1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2020 Facebook */ 3 4 #include <linux/bits.h> 5 #include <linux/err.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/debugfs.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/serial_8250.h> 12 #include <linux/clkdev.h> 13 #include <linux/clk-provider.h> 14 #include <linux/platform_device.h> 15 #include <linux/platform_data/i2c-xiic.h> 16 #include <linux/ptp_clock_kernel.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/xilinx_spi.h> 19 #include <net/devlink.h> 20 #include <linux/i2c.h> 21 #include <linux/mtd/mtd.h> 22 #include <linux/nvmem-consumer.h> 23 #include <linux/crc16.h> 24 25 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b 26 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 27 28 #define PCI_VENDOR_ID_CELESTICA 0x18d4 29 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 30 31 static struct class timecard_class = { 32 .owner = THIS_MODULE, 33 .name = "timecard", 34 }; 35 36 struct ocp_reg { 37 u32 ctrl; 38 u32 status; 39 u32 select; 40 u32 version; 41 u32 time_ns; 42 u32 time_sec; 43 u32 __pad0[2]; 44 u32 adjust_ns; 45 u32 adjust_sec; 46 u32 __pad1[2]; 47 u32 offset_ns; 48 u32 offset_window_ns; 49 u32 __pad2[2]; 50 u32 drift_ns; 51 u32 drift_window_ns; 52 u32 __pad3[6]; 53 u32 servo_offset_p; 54 u32 servo_offset_i; 55 u32 servo_drift_p; 56 u32 servo_drift_i; 57 u32 status_offset; 58 u32 status_drift; 59 }; 60 61 #define OCP_CTRL_ENABLE BIT(0) 62 #define OCP_CTRL_ADJUST_TIME BIT(1) 63 #define OCP_CTRL_ADJUST_OFFSET BIT(2) 64 #define OCP_CTRL_ADJUST_DRIFT BIT(3) 65 #define OCP_CTRL_ADJUST_SERVO BIT(8) 66 #define OCP_CTRL_READ_TIME_REQ BIT(30) 67 #define OCP_CTRL_READ_TIME_DONE BIT(31) 68 69 #define OCP_STATUS_IN_SYNC BIT(0) 70 #define OCP_STATUS_IN_HOLDOVER BIT(1) 71 72 #define OCP_SELECT_CLK_NONE 0 73 #define OCP_SELECT_CLK_REG 0xfe 74 75 struct tod_reg { 76 u32 ctrl; 77 u32 status; 78 u32 uart_polarity; 79 u32 version; 80 u32 adj_sec; 81 u32 __pad0[3]; 82 u32 uart_baud; 83 u32 __pad1[3]; 84 u32 utc_status; 85 u32 leap; 86 }; 87 88 #define TOD_CTRL_PROTOCOL BIT(28) 89 #define TOD_CTRL_DISABLE_FMT_A BIT(17) 90 #define TOD_CTRL_DISABLE_FMT_B BIT(16) 91 #define TOD_CTRL_ENABLE BIT(0) 92 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) 93 #define TOD_CTRL_GNSS_SHIFT 24 94 95 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) 96 #define TOD_STATUS_UTC_VALID BIT(8) 97 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) 98 #define TOD_STATUS_LEAP_VALID BIT(16) 99 100 struct ts_reg { 101 u32 enable; 102 u32 error; 103 u32 polarity; 104 u32 version; 105 u32 __pad0[4]; 106 u32 cable_delay; 107 u32 __pad1[3]; 108 u32 intr; 109 u32 intr_mask; 110 u32 event_count; 111 u32 __pad2[1]; 112 u32 ts_count; 113 u32 time_ns; 114 u32 time_sec; 115 u32 data_width; 116 u32 data; 117 }; 118 119 struct pps_reg { 120 u32 ctrl; 121 u32 status; 122 u32 __pad0[6]; 123 u32 cable_delay; 124 }; 125 126 #define PPS_STATUS_FILTER_ERR BIT(0) 127 #define PPS_STATUS_SUPERV_ERR BIT(1) 128 129 struct img_reg { 130 u32 version; 131 }; 132 133 struct gpio_reg { 134 u32 gpio1; 135 u32 __pad0; 136 u32 gpio2; 137 u32 __pad1; 138 }; 139 140 struct irig_master_reg { 141 u32 ctrl; 142 u32 status; 143 u32 __pad0; 144 u32 version; 145 u32 adj_sec; 146 u32 mode_ctrl; 147 }; 148 149 #define IRIG_M_CTRL_ENABLE BIT(0) 150 151 struct irig_slave_reg { 152 u32 ctrl; 153 u32 status; 154 u32 __pad0; 155 u32 version; 156 u32 adj_sec; 157 u32 mode_ctrl; 158 }; 159 160 #define IRIG_S_CTRL_ENABLE BIT(0) 161 162 struct dcf_master_reg { 163 u32 ctrl; 164 u32 status; 165 u32 __pad0; 166 u32 version; 167 u32 adj_sec; 168 }; 169 170 #define DCF_M_CTRL_ENABLE BIT(0) 171 172 struct dcf_slave_reg { 173 u32 ctrl; 174 u32 status; 175 u32 __pad0; 176 u32 version; 177 u32 adj_sec; 178 }; 179 180 #define DCF_S_CTRL_ENABLE BIT(0) 181 182 struct signal_reg { 183 u32 enable; 184 u32 status; 185 u32 polarity; 186 u32 version; 187 u32 __pad0[4]; 188 u32 cable_delay; 189 u32 __pad1[3]; 190 u32 intr; 191 u32 intr_mask; 192 u32 __pad2[2]; 193 u32 start_ns; 194 u32 start_sec; 195 u32 pulse_ns; 196 u32 pulse_sec; 197 u32 period_ns; 198 u32 period_sec; 199 u32 repeat_count; 200 }; 201 202 struct frequency_reg { 203 u32 ctrl; 204 u32 status; 205 }; 206 #define FREQ_STATUS_VALID BIT(31) 207 #define FREQ_STATUS_ERROR BIT(30) 208 #define FREQ_STATUS_OVERRUN BIT(29) 209 #define FREQ_STATUS_MASK GENMASK(23, 0) 210 211 struct ptp_ocp_flash_info { 212 const char *name; 213 int pci_offset; 214 int data_size; 215 void *data; 216 }; 217 218 struct ptp_ocp_firmware_header { 219 char magic[4]; 220 __be16 pci_vendor_id; 221 __be16 pci_device_id; 222 __be32 image_size; 223 __be16 hw_revision; 224 __be16 crc; 225 }; 226 227 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" 228 229 struct ptp_ocp_i2c_info { 230 const char *name; 231 unsigned long fixed_rate; 232 size_t data_size; 233 void *data; 234 }; 235 236 struct ptp_ocp_ext_info { 237 int index; 238 irqreturn_t (*irq_fcn)(int irq, void *priv); 239 int (*enable)(void *priv, u32 req, bool enable); 240 }; 241 242 struct ptp_ocp_ext_src { 243 void __iomem *mem; 244 struct ptp_ocp *bp; 245 struct ptp_ocp_ext_info *info; 246 int irq_vec; 247 }; 248 249 enum ptp_ocp_sma_mode { 250 SMA_MODE_IN, 251 SMA_MODE_OUT, 252 }; 253 254 struct ptp_ocp_sma_connector { 255 enum ptp_ocp_sma_mode mode; 256 bool fixed_fcn; 257 bool fixed_dir; 258 bool disabled; 259 u8 default_fcn; 260 }; 261 262 struct ocp_attr_group { 263 u64 cap; 264 const struct attribute_group *group; 265 }; 266 267 #define OCP_CAP_BASIC BIT(0) 268 #define OCP_CAP_SIGNAL BIT(1) 269 #define OCP_CAP_FREQ BIT(2) 270 271 struct ptp_ocp_signal { 272 ktime_t period; 273 ktime_t pulse; 274 ktime_t phase; 275 ktime_t start; 276 int duty; 277 bool polarity; 278 bool running; 279 }; 280 281 #define OCP_BOARD_ID_LEN 13 282 #define OCP_SERIAL_LEN 6 283 284 struct ptp_ocp { 285 struct pci_dev *pdev; 286 struct device dev; 287 spinlock_t lock; 288 struct ocp_reg __iomem *reg; 289 struct tod_reg __iomem *tod; 290 struct pps_reg __iomem *pps_to_ext; 291 struct pps_reg __iomem *pps_to_clk; 292 struct gpio_reg __iomem *pps_select; 293 struct gpio_reg __iomem *sma_map1; 294 struct gpio_reg __iomem *sma_map2; 295 struct irig_master_reg __iomem *irig_out; 296 struct irig_slave_reg __iomem *irig_in; 297 struct dcf_master_reg __iomem *dcf_out; 298 struct dcf_slave_reg __iomem *dcf_in; 299 struct tod_reg __iomem *nmea_out; 300 struct frequency_reg __iomem *freq_in[4]; 301 struct ptp_ocp_ext_src *signal_out[4]; 302 struct ptp_ocp_ext_src *pps; 303 struct ptp_ocp_ext_src *ts0; 304 struct ptp_ocp_ext_src *ts1; 305 struct ptp_ocp_ext_src *ts2; 306 struct ptp_ocp_ext_src *ts3; 307 struct ptp_ocp_ext_src *ts4; 308 struct img_reg __iomem *image; 309 struct ptp_clock *ptp; 310 struct ptp_clock_info ptp_info; 311 struct platform_device *i2c_ctrl; 312 struct platform_device *spi_flash; 313 struct clk_hw *i2c_clk; 314 struct timer_list watchdog; 315 const struct attribute_group **attr_group; 316 const struct ptp_ocp_eeprom_map *eeprom_map; 317 struct dentry *debug_root; 318 time64_t gnss_lost; 319 int id; 320 int n_irqs; 321 int gnss_port; 322 int gnss2_port; 323 int mac_port; /* miniature atomic clock */ 324 int nmea_port; 325 bool fw_loader; 326 u8 fw_tag; 327 u16 fw_version; 328 u8 board_id[OCP_BOARD_ID_LEN]; 329 u8 serial[OCP_SERIAL_LEN]; 330 bool has_eeprom_data; 331 u32 pps_req_map; 332 int flash_start; 333 u32 utc_tai_offset; 334 u32 ts_window_adjust; 335 u64 fw_cap; 336 struct ptp_ocp_signal signal[4]; 337 struct ptp_ocp_sma_connector sma[4]; 338 const struct ocp_sma_op *sma_op; 339 }; 340 341 #define OCP_REQ_TIMESTAMP BIT(0) 342 #define OCP_REQ_PPS BIT(1) 343 344 struct ocp_resource { 345 unsigned long offset; 346 int size; 347 int irq_vec; 348 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); 349 void *extra; 350 unsigned long bp_offset; 351 const char * const name; 352 }; 353 354 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); 355 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); 356 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); 357 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); 358 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); 359 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 360 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); 361 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); 362 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); 363 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 364 struct ptp_perout_request *req); 365 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); 366 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); 367 368 static const struct ocp_attr_group fb_timecard_groups[]; 369 370 struct ptp_ocp_eeprom_map { 371 u16 off; 372 u16 len; 373 u32 bp_offset; 374 const void * const tag; 375 }; 376 377 #define EEPROM_ENTRY(addr, member) \ 378 .off = addr, \ 379 .len = sizeof_field(struct ptp_ocp, member), \ 380 .bp_offset = offsetof(struct ptp_ocp, member) 381 382 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ 383 (void *)((uintptr_t)(bp) + (map)->bp_offset); \ 384 }) 385 386 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { 387 { EEPROM_ENTRY(0x43, board_id) }, 388 { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, 389 { } 390 }; 391 392 #define bp_assign_entry(bp, res, val) ({ \ 393 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ 394 *(typeof(val) *)addr = val; \ 395 }) 396 397 #define OCP_RES_LOCATION(member) \ 398 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) 399 400 #define OCP_MEM_RESOURCE(member) \ 401 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem 402 403 #define OCP_SERIAL_RESOURCE(member) \ 404 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial 405 406 #define OCP_I2C_RESOURCE(member) \ 407 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c 408 409 #define OCP_SPI_RESOURCE(member) \ 410 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi 411 412 #define OCP_EXT_RESOURCE(member) \ 413 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext 414 415 /* This is the MSI vector mapping used. 416 * 0: PPS (TS5) 417 * 1: TS0 418 * 2: TS1 419 * 3: GNSS1 420 * 4: GNSS2 421 * 5: MAC 422 * 6: TS2 423 * 7: I2C controller 424 * 8: HWICAP (notused) 425 * 9: SPI Flash 426 * 10: NMEA 427 * 11: Signal Generator 1 428 * 12: Signal Generator 2 429 * 13: Signal Generator 3 430 * 14: Signal Generator 4 431 * 15: TS3 432 * 16: TS4 433 */ 434 435 static struct ocp_resource ocp_fb_resource[] = { 436 { 437 OCP_MEM_RESOURCE(reg), 438 .offset = 0x01000000, .size = 0x10000, 439 }, 440 { 441 OCP_EXT_RESOURCE(ts0), 442 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 443 .extra = &(struct ptp_ocp_ext_info) { 444 .index = 0, 445 .irq_fcn = ptp_ocp_ts_irq, 446 .enable = ptp_ocp_ts_enable, 447 }, 448 }, 449 { 450 OCP_EXT_RESOURCE(ts1), 451 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 452 .extra = &(struct ptp_ocp_ext_info) { 453 .index = 1, 454 .irq_fcn = ptp_ocp_ts_irq, 455 .enable = ptp_ocp_ts_enable, 456 }, 457 }, 458 { 459 OCP_EXT_RESOURCE(ts2), 460 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 461 .extra = &(struct ptp_ocp_ext_info) { 462 .index = 2, 463 .irq_fcn = ptp_ocp_ts_irq, 464 .enable = ptp_ocp_ts_enable, 465 }, 466 }, 467 { 468 OCP_EXT_RESOURCE(ts3), 469 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, 470 .extra = &(struct ptp_ocp_ext_info) { 471 .index = 3, 472 .irq_fcn = ptp_ocp_ts_irq, 473 .enable = ptp_ocp_ts_enable, 474 }, 475 }, 476 { 477 OCP_EXT_RESOURCE(ts4), 478 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, 479 .extra = &(struct ptp_ocp_ext_info) { 480 .index = 4, 481 .irq_fcn = ptp_ocp_ts_irq, 482 .enable = ptp_ocp_ts_enable, 483 }, 484 }, 485 /* Timestamp for PHC and/or PPS generator */ 486 { 487 OCP_EXT_RESOURCE(pps), 488 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 489 .extra = &(struct ptp_ocp_ext_info) { 490 .index = 5, 491 .irq_fcn = ptp_ocp_ts_irq, 492 .enable = ptp_ocp_ts_enable, 493 }, 494 }, 495 { 496 OCP_EXT_RESOURCE(signal_out[0]), 497 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 498 .extra = &(struct ptp_ocp_ext_info) { 499 .index = 1, 500 .irq_fcn = ptp_ocp_signal_irq, 501 .enable = ptp_ocp_signal_enable, 502 }, 503 }, 504 { 505 OCP_EXT_RESOURCE(signal_out[1]), 506 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 507 .extra = &(struct ptp_ocp_ext_info) { 508 .index = 2, 509 .irq_fcn = ptp_ocp_signal_irq, 510 .enable = ptp_ocp_signal_enable, 511 }, 512 }, 513 { 514 OCP_EXT_RESOURCE(signal_out[2]), 515 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, 516 .extra = &(struct ptp_ocp_ext_info) { 517 .index = 3, 518 .irq_fcn = ptp_ocp_signal_irq, 519 .enable = ptp_ocp_signal_enable, 520 }, 521 }, 522 { 523 OCP_EXT_RESOURCE(signal_out[3]), 524 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, 525 .extra = &(struct ptp_ocp_ext_info) { 526 .index = 4, 527 .irq_fcn = ptp_ocp_signal_irq, 528 .enable = ptp_ocp_signal_enable, 529 }, 530 }, 531 { 532 OCP_MEM_RESOURCE(pps_to_ext), 533 .offset = 0x01030000, .size = 0x10000, 534 }, 535 { 536 OCP_MEM_RESOURCE(pps_to_clk), 537 .offset = 0x01040000, .size = 0x10000, 538 }, 539 { 540 OCP_MEM_RESOURCE(tod), 541 .offset = 0x01050000, .size = 0x10000, 542 }, 543 { 544 OCP_MEM_RESOURCE(irig_in), 545 .offset = 0x01070000, .size = 0x10000, 546 }, 547 { 548 OCP_MEM_RESOURCE(irig_out), 549 .offset = 0x01080000, .size = 0x10000, 550 }, 551 { 552 OCP_MEM_RESOURCE(dcf_in), 553 .offset = 0x01090000, .size = 0x10000, 554 }, 555 { 556 OCP_MEM_RESOURCE(dcf_out), 557 .offset = 0x010A0000, .size = 0x10000, 558 }, 559 { 560 OCP_MEM_RESOURCE(nmea_out), 561 .offset = 0x010B0000, .size = 0x10000, 562 }, 563 { 564 OCP_MEM_RESOURCE(image), 565 .offset = 0x00020000, .size = 0x1000, 566 }, 567 { 568 OCP_MEM_RESOURCE(pps_select), 569 .offset = 0x00130000, .size = 0x1000, 570 }, 571 { 572 OCP_MEM_RESOURCE(sma_map1), 573 .offset = 0x00140000, .size = 0x1000, 574 }, 575 { 576 OCP_MEM_RESOURCE(sma_map2), 577 .offset = 0x00220000, .size = 0x1000, 578 }, 579 { 580 OCP_I2C_RESOURCE(i2c_ctrl), 581 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, 582 .extra = &(struct ptp_ocp_i2c_info) { 583 .name = "xiic-i2c", 584 .fixed_rate = 50000000, 585 .data_size = sizeof(struct xiic_i2c_platform_data), 586 .data = &(struct xiic_i2c_platform_data) { 587 .num_devices = 2, 588 .devices = (struct i2c_board_info[]) { 589 { I2C_BOARD_INFO("24c02", 0x50) }, 590 { I2C_BOARD_INFO("24mac402", 0x58), 591 .platform_data = "mac" }, 592 }, 593 }, 594 }, 595 }, 596 { 597 OCP_SERIAL_RESOURCE(gnss_port), 598 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 599 }, 600 { 601 OCP_SERIAL_RESOURCE(gnss2_port), 602 .offset = 0x00170000 + 0x1000, .irq_vec = 4, 603 }, 604 { 605 OCP_SERIAL_RESOURCE(mac_port), 606 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 607 }, 608 { 609 OCP_SERIAL_RESOURCE(nmea_port), 610 .offset = 0x00190000 + 0x1000, .irq_vec = 10, 611 }, 612 { 613 OCP_SPI_RESOURCE(spi_flash), 614 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 615 .extra = &(struct ptp_ocp_flash_info) { 616 .name = "xilinx_spi", .pci_offset = 0, 617 .data_size = sizeof(struct xspi_platform_data), 618 .data = &(struct xspi_platform_data) { 619 .num_chipselect = 1, 620 .bits_per_word = 8, 621 .num_devices = 1, 622 .devices = &(struct spi_board_info) { 623 .modalias = "spi-nor", 624 }, 625 }, 626 }, 627 }, 628 { 629 OCP_MEM_RESOURCE(freq_in[0]), 630 .offset = 0x01200000, .size = 0x10000, 631 }, 632 { 633 OCP_MEM_RESOURCE(freq_in[1]), 634 .offset = 0x01210000, .size = 0x10000, 635 }, 636 { 637 OCP_MEM_RESOURCE(freq_in[2]), 638 .offset = 0x01220000, .size = 0x10000, 639 }, 640 { 641 OCP_MEM_RESOURCE(freq_in[3]), 642 .offset = 0x01230000, .size = 0x10000, 643 }, 644 { 645 .setup = ptp_ocp_fb_board_init, 646 }, 647 { } 648 }; 649 650 static const struct pci_device_id ptp_ocp_pcidev_id[] = { 651 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, 652 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, 653 { } 654 }; 655 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); 656 657 static DEFINE_MUTEX(ptp_ocp_lock); 658 static DEFINE_IDR(ptp_ocp_idr); 659 660 struct ocp_selector { 661 const char *name; 662 int value; 663 }; 664 665 static const struct ocp_selector ptp_ocp_clock[] = { 666 { .name = "NONE", .value = 0 }, 667 { .name = "TOD", .value = 1 }, 668 { .name = "IRIG", .value = 2 }, 669 { .name = "PPS", .value = 3 }, 670 { .name = "PTP", .value = 4 }, 671 { .name = "RTC", .value = 5 }, 672 { .name = "DCF", .value = 6 }, 673 { .name = "REGS", .value = 0xfe }, 674 { .name = "EXT", .value = 0xff }, 675 { } 676 }; 677 678 #define SMA_DISABLE BIT(16) 679 #define SMA_ENABLE BIT(15) 680 #define SMA_SELECT_MASK GENMASK(14, 0) 681 682 static const struct ocp_selector ptp_ocp_sma_in[] = { 683 { .name = "10Mhz", .value = 0x0000 }, 684 { .name = "PPS1", .value = 0x0001 }, 685 { .name = "PPS2", .value = 0x0002 }, 686 { .name = "TS1", .value = 0x0004 }, 687 { .name = "TS2", .value = 0x0008 }, 688 { .name = "IRIG", .value = 0x0010 }, 689 { .name = "DCF", .value = 0x0020 }, 690 { .name = "TS3", .value = 0x0040 }, 691 { .name = "TS4", .value = 0x0080 }, 692 { .name = "FREQ1", .value = 0x0100 }, 693 { .name = "FREQ2", .value = 0x0200 }, 694 { .name = "FREQ3", .value = 0x0400 }, 695 { .name = "FREQ4", .value = 0x0800 }, 696 { .name = "None", .value = SMA_DISABLE }, 697 { } 698 }; 699 700 static const struct ocp_selector ptp_ocp_sma_out[] = { 701 { .name = "10Mhz", .value = 0x0000 }, 702 { .name = "PHC", .value = 0x0001 }, 703 { .name = "MAC", .value = 0x0002 }, 704 { .name = "GNSS1", .value = 0x0004 }, 705 { .name = "GNSS2", .value = 0x0008 }, 706 { .name = "IRIG", .value = 0x0010 }, 707 { .name = "DCF", .value = 0x0020 }, 708 { .name = "GEN1", .value = 0x0040 }, 709 { .name = "GEN2", .value = 0x0080 }, 710 { .name = "GEN3", .value = 0x0100 }, 711 { .name = "GEN4", .value = 0x0200 }, 712 { .name = "GND", .value = 0x2000 }, 713 { .name = "VCC", .value = 0x4000 }, 714 { } 715 }; 716 717 struct ocp_sma_op { 718 const struct ocp_selector *tbl[2]; 719 void (*init)(struct ptp_ocp *bp); 720 u32 (*get)(struct ptp_ocp *bp, int sma_nr); 721 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); 722 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); 723 }; 724 725 static void 726 ptp_ocp_sma_init(struct ptp_ocp *bp) 727 { 728 return bp->sma_op->init(bp); 729 } 730 731 static u32 732 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) 733 { 734 return bp->sma_op->get(bp, sma_nr); 735 } 736 737 static int 738 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 739 { 740 return bp->sma_op->set_inputs(bp, sma_nr, val); 741 } 742 743 static int 744 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 745 { 746 return bp->sma_op->set_output(bp, sma_nr, val); 747 } 748 749 static const char * 750 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) 751 { 752 int i; 753 754 for (i = 0; tbl[i].name; i++) 755 if (tbl[i].value == val) 756 return tbl[i].name; 757 return NULL; 758 } 759 760 static int 761 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) 762 { 763 const char *select; 764 int i; 765 766 for (i = 0; tbl[i].name; i++) { 767 select = tbl[i].name; 768 if (!strncasecmp(name, select, strlen(select))) 769 return tbl[i].value; 770 } 771 return -EINVAL; 772 } 773 774 static ssize_t 775 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) 776 { 777 ssize_t count; 778 int i; 779 780 count = 0; 781 for (i = 0; tbl[i].name; i++) 782 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); 783 if (count) 784 count--; 785 count += sysfs_emit_at(buf, count, "\n"); 786 return count; 787 } 788 789 static int 790 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, 791 struct ptp_system_timestamp *sts) 792 { 793 u32 ctrl, time_sec, time_ns; 794 int i; 795 796 ptp_read_system_prets(sts); 797 798 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 799 iowrite32(ctrl, &bp->reg->ctrl); 800 801 for (i = 0; i < 100; i++) { 802 ctrl = ioread32(&bp->reg->ctrl); 803 if (ctrl & OCP_CTRL_READ_TIME_DONE) 804 break; 805 } 806 ptp_read_system_postts(sts); 807 808 if (sts && bp->ts_window_adjust) { 809 s64 ns = timespec64_to_ns(&sts->post_ts); 810 811 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); 812 } 813 814 time_ns = ioread32(&bp->reg->time_ns); 815 time_sec = ioread32(&bp->reg->time_sec); 816 817 ts->tv_sec = time_sec; 818 ts->tv_nsec = time_ns; 819 820 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; 821 } 822 823 static int 824 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, 825 struct ptp_system_timestamp *sts) 826 { 827 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 828 unsigned long flags; 829 int err; 830 831 spin_lock_irqsave(&bp->lock, flags); 832 err = __ptp_ocp_gettime_locked(bp, ts, sts); 833 spin_unlock_irqrestore(&bp->lock, flags); 834 835 return err; 836 } 837 838 static void 839 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) 840 { 841 u32 ctrl, time_sec, time_ns; 842 u32 select; 843 844 time_ns = ts->tv_nsec; 845 time_sec = ts->tv_sec; 846 847 select = ioread32(&bp->reg->select); 848 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 849 850 iowrite32(time_ns, &bp->reg->adjust_ns); 851 iowrite32(time_sec, &bp->reg->adjust_sec); 852 853 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; 854 iowrite32(ctrl, &bp->reg->ctrl); 855 856 /* restore clock selection */ 857 iowrite32(select >> 16, &bp->reg->select); 858 } 859 860 static int 861 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) 862 { 863 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 864 unsigned long flags; 865 866 spin_lock_irqsave(&bp->lock, flags); 867 __ptp_ocp_settime_locked(bp, ts); 868 spin_unlock_irqrestore(&bp->lock, flags); 869 870 return 0; 871 } 872 873 static void 874 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) 875 { 876 u32 select, ctrl; 877 878 select = ioread32(&bp->reg->select); 879 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 880 881 iowrite32(adj_val, &bp->reg->offset_ns); 882 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); 883 884 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; 885 iowrite32(ctrl, &bp->reg->ctrl); 886 887 /* restore clock selection */ 888 iowrite32(select >> 16, &bp->reg->select); 889 } 890 891 static void 892 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) 893 { 894 struct timespec64 ts; 895 unsigned long flags; 896 int err; 897 898 spin_lock_irqsave(&bp->lock, flags); 899 err = __ptp_ocp_gettime_locked(bp, &ts, NULL); 900 if (likely(!err)) { 901 set_normalized_timespec64(&ts, ts.tv_sec, 902 ts.tv_nsec + delta_ns); 903 __ptp_ocp_settime_locked(bp, &ts); 904 } 905 spin_unlock_irqrestore(&bp->lock, flags); 906 } 907 908 static int 909 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) 910 { 911 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 912 unsigned long flags; 913 u32 adj_ns, sign; 914 915 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { 916 ptp_ocp_adjtime_coarse(bp, delta_ns); 917 return 0; 918 } 919 920 sign = delta_ns < 0 ? BIT(31) : 0; 921 adj_ns = sign ? -delta_ns : delta_ns; 922 923 spin_lock_irqsave(&bp->lock, flags); 924 __ptp_ocp_adjtime_locked(bp, sign | adj_ns); 925 spin_unlock_irqrestore(&bp->lock, flags); 926 927 return 0; 928 } 929 930 static int 931 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) 932 { 933 if (scaled_ppm == 0) 934 return 0; 935 936 return -EOPNOTSUPP; 937 } 938 939 static int 940 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) 941 { 942 return -EOPNOTSUPP; 943 } 944 945 static int 946 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, 947 int on) 948 { 949 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 950 struct ptp_ocp_ext_src *ext = NULL; 951 u32 req; 952 int err; 953 954 switch (rq->type) { 955 case PTP_CLK_REQ_EXTTS: 956 req = OCP_REQ_TIMESTAMP; 957 switch (rq->extts.index) { 958 case 0: 959 ext = bp->ts0; 960 break; 961 case 1: 962 ext = bp->ts1; 963 break; 964 case 2: 965 ext = bp->ts2; 966 break; 967 case 3: 968 ext = bp->ts3; 969 break; 970 case 4: 971 ext = bp->ts4; 972 break; 973 case 5: 974 ext = bp->pps; 975 break; 976 } 977 break; 978 case PTP_CLK_REQ_PPS: 979 req = OCP_REQ_PPS; 980 ext = bp->pps; 981 break; 982 case PTP_CLK_REQ_PEROUT: 983 switch (rq->perout.index) { 984 case 0: 985 /* This is a request for 1PPS on an output SMA. 986 * Allow, but assume manual configuration. 987 */ 988 if (on && (rq->perout.period.sec != 1 || 989 rq->perout.period.nsec != 0)) 990 return -EINVAL; 991 return 0; 992 case 1: 993 case 2: 994 case 3: 995 case 4: 996 req = rq->perout.index - 1; 997 ext = bp->signal_out[req]; 998 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); 999 if (err) 1000 return err; 1001 break; 1002 } 1003 break; 1004 default: 1005 return -EOPNOTSUPP; 1006 } 1007 1008 err = -ENXIO; 1009 if (ext) 1010 err = ext->info->enable(ext, req, on); 1011 1012 return err; 1013 } 1014 1015 static int 1016 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, 1017 enum ptp_pin_function func, unsigned chan) 1018 { 1019 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1020 char buf[16]; 1021 1022 switch (func) { 1023 case PTP_PF_NONE: 1024 snprintf(buf, sizeof(buf), "IN: None"); 1025 break; 1026 case PTP_PF_EXTTS: 1027 /* Allow timestamps, but require sysfs configuration. */ 1028 return 0; 1029 case PTP_PF_PEROUT: 1030 /* channel 0 is 1PPS from PHC. 1031 * channels 1..4 are the frequency generators. 