1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2020 Facebook */ 3 4 #include <linux/bits.h> 5 #include <linux/err.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/debugfs.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/serial_8250.h> 12 #include <linux/clkdev.h> 13 #include <linux/clk-provider.h> 14 #include <linux/platform_device.h> 15 #include <linux/platform_data/i2c-xiic.h> 16 #include <linux/platform_data/i2c-ocores.h> 17 #include <linux/ptp_clock_kernel.h> 18 #include <linux/spi/spi.h> 19 #include <linux/spi/xilinx_spi.h> 20 #include <linux/spi/altera.h> 21 #include <net/devlink.h> 22 #include <linux/i2c.h> 23 #include <linux/mtd/mtd.h> 24 #include <linux/nvmem-consumer.h> 25 #include <linux/crc16.h> 26 27 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b 28 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 29 30 #define PCI_VENDOR_ID_CELESTICA 0x18d4 31 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 32 33 #define PCI_VENDOR_ID_OROLIA 0x1ad7 34 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000 35 36 static struct class timecard_class = { 37 .name = "timecard", 38 }; 39 40 struct ocp_reg { 41 u32 ctrl; 42 u32 status; 43 u32 select; 44 u32 version; 45 u32 time_ns; 46 u32 time_sec; 47 u32 __pad0[2]; 48 u32 adjust_ns; 49 u32 adjust_sec; 50 u32 __pad1[2]; 51 u32 offset_ns; 52 u32 offset_window_ns; 53 u32 __pad2[2]; 54 u32 drift_ns; 55 u32 drift_window_ns; 56 u32 __pad3[6]; 57 u32 servo_offset_p; 58 u32 servo_offset_i; 59 u32 servo_drift_p; 60 u32 servo_drift_i; 61 u32 status_offset; 62 u32 status_drift; 63 }; 64 65 #define OCP_CTRL_ENABLE BIT(0) 66 #define OCP_CTRL_ADJUST_TIME BIT(1) 67 #define OCP_CTRL_ADJUST_OFFSET BIT(2) 68 #define OCP_CTRL_ADJUST_DRIFT BIT(3) 69 #define OCP_CTRL_ADJUST_SERVO BIT(8) 70 #define OCP_CTRL_READ_TIME_REQ BIT(30) 71 #define OCP_CTRL_READ_TIME_DONE BIT(31) 72 73 #define OCP_STATUS_IN_SYNC BIT(0) 74 #define OCP_STATUS_IN_HOLDOVER BIT(1) 75 76 #define OCP_SELECT_CLK_NONE 0 77 #define OCP_SELECT_CLK_REG 0xfe 78 79 struct tod_reg { 80 u32 ctrl; 81 u32 status; 82 u32 uart_polarity; 83 u32 version; 84 u32 adj_sec; 85 u32 __pad0[3]; 86 u32 uart_baud; 87 u32 __pad1[3]; 88 u32 utc_status; 89 u32 leap; 90 }; 91 92 #define TOD_CTRL_PROTOCOL BIT(28) 93 #define TOD_CTRL_DISABLE_FMT_A BIT(17) 94 #define TOD_CTRL_DISABLE_FMT_B BIT(16) 95 #define TOD_CTRL_ENABLE BIT(0) 96 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) 97 #define TOD_CTRL_GNSS_SHIFT 24 98 99 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) 100 #define TOD_STATUS_UTC_VALID BIT(8) 101 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) 102 #define TOD_STATUS_LEAP_VALID BIT(16) 103 104 struct ts_reg { 105 u32 enable; 106 u32 error; 107 u32 polarity; 108 u32 version; 109 u32 __pad0[4]; 110 u32 cable_delay; 111 u32 __pad1[3]; 112 u32 intr; 113 u32 intr_mask; 114 u32 event_count; 115 u32 __pad2[1]; 116 u32 ts_count; 117 u32 time_ns; 118 u32 time_sec; 119 u32 data_width; 120 u32 data; 121 }; 122 123 struct pps_reg { 124 u32 ctrl; 125 u32 status; 126 u32 __pad0[6]; 127 u32 cable_delay; 128 }; 129 130 #define PPS_STATUS_FILTER_ERR BIT(0) 131 #define PPS_STATUS_SUPERV_ERR BIT(1) 132 133 struct img_reg { 134 u32 version; 135 }; 136 137 struct gpio_reg { 138 u32 gpio1; 139 u32 __pad0; 140 u32 gpio2; 141 u32 __pad1; 142 }; 143 144 struct irig_master_reg { 145 u32 ctrl; 146 u32 status; 147 u32 __pad0; 148 u32 version; 149 u32 adj_sec; 150 u32 mode_ctrl; 151 }; 152 153 #define IRIG_M_CTRL_ENABLE BIT(0) 154 155 struct irig_slave_reg { 156 u32 ctrl; 157 u32 status; 158 u32 __pad0; 159 u32 version; 160 u32 adj_sec; 161 u32 mode_ctrl; 162 }; 163 164 #define IRIG_S_CTRL_ENABLE BIT(0) 165 166 struct dcf_master_reg { 167 u32 ctrl; 168 u32 status; 169 u32 __pad0; 170 u32 version; 171 u32 adj_sec; 172 }; 173 174 #define DCF_M_CTRL_ENABLE BIT(0) 175 176 struct dcf_slave_reg { 177 u32 ctrl; 178 u32 status; 179 u32 __pad0; 180 u32 version; 181 u32 adj_sec; 182 }; 183 184 #define DCF_S_CTRL_ENABLE BIT(0) 185 186 struct signal_reg { 187 u32 enable; 188 u32 status; 189 u32 polarity; 190 u32 version; 191 u32 __pad0[4]; 192 u32 cable_delay; 193 u32 __pad1[3]; 194 u32 intr; 195 u32 intr_mask; 196 u32 __pad2[2]; 197 u32 start_ns; 198 u32 start_sec; 199 u32 pulse_ns; 200 u32 pulse_sec; 201 u32 period_ns; 202 u32 period_sec; 203 u32 repeat_count; 204 }; 205 206 struct frequency_reg { 207 u32 ctrl; 208 u32 status; 209 }; 210 211 struct board_config_reg { 212 u32 mro50_serial_activate; 213 }; 214 215 #define FREQ_STATUS_VALID BIT(31) 216 #define FREQ_STATUS_ERROR BIT(30) 217 #define FREQ_STATUS_OVERRUN BIT(29) 218 #define FREQ_STATUS_MASK GENMASK(23, 0) 219 220 struct ptp_ocp_flash_info { 221 const char *name; 222 int pci_offset; 223 int data_size; 224 void *data; 225 }; 226 227 struct ptp_ocp_firmware_header { 228 char magic[4]; 229 __be16 pci_vendor_id; 230 __be16 pci_device_id; 231 __be32 image_size; 232 __be16 hw_revision; 233 __be16 crc; 234 }; 235 236 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" 237 238 struct ptp_ocp_i2c_info { 239 const char *name; 240 unsigned long fixed_rate; 241 size_t data_size; 242 void *data; 243 }; 244 245 struct ptp_ocp_ext_info { 246 int index; 247 irqreturn_t (*irq_fcn)(int irq, void *priv); 248 int (*enable)(void *priv, u32 req, bool enable); 249 }; 250 251 struct ptp_ocp_ext_src { 252 void __iomem *mem; 253 struct ptp_ocp *bp; 254 struct ptp_ocp_ext_info *info; 255 int irq_vec; 256 }; 257 258 enum ptp_ocp_sma_mode { 259 SMA_MODE_IN, 260 SMA_MODE_OUT, 261 }; 262 263 struct ptp_ocp_sma_connector { 264 enum ptp_ocp_sma_mode mode; 265 bool fixed_fcn; 266 bool fixed_dir; 267 bool disabled; 268 u8 default_fcn; 269 }; 270 271 struct ocp_attr_group { 272 u64 cap; 273 const struct attribute_group *group; 274 }; 275 276 #define OCP_CAP_BASIC BIT(0) 277 #define OCP_CAP_SIGNAL BIT(1) 278 #define OCP_CAP_FREQ BIT(2) 279 280 struct ptp_ocp_signal { 281 ktime_t period; 282 ktime_t pulse; 283 ktime_t phase; 284 ktime_t start; 285 int duty; 286 bool polarity; 287 bool running; 288 }; 289 290 struct ptp_ocp_serial_port { 291 int line; 292 int baud; 293 }; 294 295 #define OCP_BOARD_ID_LEN 13 296 #define OCP_SERIAL_LEN 6 297 298 struct ptp_ocp { 299 struct pci_dev *pdev; 300 struct device dev; 301 spinlock_t lock; 302 struct ocp_reg __iomem *reg; 303 struct tod_reg __iomem *tod; 304 struct pps_reg __iomem *pps_to_ext; 305 struct pps_reg __iomem *pps_to_clk; 306 struct board_config_reg __iomem *board_config; 307 struct gpio_reg __iomem *pps_select; 308 struct gpio_reg __iomem *sma_map1; 309 struct gpio_reg __iomem *sma_map2; 310 struct irig_master_reg __iomem *irig_out; 311 struct irig_slave_reg __iomem *irig_in; 312 struct dcf_master_reg __iomem *dcf_out; 313 struct dcf_slave_reg __iomem *dcf_in; 314 struct tod_reg __iomem *nmea_out; 315 struct frequency_reg __iomem *freq_in[4]; 316 struct ptp_ocp_ext_src *signal_out[4]; 317 struct ptp_ocp_ext_src *pps; 318 struct ptp_ocp_ext_src *ts0; 319 struct ptp_ocp_ext_src *ts1; 320 struct ptp_ocp_ext_src *ts2; 321 struct ptp_ocp_ext_src *ts3; 322 struct ptp_ocp_ext_src *ts4; 323 struct ocp_art_gpio_reg __iomem *art_sma; 324 struct img_reg __iomem *image; 325 struct ptp_clock *ptp; 326 struct ptp_clock_info ptp_info; 327 struct platform_device *i2c_ctrl; 328 struct platform_device *spi_flash; 329 struct clk_hw *i2c_clk; 330 struct timer_list watchdog; 331 const struct attribute_group **attr_group; 332 const struct ptp_ocp_eeprom_map *eeprom_map; 333 struct dentry *debug_root; 334 time64_t gnss_lost; 335 int id; 336 int n_irqs; 337 struct ptp_ocp_serial_port gnss_port; 338 struct ptp_ocp_serial_port gnss2_port; 339 struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */ 340 struct ptp_ocp_serial_port nmea_port; 341 bool fw_loader; 342 u8 fw_tag; 343 u16 fw_version; 344 u8 board_id[OCP_BOARD_ID_LEN]; 345 u8 serial[OCP_SERIAL_LEN]; 346 bool has_eeprom_data; 347 u32 pps_req_map; 348 int flash_start; 349 u32 utc_tai_offset; 350 u32 ts_window_adjust; 351 u64 fw_cap; 352 struct ptp_ocp_signal signal[4]; 353 struct ptp_ocp_sma_connector sma[4]; 354 const struct ocp_sma_op *sma_op; 355 }; 356 357 #define OCP_REQ_TIMESTAMP BIT(0) 358 #define OCP_REQ_PPS BIT(1) 359 360 struct ocp_resource { 361 unsigned long offset; 362 int size; 363 int irq_vec; 364 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); 365 void *extra; 366 unsigned long bp_offset; 367 const char * const name; 368 }; 369 370 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); 371 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); 372 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); 373 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); 374 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); 375 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 376 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); 377 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); 378 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); 379 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 380 struct ptp_perout_request *req); 381 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); 382 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); 383 384 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 385 386 static const struct ocp_attr_group fb_timecard_groups[]; 387 388 static const struct ocp_attr_group art_timecard_groups[]; 389 390 struct ptp_ocp_eeprom_map { 391 u16 off; 392 u16 len; 393 u32 bp_offset; 394 const