sec);
2128 	iowrite32(ts.tv_nsec, &reg->start_ns);
2129 
2130 	ts = ktime_to_timespec64(bp->signal[gen].period);
2131 	iowrite32(ts.tv_sec, &reg->period_sec);
2132 	iowrite32(ts.tv_nsec, &reg->period_ns);
2133 
2134 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2135 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2136 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2137 
2138 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2139 	iowrite32(0, &reg->repeat_count);
2140 
2141 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2142 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2143 	iowrite32(3, &reg->enable);		/* valid & enable */
2144 
2145 	bp->signal[gen].running = true;
2146 
2147 	return 0;
2148 }
2149 
2150 static irqreturn_t
2151 ptp_ocp_ts_irq(int irq, void *priv)
2152 {
2153 	struct ptp_ocp_ext_src *ext = priv;
2154 	struct ts_reg __iomem *reg = ext->mem;
2155 	struct ptp_clock_event ev;
2156 	u32 sec, nsec;
2157 
2158 	if (ext == ext->bp->pps) {
2159 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2160 			ev.type = PTP_CLOCK_PPS;
2161 			ptp_clock_event(ext->bp->ptp, &ev);
2162 		}
2163 
2164 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2165 			goto out;
2166 	}
2167 
2168 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2169 	sec = ioread32(&reg->time_sec);
2170 	nsec = ioread32(&reg->time_ns);
2171 
2172 	ev.type = PTP_CLOCK_EXTTS;
2173 	ev.index = ext->info->index;
2174 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2175 
2176 	ptp_clock_event(ext->bp->ptp, &ev);
2177 
2178 out:
2179 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2180 
2181 	return IRQ_HANDLED;
2182 }
2183 
2184 static int
2185 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2186 {
2187 	struct ptp_ocp_ext_src *ext = priv;
2188 	struct ts_reg __iomem *reg = ext->mem;
2189 	struct ptp_ocp *bp = ext->bp;
2190 
2191 	if (ext == bp->pps) {
2192 		u32 old_map = bp->pps_req_map;
2193 
2194 		if (enable)
2195 			bp->pps_req_map |= req;
2196 		else
2197 			bp->pps_req_map &= ~req;
2198 
2199 		/* if no state change, just return */
2200 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2201 			return 0;
2202 	}
2203 
2204 	if (enable) {
2205 		iowrite32(1, &reg->enable);
2206 		iowrite32(1, &reg->intr_mask);
2207 		iowrite32(1, &reg->intr);
2208 	} else {
2209 		iowrite32(0, &reg->intr_mask);
2210 		iowrite32(0, &reg->enable);
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 static void
2217 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2218 {
2219 	ext->info->enable(ext, ~0, false);
2220 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2221 	kfree(ext);
2222 }
2223 
2224 static int
2225 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2226 {
2227 	struct pci_dev *pdev = bp->pdev;
2228 	struct ptp_ocp_ext_src *ext;
2229 	int err;
2230 
2231 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2232 	if (!ext)
2233 		return -ENOMEM;
2234 
2235 	ext->mem = ptp_ocp_get_mem(bp, r);
2236 	if (IS_ERR(ext->mem)) {
2237 		err = PTR_ERR(ext->mem);
2238 		goto out;
2239 	}
2240 
2241 	ext->bp = bp;
2242 	ext->info = r->extra;
2243 	ext->irq_vec = r->irq_vec;
2244 
2245 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2246 			      ext, "ocp%d.%s", bp->id, r->name);
2247 	if (err) {
2248 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2249 		goto out;
2250 	}
2251 
2252 	bp_assign_entry(bp, r, ext);
2253 
2254 	return 0;
2255 
2256 out:
2257 	kfree(ext);
2258 	return err;
2259 }
2260 
2261 static int
2262 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2263 {
2264 	struct pci_dev *pdev = bp->pdev;
2265 	struct uart_8250_port uart;
2266 
2267 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2268 	 * the serial port device claim and release the pci resource.
2269 	 */
2270 	memset(&uart, 0, sizeof(uart));
2271 	uart.port.dev = &pdev->dev;
2272 	uart.port.iotype = UPIO_MEM;
2273 	uart.port.regshift = 2;
2274 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2275 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2276 	uart.port.uartclk = 50000000;
2277 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2278 	uart.port.type = PORT_16550A;
2279 
2280 	return serial8250_register_8250_port(&uart);
2281 }
2282 
2283 static int
2284 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2285 {
2286 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2287 	struct ptp_ocp_serial_port port = {};
2288 
2289 	port.line = ptp_ocp_serial_line(bp, r);
2290 	if (port.line < 0)
2291 		return port.line;
2292 
2293 	if (p)
2294 		port.baud = p->baud;
2295 
2296 	bp_assign_entry(bp, r, port);
2297 
2298 	return 0;
2299 }
2300 
2301 static int
2302 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2303 {
2304 	void __iomem *mem;
2305 
2306 	mem = ptp_ocp_get_mem(bp, r);
2307 	if (IS_ERR(mem))
2308 		return PTR_ERR(mem);
2309 
2310 	bp_assign_entry(bp, r, mem);
2311 
2312 	return 0;
2313 }
2314 
2315 static void
2316 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2317 {
2318 	if (!bp->nmea_out)
2319 		return;
2320 
2321 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2322 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2323 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2324 }
2325 
2326 static void
2327 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2328 {
2329 	u32 val;
2330 
2331 	iowrite32(0, &reg->enable);		/* disable */
2332 
2333 	val = ioread32(&reg->polarity);
2334 	s->polarity = val ? true : false;
2335 	s->duty = 50;
2336 }
2337 
2338 static void
2339 ptp_ocp_signal_init(struct ptp_ocp *bp)
2340 {
2341 	int i;
2342 
2343 	for (i = 0; i < 4; i++)
2344 		if (bp->signal_out[i])
2345 			_ptp_ocp_signal_init(&bp->signal[i],
2346 					     bp->signal_out[i]->mem);
2347 }
2348 
2349 static void
2350 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2351 {
2352 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2353 	kfree(bp->attr_group);
2354 }
2355 
2356 static int
2357 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2358 		       const struct ocp_attr_group *attr_tbl)
2359 {
2360 	int count, i;
2361 	int err;
2362 
2363 	count = 0;
2364 	for (i = 0; attr_tbl[i].cap; i++)
2365 		if (attr_tbl[i].cap & bp->fw_cap)
2366 			count++;
2367 
2368 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2369 				 GFP_KERNEL);
2370 	if (!bp->attr_group)
2371 		return -ENOMEM;
2372 
2373 	count = 0;
2374 	for (i = 0; attr_tbl[i].cap; i++)
2375 		if (attr_tbl[i].cap & bp->fw_cap)
2376 			bp->attr_group[count++] = attr_tbl[i].group;
2377 
2378 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2379 	if (err)
2380 		bp->attr_group[0] = NULL;
2381 
2382 	return err;
2383 }
2384 
2385 static void
2386 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2387 {
2388 	u32 ctrl;
2389 	bool on;
2390 
2391 	ctrl = ioread32(reg);
2392 	on = ctrl & bit;
2393 	if (on ^ enable) {
2394 		ctrl &= ~bit;
2395 		ctrl |= enable ? bit : 0;
2396 		iowrite32(ctrl, reg);
2397 	}
2398 }
2399 
2400 static void
2401 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2402 {
2403 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2404 				   IRIG_M_CTRL_ENABLE, enable);
2405 }
2406 
2407 static void
2408 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2409 {
2410 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2411 				   IRIG_S_CTRL_ENABLE, enable);
2412 }
2413 
2414 static void
2415 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2416 {
2417 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2418 				   DCF_M_CTRL_ENABLE, enable);
2419 }
2420 
2421 static void
2422 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2423 {
2424 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2425 				   DCF_S_CTRL_ENABLE, enable);
2426 }
2427 
2428 static void
2429 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2430 {
2431 	ptp_ocp_irig_out(bp, val & 0x00100010);
2432 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2433 }
2434 
2435 static void
2436 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2437 {
2438 	ptp_ocp_irig_in(bp, val & 0x00100010);
2439 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2440 }
2441 
2442 static u32
2443 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2444 {
2445 	u32 __iomem *gpio;
2446 	u32 shift;
2447 
2448 	if (bp->sma[sma_nr - 1].fixed_fcn)
2449 		return (sma_nr - 1) & 1;
2450 
2451 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2452 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2453 	else
2454 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2455 	shift = sma_nr & 1 ? 0 : 16;
2456 
2457 	return (ioread32(gpio) >> shift) & 0xffff;
2458 }
2459 
2460 static int
2461 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2462 {
2463 	u32 reg, mask, shift;
2464 	unsigned long flags;
2465 	u32 __iomem *gpio;
2466 
2467 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2468 	shift = sma_nr & 1 ? 0 : 16;
2469 
2470 	mask = 0xffff << (16 - shift);
2471 
2472 	spin_lock_irqsave(&bp->lock, flags);
2473 
2474 	reg = ioread32(gpio);
2475 	reg = (reg & mask) | (val << shift);
2476 
2477 	__handle_signal_outputs(bp, reg);
2478 
2479 	iowrite32(reg, gpio);
2480 
2481 	spin_unlock_irqrestore(&bp->lock, flags);
2482 
2483 	return 0;
2484 }
2485 
2486 static int
2487 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2488 {
2489 	u32 reg, mask, shift;
2490 	unsigned long flags;
2491 	u32 __iomem *gpio;
2492 
2493 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2494 	shift = sma_nr & 1 ? 0 : 16;
2495 
2496 	mask = 0xffff << (16 - shift);
2497 
2498 	spin_lock_irqsave(&bp->lock, flags);
2499 
2500 	reg = ioread32(gpio);
2501 	reg = (reg & mask) | (val << shift);
2502 
2503 	__handle_signal_inputs(bp, reg);
2504 
2505 	iowrite32(reg, gpio);
2506 
2507 	spin_unlock_irqrestore(&bp->lock, flags);
2508 
2509 	return 0;
2510 }
2511 
2512 static void
2513 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2514 {
2515 	struct dpll_pin_properties prop = {
2516 		.board_label = NULL,
2517 		.type = DPLL_PIN_TYPE_EXT,
2518 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2519 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2520 		.freq_supported = ptp_ocp_sma_freq,
2521 
2522 	};
2523 	u32 reg;
2524 	int i;
2525 
2526 	/* defaults */
2527 	for (i = 0; i < OCP_SMA_NUM; i++) {
2528 		bp->sma[i].default_fcn = i & 1;
2529 		bp->sma[i].dpll_prop = prop;
2530 		bp->sma[i].dpll_prop.board_label =
2531 			bp->ptp_info.pin_config[i].name;
2532 	}
2533 	bp->sma[0].mode = SMA_MODE_IN;
2534 	bp->sma[1].mode = SMA_MODE_IN;
2535 	bp->sma[2].mode = SMA_MODE_OUT;
2536 	bp->sma[3].mode = SMA_MODE_OUT;
2537 	/* If no SMA1 map, the pin functions and directions are fixed. */
2538 	if (!bp->sma_map1) {
2539 		for (i = 0; i < OCP_SMA_NUM; i++) {
2540 			bp->sma[i].fixed_fcn = true;
2541 			bp->sma[i].fixed_dir = true;
2542 			bp->sma[1].dpll_prop.capabilities &=
2543 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2544 		}
2545 		return;
2546 	}
2547 
2548 	/* If SMA2 GPIO output map is all 1, it is not present.