1032 */ 1033 if (chan) 1034 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); 1035 else 1036 snprintf(buf, sizeof(buf), "OUT: PHC"); 1037 break; 1038 default: 1039 return -EOPNOTSUPP; 1040 } 1041 1042 return ptp_ocp_sma_store(bp, buf, pin + 1); 1043 } 1044 1045 static const struct ptp_clock_info ptp_ocp_clock_info = { 1046 .owner = THIS_MODULE, 1047 .name = KBUILD_MODNAME, 1048 .max_adj = 100000000, 1049 .gettimex64 = ptp_ocp_gettimex, 1050 .settime64 = ptp_ocp_settime, 1051 .adjtime = ptp_ocp_adjtime, 1052 .adjfine = ptp_ocp_null_adjfine, 1053 .adjphase = ptp_ocp_null_adjphase, 1054 .enable = ptp_ocp_enable, 1055 .verify = ptp_ocp_verify, 1056 .pps = true, 1057 .n_ext_ts = 6, 1058 .n_per_out = 5, 1059 }; 1060 1061 static void 1062 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) 1063 { 1064 u32 ctrl, select; 1065 1066 select = ioread32(&bp->reg->select); 1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1068 1069 iowrite32(0, &bp->reg->drift_ns); 1070 1071 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; 1072 iowrite32(ctrl, &bp->reg->ctrl); 1073 1074 /* restore clock selection */ 1075 iowrite32(select >> 16, &bp->reg->select); 1076 } 1077 1078 static void 1079 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) 1080 { 1081 unsigned long flags; 1082 1083 spin_lock_irqsave(&bp->lock, flags); 1084 1085 bp->utc_tai_offset = val; 1086 1087 if (bp->irig_out) 1088 iowrite32(val, &bp->irig_out->adj_sec); 1089 if (bp->dcf_out) 1090 iowrite32(val, &bp->dcf_out->adj_sec); 1091 if (bp->nmea_out) 1092 iowrite32(val, &bp->nmea_out->adj_sec); 1093 1094 spin_unlock_irqrestore(&bp->lock, flags); 1095 } 1096 1097 static void 1098 ptp_ocp_watchdog(struct timer_list *t) 1099 { 1100 struct ptp_ocp *bp = from_timer(bp, t, watchdog); 1101 unsigned long flags; 1102 u32 status, utc_offset; 1103 1104 status = ioread32(&bp->pps_to_clk->status); 1105 1106 if (status & PPS_STATUS_SUPERV_ERR) { 1107 iowrite32(status, &bp->pps_to_clk->status); 1108 if (!bp->gnss_lost) { 1109 spin_lock_irqsave(&bp->lock, flags); 1110 __ptp_ocp_clear_drift_locked(bp); 1111 spin_unlock_irqrestore(&bp->lock, flags); 1112 bp->gnss_lost = ktime_get_real_seconds(); 1113 } 1114 1115 } else if (bp->gnss_lost) { 1116 bp->gnss_lost = 0; 1117 } 1118 1119 /* if GNSS provides correct data we can rely on 1120 * it to get leap second information 1121 */ 1122 if (bp->tod) { 1123 status = ioread32(&bp->tod->utc_status); 1124 utc_offset = status & TOD_STATUS_UTC_MASK; 1125 if (status & TOD_STATUS_UTC_VALID && 1126 utc_offset != bp->utc_tai_offset) 1127 ptp_ocp_utc_distribute(bp, utc_offset); 1128 } 1129 1130 mod_timer(&bp->watchdog, jiffies + HZ); 1131 } 1132 1133 static void 1134 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) 1135 { 1136 ktime_t start, end; 1137 ktime_t delay; 1138 u32 ctrl; 1139 1140 ctrl = ioread32(&bp->reg->ctrl); 1141 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1142 1143 iowrite32(ctrl, &bp->reg->ctrl); 1144 1145 start = ktime_get_ns(); 1146 1147 ctrl = ioread32(&bp->reg->ctrl); 1148 1149 end = ktime_get_ns(); 1150 1151 delay = end - start; 1152 bp->ts_window_adjust = (delay >> 5) * 3; 1153 } 1154 1155 static int 1156 ptp_ocp_init_clock(struct ptp_ocp *bp) 1157 { 1158 struct timespec64 ts; 1159 bool sync; 1160 u32 ctrl; 1161 1162 ctrl = OCP_CTRL_ENABLE; 1163 iowrite32(ctrl, &bp->reg->ctrl); 1164 1165 /* NO DRIFT Correction */ 1166 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ 1167 iowrite32(0x2000, &bp->reg->servo_offset_p); 1168 iowrite32(0x1000, &bp->reg->servo_offset_i); 1169 iowrite32(0, &bp->reg->servo_drift_p); 1170 iowrite32(0, &bp->reg->servo_drift_i); 1171 1172 /* latch servo values */ 1173 ctrl |= OCP_CTRL_ADJUST_SERVO; 1174 iowrite32(ctrl, &bp->reg->ctrl); 1175 1176 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { 1177 dev_err(&bp->pdev->dev, "clock not enabled\n"); 1178 return -ENODEV; 1179 } 1180 1181 ptp_ocp_estimate_pci_timing(bp); 1182 1183 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 1184 if (!sync) { 1185 ktime_get_clocktai_ts64(&ts); 1186 ptp_ocp_settime(&bp->ptp_info, &ts); 1187 } 1188 1189 /* If there is a clock supervisor, then enable the watchdog */ 1190 if (bp->pps_to_clk) { 1191 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); 1192 mod_timer(&bp->watchdog, jiffies + HZ); 1193 } 1194 1195 return 0; 1196 } 1197 1198 static void 1199 ptp_ocp_tod_init(struct ptp_ocp *bp) 1200 { 1201 u32 ctrl, reg; 1202 1203 ctrl = ioread32(&bp->tod->ctrl); 1204 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; 1205 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); 1206 iowrite32(ctrl, &bp->tod->ctrl); 1207 1208 reg = ioread32(&bp->tod->utc_status); 1209 if (reg & TOD_STATUS_UTC_VALID) 1210 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); 1211 } 1212 1213 static const char * 1214 ptp_ocp_tod_proto_name(const int idx) 1215 { 1216 static const char * const proto_name[] = { 1217 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", 1218 "UBX", "UBX_UTC", "UBX_LS", "UBX_none" 1219 }; 1220 return proto_name[idx]; 1221 } 1222 1223 static const char * 1224 ptp_ocp_tod_gnss_name(int idx) 1225 { 1226 static const char * const gnss_name[] = { 1227 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", 1228 "Unknown" 1229 }; 1230 if (idx >= ARRAY_SIZE(gnss_name)) 1231 idx = ARRAY_SIZE(gnss_name) - 1; 1232 return gnss_name[idx]; 1233 } 1234 1235 struct ptp_ocp_nvmem_match_info { 1236 struct ptp_ocp *bp; 1237 const void * const tag; 1238 }; 1239 1240 static int 1241 ptp_ocp_nvmem_match(struct device *dev, const void *data) 1242 { 1243 const struct ptp_ocp_nvmem_match_info *info = data; 1244 1245 dev = dev->parent; 1246 if (!i2c_verify_client(dev) || info->tag != dev->platform_data) 1247 return 0; 1248 1249 while ((dev = dev->parent)) 1250 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 1251 return info->bp == dev_get_drvdata(dev); 1252 return 0; 1253 } 1254 1255 static inline struct nvmem_device * 1256 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) 1257 { 1258 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; 1259 1260 return nvmem_device_find(&info, ptp_ocp_nvmem_match); 1261 } 1262 1263 static inline void 1264 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) 1265 { 1266 if (!IS_ERR_OR_NULL(*nvmemp)) 1267 nvmem_device_put(*nvmemp); 1268 *nvmemp = NULL; 1269 } 1270 1271 static void 1272 ptp_ocp_read_eeprom(struct ptp_ocp *bp) 1273 { 1274 const struct ptp_ocp_eeprom_map *map; 1275 struct nvmem_device *nvmem; 1276 const void *tag; 1277 int ret; 1278 1279 if (!bp->i2c_ctrl) 1280 return; 1281 1282 tag = NULL; 1283 nvmem = NULL; 1284 1285 for (map = bp->eeprom_map; map->len; map++) { 1286 if (map->tag != tag) { 1287 tag = map->tag; 1288 ptp_ocp_nvmem_device_put(&nvmem); 1289 } 1290 if (!nvmem) { 1291 nvmem = ptp_ocp_nvmem_device_get(bp, tag); 1292 if (IS_ERR(nvmem)) { 1293 ret = PTR_ERR(nvmem); 1294 goto fail; 1295 } 1296 } 1297 ret = nvmem_device_read(nvmem, map->off, map->len, 1298 BP_MAP_ENTRY_ADDR(bp, map)); 1299 if (ret != map->len) 1300 goto fail; 1301 } 1302 1303 bp->has_eeprom_data = true; 1304 1305 out: 1306 ptp_ocp_nvmem_device_put(&nvmem); 1307 return; 1308 1309 fail: 1310 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); 1311 goto out; 1312 } 1313 1314 static struct device * 1315 ptp_ocp_find_flash(struct ptp_ocp *bp) 1316 { 1317 struct device *dev, *last; 1318 1319 last = NULL; 1320 dev = &bp->spi_flash->dev; 1321 1322 while ((dev = device_find_any_child(dev))) { 1323 if (!strcmp("mtd", dev_bus_name(dev))) 1324 break; 1325 put_device(last); 1326 last = dev; 1327 } 1328 put_device(last); 1329 1330 return dev; 1331 } 1332 1333 static int 1334 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, 1335 const u8 **data, size_t *size) 1336 { 1337 struct ptp_ocp *bp = devlink_priv(devlink); 1338 const struct ptp_ocp_firmware_header *hdr; 1339 size_t offset, length; 1340 u16 crc; 1341 1342 hdr = (const struct ptp_ocp_firmware_header *)fw->data; 1343 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { 1344 devlink_flash_update_status_notify(devlink, 1345 "No firmware header found, flashing raw image", 1346 NULL, 0, 0); 1347 offset = 0; 1348 length = fw->size; 1349 goto out; 1350 } 1351 1352 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || 1353 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { 1354 devlink_flash_update_status_notify(devlink, 1355 "Firmware image compatibility check failed", 1356 NULL, 0, 0); 1357 return -EINVAL; 1358 } 1359 1360 offset = sizeof(*hdr); 1361 length = be32_to_cpu(hdr->image_size); 1362 if (length != (fw->size - offset)) { 1363 devlink_flash_update_status_notify(devlink, 1364 "Firmware image size check failed", 1365 NULL, 0, 0); 1366 return -EINVAL; 1367 } 1368 1369 crc = crc16(0xffff, &fw->data[offset], length); 1370 if (be16_to_cpu(hdr->crc) != crc) { 1371 devlink_flash_update_status_notify(devlink, 1372 "Firmware image CRC check failed", 1373 NULL, 0, 0); 1374 return -EINVAL; 1375 } 1376 1377 out: 1378 *data = &fw->data[offset]; 1379 *size = length; 1380 1381 return 0; 1382 } 1383 1384 static int 1385 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, 1386 const struct firmware *fw) 1387 { 1388 struct mtd_info *mtd = dev_get_drvdata(dev); 1389 struct ptp_ocp *bp = devlink_priv(devlink); 1390 size_t off, len, size, resid, wrote; 1391 struct erase_info erase; 1392 size_t base, blksz; 1393 const u8 *data; 1394 int err; 1395 1396 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); 1397 if (err) 1398 goto out; 1399 1400 off = 0; 1401 base = bp->flash_start; 1402 blksz = 4096; 1403 resid = size; 1404 1405 while (resid) { 1406 devlink_flash_update_status_notify(devlink, "Flashing", 1407 NULL, off, size); 1408 1409 len = min_t(size_t, resid, blksz); 1410 erase.addr = base + off; 1411 erase.len = blksz; 1412 1413 err = mtd_erase(mtd, &erase); 1414 if (err) 1415 goto out; 1416 1417 err = mtd_write(mtd, base + off, len, &wrote, data + off); 1418 if (err) 1419 goto out; 1420 1421 off += blksz; 1422 resid -= len; 1423 } 1424 out: 1425 return err; 1426 } 1427 1428 static int 1429 ptp_ocp_devlink_flash_update(struct devlink *devlink, 1430 struct devlink_flash_update_params *params, 1431 struct netlink_ext_ack *extack) 1432 { 1433 struct ptp_ocp *bp = devlink_priv(devlink); 1434 struct device *dev; 1435 const char *msg; 1436 int err; 1437 1438 dev = ptp_ocp_find_flash(bp); 1439 if (!dev) { 1440 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); 1441 return -ENODEV; 1442 } 1443 1444 devlink_flash_update_status_notify(devlink, "Preparing to flash", 1445 NULL, 0, 0); 1446 1447 err = ptp_ocp_devlink_flash(devlink, dev, params->fw); 1448 1449 msg = err ? "Flash error" : "Flash complete"; 1450 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); 1451 1452 put_device(dev); 1453 return err; 1454 } 1455 1456 static int 1457 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, 1458 struct netlink_ext_ack *extack) 1459 { 1460 struct ptp_ocp *bp = devlink_priv(devlink); 1461 const char *fw_image; 1462 char buf[32]; 1463 int err; 1464 1465 err = devlink_info_driver_name_put(req, KBUILD_MODNAME); 1466 if (err) 1467 return err; 1468 1469 fw_image = bp->fw_loader ? "loader" : "fw"; 1470 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); 1471 err = devlink_info_version_running_put(req, fw_image, buf); 1472 if (err) 1473 return err; 1474 1475 if (!bp->has_eeprom_data) { 1476 ptp_ocp_read_eeprom(bp); 1477 if (!bp->has_eeprom_data) 1478 return 0; 1479 } 1480 1481 sprintf(buf, "%pM", bp->serial); 1482 err = devlink_info_serial_number_put(req, buf); 1483 if (err) 1484 return err; 1485 1486 err = devlink_info_version_fixed_put(req, 1487 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, 1488 bp->board_id); 1489 if (err) 1490 return err; 1491 1492 return 0; 1493 } 1494 1495 static const struct devlink_ops ptp_ocp_devlink_ops = { 1496 .flash_update = ptp_ocp_devlink_flash_update, 1497 .info_get = ptp_ocp_devlink_info_get, 1498 }; 1499 1500 static void __iomem * 1501 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) 1502 { 1503 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); 1504 1505 return devm_ioremap_resource(&bp->pdev->dev, &res); 1506 } 1507 1508 static void __iomem * 1509 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1510 { 1511 resource_size_t start; 1512 1513 start = pci_resource_start(bp->pdev, 0) + r->offset; 1514 return __ptp_ocp_get_mem(bp, start, r->size); 1515 } 1516 1517 static void 1518 ptp_ocp_set_irq_resource(struct resource *res, int irq) 1519 { 1520 struct resource r = DEFINE_RES_IRQ(irq); 1521 *res = r; 1522 } 1523 1524 static void 1525 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size) 1526 { 1527 struct resource r = DEFINE_RES_MEM(start, size); 1528 *res = r; 1529 } 1530 1531 static int 1532 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) 1533 { 1534 struct ptp_ocp_flash_info *info; 1535 struct pci_dev *pdev = bp->pdev; 1536 struct platform_device *p; 1537 struct resource res[2]; 1538 resource_size_t start; 1539 int id; 1540 1541 start = pci_resource_start(pdev, 0) + r->offset; 1542 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1543 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1544 1545 info = r->extra; 1546 id = pci_dev_id(pdev) << 1; 1547 id += info->pci_offset; 1548 1549 p = platform_device_register_resndata(&pdev->dev, info->name, id, 1550 res, 2, info->data, 1551 info->data_size); 1552 if (IS_ERR(p)) 1553 return PTR_ERR(p); 1554 1555 bp_assign_entry(bp, r, p); 1556 1557 return 0; 1558 } 1559 1560 static struct platform_device * 1561 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) 1562 { 1563 struct ptp_ocp_i2c_info *info; 1564 struct resource res[2]; 1565 resource_size_t start; 1566 1567 info = r->extra; 1568 start = pci_resource_start(pdev, 0) + r->offset; 1569 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1570 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1571 1572 return platform_device_register_resndata(&pdev->dev, info->name, 1573 id, res, 2, 1574 info->data, info->data_size); 1575 } 1576 1577 static int 1578 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) 1579 { 1580 struct pci_dev *pdev = bp->pdev; 1581 struct ptp_ocp_i2c_info *info; 1582 struct platform_device *p; 1583 struct clk_hw *clk; 1584 char buf[32]; 1585 int id; 1586 1587 info = r->extra; 1588 id = pci_dev_id(bp->pdev); 1589 1590 sprintf(buf, "AXI.