void * const tag; 395 }; 396 397 #define EEPROM_ENTRY(addr, member) \ 398 .off = addr, \ 399 .len = sizeof_field(struct ptp_ocp, member), \ 400 .bp_offset = offsetof(struct ptp_ocp, member) 401 402 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ 403 (void *)((uintptr_t)(bp) + (map)->bp_offset); \ 404 }) 405 406 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { 407 { EEPROM_ENTRY(0x43, board_id) }, 408 { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, 409 { } 410 }; 411 412 static struct ptp_ocp_eeprom_map art_eeprom_map[] = { 413 { EEPROM_ENTRY(0x200 + 0x43, board_id) }, 414 { EEPROM_ENTRY(0x200 + 0x63, serial) }, 415 { } 416 }; 417 418 #define bp_assign_entry(bp, res, val) ({ \ 419 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ 420 *(typeof(val) *)addr = val; \ 421 }) 422 423 #define OCP_RES_LOCATION(member) \ 424 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) 425 426 #define OCP_MEM_RESOURCE(member) \ 427 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem 428 429 #define OCP_SERIAL_RESOURCE(member) \ 430 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial 431 432 #define OCP_I2C_RESOURCE(member) \ 433 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c 434 435 #define OCP_SPI_RESOURCE(member) \ 436 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi 437 438 #define OCP_EXT_RESOURCE(member) \ 439 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext 440 441 /* This is the MSI vector mapping used. 442 * 0: PPS (TS5) 443 * 1: TS0 444 * 2: TS1 445 * 3: GNSS1 446 * 4: GNSS2 447 * 5: MAC 448 * 6: TS2 449 * 7: I2C controller 450 * 8: HWICAP (notused) 451 * 9: SPI Flash 452 * 10: NMEA 453 * 11: Signal Generator 1 454 * 12: Signal Generator 2 455 * 13: Signal Generator 3 456 * 14: Signal Generator 4 457 * 15: TS3 458 * 16: TS4 459 -- 460 * 8: Orolia TS1 461 * 10: Orolia TS2 462 * 11: Orolia TS0 (GNSS) 463 * 12: Orolia PPS 464 * 14: Orolia TS3 465 * 15: Orolia TS4 466 */ 467 468 static struct ocp_resource ocp_fb_resource[] = { 469 { 470 OCP_MEM_RESOURCE(reg), 471 .offset = 0x01000000, .size = 0x10000, 472 }, 473 { 474 OCP_EXT_RESOURCE(ts0), 475 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 476 .extra = &(struct ptp_ocp_ext_info) { 477 .index = 0, 478 .irq_fcn = ptp_ocp_ts_irq, 479 .enable = ptp_ocp_ts_enable, 480 }, 481 }, 482 { 483 OCP_EXT_RESOURCE(ts1), 484 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 485 .extra = &(struct ptp_ocp_ext_info) { 486 .index = 1, 487 .irq_fcn = ptp_ocp_ts_irq, 488 .enable = ptp_ocp_ts_enable, 489 }, 490 }, 491 { 492 OCP_EXT_RESOURCE(ts2), 493 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 494 .extra = &(struct ptp_ocp_ext_info) { 495 .index = 2, 496 .irq_fcn = ptp_ocp_ts_irq, 497 .enable = ptp_ocp_ts_enable, 498 }, 499 }, 500 { 501 OCP_EXT_RESOURCE(ts3), 502 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, 503 .extra = &(struct ptp_ocp_ext_info) { 504 .index = 3, 505 .irq_fcn = ptp_ocp_ts_irq, 506 .enable = ptp_ocp_ts_enable, 507 }, 508 }, 509 { 510 OCP_EXT_RESOURCE(ts4), 511 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, 512 .extra = &(struct ptp_ocp_ext_info) { 513 .index = 4, 514 .irq_fcn = ptp_ocp_ts_irq, 515 .enable = ptp_ocp_ts_enable, 516 }, 517 }, 518 /* Timestamp for PHC and/or PPS generator */ 519 { 520 OCP_EXT_RESOURCE(pps), 521 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 522 .extra = &(struct ptp_ocp_ext_info) { 523 .index = 5, 524 .irq_fcn = ptp_ocp_ts_irq, 525 .enable = ptp_ocp_ts_enable, 526 }, 527 }, 528 { 529 OCP_EXT_RESOURCE(signal_out[0]), 530 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 531 .extra = &(struct ptp_ocp_ext_info) { 532 .index = 1, 533 .irq_fcn = ptp_ocp_signal_irq, 534 .enable = ptp_ocp_signal_enable, 535 }, 536 }, 537 { 538 OCP_EXT_RESOURCE(signal_out[1]), 539 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 540 .extra = &(struct ptp_ocp_ext_info) { 541 .index = 2, 542 .irq_fcn = ptp_ocp_signal_irq, 543 .enable = ptp_ocp_signal_enable, 544 }, 545 }, 546 { 547 OCP_EXT_RESOURCE(signal_out[2]), 548 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, 549 .extra = &(struct ptp_ocp_ext_info) { 550 .index = 3, 551 .irq_fcn = ptp_ocp_signal_irq, 552 .enable = ptp_ocp_signal_enable, 553 }, 554 }, 555 { 556 OCP_EXT_RESOURCE(signal_out[3]), 557 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, 558 .extra = &(struct ptp_ocp_ext_info) { 559 .index = 4, 560 .irq_fcn = ptp_ocp_signal_irq, 561 .enable = ptp_ocp_signal_enable, 562 }, 563 }, 564 { 565 OCP_MEM_RESOURCE(pps_to_ext), 566 .offset = 0x01030000, .size = 0x10000, 567 }, 568 { 569 OCP_MEM_RESOURCE(pps_to_clk), 570 .offset = 0x01040000, .size = 0x10000, 571 }, 572 { 573 OCP_MEM_RESOURCE(tod), 574 .offset = 0x01050000, .size = 0x10000, 575 }, 576 { 577 OCP_MEM_RESOURCE(irig_in), 578 .offset = 0x01070000, .size = 0x10000, 579 }, 580 { 581 OCP_MEM_RESOURCE(irig_out), 582 .offset = 0x01080000, .size = 0x10000, 583 }, 584 { 585 OCP_MEM_RESOURCE(dcf_in), 586 .offset = 0x01090000, .size = 0x10000, 587 }, 588 { 589 OCP_MEM_RESOURCE(dcf_out), 590 .offset = 0x010A0000, .size = 0x10000, 591 }, 592 { 593 OCP_MEM_RESOURCE(nmea_out), 594 .offset = 0x010B0000, .size = 0x10000, 595 }, 596 { 597 OCP_MEM_RESOURCE(image), 598 .offset = 0x00020000, .size = 0x1000, 599 }, 600 { 601 OCP_MEM_RESOURCE(pps_select), 602 .offset = 0x00130000, .size = 0x1000, 603 }, 604 { 605 OCP_MEM_RESOURCE(sma_map1), 606 .offset = 0x00140000, .size = 0x1000, 607 }, 608 { 609 OCP_MEM_RESOURCE(sma_map2), 610 .offset = 0x00220000, .size = 0x1000, 611 }, 612 { 613 OCP_I2C_RESOURCE(i2c_ctrl), 614 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, 615 .extra = &(struct ptp_ocp_i2c_info) { 616 .name = "xiic-i2c", 617 .fixed_rate = 50000000, 618 .data_size = sizeof(struct xiic_i2c_platform_data), 619 .data = &(struct xiic_i2c_platform_data) { 620 .num_devices = 2, 621 .devices = (struct i2c_board_info[]) { 622 { I2C_BOARD_INFO("24c02", 0x50) }, 623 { I2C_BOARD_INFO("24mac402", 0x58), 624 .platform_data = "mac" }, 625 }, 626 }, 627 }, 628 }, 629 { 630 OCP_SERIAL_RESOURCE(gnss_port), 631 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 632 .extra = &(struct ptp_ocp_serial_port) { 633 .baud = 115200, 634 }, 635 }, 636 { 637 OCP_SERIAL_RESOURCE(gnss2_port), 638 .offset = 0x00170000 + 0x1000, .irq_vec = 4, 639 .extra = &(struct ptp_ocp_serial_port) { 640 .baud = 115200, 641 }, 642 }, 643 { 644 OCP_SERIAL_RESOURCE(mac_port), 645 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 646 .extra = &(struct ptp_ocp_serial_port) { 647 .baud = 57600, 648 }, 649 }, 650 { 651 OCP_SERIAL_RESOURCE(nmea_port), 652 .offset = 0x00190000 + 0x1000, .irq_vec = 10, 653 }, 654 { 655 OCP_SPI_RESOURCE(spi_flash), 656 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 657 .extra = &(struct ptp_ocp_flash_info) { 658 .name = "xilinx_spi", .pci_offset = 0, 659 .data_size = sizeof(struct xspi_platform_data), 660 .data = &(struct xspi_platform_data) { 661 .num_chipselect = 1, 662 .bits_per_word = 8, 663 .num_devices = 1, 664 .force_irq = true, 665 .devices = &(struct spi_board_info) { 666 .modalias = "spi-nor", 667 }, 668 }, 669 }, 670 }, 671 { 672 OCP_MEM_RESOURCE(freq_in[0]), 673 .offset = 0x01200000, .size = 0x10000, 674 }, 675 { 676 OCP_MEM_RESOURCE(freq_in[1]), 677 .offset = 0x01210000, .size = 0x10000, 678 }, 679 { 680 OCP_MEM_RESOURCE(freq_in[2]), 681 .offset = 0x01220000, .size = 0x10000, 682 }, 683 { 684 OCP_MEM_RESOURCE(freq_in[3]), 685 .offset = 0x01230000, .size = 0x10000, 686 }, 687 { 688 .setup = ptp_ocp_fb_board_init, 689 }, 690 { } 691 }; 692 693 #define OCP_ART_CONFIG_SIZE 144 694 #define OCP_ART_TEMP_TABLE_SIZE 368 695 696 struct ocp_art_gpio_reg { 697 struct { 698 u32 gpio; 699 u32 __pad[3]; 700 } map[4]; 701 }; 702 703 static struct ocp_resource ocp_art_resource[] = { 704 { 705 OCP_MEM_RESOURCE(reg), 706 .offset = 0x01000000, .size = 0x10000, 707 }, 708 { 709 OCP_SERIAL_RESOURCE(gnss_port), 710 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 711 .extra = &(struct ptp_ocp_serial_port) { 712 .baud = 115200, 713 }, 714 }, 715 { 716 OCP_MEM_RESOURCE(art_sma), 717 .offset = 0x003C0000, .size = 0x1000, 718 }, 719 /* Timestamp associated with GNSS1 receiver PPS */ 720 { 721 OCP_EXT_RESOURCE(ts0), 722 .offset = 0x360000, .size = 0x20, .irq_vec = 12, 723 .extra = &(struct ptp_ocp_ext_info) { 724 .index = 0, 725 .irq_fcn = ptp_ocp_ts_irq, 726 .enable = ptp_ocp_ts_enable, 727 }, 728 }, 729 { 730 OCP_EXT_RESOURCE(ts1), 731 .offset = 0x380000, .size = 0x20, .irq_vec = 8, 732 .extra = &(struct ptp_ocp_ext_info) { 733 .index = 1, 734 .irq_fcn = ptp_ocp_ts_irq, 735 .enable = ptp_ocp_ts_enable, 736 }, 737 }, 738 { 739 OCP_EXT_RESOURCE(ts2), 740 .offset = 0x390000, .size = 0x20, .irq_vec = 10, 741 .extra = &(struct ptp_ocp_ext_info) { 742 .index = 2, 743 .irq_fcn = ptp_ocp_ts_irq, 744 .enable = ptp_ocp_ts_enable, 745 }, 746 }, 747 { 748 OCP_EXT_RESOURCE(ts3), 749 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14, 750 .extra = &(struct ptp_ocp_ext_info) { 751 .index = 3, 752 .irq_fcn = ptp_ocp_ts_irq, 753 .enable = ptp_ocp_ts_enable, 754 }, 755 }, 756 { 757 OCP_EXT_RESOURCE(ts4), 758 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15, 759 .extra = &(struct ptp_ocp_ext_info) { 760 .index = 4, 761 .irq_fcn = ptp_ocp_ts_irq, 762 .enable = ptp_ocp_ts_enable, 763 }, 764 }, 765 /* Timestamp associated with Internal PPS of the card */ 766 { 767 OCP_EXT_RESOURCE(pps), 768 .offset = 0x00330000, .size = 0x20, .irq_vec = 11, 769 .extra = &(struct ptp_ocp_ext_info) { 770 .index = 5, 771 .irq_fcn = ptp_ocp_ts_irq, 772 .enable = ptp_ocp_ts_enable, 773 }, 774 }, 775 { 776 OCP_SPI_RESOURCE(spi_flash), 777 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 778 .extra = &(struct ptp_ocp_flash_info) { 779 .name = "spi_altera", .pci_offset = 0, 780 .data_size = sizeof(struct altera_spi_platform_data), 781 .data = &(struct altera_spi_platform_data) { 782 .num_chipselect = 1, 783 .num_devices = 1, 784 .devices = &(struct spi_board_info) { 785 .modalias = "spi-nor", 786 }, 787 }, 788 }, 789 }, 790 { 791 OCP_I2C_RESOURCE(i2c_ctrl), 792 .offset = 0x350000, .size = 0x100, .irq_vec = 4, 793 .extra = &(struct ptp_ocp_i2c_info) { 794 .name = "ocores-i2c", 795 .fixed_rate = 400000, 796 .data_size = sizeof(struct ocores_i2c_platform_data), 797 .data = &(struct ocores_i2c_platform_data) { 798 .clock_khz = 125000, 799 .bus_khz = 400, 800 .num_devices = 1, 801 .devices = &(struct i2c_board_info) { 802 I2C_BOARD_INFO("24c08", 0x50), 803 }, 804 }, 805 }, 806 }, 807 { 808 OCP_SERIAL_RESOURCE(mac_port), 809 .offset = 0x00190000, .irq_vec = 7, 810 .extra = &(struct ptp_ocp_serial_port) { 811 .baud = 9600, 812 }, 813 }, 814 { 815 OCP_MEM_RESOURCE(board_config), 816 .offset = 0x210000, .size = 0x1000, 817 }, 818 { 819 .setup = ptp_ocp_art_board_init, 820 }, 821 { } 822 }; 823 824 static const struct pci_device_id ptp_ocp_pcidev_id[] = { 825 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, 826 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, 827 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) }, 828 { } 829 }; 830 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); 831 832 static DEFINE_MUTEX(ptp_ocp_lock); 833 static DEFINE_IDR(ptp_ocp_idr); 834 835 struct ocp_selector { 836 const char *name; 837 int value; 838 }; 839 840 static const struct ocp_selector ptp_ocp_clock[] = { 841 { .name = "NONE", .value = 0 }, 842 { .name = "TOD", .value = 1 }, 843 { .name = "IRIG", .value = 2 }, 844 { .name = "PPS", .value = 3 }, 845 { .name = "PTP", .value = 4 }, 846 { .name = "RTC", .value = 5 }, 847 { .name = "DCF", .value = 6 }, 848 { .name = "REGS", .value = 0xfe }, 849 { .name = "EXT", .value = 0xff }, 850 { } 851 }; 852 853 #define SMA_DISABLE BIT(16) 854 #define SMA_ENABLE BIT(15) 855 #define SMA_SELECT_MASK GENMASK(14, 0) 856 857 static const struct ocp_selector ptp_ocp_sma_in[] = { 858 { .name = "10Mhz", .value = 0x0000 }, 859 { .name = "PPS1", .value = 0x0001 }, 860 { .name = "PPS2", .value = 0x0002 }, 861 { .name = "TS1", .value = 0x0004 }, 862 { .name = "TS2", .value = 0x0008 }, 863 { .name = "IRIG", .value = 0x0010 }, 864 { .name = "DCF", .value = 0x0020 }, 865 { .name = "TS3", .value = 0x0040 }, 866 { .name = "TS4", .value = 0x0080 }, 867 { .name = "FREQ1", .value = 0x0100 }, 868 { .name = "FREQ2", .value = 0x0200 }, 869 { .name = "FREQ3", .value = 0x0400 }, 870 { .name = "FREQ4", .value = 0x0800 }, 871 { .name = "None", .value = SMA_DISABLE }, 872 { } 873 }; 874 875 static const struct ocp_selector ptp_ocp_sma_out[] = { 876 { .name = "10Mhz", .value = 0x0000 }, 877 { .name = "PHC", .value = 0x0001 }, 878 { .name = "MAC", .value = 0x0002 }, 879 { .name = "GNSS1", .value = 0x0004 }, 880 { .name = "GNSS2", .value = 0x0008 }, 881 { .name = "IRIG", .value = 0x0010 }, 882 { .name = "DCF", .value = 0x0020 }, 883 { .name = "GEN1", .value = 0x0040 }, 884 { .name = "GEN2", .value = 0x0080 }, 885 { .name = "GEN3", .value = 0x0100 }, 886 { .name = "GEN4", .value = 0x0200 }, 887 { .name = "GND", .value = 0x2000 }, 888 { .name = "VCC", .value = 0x4000 }, 889 { } 890 }; 891 892 static const struct ocp_selector ptp_ocp_art_sma_in[] = { 893 { .name = "PPS1", .value = 0x0001 }, 894 { .name = "10Mhz", .value = 0x0008 }, 895 { } 896 }; 897 898 static const struct ocp_selector ptp_ocp_art_sma_out[] = { 899 { .name = "PHC", .value = 0x0002 }, 900 { .name = "GNSS", .value = 0x0004 }, 901 { .name = "10Mhz", .value = 0x0010 }, 902 { } 903 }; 904 905 struct ocp_sma_op { 906 const struct ocp_selector *tbl[2]; 907 void (*init)(struct ptp_ocp *bp); 908 u32 (*get)(struct ptp_ocp *bp, int sma_nr); 909 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); 910 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); 911 }; 912 913 static void 914 ptp_ocp_sma_init(struct ptp_ocp *bp) 915 { 916 return bp->sma_op->init(bp); 917 } 918 919 static u32 920 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) 921 { 922 return bp->sma_op->get(bp, sma_nr); 923 } 924 925 static int 926 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 927 { 928 return bp->sma_op->set_inputs(bp, sma_nr, val); 929 } 930 931 static int 932 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 933 { 934 return bp->sma_op->set_output(bp, sma_nr, val); 935 } 936 937 static const char * 938 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) 939 { 940 int i; 941 942 for (i = 0; tbl[i].name; i++) 943 if (tbl[i].value == val) 944 return tbl[i].name; 945 return NULL; 946 } 947 948 static int 949 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) 950 { 951 const char *select; 952 int i; 953 954 for (i = 0; tbl[i].name; i++) { 955 select = tbl[i].name; 956 if (!strncasecmp(name, select, strlen(select))) 957 return tbl[i].value; 958 } 959 return -EINVAL; 960 } 961 962 static ssize_t 963 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) 964 { 965 ssize_t count; 966 int i; 967 968 count = 0; 969 for (i = 0; tbl[i].name; i++) 970 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); 971 if (count) 972 count--; 973 count += sysfs_emit_at(buf, count, "\n"); 974 return count; 975 } 976 977 static int 978 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, 979 struct ptp_system_timestamp *sts) 980 { 981 u32 ctrl, time_sec, time_ns; 982 int i; 983 984 ptp_read_system_prets(sts); 985 986 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 987 iowrite32(ctrl, &bp->reg->ctrl); 988 989 for (i = 0; i < 100; i++) { 990 ctrl = ioread32(&bp->reg->ctrl); 991 if (ctrl & OCP_CTRL_READ_TIME_DONE) 992 break; 993 } 994 ptp_read_system_postts(sts); 995 996 if (sts && bp->ts_window_adjust) { 997 s64 ns = timespec64_to_ns(&sts->post_ts); 998 999 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); 1000 } 1001 1002 time_ns = ioread32(&bp->reg->time_ns); 1003 time_sec = ioread32(&bp->reg->time_sec); 1004 1005 ts->tv_sec = time_sec; 1006 ts->tv_nsec = time_ns; 1007 1008 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; 1009 } 1010 1011 static int 1012 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, 1013 struct ptp_system_timestamp *sts) 1014 { 1015 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1016 unsigned long flags; 1017 int err; 1018 1019 spin_lock_irqsave(&bp->lock, flags); 1020 err = __ptp_ocp_gettime_locked(bp, ts, sts); 1021 spin_unlock_irqrestore(&bp->lock, flags); 1022 1023 return err; 1024 } 1025 1026 static void 1027 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) 1028 { 1029 u32 ctrl, time_sec, time_ns; 1030 u32 select; 1031 1032 time_ns = ts->tv_nsec; 1033 time_sec = ts->tv_sec; 1034 1035 select = ioread32(&bp->reg->select); 1036 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1037 1038 iowrite32(time_ns, &bp->reg->adjust_ns); 1039 iowrite32(time_sec, &bp->reg->adjust_sec); 1040 1041 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; 1042 iowrite32(ctrl, &bp->reg->ctrl); 1043 1044 /* restore clock selection */ 1045 iowrite32(select >> 16, &bp->reg->select); 1046 } 1047 1048 static int 1049 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) 1050 { 1051 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1052 unsigned long flags; 1053 1054 spin_lock_irqsave(&bp->lock, flags); 1055 __ptp_ocp_settime_locked(bp, ts); 1056 spin_unlock_irqrestore(&bp->lock, flags); 1057 1058 return 0; 1059 } 1060 1061 static void 1062 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) 1063 { 1064 u32 select, ctrl; 1065 1066 select = ioread32(&bp->reg->select); 1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1068 1069 iowrite32(adj_val, &bp->reg->offset_ns); 1070 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); 1071 1072 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; 1073 iowrite32(ctrl, &bp->reg->ctrl); 1074 1075 /* restore clock selection */ 1076 iowrite32(select >> 16, &bp->reg->select); 1077 } 1078 1079 static void 1080 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) 1081 { 1082 struct timespec64 ts; 1083 unsigned long flags; 1084 int err; 1085 1086 spin_lock_irqsave(&bp->lock, flags); 1087 err = __ptp_ocp_gettime_locked(bp, &ts, NULL); 1088 if (likely(!err)) { 1089 set_normalized_timespec64(&ts, ts.tv_sec, 1090 ts.tv_nsec + delta_ns); 1091 __ptp_ocp_settime_locked(bp, &ts); 1092 } 1093 spin_unlock_irqrestore(&bp->lock, flags); 1094 } 1095 1096 static int 1097 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) 1098 { 1099 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1100 unsigned long flags; 1101 u32 adj_ns, sign; 1102 1103 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { 1104 ptp_ocp_adjtime_coarse(bp, delta_ns); 1105 return 0; 1106 } 1107 1108 sign = delta_ns < 0 ? BIT(31) : 0; 1109 adj_ns = sign ? -delta_ns : delta_ns; 1110 1111 spin_lock_irqsave(&bp->lock, flags); 1112 __ptp_ocp_adjtime_locked(bp, sign | adj_ns); 1113 spin_unlock_irqrestore(&bp->lock, flags); 1114 1115 return 0; 1116 } 1117 1118 static int 1119 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) 1120 { 1121 if (scaled_ppm == 0) 1122 return 0; 1123 1124 return -EOPNOTSUPP; 1125 } 1126 1127 static int 1128 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) 1129 { 1130 return -EOPNOTSUPP; 1131 } 1132 1133 static int 1134 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, 1135 int on) 1136 { 1137 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1138 struct ptp_ocp_ext_src *ext = NULL; 1139 u32 req; 1140 int err; 1141 1142 switch (rq->type) { 1143 case PTP_CLK_REQ_EXTTS: 1144 req = OCP_REQ_TIMESTAMP; 1145 switch (rq->extts.index) { 1146 case 0: 1147 ext = bp->ts0; 1148 break; 1149 case 1: 1150 ext = bp->ts1; 1151 break; 1152 case 2: 1153 ext = bp->ts2; 1154 break; 1155 case 3: 1156 ext = bp->ts3; 1157 break; 1158 case 4: 1159 ext = bp->ts4; 1160 break; 1161 case 5: 1162 ext = bp->pps; 1163 break; 1164 } 1165 break; 1166 case PTP_CLK_REQ_PPS: 1167 req = OCP_REQ_PPS; 1168 ext = bp->pps; 1169 break; 1170 case PTP_CLK_REQ_PEROUT: 1171 switch (rq->perout.index) { 1172 case 0: 1173 /* This is a request for 1PPS on an output SMA. 1174 * Allow, but assume manual configuration. 