2549 	 * This indicates the firmware has fixed direction SMA pins.
2550 	 */
2551 	reg = ioread32(&bp->sma_map2->gpio2);
2552 	if (reg == 0xffffffff) {
2553 		for (i = 0; i < OCP_SMA_NUM; i++)
2554 			bp->sma[i].fixed_dir = true;
2555 	} else {
2556 		reg = ioread32(&bp->sma_map1->gpio1);
2557 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2558 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2559 
2560 		reg = ioread32(&bp->sma_map1->gpio2);
2561 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2562 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2563 	}
2564 }
2565 
2566 static const struct ocp_sma_op ocp_fb_sma_op = {
2567 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2568 	.init		= ptp_ocp_sma_fb_init,
2569 	.get		= ptp_ocp_sma_fb_get,
2570 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2571 	.set_output	= ptp_ocp_sma_fb_set_output,
2572 };
2573 
2574 static const struct ocp_sma_op ocp_adva_sma_op = {
2575 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2576 	.init		= ptp_ocp_sma_fb_init,
2577 	.get		= ptp_ocp_sma_fb_get,
2578 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2579 	.set_output	= ptp_ocp_sma_fb_set_output,
2580 };
2581 
2582 static int
2583 ptp_ocp_set_pins(struct ptp_ocp *bp)
2584 {
2585 	struct ptp_pin_desc *config;
2586 	int i;
2587 
2588 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2589 	if (!config)
2590 		return -ENOMEM;
2591 
2592 	for (i = 0; i < 4; i++) {
2593 		sprintf(config[i].name, "sma%d", i + 1);
2594 		config[i].index = i;
2595 	}
2596 
2597 	bp->ptp_info.n_pins = 4;
2598 	bp->ptp_info.pin_config = config;
2599 
2600 	return 0;
2601 }
2602 
2603 static void
2604 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2605 {
2606 	u64 cap = OCP_CAP_BASIC;
2607 	u32 version;
2608 
2609 	version = ioread32(&bp->image->version);
2610 
2611 	/* if lower 16 bits are empty, this is the fw loader. */
2612 	if ((version & 0xffff) == 0) {
2613 		version = version >> 16;
2614 		bp->fw_loader = true;
2615 	}
2616 
2617 	bp->fw_tag = version >> 15;
2618 	bp->fw_version = version & 0x7fff;
2619 
2620 	if (bp->fw_tag) {
2621 		/* FPGA firmware */
2622 		if (version >= 5)
2623 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2624 	} else {
2625 		/* SOM firmware */
2626 		if (version >= 19)
2627 			cap |= OCP_CAP_SIGNAL;
2628 		if (version >= 20)
2629 			cap |= OCP_CAP_FREQ;
2630 	}
2631 
2632 	bp->fw_cap = cap;
2633 }
2634 
2635 /* FB specific board initializers; last "resource" registered. */
2636 static int
2637 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2638 {
2639 	int err;
2640 
2641 	bp->flash_start = 1024 * 4096;
2642 	bp->eeprom_map = fb_eeprom_map;
2643 	bp->fw_version = ioread32(&bp->image->version);
2644 	bp->sma_op = &ocp_fb_sma_op;
2645 
2646 	ptp_ocp_fb_set_version(bp);
2647 
2648 	ptp_ocp_tod_init(bp);
2649 	ptp_ocp_nmea_out_init(bp);
2650 	ptp_ocp_signal_init(bp);
2651 
2652 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2653 	if (err)
2654 		return err;
2655 
2656 	err = ptp_ocp_set_pins(bp);
2657 	if (err)
2658 		return err;
2659 	ptp_ocp_sma_init(bp);
2660 
2661 	return ptp_ocp_init_clock(bp, r->extra);
2662 }
2663 
2664 static bool
2665 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2666 {
2667 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2668 
2669 	if (!allow)
2670 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2671 			r->irq_vec, r->name);
2672 	return allow;
2673 }
2674 
2675 static int
2676 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2677 {
2678 	struct ocp_resource *r, *table;
2679 	int err = 0;
2680 
2681 	table = (struct ocp_resource *)driver_data;
2682 	for (r = table; r->setup; r++) {
2683 		if (!ptp_ocp_allow_irq(bp, r))
2684 			continue;
2685 		err = r->setup(bp, r);
2686 		if (err) {
2687 			dev_err(&bp->pdev->dev,
2688 				"Could not register %s: err %d\n",
2689 				r->name, err);
2690 			break;
2691 		}
2692 	}
2693 	return err;
2694 }
2695 
2696 static void
2697 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2698 {
2699 	struct dpll_pin_properties prop = {
2700 		.board_label = NULL,
2701 		.type = DPLL_PIN_TYPE_EXT,
2702 		.capabilities = 0,
2703 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2704 		.freq_supported = ptp_ocp_sma_freq,
2705 
2706 	};
2707 	u32 reg;
2708 	int i;
2709 
2710 	/* defaults */
2711 	bp->sma[0].mode = SMA_MODE_IN;
2712 	bp->sma[1].mode = SMA_MODE_IN;
2713 	bp->sma[2].mode = SMA_MODE_OUT;
2714 	bp->sma[3].mode = SMA_MODE_OUT;
2715 
2716 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2717 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2718 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2719 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2720 
2721 	for (i = 0; i < OCP_SMA_NUM; i++) {
2722 		/* If no SMA map, the pin functions and directions are fixed. */
2723 		bp->sma[i].dpll_prop = prop;
2724 		bp->sma[i].dpll_prop.board_label =
2725 			bp->ptp_info.pin_config[i].name;
2726 		if (!bp->art_sma) {
2727 			bp->sma[i].fixed_fcn = true;
2728 			bp->sma[i].fixed_dir = true;
2729 			continue;
2730 		}
2731 		reg = ioread32(&bp->art_sma->map[i].gpio);
2732 
2733 		switch (reg & 0xff) {
2734 		case 0:
2735 			bp->sma[i].fixed_fcn = true;
2736 			bp->sma[i].fixed_dir = true;
2737 			break;
2738 		case 1:
2739 		case 8:
2740 			bp->sma[i].mode = SMA_MODE_IN;
2741 			bp->sma[i].dpll_prop.capabilities =
2742 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2743 			break;
2744 		default:
2745 			bp->sma[i].mode = SMA_MODE_OUT;
2746 			bp->sma[i].dpll_prop.capabilities =
2747 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2748 			break;
2749 		}
2750 	}
2751 }
2752 
2753 static u32
2754 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2755 {
2756 	if (bp->sma[sma_nr - 1].fixed_fcn)
2757 		return bp->sma[sma_nr - 1].default_fcn;
2758 
2759 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2760 }
2761 
2762 /* note: store 0 is considered invalid. */
2763 static int
2764 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2765 {
2766 	unsigned long flags;
2767 	u32 __iomem *gpio;
2768 	int err = 0;
2769 	u32 reg;
2770 
2771 	val &= SMA_SELECT_MASK;
2772 	if (hweight32(val) > 1)
2773 		return -EINVAL;
2774 
2775 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2776 
2777 	spin_lock_irqsave(&bp->lock, flags);
2778 	reg = ioread32(gpio);
2779 	if (((reg >> 16) & val) == 0) {
2780 		err = -EOPNOTSUPP;
2781 	} else {
2782 		reg = (reg & 0xff00) | (val & 0xff);
2783 		iowrite32(reg, gpio);
2784 	}
2785 	spin_unlock_irqrestore(&bp->lock, flags);
2786 
2787 	return err;
2788 }
2789 
2790 static const struct ocp_sma_op ocp_art_sma_op = {
2791 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2792 	.init		= ptp_ocp_art_sma_init,
2793 	.get		= ptp_ocp_art_sma_get,
2794 	.set_inputs	= ptp_ocp_art_sma_set,
2795 	.set_output	= ptp_ocp_art_sma_set,
2796 };
2797 
2798 /* ART specific board initializers; last "resource" registered. */
2799 static int
2800 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2801 {
2802 	int err;
2803 
2804 	bp->flash_start = 0x1000000;
2805 	bp->eeprom_map = art_eeprom_map;
2806 	bp->fw_cap = OCP_CAP_BASIC;
2807 	bp->fw_version = ioread32(&bp->reg->version);
2808 	bp->fw_tag = 2;
2809 	bp->sma_op = &ocp_art_sma_op;
2810 
2811 	/* Enable MAC serial port during initialisation */
2812 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2813 
2814 	err = ptp_ocp_set_pins(bp);
2815 	if (err)
2816 		return err;
2817 	ptp_ocp_sma_init(bp);
2818 
2819 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2820 	if (err)
2821 		return err;
2822 
2823 	return ptp_ocp_init_clock(bp, r->extra);
2824 }
2825 
2826 /* ADVA specific board initializers; last "resource" registered. */
2827 static int
2828 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2829 {
2830 	int err;
2831 	u32 version;
2832 
2833 	bp->flash_start = 0xA00000;
2834 	bp->eeprom_map = fb_eeprom_map;
2835 	bp->sma_op = &ocp_adva_sma_op;
2836 
2837 	version = ioread32(&bp->image->version);
2838 	/* if lower 16 bits are empty, this is the fw loader. */
2839 	if ((version & 0xffff) == 0) {
2840 		version = version >> 16;
2841 		bp->fw_loader = true;
2842 	}
2843 	bp->fw_tag = 3;
2844 	bp->fw_version = version & 0xffff;
2845 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2846 
2847 	ptp_ocp_tod_init(bp);
2848 	ptp_ocp_nmea_out_init(bp);
2849 	ptp_ocp_signal_init(bp);
2850 
2851 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2852 	if (err)
2853 		return err;
2854 
2855 	err = ptp_ocp_set_pins(bp);
2856 	if (err)
2857 		return err;
2858 	ptp_ocp_sma_init(bp);
2859 
2860 	return ptp_ocp_init_clock(bp, r->extra);
2861 }
2862 
2863 static ssize_t
2864 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2865 		    int def_val)
2866 {
2867 	const char *name;
2868 	ssize_t count;
2869 
2870 	count = sysfs_emit(buf, "OUT: ");
2871 	name = ptp_ocp_select_name_from_val(tbl, val);
2872 	if (!name)
2873 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2874 	count += sysfs_emit_at(buf, count, "%s\n", name);
2875 	return count;
2876 }
2877 
2878 static ssize_t
2879 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2880 		    int def_val)
2881 {
2882 	const char *name;
2883 	ssize_t count;
2884 	int i;
2885 
2886 	count = sysfs_emit(buf, "IN: ");
2887 	for (i = 0; tbl[i].name; i++) {
2888 		if (val & tbl[i].value) {
2889 			name = tbl[i].name;
2890 			count += sysfs_emit_at(buf, count, "%s ", name);
2891 		}
2892 	}
2893 	if (!val && def_val >= 0) {
2894 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2895 		count += sysfs_emit_at(buf, count, "%s ", name);
2896 	}
2897 	if (count)
2898 		count--;
2899 	count += sysfs_emit_at(buf, count, "\n");
2900 	return count;
2901 }
2902 
2903 static int