%d", id); 1591 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 1592 info->fixed_rate); 1593 if (IS_ERR(clk)) 1594 return PTR_ERR(clk); 1595 bp->i2c_clk = clk; 1596 1597 sprintf(buf, "%s.%d", info->name, id); 1598 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); 1599 p = ptp_ocp_i2c_bus(bp->pdev, r, id); 1600 if (IS_ERR(p)) 1601 return PTR_ERR(p); 1602 1603 bp_assign_entry(bp, r, p); 1604 1605 return 0; 1606 } 1607 1608 /* The expectation is that this is triggered only on error. */ 1609 static irqreturn_t 1610 ptp_ocp_signal_irq(int irq, void *priv) 1611 { 1612 struct ptp_ocp_ext_src *ext = priv; 1613 struct signal_reg __iomem *reg = ext->mem; 1614 struct ptp_ocp *bp = ext->bp; 1615 u32 enable, status; 1616 int gen; 1617 1618 gen = ext->info->index - 1; 1619 1620 enable = ioread32(®->enable); 1621 status = ioread32(®->status); 1622 1623 /* disable generator on error */ 1624 if (status || !enable) { 1625 iowrite32(0, ®->intr_mask); 1626 iowrite32(0, ®->enable); 1627 bp->signal[gen].running = false; 1628 } 1629 1630 iowrite32(0, ®->intr); /* ack interrupt */ 1631 1632 return IRQ_HANDLED; 1633 } 1634 1635 static int 1636 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) 1637 { 1638 struct ptp_system_timestamp sts; 1639 struct timespec64 ts; 1640 ktime_t start_ns; 1641 int err; 1642 1643 if (!s->period) 1644 return 0; 1645 1646 if (!s->pulse) 1647 s->pulse = ktime_divns(s->period * s->duty, 100); 1648 1649 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); 1650 if (err) 1651 return err; 1652 1653 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; 1654 if (!s->start) { 1655 /* roundup() does not work on 32-bit systems */ 1656 s->start = DIV64_U64_ROUND_UP(start_ns, s->period); 1657 s->start = ktime_add(s->start, s->phase); 1658 } 1659 1660 if (s->duty < 1 || s->duty > 99) 1661 return -EINVAL; 1662 1663 if (s->pulse < 1 || s->pulse > s->period) 1664 return -EINVAL; 1665 1666 if (s->start < start_ns) 1667 return -EINVAL; 1668 1669 bp->signal[gen] = *s; 1670 1671 return 0; 1672 } 1673 1674 static int 1675 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 1676 struct ptp_perout_request *req) 1677 { 1678 struct ptp_ocp_signal s = { }; 1679 1680 s.polarity = bp->signal[gen].polarity; 1681 s.period = ktime_set(req->period.sec, req->period.nsec); 1682 if (!s.period) 1683 return 0; 1684 1685 if (req->flags & PTP_PEROUT_DUTY_CYCLE) { 1686 s.pulse = ktime_set(req->on.sec, req->on.nsec); 1687 s.duty = ktime_divns(s.pulse * 100, s.period); 1688 } 1689 1690 if (req->flags & PTP_PEROUT_PHASE) 1691 s.phase = ktime_set(req->phase.sec, req->phase.nsec); 1692 else 1693 s.start = ktime_set(req->start.sec, req->start.nsec); 1694 1695 return ptp_ocp_signal_set(bp, gen, &s); 1696 } 1697 1698 static int 1699 ptp_ocp_signal_enable(void *priv, u32 req, bool enable) 1700 { 1701 struct ptp_ocp_ext_src *ext = priv; 1702 struct signal_reg __iomem *reg = ext->mem; 1703 struct ptp_ocp *bp = ext->bp; 1704 struct timespec64 ts; 1705 int gen; 1706 1707 gen = ext->info->index - 1; 1708 1709 iowrite32(0, ®->intr_mask); 1710 iowrite32(0, ®->enable); 1711 bp->signal[gen].running = false; 1712 if (!enable) 1713 return 0; 1714 1715 ts = ktime_to_timespec64(bp->signal[gen].start); 1716 iowrite32(ts.tv_sec, ®->start_sec); 1717 iowrite32(ts.tv_nsec, ®->start_ns); 1718 1719 ts = ktime_to_timespec64(bp->signal[gen].period); 1720 iowrite32(ts.tv_sec, ®->period_sec); 1721 iowrite32(ts.tv_nsec, ®->period_ns); 1722 1723 ts = ktime_to_timespec64(bp->signal[gen].pulse); 1724 iowrite32(ts.tv_sec, ®->pulse_sec); 1725 iowrite32(ts.tv_nsec, ®->pulse_ns); 1726 1727 iowrite32(bp->signal[gen].polarity, ®->polarity); 1728 iowrite32(0, ®->repeat_count); 1729 1730 iowrite32(0, ®->intr); /* clear interrupt state */ 1731 iowrite32(1, ®->intr_mask); /* enable interrupt */ 1732 iowrite32(3, ®->enable); /* valid & enable */ 1733 1734 bp->signal[gen].running = true; 1735 1736 return 0; 1737 } 1738 1739 static irqreturn_t 1740 ptp_ocp_ts_irq(int irq, void *priv) 1741 { 1742 struct ptp_ocp_ext_src *ext = priv; 1743 struct ts_reg __iomem *reg = ext->mem; 1744 struct ptp_clock_event ev; 1745 u32 sec, nsec; 1746 1747 if (ext == ext->bp->pps) { 1748 if (ext->bp->pps_req_map & OCP_REQ_PPS) { 1749 ev.type = PTP_CLOCK_PPS; 1750 ptp_clock_event(ext->bp->ptp, &ev); 1751 } 1752 1753 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) 1754 goto out; 1755 } 1756 1757 /* XXX should fix API - this converts s/ns -> ts -> s/ns */ 1758 sec = ioread32(®->time_sec); 1759 nsec = ioread32(®->time_ns); 1760 1761 ev.type = PTP_CLOCK_EXTTS; 1762 ev.index = ext->info->index; 1763 ev.timestamp = sec * NSEC_PER_SEC + nsec; 1764 1765 ptp_clock_event(ext->bp->ptp, &ev); 1766 1767 out: 1768 iowrite32(1, ®->intr); /* write 1 to ack */ 1769 1770 return IRQ_HANDLED; 1771 } 1772 1773 static int 1774 ptp_ocp_ts_enable(void *priv, u32 req, bool enable) 1775 { 1776 struct ptp_ocp_ext_src *ext = priv; 1777 struct ts_reg __iomem *reg = ext->mem; 1778 struct ptp_ocp *bp = ext->bp; 1779 1780 if (ext == bp->pps) { 1781 u32 old_map = bp->pps_req_map; 1782 1783 if (enable) 1784 bp->pps_req_map |= req; 1785 else 1786 bp->pps_req_map &= ~req; 1787 1788 /* if no state change, just return */ 1789 if ((!!old_map ^ !!bp->pps_req_map) == 0) 1790 return 0; 1791 } 1792 1793 if (enable) { 1794 iowrite32(1, ®->enable); 1795 iowrite32(1, ®->intr_mask); 1796 iowrite32(1, ®->intr); 1797 } else { 1798 iowrite32(0, ®->intr_mask); 1799 iowrite32(0, ®->enable); 1800 } 1801 1802 return 0; 1803 } 1804 1805 static void 1806 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) 1807 { 1808 ext->info->enable(ext, ~0, false); 1809 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); 1810 kfree(ext); 1811 } 1812 1813 static int 1814 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) 1815 { 1816 struct pci_dev *pdev = bp->pdev; 1817 struct ptp_ocp_ext_src *ext; 1818 int err; 1819 1820 ext = kzalloc(sizeof(*ext), GFP_KERNEL); 1821 if (!ext) 1822 return -ENOMEM; 1823 1824 ext->mem = ptp_ocp_get_mem(bp, r); 1825 if (IS_ERR(ext->mem)) { 1826 err = PTR_ERR(ext->mem); 1827 goto out; 1828 } 1829 1830 ext->bp = bp; 1831 ext->info = r->extra; 1832 ext->irq_vec = r->irq_vec; 1833 1834 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, 1835 ext, "ocp%d.%s", bp->id, r->name); 1836 if (err) { 1837 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); 1838 goto out; 1839 } 1840 1841 bp_assign_entry(bp, r, ext); 1842 1843 return 0; 1844 1845 out: 1846 kfree(ext); 1847 return err; 1848 } 1849 1850 static int 1851 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) 1852 { 1853 struct pci_dev *pdev = bp->pdev; 1854 struct uart_8250_port uart; 1855 1856 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets 1857 * the serial port device claim and release the pci resource. 1858 */ 1859 memset(&uart, 0, sizeof(uart)); 1860 uart.port.dev = &pdev->dev; 1861 uart.port.iotype = UPIO_MEM; 1862 uart.port.regshift = 2; 1863 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; 1864 uart.port.irq = pci_irq_vector(pdev, r->irq_vec); 1865 uart.port.uartclk = 50000000; 1866 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; 1867 uart.port.type = PORT_16550A; 1868 1869 return serial8250_register_8250_port(&uart); 1870 } 1871 1872 static int 1873 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) 1874 { 1875 int port; 1876 1877 port = ptp_ocp_serial_line(bp, r); 1878 if (port < 0) 1879 return port; 1880 1881 bp_assign_entry(bp, r, port); 1882 1883 return 0; 1884 } 1885 1886 static int 1887 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1888 { 1889 void __iomem *mem; 1890 1891 mem = ptp_ocp_get_mem(bp, r); 1892 if (IS_ERR(mem)) 1893 return PTR_ERR(mem); 1894 1895 bp_assign_entry(bp, r, mem); 1896 1897 return 0; 1898 } 1899 1900 static void 1901 ptp_ocp_nmea_out_init(struct ptp_ocp *bp) 1902 { 1903 if (!bp->nmea_out) 1904 return; 1905 1906 iowrite32(0, &bp->nmea_out->ctrl); /* disable */ 1907 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ 1908 iowrite32(1, &bp->nmea_out->ctrl); /* enable */ 1909 } 1910 1911 static void 1912 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) 1913 { 1914 u32 val; 1915 1916 iowrite32(0, ®->enable); /* disable */ 1917 1918 val = ioread32(®->polarity); 1919 s->polarity = val ? true : false; 1920 s->duty = 50; 1921 } 1922 1923 static void 1924 ptp_ocp_signal_init(struct ptp_ocp *bp) 1925 { 1926 int i; 1927 1928 for (i = 0; i < 4; i++) 1929 if (bp->signal_out[i]) 1930 _ptp_ocp_signal_init(&bp->signal[i], 1931 bp->signal_out[i]->mem); 1932 } 1933 1934 static void 1935 ptp_ocp_attr_group_del(struct ptp_ocp *bp) 1936 { 1937 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); 1938 kfree(bp->attr_group); 1939 } 1940 1941 static int 1942 ptp_ocp_attr_group_add(struct ptp_ocp *bp, 1943 const struct ocp_attr_group *attr_tbl) 1944 { 1945 int count, i; 1946 int err; 1947 1948 count = 0; 1949 for (i = 0; attr_tbl[i].cap; i++) 1950 if (attr_tbl[i].cap & bp->fw_cap) 1951 count++; 1952 1953 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), 1954 GFP_KERNEL); 1955 if (!bp->attr_group) 1956 return -ENOMEM; 1957 1958 count = 0; 1959 for (i = 0; attr_tbl[i].cap; i++) 1960 if (attr_tbl[i].cap & bp->fw_cap) 1961 bp->attr_group[count++] = attr_tbl[i].group; 1962 1963 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); 1964 if (err) 1965 bp->attr_group[0] = NULL; 1966 1967 return err; 1968 } 1969 1970 static void 1971 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) 1972 { 1973 u32 ctrl; 1974 bool on; 1975 1976 ctrl = ioread32(reg); 1977 on = ctrl & bit; 1978 if (on ^ enable) { 1979 ctrl &= ~bit; 1980 ctrl |= enable ? bit : 0; 1981 iowrite32(ctrl, reg); 1982 } 1983 } 1984 1985 static void 1986 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) 1987 { 1988 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, 1989 IRIG_M_CTRL_ENABLE, enable); 1990 } 1991 1992 static void 1993 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) 1994 { 1995 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, 1996 IRIG_S_CTRL_ENABLE, enable); 1997 } 1998 1999 static void 2000 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) 2001 { 2002 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, 2003 DCF_M_CTRL_ENABLE, enable); 2004 } 2005 2006 static void 2007 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) 2008 { 2009 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, 2010 DCF_S_CTRL_ENABLE, enable); 2011 } 2012 2013 static void 2014 __handle_signal_outputs(struct ptp_ocp *bp, u32 val) 2015 { 2016 ptp_ocp_irig_out(bp, val & 0x00100010); 2017 ptp_ocp_dcf_out(bp, val & 0x00200020); 2018 } 2019 2020 static void 2021 __handle_signal_inputs(struct ptp_ocp *bp, u32 val) 2022 { 2023 ptp_ocp_irig_in(bp, val & 0x00100010); 2024 ptp_ocp_dcf_in(bp, val & 0x00200020); 2025 } 2026 2027 static u32 2028 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) 2029 { 2030 u32 __iomem *gpio; 2031 u32 shift; 2032 2033 if (bp->sma[sma_nr - 1].fixed_fcn) 2034 return (sma_nr - 1) & 1; 2035 2036 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) 2037 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2038 else 2039 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2040 shift = sma_nr & 1 ? 