1175 */ 1176 if (on && (rq->perout.period.sec != 1 || 1177 rq->perout.period.nsec != 0)) 1178 return -EINVAL; 1179 return 0; 1180 case 1: 1181 case 2: 1182 case 3: 1183 case 4: 1184 req = rq->perout.index - 1; 1185 ext = bp->signal_out[req]; 1186 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); 1187 if (err) 1188 return err; 1189 break; 1190 } 1191 break; 1192 default: 1193 return -EOPNOTSUPP; 1194 } 1195 1196 err = -ENXIO; 1197 if (ext) 1198 err = ext->info->enable(ext, req, on); 1199 1200 return err; 1201 } 1202 1203 static int 1204 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, 1205 enum ptp_pin_function func, unsigned chan) 1206 { 1207 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1208 char buf[16]; 1209 1210 switch (func) { 1211 case PTP_PF_NONE: 1212 snprintf(buf, sizeof(buf), "IN: None"); 1213 break; 1214 case PTP_PF_EXTTS: 1215 /* Allow timestamps, but require sysfs configuration. */ 1216 return 0; 1217 case PTP_PF_PEROUT: 1218 /* channel 0 is 1PPS from PHC. 1219 * channels 1..4 are the frequency generators. 1220 */ 1221 if (chan) 1222 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); 1223 else 1224 snprintf(buf, sizeof(buf), "OUT: PHC"); 1225 break; 1226 default: 1227 return -EOPNOTSUPP; 1228 } 1229 1230 return ptp_ocp_sma_store(bp, buf, pin + 1); 1231 } 1232 1233 static const struct ptp_clock_info ptp_ocp_clock_info = { 1234 .owner = THIS_MODULE, 1235 .name = KBUILD_MODNAME, 1236 .max_adj = 100000000, 1237 .gettimex64 = ptp_ocp_gettimex, 1238 .settime64 = ptp_ocp_settime, 1239 .adjtime = ptp_ocp_adjtime, 1240 .adjfine = ptp_ocp_null_adjfine, 1241 .adjphase = ptp_ocp_null_adjphase, 1242 .enable = ptp_ocp_enable, 1243 .verify = ptp_ocp_verify, 1244 .pps = true, 1245 .n_ext_ts = 6, 1246 .n_per_out = 5, 1247 }; 1248 1249 static void 1250 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) 1251 { 1252 u32 ctrl, select; 1253 1254 select = ioread32(&bp->reg->select); 1255 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1256 1257 iowrite32(0, &bp->reg->drift_ns); 1258 1259 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; 1260 iowrite32(ctrl, &bp->reg->ctrl); 1261 1262 /* restore clock selection */ 1263 iowrite32(select >> 16, &bp->reg->select); 1264 } 1265 1266 static void 1267 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) 1268 { 1269 unsigned long flags; 1270 1271 spin_lock_irqsave(&bp->lock, flags); 1272 1273 bp->utc_tai_offset = val; 1274 1275 if (bp->irig_out) 1276 iowrite32(val, &bp->irig_out->adj_sec); 1277 if (bp->dcf_out) 1278 iowrite32(val, &bp->dcf_out->adj_sec); 1279 if (bp->nmea_out) 1280 iowrite32(val, &bp->nmea_out->adj_sec); 1281 1282 spin_unlock_irqrestore(&bp->lock, flags); 1283 } 1284 1285 static void 1286 ptp_ocp_watchdog(struct timer_list *t) 1287 { 1288 struct ptp_ocp *bp = from_timer(bp, t, watchdog); 1289 unsigned long flags; 1290 u32 status, utc_offset; 1291 1292 status = ioread32(&bp->pps_to_clk->status); 1293 1294 if (status & PPS_STATUS_SUPERV_ERR) { 1295 iowrite32(status, &bp->pps_to_clk->status); 1296 if (!bp->gnss_lost) { 1297 spin_lock_irqsave(&bp->lock, flags); 1298 __ptp_ocp_clear_drift_locked(bp); 1299 spin_unlock_irqrestore(&bp->lock, flags); 1300 bp->gnss_lost = ktime_get_real_seconds(); 1301 } 1302 1303 } else if (bp->gnss_lost) { 1304 bp->gnss_lost = 0; 1305 } 1306 1307 /* if GNSS provides correct data we can rely on 1308 * it to get leap second information 1309 */ 1310 if (bp->tod) { 1311 status = ioread32(&bp->tod->utc_status); 1312 utc_offset = status & TOD_STATUS_UTC_MASK; 1313 if (status & TOD_STATUS_UTC_VALID && 1314 utc_offset != bp->utc_tai_offset) 1315 ptp_ocp_utc_distribute(bp, utc_offset); 1316 } 1317 1318 mod_timer(&bp->watchdog, jiffies + HZ); 1319 } 1320 1321 static void 1322 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) 1323 { 1324 ktime_t start, end; 1325 ktime_t delay; 1326 u32 ctrl; 1327 1328 ctrl = ioread32(&bp->reg->ctrl); 1329 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1330 1331 iowrite32(ctrl, &bp->reg->ctrl); 1332 1333 start = ktime_get_ns(); 1334 1335 ctrl = ioread32(&bp->reg->ctrl); 1336 1337 end = ktime_get_ns(); 1338 1339 delay = end - start; 1340 bp->ts_window_adjust = (delay >> 5) * 3; 1341 } 1342 1343 static int 1344 ptp_ocp_init_clock(struct ptp_ocp *bp) 1345 { 1346 struct timespec64 ts; 1347 bool sync; 1348 u32 ctrl; 1349 1350 ctrl = OCP_CTRL_ENABLE; 1351 iowrite32(ctrl, &bp->reg->ctrl); 1352 1353 /* NO DRIFT Correction */ 1354 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ 1355 iowrite32(0x2000, &bp->reg->servo_offset_p); 1356 iowrite32(0x1000, &bp->reg->servo_offset_i); 1357 iowrite32(0, &bp->reg->servo_drift_p); 1358 iowrite32(0, &bp->reg->servo_drift_i); 1359 1360 /* latch servo values */ 1361 ctrl |= OCP_CTRL_ADJUST_SERVO; 1362 iowrite32(ctrl, &bp->reg->ctrl); 1363 1364 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { 1365 dev_err(&bp->pdev->dev, "clock not enabled\n"); 1366 return -ENODEV; 1367 } 1368 1369 ptp_ocp_estimate_pci_timing(bp); 1370 1371 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 1372 if (!sync) { 1373 ktime_get_clocktai_ts64(&ts); 1374 ptp_ocp_settime(&bp->ptp_info, &ts); 1375 } 1376 1377 /* If there is a clock supervisor, then enable the watchdog */ 1378 if (bp->pps_to_clk) { 1379 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); 1380 mod_timer(&bp->watchdog, jiffies + HZ); 1381 } 1382 1383 return 0; 1384 } 1385 1386 static void 1387 ptp_ocp_tod_init(struct ptp_ocp *bp) 1388 { 1389 u32 ctrl, reg; 1390 1391 ctrl = ioread32(&bp->tod->ctrl); 1392 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; 1393 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); 1394 iowrite32(ctrl, &bp->tod->ctrl); 1395 1396 reg = ioread32(&bp->tod->utc_status); 1397 if (reg & TOD_STATUS_UTC_VALID) 1398 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); 1399 } 1400 1401 static const char * 1402 ptp_ocp_tod_proto_name(const int idx) 1403 { 1404 static const char * const proto_name[] = { 1405 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", 1406 "UBX", "UBX_UTC", "UBX_LS", "UBX_none" 1407 }; 1408 return proto_name[idx]; 1409 } 1410 1411 static const char * 1412 ptp_ocp_tod_gnss_name(int idx) 1413 { 1414 static const char * const gnss_name[] = { 1415 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", 1416 "Unknown" 1417 }; 1418 if (idx >= ARRAY_SIZE(gnss_name)) 1419 idx = ARRAY_SIZE(gnss_name) - 1; 1420 return gnss_name[idx]; 1421 } 1422 1423 struct ptp_ocp_nvmem_match_info { 1424 struct ptp_ocp *bp; 1425 const void * const tag; 1426 }; 1427 1428 static int 1429 ptp_ocp_nvmem_match(struct device *dev, const void *data) 1430 { 1431 const struct ptp_ocp_nvmem_match_info *info = data; 1432 1433 dev = dev->parent; 1434 if (!i2c_verify_client(dev) || info->tag != dev->platform_data) 1435 return 0; 1436 1437 while ((dev = dev->parent)) 1438 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 1439 return info->bp == dev_get_drvdata(dev); 1440 return 0; 1441 } 1442 1443 static inline struct nvmem_device * 1444 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) 1445 { 1446 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; 1447 1448 return nvmem_device_find(&info, ptp_ocp_nvmem_match); 1449 } 1450 1451 static inline void 1452 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) 1453 { 1454 if (!IS_ERR_OR_NULL(*nvmemp)) 1455 nvmem_device_put(*nvmemp); 1456 *nvmemp = NULL; 1457 } 1458 1459 static void 1460 ptp_ocp_read_eeprom(struct ptp_ocp *bp) 1461 { 1462 const struct ptp_ocp_eeprom_map *map; 1463 struct nvmem_device *nvmem; 1464 const void *tag; 1465 int ret; 1466 1467 if (!bp->i2c_ctrl) 1468 return; 1469 1470 tag = NULL; 1471 nvmem = NULL; 1472 1473 for (map = bp->eeprom_map; map->len; map++) { 1474 if (map->tag != tag) { 1475 tag = map->tag; 1476 ptp_ocp_nvmem_device_put(&nvmem); 1477 } 1478 if (!nvmem) { 1479 nvmem = ptp_ocp_nvmem_device_get(bp, tag); 1480 if (IS_ERR(nvmem)) { 1481 ret = PTR_ERR(nvmem); 1482 goto fail; 1483 } 1484 } 1485 ret = nvmem_device_read(nvmem, map->off, map->len, 1486 BP_MAP_ENTRY_ADDR(bp, map)); 1487 if (ret != map->len) 1488 goto fail; 1489 } 1490 1491 bp->has_eeprom_data = true; 1492 1493 out: 1494 ptp_ocp_nvmem_device_put(&nvmem); 1495 return; 1496 1497 fail: 1498 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); 1499 goto out; 1500 } 1501 1502 static struct device * 