2904 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2905 		 enum ptp_ocp_sma_mode *mode)
2906 {
2907 	int idx, count, dir;
2908 	char **argv;
2909 	int ret;
2910 
2911 	argv = argv_split(GFP_KERNEL, buf, &count);
2912 	if (!argv)
2913 		return -ENOMEM;
2914 
2915 	ret = -EINVAL;
2916 	if (!count)
2917 		goto out;
2918 
2919 	idx = 0;
2920 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2921 	if (!strcasecmp("IN:", argv[0])) {
2922 		dir = 0;
2923 		idx++;
2924 	}
2925 	if (!strcasecmp("OUT:", argv[0])) {
2926 		dir = 1;
2927 		idx++;
2928 	}
2929 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2930 
2931 	ret = 0;
2932 	for (; idx < count; idx++)
2933 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2934 	if (ret < 0)
2935 		ret = -EINVAL;
2936 
2937 out:
2938 	argv_free(argv);
2939 	return ret;
2940 }
2941 
2942 static ssize_t
2943 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2944 		 int default_in_val, int default_out_val)
2945 {
2946 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2947 	const struct ocp_selector * const *tbl;
2948 	u32 val;
2949 
2950 	tbl = bp->sma_op->tbl;
2951 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2952 
2953 	if (sma->mode == SMA_MODE_IN) {
2954 		if (sma->disabled)
2955 			val = SMA_DISABLE;
2956 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2957 	}
2958 
2959 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2960 }
2961 
2962 static ssize_t
2963 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2964 {
2965 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2966 
2967 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2968 }
2969 
2970 static ssize_t
2971 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2972 {
2973 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2974 
2975 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2976 }
2977 
2978 static ssize_t
2979 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2980 {
2981 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2982 
2983 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2984 }
2985 
2986 static ssize_t
2987 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2988 {
2989 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2990 
2991 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2992 }
2993 
2994 static int
2995 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2996 {
2997 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2998 
2999 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3000 		return -EOPNOTSUPP;
3001 
3002 	if (sma->fixed_fcn) {
3003 		if (val != sma->default_fcn)
3004 			return -EOPNOTSUPP;
3005 		return 0;
3006 	}
3007 
3008 	sma->disabled = !!(val & SMA_DISABLE);
3009 
3010 	if (mode != sma->mode) {
3011 		if (mode == SMA_MODE_IN)
3012 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
3013 		else
3014 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3015 		sma->mode = mode;
3016 	}
3017 
3018 	if (!sma->fixed_dir)
3019 		val |= SMA_ENABLE;		/* add enable bit */
3020 
3021 	if (sma->disabled)
3022 		val = 0;
3023 
3024 	if (mode == SMA_MODE_IN)
3025 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3026 	else
3027 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3028 
3029 	return val;
3030 }
3031 
3032 static int
3033 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3034 {
3035 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3036 	enum ptp_ocp_sma_mode mode;
3037 	int val;
3038 
3039 	mode = sma->mode;
3040 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3041 	if (val < 0)
3042 		return val;
3043 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3044 }
3045 
3046 static ssize_t
3047 sma1_store(struct device *dev, struct device_attribute *attr,
3048 	   const char *buf, size_t count)
3049 {
3050 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3051 	int err;
3052 
3053 	err = ptp_ocp_sma_store(bp, buf, 1);
3054 	return err ? err : count;
3055 }
3056 
3057 static ssize_t
3058 sma2_store(struct device *dev, struct device_attribute *attr,
3059 	   const char *buf, size_t count)
3060 {
3061 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3062 	int err;
3063 
3064 	err = ptp_ocp_sma_store(bp, buf, 2);
3065 	return err ? err : count;
3066 }
3067 
3068 static ssize_t
3069 sma3_store(struct device *dev, struct device_attribute *attr,
3070 	   const char *buf, size_t count)
3071 {
3072 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3073 	int err;
3074 
3075 	err = ptp_ocp_sma_store(bp, buf, 3);
3076 	return err ? err : count;
3077 }
3078 
3079 static ssize_t
3080 sma4_store(struct device *dev, struct device_attribute *attr,
3081 	   const char *buf, size_t count)
3082 {
3083 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3084 	int err;
3085 
3086 	err = ptp_ocp_sma_store(bp, buf, 4);
3087 	return err ? err : count;
3088 }
3089 static DEVICE_ATTR_RW(sma1);
3090 static DEVICE_ATTR_RW(sma2);
3091 static DEVICE_ATTR_RW(sma3);
3092 static DEVICE_ATTR_RW(sma4);
3093 
3094 static ssize_t
3095 available_sma_inputs_show(struct device *dev,
3096 			  struct device_attribute *attr, char *buf)
3097 {
3098 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3099 
3100 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3101 }
3102 static DEVICE_ATTR_RO(available_sma_inputs);
3103 
3104 static ssize_t
3105 available_sma_outputs_show(struct device *dev,
3106 			   struct device_attribute *attr, char *buf)
3107 {
3108 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3109 
3110 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3111 }
3112 static DEVICE_ATTR_RO(available_sma_outputs);
3113 
3114 #define EXT_ATTR_RO(_group, _name, _val)				\
3115 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3116 		{ __ATTR_RO(_name), (void *)_val }
3117 #define EXT_ATTR_RW(_group, _name, _val)				\
3118 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3119 		{ __ATTR_RW(_name), (void *)_val }
3120 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3121 
3122 /* period [duty [phase [polarity]]] */
3123 static ssize_t
3124 signal_store(struct device *dev, struct device_attribute *attr,
3125 	     const char *buf, size_t count)
3126 {
3127 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3128 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3129 	struct ptp_ocp_signal s = { };
3130 	int gen = (uintptr_t)ea->var;
3131 	int argc, err;
3132 	char **argv;
3133 
3134 	argv = argv_split(GFP_KERNEL, buf, &argc);
3135 	if (!argv)
3136 		return -ENOMEM;
3137 
3138 	err = -EINVAL;
3139 	s.duty = bp->signal[gen].duty;
3140 	s.phase = bp->signal[gen].phase;
3141 	s.period = bp->signal[gen].period;
3142 	s.polarity = bp->signal[gen].polarity;
3143 
3144 	switch (argc) {
3145 	case 4:
3146 		argc--;
3147 		err = kstrtobool(argv[argc], &s.polarity);
3148 		if (err)
3149 			goto out;
3150 		fallthrough;
3151 	case 3:
3152 		argc--;
3153 		err = kstrtou64(argv[argc], 0, &s.phase);
3154 		if (err)
3155 			goto out;
3156 		fallthrough;
3157 	case 2:
3158 		argc--;
3159 		err = kstrtoint(argv[argc], 0, &s.duty);
3160 		if (err)
3161 			goto out;
3162 		fallthrough;
3163 	case 1:
3164 		argc--;
3165 		err = kstrtou64(argv[argc], 0, &s.period);
3166 		if (err)
3167 			goto out;
3168 		break;
3169 	default:
3170 		goto out;
3171 	}
3172 
3173 	err = ptp_ocp_signal_set(bp, gen, &s);
3174 	if (err)
3175 		goto out;
3176 
3177 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3178 
3179 out:
3180 	argv_free(argv);
3181 	return err ? err : count;
3182 }
3183 
3184 static ssize_t
3185 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3186 {
3187 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3188 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3189 	struct ptp_ocp_signal *signal;
3190 	struct timespec64 ts;
3191 	ssize_t count;
3192 	int i;
3193 
3194 	i = (uintptr_t)ea->var;
3195 	signal = &bp->signal[i];
3196 
3197 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
3198 			   signal->duty, signal->phase, signal->polarity);
3199 
3200 	ts = ktime_to_timespec64(signal->start);
3201 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
3202 
3203 	return count;
3204 }
3205 static EXT_ATTR_RW(signal, signal, 0);
3206 static EXT_ATTR_RW(signal, signal, 1);
3207 static EXT_ATTR_RW(signal, signal, 2);
3208 static EXT_ATTR_RW(signal, signal, 3);
3209 
3210 static ssize_t
3211 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3212 {
3213 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3214 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3215 	int i = (uintptr_t)ea->var;
3216 
3217 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3218 }
3219 static EXT_ATTR_RO(signal, duty, 0);
3220 static EXT_ATTR_RO(signal, duty, 1);
3221 static EXT_ATTR_RO(signal, duty, 2);
3222 static EXT_ATTR_RO(signal, duty, 3);
3223 
3224 static ssize_t
3225 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3226 {
3227 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3228 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3229 	int i = (uintptr_t)ea->var;
3230 
3231 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3232 }
3233 static EXT_ATTR_RO(signal, period, 0);
3234 static EXT_ATTR_RO(signal, period, 1);
3235 static EXT_ATTR_RO(signal, period, 2);
3236 static EXT_ATTR_RO(signal, period, 3);
3237 
3238 static ssize_t
3239 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3240 {
3241 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3242 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3243 	int i = (uintptr_t)ea->var;
3244 
3245 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3246 }
3247 static EXT_ATTR_RO(signal, phase, 0);
3248 static EXT_ATTR_RO(signal, phase, 1);
3249 static EXT_ATTR_RO(signal, phase, 2);
3250 static EXT_ATTR_RO(signal, phase, 3);
3251 
3252 static ssize_t
3253 polarity_show(struct device *dev, struct device_attribute *attr,