0 : 16; 2041 2042 return (ioread32(gpio) >> shift) & 0xffff; 2043 } 2044 2045 static int 2046 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 2047 { 2048 u32 reg, mask, shift; 2049 unsigned long flags; 2050 u32 __iomem *gpio; 2051 2052 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2053 shift = sma_nr & 1 ? 0 : 16; 2054 2055 mask = 0xffff << (16 - shift); 2056 2057 spin_lock_irqsave(&bp->lock, flags); 2058 2059 reg = ioread32(gpio); 2060 reg = (reg & mask) | (val << shift); 2061 2062 __handle_signal_outputs(bp, reg); 2063 2064 iowrite32(reg, gpio); 2065 2066 spin_unlock_irqrestore(&bp->lock, flags); 2067 2068 return 0; 2069 } 2070 2071 static int 2072 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 2073 { 2074 u32 reg, mask, shift; 2075 unsigned long flags; 2076 u32 __iomem *gpio; 2077 2078 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2079 shift = sma_nr & 1 ? 0 : 16; 2080 2081 mask = 0xffff << (16 - shift); 2082 2083 spin_lock_irqsave(&bp->lock, flags); 2084 2085 reg = ioread32(gpio); 2086 reg = (reg & mask) | (val << shift); 2087 2088 __handle_signal_inputs(bp, reg); 2089 2090 iowrite32(reg, gpio); 2091 2092 spin_unlock_irqrestore(&bp->lock, flags); 2093 2094 return 0; 2095 } 2096 2097 static void 2098 ptp_ocp_sma_fb_init(struct ptp_ocp *bp) 2099 { 2100 u32 reg; 2101 int i; 2102 2103 /* defaults */ 2104 bp->sma[0].mode = SMA_MODE_IN; 2105 bp->sma[1].mode = SMA_MODE_IN; 2106 bp->sma[2].mode = SMA_MODE_OUT; 2107 bp->sma[3].mode = SMA_MODE_OUT; 2108 for (i = 0; i < 4; i++) 2109 bp->sma[i].default_fcn = i & 1; 2110 2111 /* If no SMA1 map, the pin functions and directions are fixed. */ 2112 if (!bp->sma_map1) { 2113 for (i = 0; i < 4; i++) { 2114 bp->sma[i].fixed_fcn = true; 2115 bp->sma[i].fixed_dir = true; 2116 } 2117 return; 2118 } 2119 2120 /* If SMA2 GPIO output map is all 1, it is not present. 2121 * This indicates the firmware has fixed direction SMA pins. 2122 */ 2123 reg = ioread32(&bp->sma_map2->gpio2); 2124 if (reg == 0xffffffff) { 2125 for (i = 0; i < 4; i++) 2126 bp->sma[i].fixed_dir = true; 2127 } else { 2128 reg = ioread32(&bp->sma_map1->gpio1); 2129 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; 2130 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; 2131 2132 reg = ioread32(&bp->sma_map1->gpio2); 2133 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; 2134 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; 2135 } 2136 } 2137 2138 static const struct ocp_sma_op ocp_fb_sma_op = { 2139 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, 2140 .init = ptp_ocp_sma_fb_init, 2141 .get = ptp_ocp_sma_fb_get, 2142 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2143 .set_output = ptp_ocp_sma_fb_set_output, 2144 }; 2145 2146 static int 2147 ptp_ocp_fb_set_pins(struct ptp_ocp *bp) 2148 { 2149 struct ptp_pin_desc *config; 2150 int i; 2151 2152 config = kcalloc(4, sizeof(*config), GFP_KERNEL); 2153 if (!config) 2154 return -ENOMEM; 2155 2156 for (i = 0; i < 4; i++) { 2157 sprintf(config[i].name, "sma%d", i + 1); 2158 config[i].index = i; 2159 } 2160 2161 bp->ptp_info.n_pins = 4; 2162 bp->ptp_info.pin_config = config; 2163 2164 return 0; 2165 } 2166 2167 static void 2168 ptp_ocp_fb_set_version(struct ptp_ocp *bp) 2169 { 2170 u64 cap = OCP_CAP_BASIC; 2171 u32 version; 2172 2173 version = ioread32(&bp->image->version); 2174 2175 /* if lower 16 bits are empty, this is the fw loader. */ 2176 if ((version & 0xffff) == 0) { 2177 version = version >> 16; 2178 bp->fw_loader = true; 2179 } 2180 2181 bp->fw_tag = version >> 15; 2182 bp->fw_version = version & 0x7fff; 2183 2184 if (bp->fw_tag) { 2185 /* FPGA firmware */ 2186 if (version >= 5) 2187 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2188 } else { 2189 /* SOM firmware */ 2190 if (version >= 19) 2191 cap |= OCP_CAP_SIGNAL; 2192 if (version >= 20) 2193 cap |= OCP_CAP_FREQ; 2194 } 2195 2196 bp->fw_cap = cap; 2197 } 2198 2199 /* FB specific board initializers; last "resource" registered. */ 2200 static int 2201 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2202 { 2203 int err; 2204 2205 bp->flash_start = 1024 * 4096; 2206 bp->eeprom_map = fb_eeprom_map; 2207 bp->fw_version = ioread32(&bp->image->version); 2208 bp->sma_op = &ocp_fb_sma_op; 2209 2210 ptp_ocp_fb_set_version(bp); 2211 2212 ptp_ocp_tod_init(bp); 2213 ptp_ocp_nmea_out_init(bp); 2214 ptp_ocp_sma_init(bp); 2215 ptp_ocp_signal_init(bp); 2216 2217 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); 2218 if (err) 2219 return err; 2220 2221 err = ptp_ocp_fb_set_pins(bp); 2222 if (err) 2223 return err; 2224 2225 return ptp_ocp_init_clock(bp); 2226 } 2227 2228 static bool 2229 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) 2230 { 2231 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; 2232 2233 if (!allow) 2234 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", 2235 r->irq_vec, r->name); 2236 return allow; 2237 } 2238 2239 static int 2240 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) 2241 { 2242 struct ocp_resource *r, *table; 2243 int err = 0; 2244 2245 table = (struct ocp_resource *)driver_data; 2246 for (r = table; r->setup; r++) { 2247 if (!ptp_ocp_allow_irq(bp, r)) 2248 continue; 2249 err = r->setup(bp, r); 2250 if (err) { 2251 dev_err(&bp->pdev->dev, 2252 "Could not register %s: err %d\n", 2253 r->name, err); 2254 break; 2255 } 2256 } 2257 return err; 2258 } 2259 2260 static ssize_t 2261 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, 2262 int def_val) 2263 { 2264 const char *name; 2265 ssize_t count; 2266 2267 count = sysfs_emit(buf, "OUT: "); 2268 name = ptp_ocp_select_name_from_val(tbl, val); 2269 if (!name) 2270 name = ptp_ocp_select_name_from_val(tbl, def_val); 2271 count += sysfs_emit_at(buf, count, "%s\n", name); 2272 return count; 2273 } 2274 2275 static ssize_t 2276 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, 2277 int def_val) 2278 { 2279 const char *name; 2280 ssize_t count; 2281 int i; 2282 2283 count = sysfs_emit(buf, "IN: "); 2284 for (i = 0; tbl[i].name; i++) { 2285 if (val & tbl[i].value) { 2286 name = tbl[i].name; 2287 count += sysfs_emit_at(buf, count, "%s ", name); 2288 } 2289 } 2290 if (!val && def_val >= 0) { 2291 name = ptp_ocp_select_name_from_val(tbl, def_val); 2292 count += sysfs_emit_at(buf, count, "%s ", name); 2293 } 2294 if (count) 2295 count--; 2296 count += sysfs_emit_at(buf, count, "\n"); 2297 return count; 2298 } 2299 2300 static int 2301 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, 2302 enum ptp_ocp_sma_mode *mode) 2303 { 2304 int idx, count, dir; 2305 char **argv; 2306 int ret; 2307 2308 argv = argv_split(GFP_KERNEL, buf, &count); 2309 if (!argv) 2310 return -ENOMEM; 2311 2312 ret = -EINVAL; 2313 if (!count) 2314 goto out; 2315 2316 idx = 0; 2317 dir = *mode == SMA_MODE_IN ? 0 : 1; 2318 if (!strcasecmp("IN:", argv[0])) { 2319 dir = 0; 2320 idx++; 2321 } 2322 if (!strcasecmp("OUT:", argv[0])) { 2323 dir = 1; 2324 idx++; 2325 } 2326 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; 2327 2328 ret = 0; 2329 for (; idx < count; idx++) 2330 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); 2331 if (ret < 0) 2332 ret = -EINVAL; 2333 2334 out: 2335 argv_free(argv); 2336 return ret; 2337 } 2338 2339 static ssize_t 2340 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, 2341 int default_in_val, int default_out_val) 2342 { 2343 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2344 const struct ocp_selector * const *tbl; 2345 u32 val; 2346 2347 tbl = bp->sma_op->tbl; 2348 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; 2349 2350 if (sma->mode == SMA_MODE_IN) { 2351 if (sma->disabled) 2352 val = SMA_DISABLE; 2353 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); 2354 } 2355 2356 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); 2357 } 2358 2359 static ssize_t 2360 sma1_show(struct device *dev, struct device_attribute *attr, char *buf) 2361 { 2362 struct ptp_ocp *bp = dev_get_drvdata(dev); 2363 2364 return ptp_ocp_sma_show(bp, 1, buf, 0, 1); 2365 } 2366 2367 static ssize_t 2368 sma2_show(struct device *dev, struct device_attribute *attr, char *buf) 2369 { 2370 struct ptp_ocp *bp = dev_get_drvdata(dev); 2371 2372 return ptp_ocp_sma_show(bp, 2, buf, -1, 1); 2373 } 2374 2375 static ssize_t 2376 sma3_show(struct device *dev, struct device_attribute *attr, char *buf) 2377 { 2378 struct ptp_ocp *bp = dev_get_drvdata(dev); 2379 2380 return ptp_ocp_sma_show(bp, 3, buf, -1, 0); 2381 } 2382 2383 static ssize_t 2384 sma4_show(struct device *dev, struct device_attribute *attr, char *buf) 2385 { 2386 struct ptp_ocp *bp = dev_get_drvdata(dev); 2387 2388 return ptp_ocp_sma_show(bp, 4, buf, -1, 1); 2389 } 2390 2391 static int 2392 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) 2393 { 2394 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2395 enum ptp_ocp_sma_mode mode; 2396 int val; 2397 2398 mode = sma->mode; 2399 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); 2400 if (val < 0) 2401 return val; 2402 2403 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) 2404 return -EOPNOTSUPP; 2405 2406 if (sma->fixed_fcn) { 2407 if (val != sma->default_fcn) 2408 return -EOPNOTSUPP; 2409 return 0; 2410 } 2411 2412 sma->disabled = !!(val & SMA_DISABLE); 2413 2414 if (mode != sma->mode) { 2415 if (mode == SMA_MODE_IN) 2416 ptp_ocp_sma_set_output(bp, sma_nr, 0); 2417 else 2418 ptp_ocp_sma_set_inputs(bp, sma_nr, 0); 2419 sma->mode = mode; 2420 } 2421 2422 if (!sma->fixed_dir) 2423 val |= SMA_ENABLE; /* add enable bit */ 2424 2425 if (sma->disabled) 2426 val = 0; 2427 2428 if (mode == SMA_MODE_IN) 2429 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); 2430 else 2431 val = ptp_ocp_sma_set_output(bp, sma_nr, val); 2432 2433 return val; 2434 } 2435 2436 static ssize_t 2437 sma1_store(struct device *dev, struct device_attribute *attr, 2438 const char *buf, size_t count) 2439 { 2440 struct ptp_ocp *bp = dev_get_drvdata(dev); 2441 int err; 2442 2443 err = ptp_ocp_sma_store(bp, buf, 1); 2444 return err ? err : count; 2445 } 2446 2447 static ssize_t 2448 sma2_store(struct device *dev, struct device_attribute *attr, 2449 const char *buf, size_t count) 2450 { 2451 struct ptp_ocp *bp = dev_get_drvdata(dev); 2452 int err; 2453 2454 err = ptp_ocp_sma_store(bp, buf, 2); 2455 return err ? err : count; 2456 } 2457 2458 static ssize_t 2459 sma3_store(struct device *dev, struct device_attribute *attr, 2460 const char *buf, size_t count) 2461 { 2462 struct ptp_ocp *bp = dev_get_drvdata(dev); 2463 int err; 2464 2465 err = ptp_ocp_sma_store(bp, buf, 3); 2466 return err ? err : count; 2467 } 2468 2469 static ssize_t 2470 sma4_store(struct device *dev, struct device_attribute *attr, 2471 const char *buf, size_t count) 2472 { 2473 struct ptp_ocp *bp = dev_get_drvdata(dev); 2474 int err; 2475 2476 err = ptp_ocp_sma_store(bp, buf, 4); 2477 return err ? err : count; 2478 } 2479 static DEVICE_ATTR_RW(sma1); 2480 static DEVICE_ATTR_RW(sma2); 2481 static DEVICE_ATTR_RW(sma3); 2482 static DEVICE_ATTR_RW(sma4); 2483 2484 static ssize_t 2485 available_sma_inputs_show(struct device *dev, 2486 struct device_attribute *attr, char *buf) 2487 { 2488 struct ptp_ocp *bp = dev_get_drvdata(dev); 2489 2490 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); 2491 } 2492 static DEVICE_ATTR_RO(available_sma_inputs); 2493 2494 static ssize_t 2495 available_sma_outputs_show(struct device *dev, 2496 struct device_attribute *attr, char *buf) 2497 { 2498 struct ptp_ocp *bp = dev_get_drvdata(dev); 2499 2500 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); 2501 } 2502 static DEVICE_ATTR_RO(available_sma_outputs); 2503 2504 #define EXT_ATTR_RO(_group, _name, _val) \ 2505 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2506 { __ATTR_RO(_name), (void *)_val } 2507 #define EXT_ATTR_RW(_group, _name, _val) \ 2508 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2509 { __ATTR_RW(_name), (void *)_val } 2510 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2511 2512 /* period [duty [phase [polarity]]] */ 2513 static ssize_t 2514 signal_store(struct device *dev, struct device_attribute *attr, 2515 const char *buf, size_t count) 2516 { 2517 struct dev_ext_attribute *ea = to_ext_attr(attr); 2518 struct ptp_ocp *bp = dev_get_drvdata(dev); 2519 struct ptp_ocp_signal