1503 ptp_ocp_find_flash(struct ptp_ocp *bp) 1504 { 1505 struct device *dev, *last; 1506 1507 last = NULL; 1508 dev = &bp->spi_flash->dev; 1509 1510 while ((dev = device_find_any_child(dev))) { 1511 if (!strcmp("mtd", dev_bus_name(dev))) 1512 break; 1513 put_device(last); 1514 last = dev; 1515 } 1516 put_device(last); 1517 1518 return dev; 1519 } 1520 1521 static int 1522 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, 1523 const u8 **data, size_t *size) 1524 { 1525 struct ptp_ocp *bp = devlink_priv(devlink); 1526 const struct ptp_ocp_firmware_header *hdr; 1527 size_t offset, length; 1528 u16 crc; 1529 1530 hdr = (const struct ptp_ocp_firmware_header *)fw->data; 1531 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { 1532 devlink_flash_update_status_notify(devlink, 1533 "No firmware header found, cancel firmware upgrade", 1534 NULL, 0, 0); 1535 return -EINVAL; 1536 } 1537 1538 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || 1539 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { 1540 devlink_flash_update_status_notify(devlink, 1541 "Firmware image compatibility check failed", 1542 NULL, 0, 0); 1543 return -EINVAL; 1544 } 1545 1546 offset = sizeof(*hdr); 1547 length = be32_to_cpu(hdr->image_size); 1548 if (length != (fw->size - offset)) { 1549 devlink_flash_update_status_notify(devlink, 1550 "Firmware image size check failed", 1551 NULL, 0, 0); 1552 return -EINVAL; 1553 } 1554 1555 crc = crc16(0xffff, &fw->data[offset], length); 1556 if (be16_to_cpu(hdr->crc) != crc) { 1557 devlink_flash_update_status_notify(devlink, 1558 "Firmware image CRC check failed", 1559 NULL, 0, 0); 1560 return -EINVAL; 1561 } 1562 1563 *data = &fw->data[offset]; 1564 *size = length; 1565 1566 return 0; 1567 } 1568 1569 static int 1570 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, 1571 const struct firmware *fw) 1572 { 1573 struct mtd_info *mtd = dev_get_drvdata(dev); 1574 struct ptp_ocp *bp = devlink_priv(devlink); 1575 size_t off, len, size, resid, wrote; 1576 struct erase_info erase; 1577 size_t base, blksz; 1578 const u8 *data; 1579 int err; 1580 1581 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); 1582 if (err) 1583 goto out; 1584 1585 off = 0; 1586 base = bp->flash_start; 1587 blksz = 4096; 1588 resid = size; 1589 1590 while (resid) { 1591 devlink_flash_update_status_notify(devlink, "Flashing", 1592 NULL, off, size); 1593 1594 len = min_t(size_t, resid, blksz); 1595 erase.addr = base + off; 1596 erase.len = blksz; 1597 1598 err = mtd_erase(mtd, &erase); 1599 if (err) 1600 goto out; 1601 1602 err = mtd_write(mtd, base + off, len, &wrote, data + off); 1603 if (err) 1604 goto out; 1605 1606 off += blksz; 1607 resid -= len; 1608 } 1609 out: 1610 return err; 1611 } 1612 1613 static int 1614 ptp_ocp_devlink_flash_update(struct devlink *devlink, 1615 struct devlink_flash_update_params *params, 1616 struct netlink_ext_ack *extack) 1617 { 1618 struct ptp_ocp *bp = devlink_priv(devlink); 1619 struct device *dev; 1620 const char *msg; 1621 int err; 1622 1623 dev = ptp_ocp_find_flash(bp); 1624 if (!dev) { 1625 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); 1626 return -ENODEV; 1627 } 1628 1629 devlink_flash_update_status_notify(devlink, "Preparing to flash", 1630 NULL, 0, 0); 1631 1632 err = ptp_ocp_devlink_flash(devlink, dev, params->fw); 1633 1634 msg = err ? "Flash error" : "Flash complete"; 1635 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); 1636 1637 put_device(dev); 1638 return err; 1639 } 1640 1641 static int 1642 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, 1643 struct netlink_ext_ack *extack) 1644 { 1645 struct ptp_ocp *bp = devlink_priv(devlink); 1646 const char *fw_image; 1647 char buf[32]; 1648 int err; 1649 1650 fw_image = bp->fw_loader ? "loader" : "fw"; 1651 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); 1652 err = devlink_info_version_running_put(req, fw_image, buf); 1653 if (err) 1654 return err; 1655 1656 if (!bp->has_eeprom_data) { 1657 ptp_ocp_read_eeprom(bp); 1658 if (!bp->has_eeprom_data) 1659 return 0; 1660 } 1661 1662 sprintf(buf, "%pM", bp->serial); 1663 err = devlink_info_serial_number_put(req, buf); 1664 if (err) 1665 return err; 1666 1667 err = devlink_info_version_fixed_put(req, 1668 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, 1669 bp->board_id); 1670 if (err) 1671 return err; 1672 1673 return 0; 1674 } 1675 1676 static const struct devlink_ops ptp_ocp_devlink_ops = { 1677 .flash_update = ptp_ocp_devlink_flash_update, 1678 .info_get = ptp_ocp_devlink_info_get, 1679 }; 1680 1681 static void __iomem * 1682 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) 1683 { 1684 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); 1685 1686 return devm_ioremap_resource(&bp->pdev->dev, &res); 1687 } 1688 1689 static void __iomem * 1690 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1691 { 1692 resource_size_t start; 1693 1694 start = pci_resource_start(bp->pdev, 0) + r->offset; 1695 return __ptp_ocp_get_mem(bp, start, r->size); 1696 } 1697 1698 static void 1699 ptp_ocp_set_irq_resource(struct resource *res, int irq) 1700 { 1701 struct resource r = DEFINE_RES_IRQ(irq); 1702 *res = r; 1703 } 1704 1705 static void 1706 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size) 1707 { 1708 struct resource r = DEFINE_RES_MEM(start, size); 1709 *res = r; 1710 } 1711 1712 static int 1713 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) 1714 { 1715 struct ptp_ocp_flash_info *info; 1716 struct pci_dev *pdev = bp->pdev; 1717 struct platform_device *p; 1718 struct resource res[2]; 1719 resource_size_t start; 1720 int id; 1721 1722 start = pci_resource_start(pdev, 0) + r->offset; 1723 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1724 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1725 1726 info = r->extra; 1727 id = pci_dev_id(pdev) << 1; 1728 id += info->pci_offset; 1729 1730 p = platform_device_register_resndata(&pdev->dev, info->name, id, 1731 res, 2, info->data, 1732 info->data_size); 1733 if (IS_ERR(p)) 1734 return PTR_ERR(p); 1735 1736 bp_assign_entry(bp, r, p); 1737 1738 return 0; 1739 } 1740 1741 static struct platform_device * 1742 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) 1743 { 1744 struct ptp_ocp_i2c_info *info; 1745 struct resource res[2]; 1746 resource_size_t start; 1747 1748 info = r->extra; 1749 start = pci_resource_start(pdev, 0) + r->offset; 1750 ptp_ocp_set_mem_resource(&res[0], start, r->size); 1751 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec)); 1752 1753 return platform_device_register_resndata(&pdev->dev, info->name, 1754 id, res, 2, 1755 info->data, info->data_size); 1756 } 1757 1758 static int 1759 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) 1760 { 1761 struct pci_dev *pdev = bp->pdev; 1762 struct ptp_ocp_i2c_info *info; 1763 struct platform_device *p; 1764 struct clk_hw *clk; 1765 char buf[32]; 1766 int id; 1767 1768 info = r->extra; 1769 id = pci_dev_id(bp->pdev); 1770 1771 sprintf(buf, "AXI.%d", id); 1772 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 1773 info->fixed_rate); 1774 if (IS_ERR(clk)) 1775 return PTR_ERR(clk); 1776 bp->i2c_clk = clk; 1777 1778 sprintf(buf, "%s.%d", info->name, id); 1779 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); 1780 p = ptp_ocp_i2c_bus(bp->pdev, r, id); 1781 if (IS_ERR(p)) 1782 return PTR_ERR(p); 1783 1784 bp_assign_entry(bp, r, p); 1785 1786 return 0; 1787 } 1788 1789 /* The expectation is that this is triggered only on error. */ 1790 static irqreturn_t 1791 ptp_ocp_signal_irq(int irq, void *priv) 1792 { 1793 struct ptp_ocp_ext_src *ext = priv; 1794 struct signal_reg __iomem *reg = ext->mem; 1795 struct ptp_ocp *bp = ext->bp; 1796 u32 enable, status; 1797 int gen; 1798 1799 gen = ext->info->index - 1; 1800 1801 enable = ioread32(®->enable); 1802 status = ioread32(®->status); 1803 1804 /* disable generator on error */ 1805 if (status || !enable) { 1806 iowrite32(0, ®->intr_mask); 1807 iowrite32(0, ®->enable); 1808 bp->signal[gen].running = false; 1809 } 1810 1811 iowrite32(0, ®->intr); /* ack interrupt */ 1812 1813 return IRQ_HANDLED; 1814 } 1815 1816 static int 1817 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) 1818 { 1819 struct ptp_system_timestamp sts; 1820 struct timespec64 ts; 1821 ktime_t start_ns; 1822 int err; 1823 1824 if (!s->period) 1825 return 0; 1826 1827 if (!s->pulse) 1828 s->pulse = ktime_divns(s->period * s->duty, 100); 1829 1830 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); 1831 if (err) 1832 return err; 1833 1834 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; 1835 if (!s->start) { 1836 /* roundup() does not work on 32-bit systems */ 1837 s->start = DIV64_U64_ROUND_UP(start_ns, s->period); 1838 s->start = ktime_add(s->start, s->phase); 1839 } 1840 1841 if (s->duty < 1 || s->duty > 99) 1842 return -EINVAL; 1843 1844 if (s->pulse < 1 || s->pulse > s->period) 1845 return -EINVAL; 1846 1847 if (s->start < start_ns) 1848 return -EINVAL; 1849 1850 bp->signal[gen] = *s; 1851 1852 return 0; 1853 } 1854 1855 static int 1856 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 1857 struct ptp_perout_request *req) 1858 { 1859 struct ptp_ocp_signal s = { }; 1860 1861 s.polarity = bp->signal[gen].polarity; 1862 s.period = ktime_set(req->period.sec, req->period.nsec); 1863 if (!s.period) 1864 return 0; 1865 1866 if (req->flags & PTP_PEROUT_DUTY_CYCLE) { 1867 s.pulse = ktime_set(req->on.sec, req->on.nsec); 1868 s.duty = ktime_divns(s.pulse * 100, s.period); 1869 } 1870 1871 if (req->flags & PTP_PEROUT_PHASE) 1872 s.phase = ktime_set(req->phase.sec, req->phase.nsec); 1873 else 1874 s.start = ktime_set(req->start.sec, req->start.nsec); 1875 1876 return ptp_ocp_signal_set(bp, gen, &s); 1877 } 1878 1879 static int 1880 ptp_ocp_signal_enable(void *priv, u32 req, bool enable) 1881 { 1882 struct ptp_ocp_ext_src *ext = priv; 1883 struct signal_reg __iomem *reg = ext->mem; 1884 struct ptp_ocp *bp = ext->bp; 1885 struct timespec64 ts; 1886 int gen; 1887 1888 gen = ext->info->index - 1; 1889 1890 iowrite32(0, ®->intr_mask); 1891 iowrite32(0, ®->enable); 1892 bp->signal[gen].running = false; 1893 if (!enable) 1894 return 0; 1895 1896 ts = ktime_to_timespec64(bp->signal[gen].start); 1897 iowrite32(ts.tv_sec, ®->start_sec); 1898 iowrite32(ts.tv_nsec, ®->start_ns); 1899 1900 ts = ktime_to_timespec64(bp->signal[gen].period); 1901 iowrite32(ts.tv_sec, ®->period_sec); 1902 iowrite32(ts.tv_nsec, ®->period_ns); 1903 1904 ts = ktime_to_timespec64(bp->signal[gen].pulse); 1905 iowrite32(ts.tv_sec, ®->pulse_sec); 1906 iowrite32(ts.tv_nsec, ®->pulse_ns); 1907 1908 iowrite32(bp->signal[gen].polarity, ®->polarity); 1909 iowrite32(0, ®->repeat_count); 1910 1911 iowrite32(0, ®->intr); /* clear interrupt state */ 1912 iowrite32(1, ®->intr_mask); /* enable interrupt */ 1913 iowrite32(3, ®->enable); /* valid & enable */ 1914 1915 bp->signal[gen].running = true; 1916 1917 return 0; 1918 } 1919 1920 static irqreturn_t 1921 ptp_ocp_ts_irq(int irq, void *priv) 1922 { 1923 struct ptp_ocp_ext_src *ext = priv; 1924 struct ts_reg __iomem *reg = ext->mem; 1925 struct ptp_clock_event ev; 1926 u32 sec, nsec; 1927 1928 if (ext == ext->bp->pps) { 1929 if (ext->bp->pps_req_map & OCP_REQ_PPS) { 1930 ev.type = PTP_CLOCK_PPS; 1931 ptp_clock_event(ext->bp->ptp, &ev); 1932 } 1933 1934 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) 1935 goto out; 1936 } 1937 1938 /* XXX should fix API - this converts s/ns -> ts -> s/ns */ 1939 sec = ioread32(®->time_sec); 1940 nsec = ioread32(®->time_ns); 1941 1942 ev.type = PTP_CLOCK_EXTTS; 1943 ev.index = ext->info->index; 1944 ev.timestamp = sec * NSEC_PER_SEC + nsec; 1945 1946 ptp_clock_event(ext->bp->ptp, &ev); 1947 1948 out: 1949 iowrite32(1, ®->intr); /* write 1 to ack */ 1950 1951 return IRQ_HANDLED; 1952 } 1953 1954 static int 1955 ptp_ocp_ts_enable(void *priv, u32 req, bool enable) 1956 { 1957 struct ptp_ocp_ext_src *ext = priv; 1958 struct ts_reg __iomem *reg = ext->mem; 1959 struct ptp_ocp *bp = ext->bp; 1960 1961 if (ext == bp->pps) { 1962 u32 old_map = bp->pps_req_map; 1963 1964 if (enable) 1965 bp->pps_req_map |= req; 1966 else 1967 bp->pps_req_map &= ~req; 1968 1969 /* if no state change, just return */ 1970 if ((!!old_map ^ !!bp->pps_req_map) == 0) 1971 return 0; 1972 } 1973 1974 if (enable) { 1975 iowrite32(1, ®->enable); 1976 iowrite32(1, ®->intr_mask); 1977 iowrite32(1, ®->intr); 1978 } else { 1979 iowrite32(0, ®->intr_mask); 1980 iowrite32(0, ®->enable); 1981 } 1982 1983 return 0; 1984 } 1985 1986 static void 1987 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) 1988 { 1989 ext->info->enable(ext, ~0, false); 1990 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); 1991 kfree(ext); 1992 } 1993 1994 static int 1995 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) 1996 { 1997 struct pci_dev *pdev = bp->pdev; 1998 struct ptp_ocp_ext_src *ext; 1999 int err; 2000 2001 ext = kzalloc(sizeof(*ext), GFP_KERNEL); 2002 if (!ext) 2003 return -ENOMEM; 2004 2005 ext->mem = ptp_ocp_get_mem(bp, r); 2006 if (IS_ERR(ext->mem)) { 2007 err = PTR_ERR(ext->mem); 2008 goto out; 2009 } 2010 2011 ext->bp = bp; 2012 ext->info = r->extra; 2013 ext->irq_vec = r->irq_vec; 2014 2015 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, 2016 ext, "ocp%d.%s", bp->id, r->name); 2017 if (err) { 2018 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); 2019 goto out; 2020 } 2021 2022 bp_assign_entry(bp, r, ext); 2023 2024 return 0; 2025 2026 out: 2027 kfree(ext); 2028 return err; 2029 } 2030 2031 static int 2032 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) 2033 { 2034 struct pci_dev *pdev = bp->pdev; 2035 struct uart_8250_port uart; 2036 2037 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets 2038 * the serial port device claim and release the pci resource. 2039 */ 2040 memset(&uart, 0, sizeof(uart)); 2041 uart.port.dev = &pdev->dev; 2042 uart.port.iotype = UPIO_MEM; 2043 uart.port.regshift = 2; 2044 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; 2045 uart.port.irq = pci_irq_vector(pdev, r->irq_vec); 2046 uart.port.uartclk = 50000000; 2047 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; 2048 uart.port.type = PORT_16550A; 2049 2050 return serial8250_register_8250_port(&uart); 2051 } 2052 2053 static int 2054 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) 2055 { 2056 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra; 2057 struct ptp_ocp_serial_port port = {}; 2058 2059 port.line = ptp_ocp_serial_line(bp, r); 2060 if (port.line < 0) 2061 return port.line; 2062 2063 if (p) 2064 port.baud = p->baud; 2065 2066 bp_assign_entry(bp, r, port); 2067 2068 return 0; 2069 } 2070 2071 static int 2072 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) 2073 { 2074 void __iomem *mem; 2075 2076 mem = ptp_ocp_get_mem(bp, r); 2077 if (IS_ERR(mem)) 2078 return PTR_ERR(mem); 2079 2080 bp_assign_entry(bp, r, mem); 2081 2082 return 0; 2083 } 2084 2085 static void 2086 ptp_ocp_nmea_out_init(struct ptp_ocp *bp) 2087 { 2088 if (!bp->nmea_out) 2089 return; 2090 2091 iowrite32(0, &bp->nmea_out->ctrl); /* disable */ 2092 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ 2093 iowrite32(1, &bp->nmea_out->ctrl); /* enable */ 2094 } 2095 2096 static void 2097 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) 2098 { 2099 u32 val; 2100 2101 iowrite32(0, ®->enable); /* disable */ 2102 2103 val = ioread32(®->polarity); 2104 s->polarity = val ? true : false; 2105 s->duty = 50; 2106 } 2107 2108 static void 2109 ptp_ocp_signal_init(struct ptp_ocp *bp) 2110 { 2111 int i; 2112 2113 for (i = 0; i < 4; i++) 2114 if (bp->signal_out[i]) 2115 _ptp_ocp_signal_init(&bp->signal[i], 2116 bp->signal_out[i]->mem); 2117 } 2118 2119 static void 2120 ptp_ocp_attr_group_del(struct ptp_ocp *bp) 2121 { 2122 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); 2123 kfree(bp->attr_group); 2124 } 2125 2126 static int 2127 ptp_ocp_attr_group_add(struct ptp_ocp *bp, 2128 const struct ocp_attr_group *attr_tbl) 2129 { 2130 int count, i; 2131 int err; 2132 2133 count = 0; 2134 for (i = 0; attr_tbl[i].cap; i++) 2135 if (attr_tbl[i].cap & bp->fw_cap) 2136 count++; 2137 2138 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), 2139 GFP_KERNEL); 2140 if (!bp->attr_group) 2141 return -ENOMEM; 2142 2143 count = 0; 2144 for (i = 0; attr_tbl[i].cap; i++) 2145 if (attr_tbl[i].cap & bp->fw_cap) 2146 bp->attr_group[count++] = attr_tbl[i].group; 2147 2148 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); 2149 if (err) 2150 bp->attr_group[0] = NULL; 2151 2152 return err; 2153 } 2154 2155 static void 2156 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) 2157 { 2158 u32 ctrl; 2159 bool on; 2160 2161 ctrl = ioread32(reg); 2162 on = ctrl & bit; 2163 if (on ^ enable) { 2164 ctrl &= ~bit; 2165 ctrl |= enable ? bit : 0; 2166 iowrite32(ctrl, reg); 2167 } 2168 } 2169 2170 static void 2171 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) 2172 { 2173 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, 2174 IRIG_M_CTRL_ENABLE, enable); 2175 } 2176 2177 static void 2178 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) 2179 { 2180 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, 2181 IRIG_S_CTRL_ENABLE, enable); 2182 } 2183 2184 static void 2185 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) 2186 { 2187 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, 2188 DCF_M_CTRL_ENABLE, enable); 2189 } 2190 2191 static void 2192 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) 2193 { 2194 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, 2195 DCF_S_CTRL_ENABLE, enable); 2196 } 2197 2198 static void 2199 __handle_signal_outputs(struct ptp_ocp *bp, u32 val) 2200 { 2201 ptp_ocp_irig_out(bp, val & 0x00100010); 2202 ptp_ocp_dcf_out(bp, val & 0x00200020); 2203 } 2204 2205 static void 2206 __handle_signal_inputs(struct ptp_ocp *bp, u32 val) 2207 { 2208 ptp_ocp_irig_in(bp, val & 0x00100010); 2209 ptp_ocp_dcf_in(bp, val & 0x00200020); 2210 } 2211 2212 static u32 2213 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) 2214 { 2215 u32 __iomem *gpio; 2216 u32 shift; 2217 2218 if (bp->sma[sma_nr - 1].fixed_fcn) 2219 return (sma_nr - 1) & 1; 2220 2221 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) 2222 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2223 else 2224 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2225 shift = sma_nr & 1 ? 0 : 16; 2226 2227 return (ioread32(gpio) >> shift) & 0xffff; 2228 } 2229 2230 static int 2231 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 2232 { 2233 u32 reg, mask, shift; 2234 unsigned long flags; 2235 u32 __iomem *gpio; 2236 2237 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2238 shift = sma_nr & 1 ? 