3254 	      char *buf)
3255 {
3256 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3257 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3258 	int i = (uintptr_t)ea->var;
3259 
3260 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3261 }
3262 static EXT_ATTR_RO(signal, polarity, 0);
3263 static EXT_ATTR_RO(signal, polarity, 1);
3264 static EXT_ATTR_RO(signal, polarity, 2);
3265 static EXT_ATTR_RO(signal, polarity, 3);
3266 
3267 static ssize_t
3268 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3269 {
3270 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3271 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3272 	int i = (uintptr_t)ea->var;
3273 
3274 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3275 }
3276 static EXT_ATTR_RO(signal, running, 0);
3277 static EXT_ATTR_RO(signal, running, 1);
3278 static EXT_ATTR_RO(signal, running, 2);
3279 static EXT_ATTR_RO(signal, running, 3);
3280 
3281 static ssize_t
3282 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3283 {
3284 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3285 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3286 	int i = (uintptr_t)ea->var;
3287 	struct timespec64 ts;
3288 
3289 	ts = ktime_to_timespec64(bp->signal[i].start);
3290 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3291 }
3292 static EXT_ATTR_RO(signal, start, 0);
3293 static EXT_ATTR_RO(signal, start, 1);
3294 static EXT_ATTR_RO(signal, start, 2);
3295 static EXT_ATTR_RO(signal, start, 3);
3296 
3297 static ssize_t
3298 seconds_store(struct device *dev, struct device_attribute *attr,
3299 	      const char *buf, size_t count)
3300 {
3301 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3302 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3303 	int idx = (uintptr_t)ea->var;
3304 	u32 val;
3305 	int err;
3306 
3307 	err = kstrtou32(buf, 0, &val);
3308 	if (err)
3309 		return err;
3310 	if (val > 0xff)
3311 		return -EINVAL;
3312 
3313 	if (val)
3314 		val = (val << 8) | 0x1;
3315 
3316 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3317 
3318 	return count;
3319 }
3320 
3321 static ssize_t
3322 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3323 {
3324 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3325 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3326 	int idx = (uintptr_t)ea->var;
3327 	u32 val;
3328 
3329 	val = ioread32(&bp->freq_in[idx]->ctrl);
3330 	if (val & 1)
3331 		val = (val >> 8) & 0xff;
3332 	else
3333 		val = 0;
3334 
3335 	return sysfs_emit(buf, "%u\n", val);
3336 }
3337 static EXT_ATTR_RW(freq, seconds, 0);
3338 static EXT_ATTR_RW(freq, seconds, 1);
3339 static EXT_ATTR_RW(freq, seconds, 2);
3340 static EXT_ATTR_RW(freq, seconds, 3);
3341 
3342 static ssize_t
3343 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3344 {
3345 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3346 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3347 	int idx = (uintptr_t)ea->var;
3348 	u32 val;
3349 
3350 	val = ioread32(&bp->freq_in[idx]->status);
3351 	if (val & FREQ_STATUS_ERROR)
3352 		return sysfs_emit(buf, "error\n");
3353 	if (val & FREQ_STATUS_OVERRUN)
3354 		return sysfs_emit(buf, "overrun\n");
3355 	if (val & FREQ_STATUS_VALID)
3356 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3357 	return 0;
3358 }
3359 static EXT_ATTR_RO(freq, frequency, 0);
3360 static EXT_ATTR_RO(freq, frequency, 1);
3361 static EXT_ATTR_RO(freq, frequency, 2);
3362 static EXT_ATTR_RO(freq, frequency, 3);
3363 
3364 static ssize_t
3365 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3366 {
3367 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3368 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3369 
3370 	return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3371 }
3372 
3373 static umode_t
3374 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3375 {
3376 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3377 	struct ptp_ocp_serial_port *port;
3378 	struct device_attribute *dattr;
3379 	struct dev_ext_attribute *ea;
3380 
3381 	if (strncmp(attr->name, "tty", 3))
3382 		return attr->mode;
3383 
3384 	dattr = container_of(attr, struct device_attribute, attr);
3385 	ea = container_of(dattr, struct dev_ext_attribute, attr);
3386 	port = &bp->port[(uintptr_t)ea->var];
3387 	return port->line == -1 ? 0 : 0444;
3388 }
3389 
3390 #define EXT_TTY_ATTR_RO(_name, _val)			\
3391 	struct dev_ext_attribute dev_attr_tty##_name =	\
3392 		{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3393 
3394 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3395 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3396 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3397 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3398 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3399 	&dev_attr_ttyGNSS.attr.attr,
3400 	&dev_attr_ttyGNSS2.attr.attr,
3401 	&dev_attr_ttyMAC.attr.attr,
3402 	&dev_attr_ttyNMEA.attr.attr,
3403 	NULL,
3404 };
3405 
3406 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3407 	.name = "tty",
3408 	.attrs = ptp_ocp_timecard_tty_attrs,
3409 	.is_visible = ptp_ocp_timecard_tty_is_visible,
3410 };
3411 
3412 static ssize_t
3413 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3414 {
3415 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3416 
3417 	if (!bp->has_eeprom_data)
3418 		ptp_ocp_read_eeprom(bp);
3419 
3420 	return sysfs_emit(buf, "%pM\n", bp->serial);
3421 }
3422 static DEVICE_ATTR_RO(serialnum);
3423 
3424 static ssize_t
3425 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3426 {
3427 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3428 	ssize_t ret;
3429 
3430 	if (bp->gnss_lost)
3431 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3432 	else
3433 		ret = sysfs_emit(buf, "SYNC\n");
3434 
3435 	return ret;
3436 }
3437 static DEVICE_ATTR_RO(gnss_sync);
3438 
3439 static ssize_t
3440 utc_tai_offset_show(struct device *dev,
3441 		    struct device_attribute *attr, char *buf)
3442 {
3443 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3444 
3445 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3446 }
3447 
3448 static ssize_t
3449 utc_tai_offset_store(struct device *dev,
3450 		     struct device_attribute *attr,
3451 		     const char *buf, size_t count)
3452 {
3453 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3454 	int err;
3455 	u32 val;
3456 
3457 	err = kstrtou32(buf, 0, &val);
3458 	if (err)
3459 		return err;
3460 
3461 	ptp_ocp_utc_distribute(bp, val);
3462 
3463 	return count;
3464 }
3465 static DEVICE_ATTR_RW(utc_tai_offset);
3466 
3467 static ssize_t
3468 ts_window_adjust_show(struct device *dev,
3469 		      struct device_attribute *attr, char *buf)
3470 {
3471 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3472 
3473 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3474 }
3475 
3476 static ssize_t
3477 ts_window_adjust_store(struct device *dev,
3478 		       struct device_attribute *attr,
3479 		       const char *buf, size_t count)
3480 {
3481 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3482 	int err;
3483 	u32 val;
3484 
3485 	err = kstrtou32(buf, 0, &val);
3486 	if (err)
3487 		return err;
3488 
3489 	bp->ts_window_adjust = val;
3490 
3491 	return count;
3492 }
3493 static DEVICE_ATTR_RW(ts_window_adjust);
3494 
3495 static ssize_t
3496 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3497 {
3498 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3499 	u32 val;
3500 
3501 	val = ioread32(&bp->irig_out->ctrl);
3502 	val = (val >> 16) & 0x07;
3503 	return sysfs_emit(buf, "%d\n", val);
3504 }
3505 
3506 static ssize_t
3507 irig_b_mode_store(struct device *dev,
3508 		  struct device_attribute *attr,
3509 		  const char *buf, size_t count)
3510 {
3511 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3512 	unsigned long flags;
3513 	int err;
3514 	u32 reg;
3515 	u8 val;
3516 
3517 	err = kstrtou8(buf, 0, &val);
3518 	if (err)
3519 		return err;
3520 	if (val > 7)
3521 		return -EINVAL;
3522 
3523 	reg = ((val & 0x7) << 16);
3524 
3525 	spin_lock_irqsave(&bp->lock, flags);
3526 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3527 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3528 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3529 	spin_unlock_irqrestore(&bp->lock, flags);
3530 
3531 	return count;
3532 }
3533 static DEVICE_ATTR_RW(irig_b_mode);
3534 
3535 static ssize_t
3536 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3537 {
3538 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3539 	const char *p;
3540 	u32 select;
3541 
3542 	select = ioread32(&bp->reg->select);
3543 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3544 
3545 	return sysfs_emit(buf, "%s\n", p);
3546 }
3547 
3548 static ssize_t
3549 clock_source_store(struct device *dev, struct device_attribute *attr,
3550 		   const char *buf, size_t count)
3551 {
3552 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3553 	unsigned long flags;
3554 	int val;
3555 
3556 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3557 	if (val < 0)
3558 		return val;
3559 
3560 	spin_lock_irqsave(&bp->lock, flags);
3561 	iowrite32(val, &bp->reg->select);
3562 	spin_unlock_irqrestore(&bp->lock, flags);
3563 
3564 	return count;
3565 }
3566 static DEVICE_ATTR_RW(clock_source);
3567 
3568 static ssize_t
3569 available_clock_sources_show(struct device *dev,
3570 			     struct device_attribute *attr, char *buf)
3571 {
3572 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3573 }
3574 static DEVICE_ATTR_RO(available_clock_sources);
3575 
3576 static ssize_t
3577 clock_status_drift_show(struct device *dev,
3578 			struct device_attribute *attr, char *buf)
3579 {
3580 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3581 	u32 val;
3582 	int res;
3583 
3584 	val = ioread32(&bp->reg->status_drift);