s = { }; 2520 int gen = (uintptr_t)ea->var; 2521 int argc, err; 2522 char **argv; 2523 2524 argv = argv_split(GFP_KERNEL, buf, &argc); 2525 if (!argv) 2526 return -ENOMEM; 2527 2528 err = -EINVAL; 2529 s.duty = bp->signal[gen].duty; 2530 s.phase = bp->signal[gen].phase; 2531 s.period = bp->signal[gen].period; 2532 s.polarity = bp->signal[gen].polarity; 2533 2534 switch (argc) { 2535 case 4: 2536 argc--; 2537 err = kstrtobool(argv[argc], &s.polarity); 2538 if (err) 2539 goto out; 2540 fallthrough; 2541 case 3: 2542 argc--; 2543 err = kstrtou64(argv[argc], 0, &s.phase); 2544 if (err) 2545 goto out; 2546 fallthrough; 2547 case 2: 2548 argc--; 2549 err = kstrtoint(argv[argc], 0, &s.duty); 2550 if (err) 2551 goto out; 2552 fallthrough; 2553 case 1: 2554 argc--; 2555 err = kstrtou64(argv[argc], 0, &s.period); 2556 if (err) 2557 goto out; 2558 break; 2559 default: 2560 goto out; 2561 } 2562 2563 err = ptp_ocp_signal_set(bp, gen, &s); 2564 if (err) 2565 goto out; 2566 2567 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); 2568 2569 out: 2570 argv_free(argv); 2571 return err ? err : count; 2572 } 2573 2574 static ssize_t 2575 signal_show(struct device *dev, struct device_attribute *attr, char *buf) 2576 { 2577 struct dev_ext_attribute *ea = to_ext_attr(attr); 2578 struct ptp_ocp *bp = dev_get_drvdata(dev); 2579 struct ptp_ocp_signal *signal; 2580 struct timespec64 ts; 2581 ssize_t count; 2582 int i; 2583 2584 i = (uintptr_t)ea->var; 2585 signal = &bp->signal[i]; 2586 2587 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, 2588 signal->duty, signal->phase, signal->polarity); 2589 2590 ts = ktime_to_timespec64(signal->start); 2591 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); 2592 2593 return count; 2594 } 2595 static EXT_ATTR_RW(signal, signal, 0); 2596 static EXT_ATTR_RW(signal, signal, 1); 2597 static EXT_ATTR_RW(signal, signal, 2); 2598 static EXT_ATTR_RW(signal, signal, 3); 2599 2600 static ssize_t 2601 duty_show(struct device *dev, struct device_attribute *attr, char *buf) 2602 { 2603 struct dev_ext_attribute *ea = to_ext_attr(attr); 2604 struct ptp_ocp *bp = dev_get_drvdata(dev); 2605 int i = (uintptr_t)ea->var; 2606 2607 return sysfs_emit(buf, "%d\n", bp->signal[i].duty); 2608 } 2609 static EXT_ATTR_RO(signal, duty, 0); 2610 static EXT_ATTR_RO(signal, duty, 1); 2611 static EXT_ATTR_RO(signal, duty, 2); 2612 static EXT_ATTR_RO(signal, duty, 3); 2613 2614 static ssize_t 2615 period_show(struct device *dev, struct device_attribute *attr, char *buf) 2616 { 2617 struct dev_ext_attribute *ea = to_ext_attr(attr); 2618 struct ptp_ocp *bp = dev_get_drvdata(dev); 2619 int i = (uintptr_t)ea->var; 2620 2621 return sysfs_emit(buf, "%llu\n", bp->signal[i].period); 2622 } 2623 static EXT_ATTR_RO(signal, period, 0); 2624 static EXT_ATTR_RO(signal, period, 1); 2625 static EXT_ATTR_RO(signal, period, 2); 2626 static EXT_ATTR_RO(signal, period, 3); 2627 2628 static ssize_t 2629 phase_show(struct device *dev, struct device_attribute *attr, char *buf) 2630 { 2631 struct dev_ext_attribute *ea = to_ext_attr(attr); 2632 struct ptp_ocp *bp = dev_get_drvdata(dev); 2633 int i = (uintptr_t)ea->var; 2634 2635 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); 2636 } 2637 static EXT_ATTR_RO(signal, phase, 0); 2638 static EXT_ATTR_RO(signal, phase, 1); 2639 static EXT_ATTR_RO(signal, phase, 2); 2640 static EXT_ATTR_RO(signal, phase, 3); 2641 2642 static ssize_t 2643 polarity_show(struct device *dev, struct device_attribute *attr, 2644 char *buf) 2645 { 2646 struct dev_ext_attribute *ea = to_ext_attr(attr); 2647 struct ptp_ocp *bp = dev_get_drvdata(dev); 2648 int i = (uintptr_t)ea->var; 2649 2650 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); 2651 } 2652 static EXT_ATTR_RO(signal, polarity, 0); 2653 static EXT_ATTR_RO(signal, polarity, 1); 2654 static EXT_ATTR_RO(signal, polarity, 2); 2655 static EXT_ATTR_RO(signal, polarity, 3); 2656 2657 static ssize_t 2658 running_show(struct device *dev, struct device_attribute *attr, char *buf) 2659 { 2660 struct dev_ext_attribute *ea = to_ext_attr(attr); 2661 struct ptp_ocp *bp = dev_get_drvdata(dev); 2662 int i = (uintptr_t)ea->var; 2663 2664 return sysfs_emit(buf, "%d\n", bp->signal[i].running); 2665 } 2666 static EXT_ATTR_RO(signal, running, 0); 2667 static EXT_ATTR_RO(signal, running, 1); 2668 static EXT_ATTR_RO(signal, running, 2); 2669 static EXT_ATTR_RO(signal, running, 3); 2670 2671 static ssize_t 2672 start_show(struct device *dev, struct device_attribute *attr, char *buf) 2673 { 2674 struct dev_ext_attribute *ea = to_ext_attr(attr); 2675 struct ptp_ocp *bp = dev_get_drvdata(dev); 2676 int i = (uintptr_t)ea->var; 2677 struct timespec64 ts; 2678 2679 ts = ktime_to_timespec64(bp->signal[i].start); 2680 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); 2681 } 2682 static EXT_ATTR_RO(signal, start, 0); 2683 static EXT_ATTR_RO(signal, start, 1); 2684 static EXT_ATTR_RO(signal, start, 2); 2685 static EXT_ATTR_RO(signal, start, 3); 2686 2687 static ssize_t 2688 seconds_store(struct device *dev, struct device_attribute *attr, 2689 const char *buf, size_t count) 2690 { 2691 struct dev_ext_attribute *ea = to_ext_attr(attr); 2692 struct ptp_ocp *bp = dev_get_drvdata(dev); 2693 int idx = (uintptr_t)ea->var; 2694 u32 val; 2695 int err; 2696 2697 err = kstrtou32(buf, 0, &val); 2698 if (err) 2699 return err; 2700 if (val > 0xff) 2701 return -EINVAL; 2702 2703 if (val) 2704 val = (val << 8) | 0x1; 2705 2706 iowrite32(val, &bp->freq_in[idx]->ctrl); 2707 2708 return count; 2709 } 2710 2711 static ssize_t 2712 seconds_show(struct device *dev, struct device_attribute *attr, char *buf) 2713 { 2714 struct dev_ext_attribute *ea = to_ext_attr(attr); 2715 struct ptp_ocp *bp = dev_get_drvdata(dev); 2716 int idx = (uintptr_t)ea->var; 2717 u32 val; 2718 2719 val = ioread32(&bp->freq_in[idx]->ctrl); 2720 if (val & 1) 2721 val = (val >> 8) & 0xff; 2722 else 2723 val = 0; 2724 2725 return sysfs_emit(buf, "%u\n", val); 2726 } 2727 static EXT_ATTR_RW(freq, seconds, 0); 2728 static EXT_ATTR_RW(freq, seconds, 1); 2729 static EXT_ATTR_RW(freq, seconds, 2); 2730 static EXT_ATTR_RW(freq, seconds, 3); 2731 2732 static ssize_t 2733 frequency_show(struct device *dev, struct device_attribute *attr, char *buf) 2734 { 2735 struct dev_ext_attribute *ea = to_ext_attr(attr); 2736 struct ptp_ocp *bp = dev_get_drvdata(dev); 2737 int idx = (uintptr_t)ea->var; 2738 u32 val; 2739 2740 val = ioread32(&bp->freq_in[idx]->status); 2741 if (val & FREQ_STATUS_ERROR) 2742 return sysfs_emit(buf, "error\n"); 2743 if (val & FREQ_STATUS_OVERRUN) 2744 return sysfs_emit(buf, "overrun\n"); 2745 if (val & FREQ_STATUS_VALID) 2746 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); 2747 return 0; 2748 } 2749 static EXT_ATTR_RO(freq, frequency, 0); 2750 static EXT_ATTR_RO(freq, frequency, 1); 2751 static EXT_ATTR_RO(freq, frequency, 2); 2752 static EXT_ATTR_RO(freq, frequency, 3); 2753 2754 static ssize_t 2755 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) 2756 { 2757 struct ptp_ocp *bp = dev_get_drvdata(dev); 2758 2759 if (!bp->has_eeprom_data) 2760 ptp_ocp_read_eeprom(bp); 2761 2762 return sysfs_emit(buf, "%pM\n", bp->serial); 2763 } 2764 static DEVICE_ATTR_RO(serialnum); 2765 2766 static ssize_t 2767 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) 2768 { 2769 struct ptp_ocp *bp = dev_get_drvdata(dev); 2770 ssize_t ret; 2771 2772 if (bp->gnss_lost) 2773 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); 2774 else 2775 ret = sysfs_emit(buf, "SYNC\n"); 2776 2777 return ret; 2778 } 2779 static DEVICE_ATTR_RO(gnss_sync); 2780 2781 static ssize_t 2782 utc_tai_offset_show(struct device *dev, 2783 struct device_attribute *attr, char *buf) 2784 { 2785 struct ptp_ocp *bp = dev_get_drvdata(dev); 2786 2787 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); 2788 } 2789 2790 static ssize_t 2791 utc_tai_offset_store(struct device *dev, 2792 struct device_attribute *attr, 2793 const char *buf, size_t count) 2794 { 2795 struct ptp_ocp *bp = dev_get_drvdata(dev); 2796 int err; 2797 u32 val; 2798 2799 err = kstrtou32(buf, 0, &val); 2800 if (err) 2801 return err; 2802 2803 ptp_ocp_utc_distribute(bp, val); 2804 2805 return count; 2806 } 2807 static DEVICE_ATTR_RW(utc_tai_offset); 2808 2809 static ssize_t 2810 ts_window_adjust_show(struct device *dev, 2811 struct device_attribute *attr, char *buf) 2812 { 2813 struct ptp_ocp *bp = dev_get_drvdata(dev); 2814 2815 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); 2816 } 2817 2818 static ssize_t 2819 ts_window_adjust_store(struct device *dev, 2820 struct device_attribute *attr, 2821 const char *buf, size_t count) 2822 { 2823 struct ptp_ocp *bp = dev_get_drvdata(dev); 2824 int err; 2825 u32 val; 2826 2827 err = kstrtou32(buf, 0, &val); 2828 if (err) 2829 return err; 2830 2831 bp->ts_window_adjust = val; 2832 2833 return count; 2834 } 2835 static DEVICE_ATTR_RW(ts_window_adjust); 2836 2837 static ssize_t 2838 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) 2839 { 2840 struct ptp_ocp *bp = dev_get_drvdata(dev); 2841 u32 val; 2842 2843 val = ioread32(&bp->irig_out->ctrl); 2844 val = (val >> 16) & 0x07; 2845 return sysfs_emit(buf, "%d\n", val); 2846 } 2847 2848 static ssize_t 2849 irig_b_mode_store(struct device *dev, 2850 struct device_attribute *attr, 2851 const char *buf, size_t count) 2852 { 2853 struct ptp_ocp *bp = dev_get_drvdata(dev); 2854 unsigned long flags; 2855 int err; 2856 u32 reg; 2857 u8 val; 2858 2859 err = kstrtou8(buf, 0, &val); 2860 if (err) 2861 return err; 2862 if (val > 7) 2863 return -EINVAL; 2864 2865 reg = ((val & 0x7) << 16); 2866 2867 spin_lock_irqsave(&bp->lock, flags); 2868 iowrite32(0, &bp->irig_out->ctrl); /* disable */ 2869 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ 2870 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); 2871 spin_unlock_irqrestore(&bp->lock, flags); 2872 2873 return count; 2874 } 2875 static DEVICE_ATTR_RW(irig_b_mode); 2876 2877 static ssize_t 2878 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) 2879 { 2880 struct ptp_ocp *bp = dev_get_drvdata(dev); 2881 const char *p; 2882 u32 select; 2883 2884 select = ioread32(&bp->reg->select); 2885 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); 2886 2887 return sysfs_emit(buf, "%s\n", p); 2888 } 2889 2890 static ssize_t 2891 clock_source_store(struct device *dev, struct device_attribute *attr, 2892 const char *buf, size_t count) 2893 { 2894 struct ptp_ocp *bp = dev_get_drvdata(dev); 2895 unsigned long flags; 2896 int val; 2897 2898 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); 2899 if (val < 0) 2900 return val; 2901 2902 spin_lock_irqsave(&bp->lock, flags); 2903 iowrite32(val, &bp->reg->select); 2904 spin_unlock_irqrestore(&bp->lock, flags); 2905 2906 return count; 2907 } 2908 static DEVICE_ATTR_RW(clock_source); 2909 2910 static ssize_t 2911 available_clock_sources_show(struct device *dev, 2912 struct device_attribute *attr, char *buf) 2913 { 2914 return ptp_ocp_select_table_show(ptp_ocp_clock, buf); 2915 } 2916 static DEVICE_ATTR_RO(available_clock_sources); 2917 2918 static ssize_t 2919 clock_status_drift_show(struct device *dev, 2920 struct device_attribute *attr, char *buf) 2921 { 2922 struct ptp_ocp *bp = dev_get_drvdata(dev); 2923 u32 val; 2924 int res; 2925 2926 val = ioread32(&bp->reg->status_drift); 2927 res = (val & ~INT_MAX) ? -1 : 1; 2928 res *= (val & INT_MAX); 2929 return sysfs_emit(buf, "%d\n", res); 2930 } 2931 static DEVICE_ATTR_RO(clock_status_drift); 2932 2933 static ssize_t 2934 clock_status_offset_show(struct device *dev, 2935 struct device_attribute *attr, char *buf) 2936 { 2937 struct ptp_ocp *bp = dev_get_drvdata(dev); 2938 u32 val; 2939 int res; 2940 2941 val = ioread32(&bp->reg->status_offset); 2942 res = (val & ~INT_MAX) ? -1 : 1; 2943 res *= (val & INT_MAX); 2944 return sysfs_emit(buf, "%d\n", res); 2945 } 2946 static DEVICE_ATTR_RO(clock_status_offset); 2947 2948 static ssize_t 2949 tod_correction_show(struct device *dev, 2950 struct device_attribute *attr, char *buf) 2951 { 2952 struct ptp_ocp *bp = dev_get_drvdata(dev); 2953 u32 val; 2954 int res; 2955 2956 val = ioread32(&bp->tod->adj_sec); 2957 res = (val & ~INT_MAX) ? -1 : 1; 2958 res *= (val & INT_MAX); 2959 return sysfs_emit(buf, "%d\n", res); 2960 } 2961 2962 static ssize_t 2963 tod_correction_store(struct device *dev, struct device_attribute *attr, 2964 const char *buf, size_t count) 2965 { 2966 struct ptp_ocp *bp = dev_get_drvdata(dev); 2967 unsigned long flags; 2968 int err, res; 2969 u32 val = 0; 2970 2971 err = kstrtos32(buf, 0, &res); 2972 if (err) 2973 return err; 2974 if (res < 0) { 2975 res *= -1; 2976 val |= BIT(31); 2977 } 2978 val |= res; 2979 2980 spin_lock_irqsave(&bp->lock, flags); 2981 iowrite32(val, &bp->tod->adj_sec); 2982 spin_unlock_irqrestore(&bp->lock, flags); 2983 2984 return count; 2985 } 2986 static DEVICE_ATTR_RW(tod_correction); 2987 2988 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ 2989 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ 2990 &dev_attr_signal##_nr##_signal.attr.attr, \ 2991 &dev_attr_signal##_nr##_duty.attr.attr, \ 2992 &dev_attr_signal##_nr##_phase.attr.attr, \ 2993 &dev_attr_signal##_nr##_period.attr.attr, \ 2994 &dev_attr_signal##_nr##_polarity.attr.attr, \ 2995 &dev_attr_signal##_nr##_running.attr.attr, \ 2996 &dev_attr_signal##_nr##_start.attr.attr, \ 2997 NULL, \ 2998 } 2999 3000 #define DEVICE_SIGNAL_GROUP(_name, _nr) \ 3001 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ 3002 static const struct attribute_group \ 3003 fb_timecard_signal##_nr##_group = { \ 3004 .name = #_name, \ 3005 .attrs = fb_timecard_signal##_nr##_attrs, \ 3006 } 3007 3008 DEVICE_SIGNAL_GROUP(gen1, 0); 3009 DEVICE_SIGNAL_GROUP(gen2, 1); 3010 DEVICE_SIGNAL_GROUP(gen3, 2); 3011 DEVICE_SIGNAL_GROUP(gen4, 3); 3012 3013 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ 3014 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ 3015 &dev_attr_freq##_nr##_seconds.attr.attr, \ 3016 &dev_attr_freq##_nr##_frequency.attr.attr, \ 3017 NULL, \ 3018 } 3019 3020 #define DEVICE_FREQ_GROUP(_name, _nr) \ 3021 _DEVICE_FREQ_GROUP_ATTRS(_nr); \ 3022 static const struct attribute_group \ 3023 fb_timecard_freq##_nr##_group = { \ 3024 .name = #_name, \ 3025 .attrs = fb_timecard_freq##_nr##_attrs, \ 3026 } 3027 3028 DEVICE_FREQ_GROUP(freq1, 0); 3029 DEVICE_FREQ_GROUP(freq2, 1); 3030 DEVICE_FREQ_GROUP(freq3, 2); 3031 DEVICE_FREQ_GROUP(freq4, 3); 3032 3033 static struct attribute *fb_timecard_attrs[] = { 3034 &dev_attr_serialnum.attr, 3035 &dev_attr_gnss_sync.attr, 3036 &dev_attr_clock_source.attr, 3037 &dev_attr_available_clock_sources.attr, 3038 &dev_attr_sma1.attr, 3039 &dev_attr_sma2.attr, 3040 &dev_attr_sma3.attr, 3041 &dev_attr_sma4.attr, 3042 &dev_attr_available_sma_inputs.attr, 3043 &dev_attr_available_sma_outputs.attr, 3044 &dev_attr_clock_status_drift.attr, 3045 &dev_attr_clock_status_offset.attr, 3046 &dev_attr_irig_b_mode.attr, 3047 &dev_attr_utc_tai_offset.attr, 3048 &dev_attr_ts_window_adjust.attr, 3049 &dev_attr_tod_correction.attr, 3050 NULL, 3051 }; 3052 static const struct attribute_group fb_timecard_group = { 3053 .attrs = fb_timecard_attrs, 3054 }; 3055 static const struct ocp_attr_group fb_timecard_groups[] = { 3056 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, 3057 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3058 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3059 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, 3060 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, 3061 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3062 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3063 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, 3064 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, 3065 { }, 3066 }; 3067 3068 static void 3069 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, 3070 const char *def) 3071 { 3072 int i; 3073 3074 for (i = 0; i < 4; i++) { 3075 if (bp->sma[i].mode != SMA_MODE_IN) 3076 continue; 3077 if (map[i][0] & (1 << bit)) { 3078 sprintf(buf, "sma%d", i + 1); 3079 return; 3080 } 3081 } 3082 if (!def) 3083 def = "----"; 3084 strcpy(buf, def); 3085 } 3086 3087 static void 3088 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) 3089 { 3090 char *ans = buf; 3091 int i; 3092 3093 strcpy(ans, "----"); 3094 for (i = 0; i < 4; i++) { 3095 if (bp->sma[i].mode != SMA_MODE_OUT) 3096 continue; 3097 if (map[i][1] & (1 << bit)) 3098 ans += sprintf(ans, "sma%d ", i + 1); 3099 } 3100 } 3101 3102 static void 3103 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) 3104 { 3105 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; 3106 struct ptp_ocp_signal *signal = &bp->signal[nr]; 3107 char label[8]; 3108 bool on; 3109 u32 val; 3110 3111 if (!signal) 3112 return; 3113 3114 on = signal->running; 3115 sprintf(label, "GEN%d", nr + 1); 3116 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", 3117 label, on ? " ON" : "OFF", 3118 signal->period, signal->duty, signal->phase, 3119 signal->polarity); 3120 3121 val = ioread32(®->enable); 3122 seq_printf(s, " [%x", val); 3123 val = ioread32(®->status); 3124 seq_printf(s, " %x]", val); 3125 3126 seq_printf(s, " start:%llu\n", signal->start); 3127 } 3128 3129 static void 3130 _frequency_summary_show(struct seq_file *s, int nr, 3131 struct frequency_reg __iomem *reg) 3132 { 3133 char label[8]; 3134 bool on; 3135 u32 val; 3136 3137 if (!reg) 3138 return; 3139 3140 sprintf(label, "FREQ%d", nr + 1); 3141 val = ioread32(®->ctrl); 3142 on = val & 1; 3143 val = (val >> 8) & 0xff; 3144 seq_printf(s, "%7s: %s, sec:%u", 3145 label, 3146 on ? " ON" : "OFF", 3147 val); 3148 3149 val = ioread32(®->status); 3150 if (val & FREQ_STATUS_ERROR) 3151 seq_printf(s, ", error"); 3152 if (val & FREQ_STATUS_OVERRUN) 3153 seq_printf(s, ", overrun"); 3154 if (val & FREQ_STATUS_VALID) 3155 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); 3156 seq_printf(s, " reg:%x\n", val); 3157 } 3158 3159 static int 3160 ptp_ocp_summary_show(struct seq_file *s, void *data) 3161 { 3162 struct device *dev = s->private; 3163 struct ptp_system_timestamp sts; 3164 struct ts_reg __iomem *ts_reg; 3165 char *buf, *src, *mac_src; 3166 struct timespec64 ts; 3167 struct ptp_ocp *bp; 3168 u16 sma_val[4][2]; 3169 u32 ctrl, val; 3170 bool on, map; 3171 int i; 3172 3173 buf = (char *)__get_free_page(GFP_KERNEL); 3174 if (!buf) 3175 return -ENOMEM; 3176 3177 bp = dev_get_drvdata(dev); 3178 3179 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); 3180 if (bp->gnss_port != -1) 3181 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port); 3182 if (bp->gnss2_port != -1) 3183 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port); 3184 if (bp->mac_port != -1) 3185 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port); 3186 if (bp->nmea_port != -1) 3187 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port); 3188 3189 memset(sma_val, 0xff, sizeof(sma_val)); 3190 if (bp->sma_map1) { 3191 u32 reg; 3192 3193 reg = ioread32(&bp->sma_map1->gpio1); 3194 sma_val[0][0] = reg & 0xffff; 3195 sma_val[1][0] = reg >> 16; 3196 3197 reg = ioread32(&bp->sma_map1->gpio2); 3198 sma_val[2][1] = reg & 0xffff; 3199 sma_val[3][1] = reg >> 16; 3200 3201 reg = ioread32(&bp->sma_map2->gpio1); 3202 sma_val[2][0] = reg & 0xffff; 3203 sma_val[3][0] = reg >> 16; 3204 3205 reg = ioread32(&bp->sma_map2->gpio2); 3206 sma_val[0][1] = reg & 0xffff; 3207 sma_val[1][1] = reg >> 16; 3208 } 3209 3210 sma1_show(dev, NULL, buf); 3211 seq_printf(s, " sma1: %04x,%04x %s", 3212 sma_val[0][0], sma_val[0][1], buf); 3213 3214 sma2_show(dev, NULL, buf); 3215 seq_printf(s, " sma2: %04x,%04x %s", 3216 sma_val[1][0], sma_val[1][1], buf); 3217 3218 sma3_show(dev, NULL, buf); 3219 seq_printf(s, " sma3: %04x,%04x %s", 3220 sma_val[2][0], sma_val[2][1], buf); 3221 3222 sma4_show(dev, NULL, buf); 3223 seq_printf(s, " sma4: %04x,%04x %s", 3224 sma_val[3][0], sma_val[3][1], buf); 3225 3226 if (bp->ts0) { 3227 ts_reg = bp->ts0->mem; 3228 on = ioread32(&ts_reg->enable); 3229 src = "GNSS1"; 3230 seq_printf(s, "%7s: %s, src: %s\n", "TS0", 3231 on ? " ON" : "OFF", src); 3232 } 3233 3234 if (bp->ts1) { 3235 ts_reg = bp->ts1->mem; 3236 on = ioread32(&ts_reg->enable); 3237 gpio_input_map(buf, bp, sma_val, 2, NULL); 3238 seq_printf(s, "%7s: %s, src: %s\n", "TS1", 3239 on ? " ON" : "OFF", buf); 3240 } 3241 3242 if (bp->ts2) { 3243 ts_reg = bp->ts2->mem; 3244 on = ioread32(&ts_reg->enable); 3245 gpio_input_map(buf, bp, sma_val, 3, NULL); 3246 seq_printf(s, "%7s: %s, src: %s\n", "TS2", 3247 on ? " ON" : "OFF", buf); 3248 } 3249 3250 if (bp->ts3) { 3251 ts_reg = bp->ts3->mem; 3252 on = ioread32(&ts_reg->enable); 3253 gpio_input_map(buf, bp, sma_val, 6, NULL); 3254 seq_printf(s, "%7s: %s, src: %s\n", "TS3", 3255 on ? " ON" : "OFF", buf); 3256 } 3257 3258 if (bp->ts4) { 3259 ts_reg = bp->ts4->mem; 3260 on = ioread32(&ts_reg->enable); 3261 gpio_input_map(buf, bp, sma_val, 7, NULL); 3262 seq_printf(s, "%7s: %s, src: %s\n", "TS4", 3263 on ? " ON" : "OFF", buf); 3264 } 3265 3266 if (bp->pps) { 3267 ts_reg = bp->pps->mem; 3268 src = "PHC"; 3269 on = ioread32(&ts_reg->enable); 3270 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); 3271 seq_printf(s, "%7s: %s, src: %s\n", "TS5", 3272 on && map ? " ON" : "OFF", src); 3273 3274 map = !!(bp->pps_req_map & OCP_REQ_PPS); 3275 seq_printf(s, "%7s: %s, src: %s\n", "PPS", 3276 on && map ? " ON" : "OFF", src); 3277 } 3278 3279 if (bp->fw_cap & OCP_CAP_SIGNAL) 3280 for (i = 0; i < 4; i++) 3281 _signal_summary_show(s, bp, i); 3282 3283 if (bp->fw_cap & OCP_CAP_FREQ) 3284 for (i = 0; i < 4; i++) 3285 _frequency_summary_show(s, i, bp->freq_in[i]); 3286 3287 if (bp->irig_out) { 3288 ctrl = ioread32(&bp->irig_out->ctrl); 3289 on = ctrl & IRIG_M_CTRL_ENABLE; 3290 val = ioread32(&bp->irig_out->status); 3291 gpio_output_map(buf, bp, sma_val, 4); 3292 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", 3293 on ? " ON" : "OFF", val, (ctrl >> 16), buf); 3294 } 3295 3296 if (bp->irig_in) { 3297 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; 3298 val = ioread32(&bp->irig_in->status); 3299 gpio_input_map(buf, bp, sma_val, 4, NULL); 3300 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", 3301 on ? " ON" : "OFF", val, buf); 3302 } 3303 3304 if (bp->dcf_out) { 3305 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; 3306 val = ioread32(&bp->dcf_out->status); 3307 gpio_output_map(buf, bp, sma_val, 5); 3308 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", 3309 on ? " ON" : "OFF", val, buf); 3310 } 3311 3312 if (bp->dcf_in) { 3313 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; 3314 val = ioread32(&bp->dcf_in->status); 3315 gpio_input_map(buf, bp, sma_val, 5, NULL); 3316 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", 3317 on ? " ON" : "OFF", val, buf); 3318 } 3319 3320 if (bp->nmea_out) { 3321 on = ioread32(&bp->nmea_out->ctrl) & 1; 3322 val = ioread32(&bp->nmea_out->status); 3323 seq_printf(s, "%7s: %s, error: %d\n", "NMEA", 3324 on ? " ON" : "OFF", val); 3325 } 3326 3327 /* compute src for PPS1, used below. */ 3328 if (bp->pps_select) { 3329 val = ioread32(&bp->pps_select->gpio1); 3330 src = &buf[80]; 3331 mac_src = "GNSS1"; 3332 if (val & 0x01) { 3333 gpio_input_map(src, bp, sma_val, 0, NULL); 3334 mac_src = src; 3335 } else if (val & 0x02) { 3336 src = "MAC"; 3337 } else if (val & 0x04) { 3338 src = "GNSS1"; 3339 } else { 3340 src = "----"; 3341 mac_src = src; 3342 } 3343 } else { 3344 src = "?"; 3345 mac_src = src; 3346 } 3347 seq_printf(s, "MAC PPS1 src: %s\n", mac_src); 3348 3349 gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); 3350 seq_printf(s, "MAC PPS2 src: %s\n", buf); 3351 3352 /* assumes automatic switchover/selection */ 3353 val = ioread32(&bp->reg->select); 3354 switch (val >> 16) { 3355 case 0: 3356 sprintf(buf, "----"); 3357 break; 3358 case 2: 3359 sprintf(buf, "IRIG"); 3360 break; 3361 case 3: 3362 sprintf(buf, "%s via PPS1", src); 3363 break; 3364 case 6: 3365 sprintf(buf, "DCF"); 3366 break; 3367 default: 3368 strcpy(buf, "unknown"); 3369 break; 3370 } 3371 val = ioread32(&bp->reg->status); 3372 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, 3373 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced"); 3374 3375 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { 3376 struct timespec64 sys_ts; 3377 s64 pre_ns, post_ns, ns; 3378 3379 pre_ns = timespec64_to_ns(&sts.pre_ts); 3380 post_ns = timespec64_to_ns(&sts.post_ts); 3381 ns = (pre_ns + post_ns) / 2; 3382 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; 3383 sys_ts = ns_to_timespec64(ns); 3384 3385 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", 3386 ts.tv_sec, ts.tv_nsec, &ts); 3387 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", 3388 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, 3389 bp->utc_tai_offset); 3390 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", 3391 timespec64_to_ns(&ts) - ns, 3392 post_ns - pre_ns); 3393 } 3394 3395 free_page((unsigned long)buf); 3396 return 0; 3397 } 3398 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); 3399 3400 static int 3401 ptp_ocp_tod_status_show(struct seq_file *s, void *data) 3402 { 3403 struct device *dev = s->private; 3404 struct ptp_ocp *bp; 3405 u32 val; 3406 int idx; 3407 3408 bp = dev_get_drvdata(dev); 3409 3410 val = ioread32(&bp->tod->ctrl); 3411 if (!