0 : 16; 2239 2240 mask = 0xffff << (16 - shift); 2241 2242 spin_lock_irqsave(&bp->lock, flags); 2243 2244 reg = ioread32(gpio); 2245 reg = (reg & mask) | (val << shift); 2246 2247 __handle_signal_outputs(bp, reg); 2248 2249 iowrite32(reg, gpio); 2250 2251 spin_unlock_irqrestore(&bp->lock, flags); 2252 2253 return 0; 2254 } 2255 2256 static int 2257 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 2258 { 2259 u32 reg, mask, shift; 2260 unsigned long flags; 2261 u32 __iomem *gpio; 2262 2263 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2264 shift = sma_nr & 1 ? 0 : 16; 2265 2266 mask = 0xffff << (16 - shift); 2267 2268 spin_lock_irqsave(&bp->lock, flags); 2269 2270 reg = ioread32(gpio); 2271 reg = (reg & mask) | (val << shift); 2272 2273 __handle_signal_inputs(bp, reg); 2274 2275 iowrite32(reg, gpio); 2276 2277 spin_unlock_irqrestore(&bp->lock, flags); 2278 2279 return 0; 2280 } 2281 2282 static void 2283 ptp_ocp_sma_fb_init(struct ptp_ocp *bp) 2284 { 2285 u32 reg; 2286 int i; 2287 2288 /* defaults */ 2289 bp->sma[0].mode = SMA_MODE_IN; 2290 bp->sma[1].mode = SMA_MODE_IN; 2291 bp->sma[2].mode = SMA_MODE_OUT; 2292 bp->sma[3].mode = SMA_MODE_OUT; 2293 for (i = 0; i < 4; i++) 2294 bp->sma[i].default_fcn = i & 1; 2295 2296 /* If no SMA1 map, the pin functions and directions are fixed. */ 2297 if (!bp->sma_map1) { 2298 for (i = 0; i < 4; i++) { 2299 bp->sma[i].fixed_fcn = true; 2300 bp->sma[i].fixed_dir = true; 2301 } 2302 return; 2303 } 2304 2305 /* If SMA2 GPIO output map is all 1, it is not present. 2306 * This indicates the firmware has fixed direction SMA pins. 2307 */ 2308 reg = ioread32(&bp->sma_map2->gpio2); 2309 if (reg == 0xffffffff) { 2310 for (i = 0; i < 4; i++) 2311 bp->sma[i].fixed_dir = true; 2312 } else { 2313 reg = ioread32(&bp->sma_map1->gpio1); 2314 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; 2315 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; 2316 2317 reg = ioread32(&bp->sma_map1->gpio2); 2318 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; 2319 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; 2320 } 2321 } 2322 2323 static const struct ocp_sma_op ocp_fb_sma_op = { 2324 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, 2325 .init = ptp_ocp_sma_fb_init, 2326 .get = ptp_ocp_sma_fb_get, 2327 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2328 .set_output = ptp_ocp_sma_fb_set_output, 2329 }; 2330 2331 static int 2332 ptp_ocp_fb_set_pins(struct ptp_ocp *bp) 2333 { 2334 struct ptp_pin_desc *config; 2335 int i; 2336 2337 config = kcalloc(4, sizeof(*config), GFP_KERNEL); 2338 if (!config) 2339 return -ENOMEM; 2340 2341 for (i = 0; i < 4; i++) { 2342 sprintf(config[i].name, "sma%d", i + 1); 2343 config[i].index = i; 2344 } 2345 2346 bp->ptp_info.n_pins = 4; 2347 bp->ptp_info.pin_config = config; 2348 2349 return 0; 2350 } 2351 2352 static void 2353 ptp_ocp_fb_set_version(struct ptp_ocp *bp) 2354 { 2355 u64 cap = OCP_CAP_BASIC; 2356 u32 version; 2357 2358 version = ioread32(&bp->image->version); 2359 2360 /* if lower 16 bits are empty, this is the fw loader. */ 2361 if ((version & 0xffff) == 0) { 2362 version = version >> 16; 2363 bp->fw_loader = true; 2364 } 2365 2366 bp->fw_tag = version >> 15; 2367 bp->fw_version = version & 0x7fff; 2368 2369 if (bp->fw_tag) { 2370 /* FPGA firmware */ 2371 if (version >= 5) 2372 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2373 } else { 2374 /* SOM firmware */ 2375 if (version >= 19) 2376 cap |= OCP_CAP_SIGNAL; 2377 if (version >= 20) 2378 cap |= OCP_CAP_FREQ; 2379 } 2380 2381 bp->fw_cap = cap; 2382 } 2383 2384 /* FB specific board initializers; last "resource" registered. */ 2385 static int 2386 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2387 { 2388 int err; 2389 2390 bp->flash_start = 1024 * 4096; 2391 bp->eeprom_map = fb_eeprom_map; 2392 bp->fw_version = ioread32(&bp->image->version); 2393 bp->sma_op = &ocp_fb_sma_op; 2394 2395 ptp_ocp_fb_set_version(bp); 2396 2397 ptp_ocp_tod_init(bp); 2398 ptp_ocp_nmea_out_init(bp); 2399 ptp_ocp_sma_init(bp); 2400 ptp_ocp_signal_init(bp); 2401 2402 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); 2403 if (err) 2404 return err; 2405 2406 err = ptp_ocp_fb_set_pins(bp); 2407 if (err) 2408 return err; 2409 2410 return ptp_ocp_init_clock(bp); 2411 } 2412 2413 static bool 2414 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) 2415 { 2416 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; 2417 2418 if (!allow) 2419 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", 2420 r->irq_vec, r->name); 2421 return allow; 2422 } 2423 2424 static int 2425 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) 2426 { 2427 struct ocp_resource *r, *table; 2428 int err = 0; 2429 2430 table = (struct ocp_resource *)driver_data; 2431 for (r = table; r->setup; r++) { 2432 if (!ptp_ocp_allow_irq(bp, r)) 2433 continue; 2434 err = r->setup(bp, r); 2435 if (err) { 2436 dev_err(&bp->pdev->dev, 2437 "Could not register %s: err %d\n", 2438 r->name, err); 2439 break; 2440 } 2441 } 2442 return err; 2443 } 2444 2445 static void 2446 ptp_ocp_art_sma_init(struct ptp_ocp *bp) 2447 { 2448 u32 reg; 2449 int i; 2450 2451 /* defaults */ 2452 bp->sma[0].mode = SMA_MODE_IN; 2453 bp->sma[1].mode = SMA_MODE_IN; 2454 bp->sma[2].mode = SMA_MODE_OUT; 2455 bp->sma[3].mode = SMA_MODE_OUT; 2456 2457 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */ 2458 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */ 2459 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */ 2460 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */ 2461 2462 /* If no SMA map, the pin functions and directions are fixed. */ 2463 if (!bp->art_sma) { 2464 for (i = 0; i < 4; i++) { 2465 bp->sma[i].fixed_fcn = true; 2466 bp->sma[i].fixed_dir = true; 2467 } 2468 return; 2469 } 2470 2471 for (i = 0; i < 4; i++) { 2472 reg = ioread32(&bp->art_sma->map[i].gpio); 2473 2474 switch (reg & 0xff) { 2475 case 0: 2476 bp->sma[i].fixed_fcn = true; 2477 bp->sma[i].fixed_dir = true; 2478 break; 2479 case 1: 2480 case 8: 2481 bp->sma[i].mode = SMA_MODE_IN; 2482 break; 2483 default: 2484 bp->sma[i].mode = SMA_MODE_OUT; 2485 break; 2486 } 2487 } 2488 } 2489 2490 static u32 2491 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr) 2492 { 2493 if (bp->sma[sma_nr - 1].fixed_fcn) 2494 return bp->sma[sma_nr - 1].default_fcn; 2495 2496 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff; 2497 } 2498 2499 /* note: store 0 is considered invalid. */ 2500 static int 2501 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val) 2502 { 2503 unsigned long flags; 2504 u32 __iomem *gpio; 2505 int err = 0; 2506 u32 reg; 2507 2508 val &= SMA_SELECT_MASK; 2509 if (hweight32(val) > 1) 2510 return -EINVAL; 2511 2512 gpio = &bp->art_sma->map[sma_nr - 1].gpio; 2513 2514 spin_lock_irqsave(&bp->lock, flags); 2515 reg = ioread32(gpio); 2516 if (((reg >> 16) & val) == 0) { 2517 err = -EOPNOTSUPP; 2518 } else { 2519 reg = (reg & 0xff00) | (val & 0xff); 2520 iowrite32(reg, gpio); 2521 } 2522 spin_unlock_irqrestore(&bp->lock, flags); 2523 2524 return err; 2525 } 2526 2527 static const struct ocp_sma_op ocp_art_sma_op = { 2528 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out }, 2529 .init = ptp_ocp_art_sma_init, 2530 .get = ptp_ocp_art_sma_get, 2531 .set_inputs = ptp_ocp_art_sma_set, 2532 .set_output = ptp_ocp_art_sma_set, 2533 }; 2534 2535 /* ART specific board initializers; last "resource" registered. */ 2536 static int 2537 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2538 { 2539 int err; 2540 2541 bp->flash_start = 0x1000000; 2542 bp->eeprom_map = art_eeprom_map; 2543 bp->fw_cap = OCP_CAP_BASIC; 2544 bp->fw_version = ioread32(&bp->reg->version); 2545 bp->fw_tag = 2; 2546 bp->sma_op = &ocp_art_sma_op; 2547 2548 /* Enable MAC serial port during initialisation */ 2549 iowrite32(1, &bp->board_config->mro50_serial_activate); 2550 2551 ptp_ocp_sma_init(bp); 2552 2553 err = ptp_ocp_attr_group_add(bp, art_timecard_groups); 2554 if (err) 2555 return err; 2556 2557 return ptp_ocp_init_clock(bp); 2558 } 2559 2560 static ssize_t 2561 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, 2562 int def_val) 2563 { 2564 const char *name; 2565 ssize_t count; 2566 2567 count = sysfs_emit(buf, "OUT: "); 2568 name = ptp_ocp_select_name_from_val(tbl, val); 2569 if (!name) 2570 name = ptp_ocp_select_name_from_val(tbl, def_val); 2571 count += sysfs_emit_at(buf, count, "%s\n", name); 2572 return count; 2573 } 2574 2575 static ssize_t 2576 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, 2577 int def_val) 2578 { 2579 const char *name; 2580 ssize_t count; 2581 int i; 2582 2583 count = sysfs_emit(buf, "IN: "); 2584 for (i = 0; tbl[i].name; i++) { 2585 if (val & tbl[i].value) { 2586 name = tbl[i].name; 2587 count += sysfs_emit_at(buf, count, "%s ", name); 2588 } 2589 } 2590 if (!val && def_val >= 0) { 2591 name = ptp_ocp_select_name_from_val(tbl, def_val); 2592 count += sysfs_emit_at(buf, count, "%s ", name); 2593 } 2594 if (count) 2595 count--; 2596 count += sysfs_emit_at(buf, count, "\n"); 2597 return count; 2598 } 2599 2600 static int 2601 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, 2602 enum ptp_ocp_sma_mode *mode) 2603 { 2604 int idx, count, dir; 2605 char **argv; 2606 int ret; 2607 2608 argv = argv_split(GFP_KERNEL, buf, &count); 2609 if (!argv) 2610 return -ENOMEM; 2611 2612 ret = -EINVAL; 2613 if (!count) 2614 goto out; 2615 2616 idx = 0; 2617 dir = *mode == SMA_MODE_IN ? 