3585 	res = (val & ~INT_MAX) ? -1 : 1;
3586 	res *= (val & INT_MAX);
3587 	return sysfs_emit(buf, "%d\n", res);
3588 }
3589 static DEVICE_ATTR_RO(clock_status_drift);
3590 
3591 static ssize_t
3592 clock_status_offset_show(struct device *dev,
3593 			 struct device_attribute *attr, char *buf)
3594 {
3595 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3596 	u32 val;
3597 	int res;
3598 
3599 	val = ioread32(&bp->reg->status_offset);
3600 	res = (val & ~INT_MAX) ? -1 : 1;
3601 	res *= (val & INT_MAX);
3602 	return sysfs_emit(buf, "%d\n", res);
3603 }
3604 static DEVICE_ATTR_RO(clock_status_offset);
3605 
3606 static ssize_t
3607 tod_correction_show(struct device *dev,
3608 		    struct device_attribute *attr, char *buf)
3609 {
3610 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3611 	u32 val;
3612 	int res;
3613 
3614 	val = ioread32(&bp->tod->adj_sec);
3615 	res = (val & ~INT_MAX) ? -1 : 1;
3616 	res *= (val & INT_MAX);
3617 	return sysfs_emit(buf, "%d\n", res);
3618 }
3619 
3620 static ssize_t
3621 tod_correction_store(struct device *dev, struct device_attribute *attr,
3622 		     const char *buf, size_t count)
3623 {
3624 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3625 	unsigned long flags;
3626 	int err, res;
3627 	u32 val = 0;
3628 
3629 	err = kstrtos32(buf, 0, &res);
3630 	if (err)
3631 		return err;
3632 	if (res < 0) {
3633 		res *= -1;
3634 		val |= BIT(31);
3635 	}
3636 	val |= res;
3637 
3638 	spin_lock_irqsave(&bp->lock, flags);
3639 	iowrite32(val, &bp->tod->adj_sec);
3640 	spin_unlock_irqrestore(&bp->lock, flags);
3641 
3642 	return count;
3643 }
3644 static DEVICE_ATTR_RW(tod_correction);
3645 
3646 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3647 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3648 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3649 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3650 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3651 		&dev_attr_signal##_nr##_period.attr.attr,		\
3652 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3653 		&dev_attr_signal##_nr##_running.attr.attr,		\
3654 		&dev_attr_signal##_nr##_start.attr.attr,		\
3655 		NULL,							\
3656 	}
3657 
3658 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3659 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3660 	static const struct attribute_group				\
3661 			fb_timecard_signal##_nr##_group = {		\
3662 		.name = #_name,						\
3663 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3664 }
3665 
3666 DEVICE_SIGNAL_GROUP(gen1, 0);
3667 DEVICE_SIGNAL_GROUP(gen2, 1);
3668 DEVICE_SIGNAL_GROUP(gen3, 2);
3669 DEVICE_SIGNAL_GROUP(gen4, 3);
3670 
3671 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3672 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3673 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3674 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3675 		NULL,							\
3676 	}
3677 
3678 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3679 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3680 	static const struct attribute_group				\
3681 			fb_timecard_freq##_nr##_group = {		\
3682 		.name = #_name,						\
3683 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3684 }
3685 
3686 DEVICE_FREQ_GROUP(freq1, 0);
3687 DEVICE_FREQ_GROUP(freq2, 1);
3688 DEVICE_FREQ_GROUP(freq3, 2);
3689 DEVICE_FREQ_GROUP(freq4, 3);
3690 
3691 static ssize_t
3692 disciplining_config_read(struct file *filp, struct kobject *kobj,
3693 			 struct bin_attribute *bin_attr, char *buf,
3694 			 loff_t off, size_t count)
3695 {
3696 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3697 	size_t size = OCP_ART_CONFIG_SIZE;
3698 	struct nvmem_device *nvmem;
3699 	ssize_t err;
3700 
3701 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3702 	if (IS_ERR(nvmem))
3703 		return PTR_ERR(nvmem);
3704 
3705 	if (off > size) {
3706 		err = 0;
3707 		goto out;
3708 	}
3709 
3710 	if (off + count > size)
3711 		count = size - off;
3712 
3713 	// the configuration is in the very beginning of the EEPROM
3714 	err = nvmem_device_read(nvmem, off, count, buf);
3715 	if (err != count) {
3716 		err = -EFAULT;
3717 		goto out;
3718 	}
3719 
3720 out:
3721 	ptp_ocp_nvmem_device_put(&nvmem);
3722 
3723 	return err;
3724 }
3725 
3726 static ssize_t
3727 disciplining_config_write(struct file *filp, struct kobject *kobj,
3728 			  struct bin_attribute *bin_attr, char *buf,
3729 			  loff_t off, size_t count)
3730 {
3731 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3732 	struct nvmem_device *nvmem;
3733 	ssize_t err;
3734 
3735 	/* Allow write of the whole area only */
3736 	if (off || count != OCP_ART_CONFIG_SIZE)
3737 		return -EFAULT;
3738 
3739 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3740 	if (IS_ERR(nvmem))
3741 		return PTR_ERR(nvmem);
3742 
3743 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3744 	if (err != count)
3745 		err = -EFAULT;
3746 
3747 	ptp_ocp_nvmem_device_put(&nvmem);
3748 
3749 	return err;
3750 }
3751 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3752 
3753 static ssize_t
3754 temperature_table_read(struct file *filp, struct kobject *kobj,
3755 		       struct bin_attribute *bin_attr, char *buf,
3756 		       loff_t off, size_t count)
3757 {
3758 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3759 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3760 	struct nvmem_device *nvmem;
3761 	ssize_t err;
3762 
3763 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3764 	if (IS_ERR(nvmem))
3765 		return PTR_ERR(nvmem);
3766 
3767 	if (off > size) {
3768 		err = 0;
3769 		goto out;
3770 	}
3771 
3772 	if (off + count > size)
3773 		count = size - off;
3774 
3775 	// the configuration is in the very beginning of the EEPROM
3776 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3777 	if (err != count) {
3778 		err = -EFAULT;
3779 		goto out;
3780 	}
3781 
3782 out:
3783 	ptp_ocp_nvmem_device_put(&nvmem);
3784 
3785 	return err;
3786 }
3787 
3788 static ssize_t
3789 temperature_table_write(struct file *filp, struct kobject *kobj,
3790 			struct bin_attribute *bin_attr, char *buf,
3791 			loff_t off, size_t count)
3792 {
3793 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3794 	struct nvmem_device *nvmem;
3795 	ssize_t err;
3796 
3797 	/* Allow write of the whole area only */
3798 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3799 		return -EFAULT;
3800 
3801 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3802 	if (IS_ERR(nvmem))
3803 		return PTR_ERR(nvmem);
3804 
3805 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3806 	if (err != count)
3807 		err = -EFAULT;
3808 
3809 	ptp_ocp_nvmem_device_put(&nvmem);
3810 
3811 	return err;
3812 }
3813 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3814 
3815 static struct attribute *fb_timecard_attrs[] = {
3816 	&dev_attr_serialnum.attr,
3817 	&dev_attr_gnss_sync.attr,
3818 	&dev_attr_clock_source.attr,
3819 	&dev_attr_available_clock_sources.attr,
3820 	&dev_attr_sma1.attr,
3821 	&dev_attr_sma2.attr,
3822 	&dev_attr_sma3.attr,
3823 	&dev_attr_sma4.attr,
3824 	&dev_attr_available_sma_inputs.attr,
3825 	&dev_attr_available_sma_outputs.attr,
3826 	&dev_attr_clock_status_drift.attr,
3827 	&dev_attr_clock_status_offset.attr,
3828 	&dev_attr_irig_b_mode.attr,
3829 	&dev_attr_utc_tai_offset.attr,
3830 	&dev_attr_ts_window_adjust.attr,
3831 	&dev_attr_tod_correction.attr,
3832 	NULL,
3833 };
3834 
3835 static const struct attribute_group fb_timecard_group = {
3836 	.attrs = fb_timecard_attrs,
3837 };
3838 
3839 static const struct ocp_attr_group fb_timecard_groups[] = {
3840 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3841 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3842 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3843 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3844 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3845 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3846 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3847 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3848 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3849 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3850 	{ },
3851 };
3852 
3853 static struct attribute *art_timecard_attrs[] = {
3854 	&dev_attr_serialnum.attr,
3855 	&dev_attr_clock_source.attr,
3856 	&dev_attr_available_clock_sources.attr,
3857 	&dev_attr_utc_tai_offset.attr,
3858 	&dev_attr_ts_window_adjust.attr,
3859 	&dev_attr_sma1.attr,
3860 	&dev_attr_sma2.attr,
3861 	&dev_attr_sma3.attr,
3862 	&dev_attr_sma4.attr,
3863 	&dev_attr_available_sma_inputs.attr,
3864 	&dev_attr_available_sma_outputs.attr,
3865 	NULL,
3866 };
3867 
3868 static struct bin_attribute *bin_art_timecard_attrs[] = {
3869 	&bin_attr_disciplining_config,
3870 	&bin_attr_temperature_table,
3871 	NULL,
3872 };
3873 
3874 static const struct attribute_group art_timecard_group = {
3875 	.attrs = art_timecard_attrs,
3876 	.bin_attrs = bin_art_timecard_attrs,
3877 };
3878 
3879 static const struct ocp_attr_group art_timecard_groups[] = {
3880 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3881 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3882 	{ },
3883 };
3884 
3885 static struct attribute *adva_timecard_attrs[] = {
3886 	&dev_attr_serialnum.attr,
3887 	&dev_attr_gnss_sync.attr,
3888 	&dev_attr_clock_source.attr,
3889 	&dev_attr_available_clock_sources.attr,
3890 	&dev_attr_sma1.attr,
3891 	&dev_attr_sma2.attr,
3892 	&dev_attr_sma3.attr,
3893 	&dev_attr_sma4.attr,
3894 	&dev_attr_available_sma_inputs.attr,
3895 	&dev_attr_available_sma_outputs.attr,
3896 	&dev_attr_clock_status_drift.attr,
3897 	&dev_attr_clock_status_offset.attr,
3898 	&dev_attr_ts_window_adjust.attr,
3899 	&dev_attr_tod_correction.attr,
3900 	NULL,
3901 };
3902 
3903 static const struct attribute_group adva_timecard_group = {