(val & TOD_CTRL_ENABLE)) { 3412 seq_printf(s, "TOD Slave disabled\n"); 3413 return 0; 3414 } 3415 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); 3416 3417 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; 3418 idx += (val >> 16) & 3; 3419 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); 3420 3421 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; 3422 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); 3423 3424 val = ioread32(&bp->tod->version); 3425 seq_printf(s, "TOD Version %d.%d.%d\n", 3426 val >> 24, (val >> 16) & 0xff, val & 0xffff); 3427 3428 val = ioread32(&bp->tod->status); 3429 seq_printf(s, "Status register: 0x%08X\n", val); 3430 3431 val = ioread32(&bp->tod->adj_sec); 3432 idx = (val & ~INT_MAX) ? -1 : 1; 3433 idx *= (val & INT_MAX); 3434 seq_printf(s, "Correction seconds: %d\n", idx); 3435 3436 val = ioread32(&bp->tod->utc_status); 3437 seq_printf(s, "UTC status register: 0x%08X\n", val); 3438 seq_printf(s, "UTC offset: %ld valid:%d\n", 3439 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); 3440 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", 3441 val & TOD_STATUS_LEAP_VALID ? 1 : 0, 3442 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); 3443 3444 val = ioread32(&bp->tod->leap); 3445 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); 3446 3447 return 0; 3448 } 3449 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); 3450 3451 static struct dentry *ptp_ocp_debugfs_root; 3452 3453 static void 3454 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) 3455 { 3456 struct dentry *d; 3457 3458 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); 3459 bp->debug_root = d; 3460 debugfs_create_file("summary", 0444, bp->debug_root, 3461 &bp->dev, &ptp_ocp_summary_fops); 3462 if (bp->tod) 3463 debugfs_create_file("tod_status", 0444, bp->debug_root, 3464 &bp->dev, &ptp_ocp_tod_status_fops); 3465 } 3466 3467 static void 3468 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) 3469 { 3470 debugfs_remove_recursive(bp->debug_root); 3471 } 3472 3473 static void 3474 ptp_ocp_debugfs_init(void) 3475 { 3476 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); 3477 } 3478 3479 static void 3480 ptp_ocp_debugfs_fini(void) 3481 { 3482 debugfs_remove_recursive(ptp_ocp_debugfs_root); 3483 } 3484 3485 static void 3486 ptp_ocp_dev_release(struct device *dev) 3487 { 3488 struct ptp_ocp *bp = dev_get_drvdata(dev); 3489 3490 mutex_lock(&ptp_ocp_lock); 3491 idr_remove(&ptp_ocp_idr, bp->id); 3492 mutex_unlock(&ptp_ocp_lock); 3493 } 3494 3495 static int 3496 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) 3497 { 3498 int err; 3499 3500 mutex_lock(&ptp_ocp_lock); 3501 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); 3502 mutex_unlock(&ptp_ocp_lock); 3503 if (err < 0) { 3504 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); 3505 return err; 3506 } 3507 bp->id = err; 3508 3509 bp->ptp_info = ptp_ocp_clock_info; 3510 spin_lock_init(&bp->lock); 3511 bp->gnss_port = -1; 3512 bp->gnss2_port = -1; 3513 bp->mac_port = -1; 3514 bp->nmea_port = -1; 3515 bp->pdev = pdev; 3516 3517 device_initialize(&bp->dev); 3518 dev_set_name(&bp->dev, "ocp%d", bp->id); 3519 bp->dev.class = &timecard_class; 3520 bp->dev.parent = &pdev->dev; 3521 bp->dev.release = ptp_ocp_dev_release; 3522 dev_set_drvdata(&bp->dev, bp); 3523 3524 err = device_add(&bp->dev); 3525 if (err) { 3526 dev_err(&bp->dev, "device add failed: %d\n", err); 3527 goto out; 3528 } 3529 3530 pci_set_drvdata(pdev, bp); 3531 3532 return 0; 3533 3534 out: 3535 ptp_ocp_dev_release(&bp->dev); 3536 put_device(&bp->dev); 3537 return err; 3538 } 3539 3540 static void 3541 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) 3542 { 3543 struct device *dev = &bp->dev; 3544 3545 if (sysfs_create_link(&dev->kobj, &child->kobj, link)) 3546 dev_err(dev, "%s symlink failed\n", link); 3547 } 3548 3549 static void 3550 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) 3551 { 3552 struct device *dev, *child; 3553 3554 dev = &bp->pdev->dev; 3555 3556 child = device_find_child_by_name(dev, name); 3557 if (!child) { 3558 dev_err(dev, "Could not find device %s\n", name); 3559 return; 3560 } 3561 3562 ptp_ocp_symlink(bp, child, link); 3563 put_device(child); 3564 } 3565 3566 static int 3567 ptp_ocp_complete(struct ptp_ocp *bp) 3568 { 3569 struct pps_device *pps; 3570 char buf[32]; 3571 3572 if (bp->gnss_port != -1) { 3573 sprintf(buf, "ttyS%d", bp->gnss_port); 3574 ptp_ocp_link_child(bp, buf, "ttyGNSS"); 3575 } 3576 if (bp->gnss2_port != -1) { 3577 sprintf(buf, "ttyS%d", bp->gnss2_port); 3578 ptp_ocp_link_child(bp, buf, "ttyGNSS2"); 3579 } 3580 if (bp->mac_port != -1) { 3581 sprintf(buf, "ttyS%d", bp->mac_port); 3582 ptp_ocp_link_child(bp, buf, "ttyMAC"); 3583 } 3584 if (bp->nmea_port != -1) { 3585 sprintf(buf, "ttyS%d", bp->nmea_port); 3586 ptp_ocp_link_child(bp, buf, "ttyNMEA"); 3587 } 3588 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); 3589 ptp_ocp_link_child(bp, buf, "ptp"); 3590 3591 pps = pps_lookup_dev(bp->ptp); 3592 if (pps) 3593 ptp_ocp_symlink(bp, pps->dev, "pps"); 3594 3595 ptp_ocp_debugfs_add_device(bp); 3596 3597 return 0; 3598 } 3599 3600 static void 3601 ptp_ocp_phc_info(struct ptp_ocp *bp) 3602 { 3603 struct timespec64 ts; 3604 u32 version, select; 3605 bool sync; 3606 3607 version = ioread32(&bp->reg->version); 3608 select = ioread32(&bp->reg->select); 3609 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", 3610 version >> 24, (version >> 16) & 0xff, version & 0xffff, 3611 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), 3612 ptp_clock_index(bp->ptp)); 3613 3614 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 3615 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) 3616 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", 3617 ts.tv_sec, ts.tv_nsec, 3618 sync ? "in-sync" : "UNSYNCED"); 3619 } 3620 3621 static void 3622 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) 3623 { 3624 if (port != -1) 3625 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); 3626 } 3627 3628 static void 3629 ptp_ocp_info(struct ptp_ocp *bp) 3630 { 3631 static int nmea_baud[] = { 3632 1200, 2400, 4800, 9600, 19200, 38400, 3633 57600, 115200, 230400, 460800, 921600, 3634 1000000, 2000000 3635 }; 3636 struct device *dev = &bp->pdev->dev; 3637 u32 reg; 3638 3639 ptp_ocp_phc_info(bp); 3640 3641 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200); 3642 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200); 3643 ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600); 3644 if (bp->nmea_out && bp->nmea_port != -1) { 3645 int baud = -1; 3646 3647 reg = ioread32(&bp->nmea_out->uart_baud); 3648 if (reg < ARRAY_SIZE(nmea_baud)) 3649 baud = nmea_baud[reg]; 3650 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud); 3651 } 3652 } 3653 3654 static void 3655 ptp_ocp_detach_sysfs(struct ptp_ocp *bp) 3656 { 3657 struct device *dev = &bp->dev; 3658 3659 sysfs_remove_link(&dev->kobj, "ttyGNSS"); 3660 sysfs_remove_link(&dev->kobj, "ttyGNSS2"); 3661 sysfs_remove_link(&dev->kobj, "ttyMAC"); 3662 sysfs_remove_link(&dev->kobj, "ptp"); 3663 sysfs_remove_link(&dev->kobj, "pps"); 3664 } 3665 3666 static void 3667 ptp_ocp_detach(struct ptp_ocp *bp) 3668 { 3669 int i; 3670 3671 ptp_ocp_debugfs_remove_device(bp); 3672 ptp_ocp_detach_sysfs(bp); 3673 ptp_ocp_attr_group_del(bp); 3674 if (timer_pending(&bp->watchdog)) 3675 del_timer_sync(&bp->watchdog); 3676 if (bp->ts0) 3677 ptp_ocp_unregister_ext(bp->ts0); 3678 if (bp->ts1) 3679 ptp_ocp_unregister_ext(bp->ts1); 3680 if (bp->ts2) 3681 ptp_ocp_unregister_ext(bp->ts2); 3682 if (bp->ts3) 3683 ptp_ocp_unregister_ext(bp->ts3); 3684 if (bp->ts4) 3685 ptp_ocp_unregister_ext(bp->ts4); 3686 if (bp->pps) 3687 ptp_ocp_unregister_ext(bp->pps); 3688 for (i = 0; i < 4; i++) 3689 if (bp->signal_out[i]) 3690 ptp_ocp_unregister_ext(bp->signal_out[i]); 3691 if (bp->gnss_port != -1) 3692 serial8250_unregister_port(bp->gnss_port); 3693 if (bp->gnss2_port != -1) 3694 serial8250_unregister_port(bp->gnss2_port); 3695 if (bp->mac_port != -1) 3696 serial8250_unregister_port(bp->mac_port); 3697 if (bp->nmea_port != -1) 3698 serial8250_unregister_port(bp->nmea_port); 3699 platform_device_unregister(bp->spi_flash); 3700 platform_device_unregister(bp->i2c_ctrl); 3701 if (bp->i2c_clk) 3702 clk_hw_unregister_fixed_rate(bp->i2c_clk); 3703 if (bp->n_irqs) 3704 pci_free_irq_vectors(bp->pdev); 3705 if (bp->ptp) 3706 ptp_clock_unregister(bp->ptp); 3707 kfree(bp->ptp_info.pin_config); 3708 device_unregister(&bp->dev); 3709 } 3710 3711 static int 3712 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3713 { 3714 struct devlink *devlink; 3715 struct ptp_ocp *bp; 3716 int err; 3717 3718 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); 3719 if (!devlink) { 3720 dev_err(&pdev->dev, "devlink_alloc failed\n"); 3721 return -ENOMEM; 3722 } 3723 3724 err = pci_enable_device(pdev); 3725 if (err) { 3726 dev_err(&pdev->dev, "pci_enable_device\n"); 3727 goto out_free; 3728 } 3729 3730 bp = devlink_priv(devlink); 3731 err = ptp_ocp_device_init(bp, pdev); 3732 if (err) 3733 goto out_disable; 3734 3735 /* compat mode. 3736 * Older FPGA firmware only returns 2 irq's. 3737 * allow this - if not all of the IRQ's are returned, skip the 3738 * extra devices and just register the clock. 3739 */ 3740 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); 3741 if (err < 0) { 3742 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); 3743 goto out; 3744 } 3745 bp->n_irqs = err; 3746 pci_set_master(pdev); 3747 3748 err = ptp_ocp_register_resources(bp, id->driver_data); 3749 if (err) 3750 goto out; 3751 3752 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); 3753 if (IS_ERR(bp->ptp)) { 3754 err = PTR_ERR(bp->ptp); 3755 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); 3756 bp->ptp = NULL; 3757 goto out; 3758 } 3759 3760 err = ptp_ocp_complete(bp); 3761 if (err) 3762 goto out; 3763 3764 ptp_ocp_info(bp); 3765 devlink_register(devlink); 3766 return 0; 3767 3768 out: 3769 ptp_ocp_detach(bp); 3770 out_disable: 3771 pci_disable_device(pdev); 3772 out_free: 3773 devlink_free(devlink); 3774 return err; 3775 } 3776 3777 static void 3778 ptp_ocp_remove(struct pci_dev *pdev) 3779 { 3780 struct ptp_ocp *bp = pci_get_drvdata(pdev); 3781 struct devlink *devlink = priv_to_devlink(bp); 3782 3783 devlink_unregister(devlink); 3784 ptp_ocp_detach(bp); 3785 pci_disable_device(pdev); 3786 3787 devlink_free(devlink); 3788 } 3789 3790 static struct pci_driver ptp_ocp_driver = { 3791 .name = KBUILD_MODNAME, 3792 .id_table = ptp_ocp_pcidev_id, 3793 .probe = ptp_ocp_probe, 3794 .remove = ptp_ocp_remove, 3795 }; 3796 3797 static int 3798 ptp_ocp_i2c_notifier_call(struct notifier_block *nb, 3799 unsigned long action, void *data) 3800 { 3801 struct device *dev, *child = data; 3802 struct ptp_ocp *bp; 3803 bool add; 3804 3805 switch (action) { 3806 case BUS_NOTIFY_ADD_DEVICE: 3807 case BUS_NOTIFY_DEL_DEVICE: 3808 add = action == BUS_NOTIFY_ADD_DEVICE; 3809 break; 3810 default: 3811 return 0; 3812 } 3813 3814 if (!i2c_verify_adapter(child)) 3815 return 0; 3816 3817 dev = child; 3818 while ((dev = dev->parent)) 3819 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 3820 goto found; 3821 return 0; 3822 3823 found: 3824 bp = dev_get_drvdata(dev); 3825 if (add) 3826 ptp_ocp_symlink(bp, child, "i2c"); 3827 else 3828 sysfs_remove_link(&bp->dev.kobj, "i2c"); 3829 3830 return 0; 3831 } 3832 3833 static struct notifier_block ptp_ocp_i2c_notifier = { 3834 .notifier_call = ptp_ocp_i2c_notifier_call, 3835 }; 3836 3837 static int __init 3838 ptp_ocp_init(void) 3839 { 3840 const char *what; 3841 int err; 3842 3843 ptp_ocp_debugfs_init(); 3844 3845 what = "timecard class"; 3846 err = class_register(&timecard_class); 3847 if (err) 3848 goto out; 3849 3850 what = "i2c notifier"; 3851 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3852 if (err) 3853 goto out_notifier; 3854 3855 what = "ptp_ocp driver"; 3856 err = pci_register_driver(&ptp_ocp_driver); 3857 if (err) 3858 goto out_register; 3859 3860 return 0; 3861 3862 out_register: 3863 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3864 out_notifier: 3865 class_unregister(&timecard_class); 3866 out: 3867 ptp_ocp_debugfs_fini(); 3868 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); 3869 return err; 3870 } 3871 3872 static void __exit 3873 ptp_ocp_fini(void) 3874 { 3875 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 3876 pci_unregister_driver(&ptp_ocp_driver); 3877 class_unregister(&timecard_class); 3878 ptp_ocp_debugfs_fini(); 3879 } 3880 3881 module_init(ptp_ocp_init); 3882 module_exit(ptp_ocp_fini); 3883 3884 MODULE_DESCRIPTION("OpenCompute TimeCard driver"); 3885 MODULE_LICENSE("GPL v2"); 3886