3904 	.attrs = adva_timecard_attrs,
3905 };
3906 
3907 static const struct ocp_attr_group adva_timecard_groups[] = {
3908 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3909 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3910 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3911 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3912 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3913 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3914 	{ },
3915 };
3916 
3917 static void
3918 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3919 	       const char *def)
3920 {
3921 	int i;
3922 
3923 	for (i = 0; i < 4; i++) {
3924 		if (bp->sma[i].mode != SMA_MODE_IN)
3925 			continue;
3926 		if (map[i][0] & (1 << bit)) {
3927 			sprintf(buf, "sma%d", i + 1);
3928 			return;
3929 		}
3930 	}
3931 	if (!def)
3932 		def = "----";
3933 	strcpy(buf, def);
3934 }
3935 
3936 static void
3937 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3938 {
3939 	char *ans = buf;
3940 	int i;
3941 
3942 	strcpy(ans, "----");
3943 	for (i = 0; i < 4; i++) {
3944 		if (bp->sma[i].mode != SMA_MODE_OUT)
3945 			continue;
3946 		if (map[i][1] & (1 << bit))
3947 			ans += sprintf(ans, "sma%d ", i + 1);
3948 	}
3949 }
3950 
3951 static void
3952 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3953 {
3954 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3955 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3956 	char label[8];
3957 	bool on;
3958 	u32 val;
3959 
3960 	if (!signal)
3961 		return;
3962 
3963 	on = signal->running;
3964 	sprintf(label, "GEN%d", nr + 1);
3965 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3966 		   label, on ? " ON" : "OFF",
3967 		   signal->period, signal->duty, signal->phase,
3968 		   signal->polarity);
3969 
3970 	val = ioread32(&reg->enable);
3971 	seq_printf(s, " [%x", val);
3972 	val = ioread32(&reg->status);
3973 	seq_printf(s, " %x]", val);
3974 
3975 	seq_printf(s, " start:%llu\n", signal->start);
3976 }
3977 
3978 static void
3979 _frequency_summary_show(struct seq_file *s, int nr,
3980 			struct frequency_reg __iomem *reg)
3981 {
3982 	char label[8];
3983 	bool on;
3984 	u32 val;
3985 
3986 	if (!reg)
3987 		return;
3988 
3989 	sprintf(label, "FREQ%d", nr + 1);
3990 	val = ioread32(&reg->ctrl);
3991 	on = val & 1;
3992 	val = (val >> 8) & 0xff;
3993 	seq_printf(s, "%7s: %s, sec:%u",
3994 		   label,
3995 		   on ? " ON" : "OFF",
3996 		   val);
3997 
3998 	val = ioread32(&reg->status);
3999 	if (val & FREQ_STATUS_ERROR)
4000 		seq_printf(s, ", error");
4001 	if (val & FREQ_STATUS_OVERRUN)
4002 		seq_printf(s, ", overrun");
4003 	if (val & FREQ_STATUS_VALID)
4004 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4005 	seq_printf(s, "  reg:%x\n", val);
4006 }
4007 
4008 static int
4009 ptp_ocp_summary_show(struct seq_file *s, void *data)
4010 {
4011 	struct device *dev = s->private;
4012 	struct ptp_system_timestamp sts;
4013 	struct ts_reg __iomem *ts_reg;
4014 	char *buf, *src, *mac_src;
4015 	struct timespec64 ts;
4016 	struct ptp_ocp *bp;
4017 	u16 sma_val[4][2];
4018 	u32 ctrl, val;
4019 	bool on, map;
4020 	int i;
4021 
4022 	buf = (char *)__get_free_page(GFP_KERNEL);
4023 	if (!buf)
4024 		return -ENOMEM;
4025 
4026 	bp = dev_get_drvdata(dev);
4027 
4028 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4029 	for (i = 0; i < __PORT_COUNT; i++) {
4030 		if (bp->port[i].line != -1)
4031 			seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4032 				   bp->port[i].line);
4033 	}
4034 
4035 	memset(sma_val, 0xff, sizeof(sma_val));
4036 	if (bp->sma_map1) {
4037 		u32 reg;
4038 
4039 		reg = ioread32(&bp->sma_map1->gpio1);
4040 		sma_val[0][0] = reg & 0xffff;
4041 		sma_val[1][0] = reg >> 16;
4042 
4043 		reg = ioread32(&bp->sma_map1->gpio2);
4044 		sma_val[2][1] = reg & 0xffff;
4045 		sma_val[3][1] = reg >> 16;
4046 
4047 		reg = ioread32(&bp->sma_map2->gpio1);
4048 		sma_val[2][0] = reg & 0xffff;
4049 		sma_val[3][0] = reg >> 16;
4050 
4051 		reg = ioread32(&bp->sma_map2->gpio2);
4052 		sma_val[0][1] = reg & 0xffff;
4053 		sma_val[1][1] = reg >> 16;
4054 	}
4055 
4056 	sma1_show(dev, NULL, buf);
4057 	seq_printf(s, "   sma1: %04x,%04x %s",
4058 		   sma_val[0][0], sma_val[0][1], buf);
4059 
4060 	sma2_show(dev, NULL, buf);
4061 	seq_printf(s, "   sma2: %04x,%04x %s",
4062 		   sma_val[1][0], sma_val[1][1], buf);
4063 
4064 	sma3_show(dev, NULL, buf);
4065 	seq_printf(s, "   sma3: %04x,%04x %s",
4066 		   sma_val[2][0], sma_val[2][1], buf);
4067 
4068 	sma4_show(dev, NULL, buf);
4069 	seq_printf(s, "   sma4: %04x,%04x %s",
4070 		   sma_val[3][0], sma_val[3][1], buf);
4071 
4072 	if (bp->ts0) {
4073 		ts_reg = bp->ts0->mem;
4074 		on = ioread32(&ts_reg->enable);
4075 		src = "GNSS1";
4076 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4077 			   on ? " ON" : "OFF", src);
4078 	}
4079 
4080 	if (bp->ts1) {
4081 		ts_reg = bp->ts1->mem;
4082 		on = ioread32(&ts_reg->enable);
4083 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4084 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4085 			   on ? " ON" : "OFF", buf);
4086 	}
4087 
4088 	if (bp->ts2) {
4089 		ts_reg = bp->ts2->mem;
4090 		on = ioread32(&ts_reg->enable);
4091 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4092 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4093 			   on ? " ON" : "OFF", buf);
4094 	}
4095 
4096 	if (bp->ts3) {
4097 		ts_reg = bp->ts3->mem;
4098 		on = ioread32(&ts_reg->enable);
4099 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4100 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4101 			   on ? " ON" : "OFF", buf);
4102 	}
4103 
4104 	if (bp->ts4) {
4105 		ts_reg = bp->ts4->mem;
4106 		on = ioread32(&ts_reg->enable);
4107 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4108 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4109 			   on ? " ON" : "OFF", buf);
4110 	}
4111 
4112 	if (bp->pps) {
4113 		ts_reg = bp->pps->mem;
4114 		src = "PHC";
4115 		on = ioread32(&ts_reg->enable);
4116 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4117 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4118 			   on && map ? " ON" : "OFF", src);
4119 
4120 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4121 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4122 			   on && map ? " ON" : "OFF", src);
4123 	}
4124 
4125 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4126 		for (i = 0; i < 4; i++)
4127 			_signal_summary_show(s, bp, i);
4128 
4129 	if (bp->fw_cap & OCP_CAP_FREQ)
4130 		for (i = 0; i < 4; i++)
4131 			_frequency_summary_show(s, i, bp->freq_in[i]);
4132 
4133 	if (bp->irig_out) {
4134 		ctrl = ioread32(&bp->irig_out->ctrl);
4135 		on = ctrl & IRIG_M_CTRL_ENABLE;
4136 		val = ioread32(&bp->irig_out->status);
4137 		gpio_output_map(buf, bp, sma_val, 4);
4138 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4139 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4140 	}
4141 
4142 	if (bp->irig_in) {
4143 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4144 		val = ioread32(&bp->irig_in->status);
4145 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4146 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4147 			   on ? " ON" : "OFF", val, buf);
4148 	}
4149 
4150 	if (bp->dcf_out) {
4151 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4152 		val = ioread32(&bp->dcf_out->status);
4153 		gpio_output_map(buf, bp, sma_val, 5);
4154 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4155 			   on ? " ON" : "OFF", val, buf);
4156 	}
4157 
4158 	if (bp->dcf_in) {
4159 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4160 		val = ioread32(&bp->dcf_in->status);
4161 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4162 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4163 			   on ? " ON" : "OFF", val, buf);
4164 	}
4165 
4166 	if (bp->nmea_out) {
4167 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4168 		val = ioread32(&bp->nmea_out->status);
4169 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4170 			   on ? " ON" : "OFF", val);
4171 	}
4172 
4173 	/* compute src for PPS1, used below. */
4174 	if (bp->pps_select) {
4175 		val = ioread32(&bp->pps_select->gpio1);
4176 		src = &buf[80];
4177 		mac_src = "GNSS1";
4178 		if (val & 0x01) {
4179 			gpio_input_map(src, bp, sma_val, 0, NULL);
4180 			mac_src = src;
4181 		} else if (val & 0x02) {
4182 			src = "MAC";
4183 		} else if (val & 0x04) {
4184 			src = "GNSS1";
4185 		} else {
4186 			src = "----";
4187 			mac_src = src;
4188 		}
4189 	} else {
4190 		src = "?";
4191 		mac_src = src;
4192 	}
4193 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4194 
4195 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4196 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4197 
4198 	/* assumes automatic switchover/selection */
4199 	val = ioread32(&bp->reg->select);
4200 	switch (val >> 16) {
4201 	case 0:
4202 		sprintf(buf, "----");
4203 		break;
4204 	case 2:
4205 		sprintf(buf, "IRIG");
4206 		break;
4207 	case 3:
4208 		sprintf(buf, "%s via PPS1", src);
4209 		break;
4210 	case 6:
4211 		sprintf(buf, "DCF");
4212 		break;
4213 	default:
4214 		strcpy(buf, "unknown");
4215 		break;
4216 	}
4217 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4218 		   bp->sync ? "sync" : "unsynced");
4219 
4220 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4221 		struct timespec64 sys_ts;
4222 		s64 pre_ns, post_ns, ns;
4223 
4224 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4225 		post_ns = timespec64_to_ns(&sts.post_ts);
4226 		ns = (pre_ns + post_ns) / 2;
4227 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4228 		sys_ts = ns_to_timespec64(ns);
4229 
4230 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
4231 			   ts.tv_sec, ts.tv_nsec, &ts);
4232 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
4233 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
4234 			   bp->utc_tai_offset);
4235 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4236 			   timespec64_to_ns(&ts) - ns,
4237 			   post_ns - pre_ns);
4238 	}
4239 
4240 	free_page((unsigned long)buf);
4241 	return 0;
4242 }
4243 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4244 
4245 static int
4246 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4247 {
4248 	struct device *dev = s->private;
4249 	struct ptp_ocp *bp;
4250 	u32 val;
4251 	int idx;
4252 
4253 	bp = dev_get_drvdata(dev);
4254 
4255 	val = ioread32(&bp->tod->ctrl);
4256 	if (!(val & TOD_CTRL_ENABLE)) {
4257 		seq_printf(s, "TOD Slave disabled\n");
4258 		return 0;
4259 	}
4260 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4261 
4262 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4263 	idx += (val >> 16) & 3;
4264 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4265 
4266 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4267 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4268 
4269 	val = ioread32(&bp->tod->version);
4270 	seq_printf(s, "TOD Version %d.%d.%d\n",
4271 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4272 
4273 	val = ioread32(&bp->tod->status);
4274 	seq_printf(s, "Status register: 0x%08X\n", val);
4275 
4276 	val = ioread32(&bp->tod->adj_sec);
4277 	idx = (val & ~INT_MAX) ? -1 : 1;
4278 	idx *= (val & INT_MAX);
4279 	seq_printf(s, "Correction seconds: %d\n", idx);
4280 
4281 	val = ioread32(&bp->tod->utc_status);
4282 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4283 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4284 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4285 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4286 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4287 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4288 
4289 	val = ioread32(&bp->tod->leap);
4290 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4291 
4292 	return 0;
4293 }
4294 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4295 
4296 static struct dentry *ptp_ocp_debugfs_root;
4297 
4298 static void
4299 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4300 {
4301 	struct dentry *d;
4302 
4303 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4304 	bp->debug_root = d;
4305 	debugfs_create_file("summary", 0444, bp->debug_root,
4306 			    &bp->dev, &ptp_ocp_summary_fops);
4307 	if (bp->tod)
4308 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4309 				    &bp->dev, &ptp_ocp_tod_status_fops);
4310 }
4311 
4312 static void
4313 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4314 {
4315 	debugfs_remove_recursive(bp->debug_root);
4316 }
4317 
4318 static void
4319 ptp_ocp_debugfs_init(void)
4320 {
4321 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4322 }
4323 
4324 static void
4325 ptp_ocp_debugfs_fini(void)
4326 {
4327 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4328 }
4329 
4330 static void
4331 ptp_ocp_dev_release(struct device *dev)
4332 {
4333 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4334 
4335 	mutex_lock(&ptp_ocp_lock);
4336 	idr_remove(&ptp_ocp_idr, bp->id);
4337 	mutex_unlock(&ptp_ocp_lock);
4338 }
4339 
4340 static int
4341 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4342 {
4343 	int i, err;
4344 
4345 	mutex_lock(&ptp_ocp_lock);
4346 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4347 	mutex_unlock(&ptp_ocp_lock);
4348 	if (err < 0) {
4349 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4350 		return err;
4351 	}
4352 	bp->id = err;
4353 
4354 	bp->ptp_info = ptp_ocp_clock_info;
4355 	spin_lock_init(&bp->lock);
4356 
4357 	for (i = 0; i < __PORT_COUNT; i++)
4358 		bp->port[i].line = -1;
4359 
4360 	bp->pdev = pdev;
4361 
4362 	device_initialize(&bp->dev);
4363 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4364 	bp->dev.class = &timecard_class;
4365 	bp->dev.parent = &pdev->dev;
4366 	bp->dev.release = ptp_ocp_dev_release;
4367 	dev_set_drvdata(&bp->dev, bp);
4368 
4369 	err = device_add(&bp->dev);
4370 	if (err) {
4371 		dev_err(&bp->dev, "device add failed: %d\n", err);
4372 		goto out;
4373 	}
4374 
4375 	pci_set_drvdata(pdev, bp);
4376 
4377 	return 0;
4378 
4379 out:
4380 	put_device(&bp->dev);
4381 	return err;
4382 }
4383 
4384 static void
4385 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4386 {
4387 	struct device *dev = &bp->dev;
4388 
4389 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4390 		dev_err(dev, "%s symlink failed\n", link);
4391 }
4392 
4393 static void
4394 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4395 {
4396 	struct device *dev, *child;
4397 
4398 	dev = &bp->pdev->dev;
4399 
4400 	child = device_find_child_by_name(dev, name);
4401 	if (!child) {
4402 		dev_err(dev, "Could not find device %s\n", name);
4403 		return;
4404 	}
4405 
4406 	ptp_ocp_symlink(bp, child, link);
4407 	put_device(child);
4408 }
4409 
4410 static int
4411 ptp_ocp_complete(struct ptp_ocp *bp)
4412 {
4413 	struct pps_device *pps;
4414 	char buf[32];
4415 
4416 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4417 	ptp_ocp_link_child(bp, buf, "ptp");
4418 
4419 	pps = pps_lookup_dev(bp->ptp);
4420 	if (pps)
4421 		ptp_ocp_symlink(bp, pps->dev, "pps");
4422 
4423 	ptp_ocp_debugfs_add_device(bp);
4424 
4425 	return 0;
4426 }
4427 
4428 static void
4429 ptp_ocp_phc_info(struct ptp_ocp *bp)
4430 {
4431 	struct timespec64 ts;
4432 	u32 version, select;
4433 
4434 	version = ioread32(&bp->reg->version);
4435 	select = ioread32(&bp->reg->select);
4436 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4437 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4438 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4439 		 ptp_clock_index(bp->ptp));
4440 
4441 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4442 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4443 			 ts.tv_sec, ts.tv_nsec,
4444 			 bp->sync ? "in-sync" : "UNSYNCED");
4445 }
4446 
4447 static void
4448 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4449 {
4450 	if (port != -1)
4451 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4452 }
4453 
4454 static void
4455 ptp_ocp_info(struct ptp_ocp *bp)
4456 {
4457 	static int nmea_baud[] = {
4458 		1200, 2400, 4800, 9600, 19200, 38400,
4459 		57600, 115200, 230400, 460800, 921600,
4460 		1000000, 2000000
4461 	};
4462 	struct device *dev = &bp->pdev->dev;
4463 	u32 reg;
4464 	int i;
4465 
4466 	ptp_ocp_phc_info(bp);
4467 
4468 	for (i = 0; i < __PORT_COUNT; i++) {
4469 		if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4470 			bp->port[PORT_NMEA].baud = -1;
4471 
4472 			reg = ioread32(&bp->nmea_out->uart_baud);
4473 			if (reg < ARRAY_SIZE(nmea_baud))
4474 				bp->port[PORT_NMEA].baud = nmea_baud[reg];
4475 		}
4476 		ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4477 				    bp->port[i].baud);
4478 	}
4479 }
4480 
4481 static void
4482 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4483 {
4484 	struct device *dev = &bp->dev;
4485 
4486 	sysfs_remove_link(&dev->kobj, "ptp");
4487 	sysfs_remove_link(&dev->kobj, "pps");
4488 }
4489 
4490 static void
4491 ptp_ocp_detach(struct ptp_ocp *bp)
4492 {
4493 	int i;
4494 
4495 	ptp_ocp_debugfs_remove_device(bp);
4496 	ptp_ocp_detach_sysfs(bp);
4497 	ptp_ocp_attr_group_del(bp);
4498 	if (timer_pending(&bp->watchdog))
4499 		del_timer_sync(&bp->watchdog);
4500 	if (bp->ts0)
4501 		ptp_ocp_unregister_ext(bp->ts0);
4502 	if (bp->ts1)
4503 		ptp_ocp_unregister_ext(bp->ts1);
4504 	if (bp->ts2)
4505 		ptp_ocp_unregister_ext(bp->ts2);
4506 	if (bp->ts3)
4507 		ptp_ocp_unregister_ext(bp->ts3);
4508 	if (bp->ts4)
4509 		ptp_ocp_unregister_ext(bp->ts4);
4510 	if (bp->pps)
4511 		ptp_ocp_unregister_ext(bp->pps);
4512 	for (i = 0; i < 4; i++)
4513 		if (bp->signal_out[i])
4514 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4515 	for (i = 0; i < __PORT_COUNT; i++)
4516 		if (bp->port[i].line != -1)
4517 			serial8250_unregister_port(bp->port[i].line);
4518 	platform_device_unregister(bp->spi_flash);
4519 	platform_device_unregister(bp->i2c_ctrl);
4520 	if (bp->i2c_clk)
4521 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4522 	if (bp->n_irqs)
4523 		pci_free_irq_vectors(bp->pdev);
4524 	if (bp->ptp)
4525 		ptp_clock_unregister(bp->ptp);
4526 	kfree(bp->ptp_info.pin_config);
4527 	device_unregister(&bp->dev);
4528 }
4529 
4530 static int
4531 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4532 			     enum dpll_lock_status *status,
4533 			     enum dpll_lock_status_error *status_error,
4534 			     struct netlink_ext_ack *extack)
4535 {
4536 	struct ptp_ocp *bp = priv;
4537 
4538 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4539 
4540 	return 0;
4541 }
4542 
4543 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4544 				  const struct dpll_device *dpll, void *priv,
4545 				  enum dpll_pin_state *state,
4546 				  struct netlink_ext_ack *extack)
4547 {
4548 	struct ptp_ocp *bp = priv;
4549 	int idx;
4550 
4551 	if (bp->pps_select) {
4552 		idx = ioread32(&bp->pps_select->gpio1);
4553 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4554 						      DPLL_PIN_STATE_SELECTABLE;
4555 		return 0;
4556 	}
4557 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4558 	return -EINVAL;
4559 }
4560 
4561 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4562 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4563 {
4564 	*mode = DPLL_MODE_AUTOMATIC;
4565 	return 0;
4566 }
4567 
4568 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4569 				      void *pin_priv,
4570 				      const struct dpll_device *dpll,
4571 				      void *priv,
4572 				      enum dpll_pin_direction *direction,
4573 				      struct netlink_ext_ack *extack)
4574 {
4575 	struct ptp_ocp_sma_connector *sma = pin_priv;
4576 
4577 	*direction = sma->mode == SMA_MODE_IN ?
4578 				  DPLL_PIN_DIRECTION_INPUT :
4579 				  DPLL_PIN_DIRECTION_OUTPUT;
4580 	return 0;
4581 }
4582 
4583 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4584 				      void *pin_priv,
4585 				      const struct dpll_device *dpll,
4586 				      void *dpll_priv,
4587 				      enum dpll_pin_direction direction,
4588 				      struct netlink_ext_ack *extack)
4589 {
4590 	struct ptp_ocp_sma_connector *sma = pin_priv;
4591 	struct ptp_ocp *bp = dpll_priv;
4592 	enum ptp_ocp_sma_mode mode;
4593 	int sma_nr = (sma - bp->sma);
4594 
4595 	if (sma->fixed_dir)
4596 		return -EOPNOTSUPP;
4597 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4598 			    SMA_MODE_IN : SMA_MODE_OUT;
4599 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4600 }
4601 
4602 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4603 				      void *pin_priv,
4604 				      const struct dpll_device *dpll,
4605 				      void *dpll_priv, u64 frequency,
4606 				      struct netlink_ext_ack *extack)
4607 {
4608 	struct ptp_ocp_sma_connector *sma = pin_priv;
4609 	struct ptp_ocp *bp = dpll_priv;
4610 	const struct ocp_selector *tbl;
4611 	int sma_nr = (sma - bp->sma);
4612 	int i;
4613 
4614 	if (sma->fixed_fcn)
4615 		return -EOPNOTSUPP;
4616 
4617 	tbl = bp->sma_op->tbl[sma->mode];
4618 	for (i = 0; tbl[i].name; i++)
4619 		if (tbl[i].frequency == frequency)
4620 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4621 	return -EINVAL;
4622 }
4623 
4624 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4625 				      void *pin_priv,
4626 				      const struct dpll_device *dpll,
4627 				      void *dpll_priv, u64 *frequency,
4628 				      struct netlink_ext_ack *extack)
4629 {
4630 	struct ptp_ocp_sma_connector *sma = pin_priv;
4631 	struct ptp_ocp *bp = dpll_priv;
4632 	const struct ocp_selector *tbl;
4633 	int sma_nr = (sma - bp->sma);
4634 	u32 val;
4635 	int i;
4636 
4637 	val = bp->sma_op->get(bp, sma_nr + 1);
4638 	tbl = bp->sma_op->tbl[sma->mode];
4639 	for (i = 0; tbl[i].name; i++)
4640 		if (val == tbl[i].value) {
4641 			*frequency = tbl[i].frequency;
4642 			return 0;
4643 		}
4644 
4645 	return -EINVAL;
4646 }
4647 
4648 static const struct dpll_device_ops dpll_ops = {
4649 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4650 	.mode_get = ptp_ocp_dpll_mode_get,
4651 };
4652 
4653 static const struct dpll_pin_ops dpll_pins_ops = {
4654 	.frequency_get = ptp_ocp_dpll_frequency_get,
4655 	.frequency_set = ptp_ocp_dpll_frequency_set,
4656 	.direction_get = ptp_ocp_dpll_direction_get,
4657 	.direction_set = ptp_ocp_dpll_direction_set,
4658 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4659 };
4660 
4661 static void
4662 ptp_ocp_sync_work(struct work_struct *work)
4663 {
4664 	struct ptp_ocp *bp;
4665 	bool sync;
4666 
4667 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4668 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4669 
4670 	if (bp->sync != sync)
4671 		dpll_device_change_ntf(bp->dpll);
4672 
4673 	bp->sync = sync;
4674 
4675 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4676 }
4677 
4678 static int
4679 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4680 {
4681 	struct devlink *devlink;
4682 	struct ptp_ocp *bp;
4683 	int err, i;
4684 	u64 clkid;
4685 
4686 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4687 	if (!devlink) {
4688 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4689 		return -ENOMEM;
4690 	}
4691 
4692 	err = pci_enable_device(pdev);
4693 	if (err) {
4694 		dev_err(&pdev->dev, "pci_enable_device\n");
4695 		goto out_free;
4696 	}
4697 
4698 	bp = devlink_priv(devlink);
4699 	err = ptp_ocp_device_init(bp, pdev);
4700 	if (err)
4701 		goto out_disable;
4702 
4703 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4704 
4705 	/* compat mode.
4706 	 * Older FPGA firmware only returns 2 irq's.
4707 	 * allow this - if not all of the IRQ's are returned, skip the
4708 	 * extra devices and just register the clock.
4709 	 */
4710 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4711 	if (err < 0) {
4712 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4713 		goto out;
4714 	}
4715 	bp->n_irqs = err;
4716 	pci_set_master(pdev);
4717 
4718 	err = ptp_ocp_register_resources(bp, id->driver_data);
4719 	if (err)
4720 		goto out;
4721 
4722 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4723 	if (IS_ERR(bp->ptp)) {
4724 		err = PTR_ERR(bp->ptp);
4725 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4726 		bp->ptp = NULL;
4727 		goto out;
4728 	}
4729 
4730 	err = ptp_ocp_complete(bp);
4731 	if (err)
4732 		goto out;
4733 
4734 	ptp_ocp_info(bp);
4735 	devlink_register(devlink);
4736 
4737 	clkid = pci_get_dsn(pdev);
4738 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4739 	if (IS_ERR(bp->dpll)) {
4740 		err = PTR_ERR(bp->dpll);
4741 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4742 		goto out;
4743 	}
4744 
4745 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4746 	if (err)
4747 		goto out;
4748 
4749 	for (i = 0; i < OCP_SMA_NUM; i++) {
4750 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4751 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4752 			err = PTR_ERR(bp->sma[i].dpll_pin);
4753 			goto out_dpll;
4754 		}
4755 
4756 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4757 					&bp->sma[i]);
4758 		if (err) {
4759 			dpll_pin_put(bp->sma[i].dpll_pin);
4760 			goto out_dpll;
4761 		}
4762 	}
4763 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4764 
4765 	return 0;
4766 out_dpll:
4767 	while (i) {
4768 		--i;
4769 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4770 		dpll_pin_put(bp->sma[i].dpll_pin);
4771 	}
4772 	dpll_device_put(bp->dpll);
4773 out:
4774 	ptp_ocp_detach(bp);
4775 out_disable:
4776 	pci_disable_device(pdev);
4777 out_free:
4778 	devlink_free(devlink);
4779 	return err;
4780 }
4781 
4782 static void
4783 ptp_ocp_remove(struct pci_dev *pdev)
4784 {
4785 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4786 	struct devlink *devlink = priv_to_devlink(bp);
4787 	int i;
4788 
4789 	cancel_delayed_work_sync(&bp->sync_work);
4790 	for (i = 0; i < OCP_SMA_NUM; i++) {
4791 		if (bp->sma[i].dpll_pin) {
4792 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4793 			dpll_pin_put(bp->sma[i].dpll_pin);
4794 		}
4795 	}
4796 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4797 	dpll_device_put(bp->dpll);
4798 	devlink_unregister(devlink);
4799 	ptp_ocp_detach(bp);
4800 	pci_disable_device(pdev);
4801 
4802 	devlink_free(devlink);
4803 }
4804 
4805 static struct pci_driver ptp_ocp_driver = {
4806 	.name		= KBUILD_MODNAME,
4807 	.id_table	= ptp_ocp_pcidev_id,
4808 	.probe		= ptp_ocp_probe,
4809 	.remove		= ptp_ocp_remove,
4810 };
4811 
4812 static int
4813 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4814 			  unsigned long action, void *data)
4815 {
4816 	struct device *dev, *child = data;
4817 	struct ptp_ocp *bp;
4818 	bool add;
4819 
4820 	switch (action) {
4821 	case BUS_NOTIFY_ADD_DEVICE:
4822 	case BUS_NOTIFY_DEL_DEVICE:
4823 		add = action == BUS_NOTIFY_ADD_DEVICE;
4824 		break;
4825 	default:
4826 		return 0;
4827 	}
4828 
4829 	if (!i2c_verify_adapter(child))
4830 		return 0;
4831 
4832 	dev = child;
4833 	while ((dev = dev->parent))
4834 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4835 			goto found;
4836 	return 0;
4837 
4838 found:
4839 	bp = dev_get_drvdata(dev);
4840 	if (add)
4841 		ptp_ocp_symlink(bp, child, "i2c");
4842 	else
4843 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4844 
4845 	return 0;
4846 }
4847 
4848 static struct notifier_block ptp_ocp_i2c_notifier = {
4849 	.notifier_call = ptp_ocp_i2c_notifier_call,
4850 };
4851 
4852 static int __init
4853 ptp_ocp_init(void)
4854 {
4855 	const char *what;
4856 	int err;
4857 
4858 	ptp_ocp_debugfs_init();
4859 
4860 	what = "timecard class";
4861 	err = class_register(&timecard_class);
4862 	if (err)
4863 		goto out;
4864 
4865 	what = "i2c notifier";
4866 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4867 	if (err)
4868 		goto out_notifier;
4869 
4870 	what = "ptp_ocp driver";
4871 	err = pci_register_driver(&ptp_ocp_driver);
4872 	if (err)
4873 		goto out_register;
4874 
4875 	return 0;
4876 
4877 out_register:
4878 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4879 out_notifier:
4880 	class_unregister(&timecard_class);
4881 out:
4882 	ptp_ocp_debugfs_fini();
4883 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4884 	return err;
4885 }
4886 
4887 static void __exit
4888 ptp_ocp_fini(void)
4889 {
4890 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4891 	pci_unregister_driver(&ptp_ocp_driver);
4892 	class_unregister(&timecard_class);
4893 	ptp_ocp_debugfs_fini();
4894 }
4895 
4896 module_init(ptp_ocp_init);
4897 module_exit(ptp_ocp_fini);
4898 
4899 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4900 MODULE_LICENSE("GPL v2");
4901