0 : 1; 2618 if (!strcasecmp("IN:", argv[0])) { 2619 dir = 0; 2620 idx++; 2621 } 2622 if (!strcasecmp("OUT:", argv[0])) { 2623 dir = 1; 2624 idx++; 2625 } 2626 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; 2627 2628 ret = 0; 2629 for (; idx < count; idx++) 2630 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); 2631 if (ret < 0) 2632 ret = -EINVAL; 2633 2634 out: 2635 argv_free(argv); 2636 return ret; 2637 } 2638 2639 static ssize_t 2640 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, 2641 int default_in_val, int default_out_val) 2642 { 2643 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2644 const struct ocp_selector * const *tbl; 2645 u32 val; 2646 2647 tbl = bp->sma_op->tbl; 2648 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; 2649 2650 if (sma->mode == SMA_MODE_IN) { 2651 if (sma->disabled) 2652 val = SMA_DISABLE; 2653 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); 2654 } 2655 2656 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); 2657 } 2658 2659 static ssize_t 2660 sma1_show(struct device *dev, struct device_attribute *attr, char *buf) 2661 { 2662 struct ptp_ocp *bp = dev_get_drvdata(dev); 2663 2664 return ptp_ocp_sma_show(bp, 1, buf, 0, 1); 2665 } 2666 2667 static ssize_t 2668 sma2_show(struct device *dev, struct device_attribute *attr, char *buf) 2669 { 2670 struct ptp_ocp *bp = dev_get_drvdata(dev); 2671 2672 return ptp_ocp_sma_show(bp, 2, buf, -1, 1); 2673 } 2674 2675 static ssize_t 2676 sma3_show(struct device *dev, struct device_attribute *attr, char *buf) 2677 { 2678 struct ptp_ocp *bp = dev_get_drvdata(dev); 2679 2680 return ptp_ocp_sma_show(bp, 3, buf, -1, 0); 2681 } 2682 2683 static ssize_t 2684 sma4_show(struct device *dev, struct device_attribute *attr, char *buf) 2685 { 2686 struct ptp_ocp *bp = dev_get_drvdata(dev); 2687 2688 return ptp_ocp_sma_show(bp, 4, buf, -1, 1); 2689 } 2690 2691 static int 2692 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) 2693 { 2694 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2695 enum ptp_ocp_sma_mode mode; 2696 int val; 2697 2698 mode = sma->mode; 2699 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); 2700 if (val < 0) 2701 return val; 2702 2703 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) 2704 return -EOPNOTSUPP; 2705 2706 if (sma->fixed_fcn) { 2707 if (val != sma->default_fcn) 2708 return -EOPNOTSUPP; 2709 return 0; 2710 } 2711 2712 sma->disabled = !!(val & SMA_DISABLE); 2713 2714 if (mode != sma->mode) { 2715 if (mode == SMA_MODE_IN) 2716 ptp_ocp_sma_set_output(bp, sma_nr, 0); 2717 else 2718 ptp_ocp_sma_set_inputs(bp, sma_nr, 0); 2719 sma->mode = mode; 2720 } 2721 2722 if (!sma->fixed_dir) 2723 val |= SMA_ENABLE; /* add enable bit */ 2724 2725 if (sma->disabled) 2726 val = 0; 2727 2728 if (mode == SMA_MODE_IN) 2729 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); 2730 else 2731 val = ptp_ocp_sma_set_output(bp, sma_nr, val); 2732 2733 return val; 2734 } 2735 2736 static ssize_t 2737 sma1_store(struct device *dev, struct device_attribute *attr, 2738 const char *buf, size_t count) 2739 { 2740 struct ptp_ocp *bp = dev_get_drvdata(dev); 2741 int err; 2742 2743 err = ptp_ocp_sma_store(bp, buf, 1); 2744 return err ? err : count; 2745 } 2746 2747 static ssize_t 2748 sma2_store(struct device *dev, struct device_attribute *attr, 2749 const char *buf, size_t count) 2750 { 2751 struct ptp_ocp *bp = dev_get_drvdata(dev); 2752 int err; 2753 2754 err = ptp_ocp_sma_store(bp, buf, 2); 2755 return err ? err : count; 2756 } 2757 2758 static ssize_t 2759 sma3_store(struct device *dev, struct device_attribute *attr, 2760 const char *buf, size_t count) 2761 { 2762 struct ptp_ocp *bp = dev_get_drvdata(dev); 2763 int err; 2764 2765 err = ptp_ocp_sma_store(bp, buf, 3); 2766 return err ? err : count; 2767 } 2768 2769 static ssize_t 2770 sma4_store(struct device *dev, struct device_attribute *attr, 2771 const char *buf, size_t count) 2772 { 2773 struct ptp_ocp *bp = dev_get_drvdata(dev); 2774 int err; 2775 2776 err = ptp_ocp_sma_store(bp, buf, 4); 2777 return err ? err : count; 2778 } 2779 static DEVICE_ATTR_RW(sma1); 2780 static DEVICE_ATTR_RW(sma2); 2781 static DEVICE_ATTR_RW(sma3); 2782 static DEVICE_ATTR_RW(sma4); 2783 2784 static ssize_t 2785 available_sma_inputs_show(struct device *dev, 2786 struct device_attribute *attr, char *buf) 2787 { 2788 struct ptp_ocp *bp = dev_get_drvdata(dev); 2789 2790 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); 2791 } 2792 static DEVICE_ATTR_RO(available_sma_inputs); 2793 2794 static ssize_t 2795 available_sma_outputs_show(struct device *dev, 2796 struct device_attribute *attr, char *buf) 2797 { 2798 struct ptp_ocp *bp = dev_get_drvdata(dev); 2799 2800 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); 2801 } 2802 static DEVICE_ATTR_RO(available_sma_outputs); 2803 2804 #define EXT_ATTR_RO(_group, _name, _val) \ 2805 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2806 { __ATTR_RO(_name), (void *)_val } 2807 #define EXT_ATTR_RW(_group, _name, _val) \ 2808 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 2809 { __ATTR_RW(_name), (void *)_val } 2810 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2811 2812 /* period [duty [phase [polarity]]] */ 2813 static ssize_t 2814 signal_store(struct device *dev, struct device_attribute *attr, 2815 const char *buf, size_t count) 2816 { 2817 struct dev_ext_attribute *ea = to_ext_attr(attr); 2818 struct ptp_ocp *bp = dev_get_drvdata(dev); 2819 struct ptp_ocp_signal s = { }; 2820 int gen = (uintptr_t)ea->var; 2821 int argc, err; 2822 char **argv; 2823 2824 argv = argv_split(GFP_KERNEL, buf, &argc); 2825 if (!argv) 2826 return -ENOMEM; 2827 2828 err = -EINVAL; 2829 s.duty = bp->signal[gen].duty; 2830 s.phase = bp->signal[gen].phase; 2831 s.period = bp->signal[gen].period; 2832 s.polarity = bp->signal[gen].polarity; 2833 2834 switch (argc) { 2835 case 4: 2836 argc--; 2837 err = kstrtobool(argv[argc], &s.polarity); 2838 if (err) 2839 goto out; 2840 fallthrough; 2841 case 3: 2842 argc--; 2843 err = kstrtou64(argv[argc], 0, &s.phase); 2844 if (err) 2845 goto out; 2846 fallthrough; 2847 case 2: 2848 argc--; 2849 err = kstrtoint(argv[argc], 0, &s.duty); 2850 if (err) 2851 goto out; 2852 fallthrough; 2853 case 1: 2854 argc--; 2855 err = kstrtou64(argv[argc], 0, &s.period); 2856 if (err) 2857 goto out; 2858 break; 2859 default: 2860 goto out; 2861 } 2862 2863 err = ptp_ocp_signal_set(bp, gen, &s); 2864 if (err) 2865 goto out; 2866 2867 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); 2868 2869 out: 2870 argv_free(argv); 2871 return err ? err : count; 2872 } 2873 2874 static ssize_t 2875 signal_show(struct device *dev, struct device_attribute *attr, char *buf) 2876 { 2877 struct dev_ext_attribute *ea = to_ext_attr(attr); 2878 struct ptp_ocp *bp = dev_get_drvdata(dev); 2879 struct ptp_ocp_signal *signal; 2880 struct timespec64 ts; 2881 ssize_t count; 2882 int i; 2883 2884 i = (uintptr_t)ea->var; 2885 signal = &bp->signal[i]; 2886 2887 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, 2888 signal->duty, signal->phase, signal->polarity); 2889 2890 ts = ktime_to_timespec64(signal->start); 2891 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); 2892 2893 return count; 2894 } 2895 static EXT_ATTR_RW(signal, signal, 0); 2896 static EXT_ATTR_RW(signal, signal, 1); 2897 static EXT_ATTR_RW(signal, signal, 2); 2898 static EXT_ATTR_RW(signal, signal, 3); 2899 2900 static ssize_t 2901 duty_show(struct device *dev, struct device_attribute *attr, char *buf) 2902 { 2903 struct dev_ext_attribute *ea = to_ext_attr(attr); 2904 struct ptp_ocp *bp = dev_get_drvdata(dev); 2905 int i = (uintptr_t)ea->var; 2906 2907 return sysfs_emit(buf, "%d\n", bp->signal[i].duty); 2908 } 2909 static EXT_ATTR_RO(signal, duty, 0); 2910 static EXT_ATTR_RO(signal, duty, 1); 2911 static EXT_ATTR_RO(signal, duty, 2); 2912 static EXT_ATTR_RO(signal, duty, 3); 2913 2914 static ssize_t 2915 period_show(struct device *dev, struct device_attribute *attr, char *buf) 2916 { 2917 struct dev_ext_attribute *ea = to_ext_attr(attr); 2918 struct ptp_ocp *bp = dev_get_drvdata(dev); 2919 int i = (uintptr_t)ea->var; 2920 2921 return sysfs_emit(buf, "%llu\n", bp->signal[i].period); 2922 } 2923 static EXT_ATTR_RO(signal, period, 0); 2924 static EXT_ATTR_RO(signal, period, 1); 2925 static EXT_ATTR_RO(signal, period, 2); 2926 static EXT_ATTR_RO(signal, period, 3); 2927 2928 static ssize_t 2929 phase_show(struct device *dev, struct device_attribute *attr, char *buf) 2930 { 2931 struct dev_ext_attribute *ea = to_ext_attr(attr); 2932 struct ptp_ocp *bp = dev_get_drvdata(dev); 2933 int i = (uintptr_t)ea->var; 2934 2935 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); 2936 } 2937 static EXT_ATTR_RO(signal, phase, 0); 2938 static EXT_ATTR_RO(signal, phase, 1); 2939 static EXT_ATTR_RO(signal, phase, 2); 2940 static EXT_ATTR_RO(signal, phase, 3); 2941 2942 static ssize_t 2943 polarity_show(struct device *dev, struct device_attribute *attr, 2944 char *buf) 2945 { 2946 struct dev_ext_attribute *ea = to_ext_attr(attr); 2947 struct ptp_ocp *bp = dev_get_drvdata(dev); 2948 int i = (uintptr_t)ea->var; 2949 2950 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); 2951 } 2952 static EXT_ATTR_RO(signal, polarity, 0); 2953 static EXT_ATTR_RO(signal, polarity, 1); 2954 static EXT_ATTR_RO(signal, polarity, 2); 2955 static EXT_ATTR_RO(signal, polarity, 3); 2956 2957 static ssize_t 2958 running_show(struct device *dev, struct device_attribute *attr, char *buf) 2959 { 2960 struct dev_ext_attribute *ea = to_ext_attr(attr); 2961 struct ptp_ocp *bp = dev_get_drvdata(dev); 2962 int i = (uintptr_t)ea->var; 2963 2964 return sysfs_emit(buf, "%d\n", bp->signal[i].running); 2965 } 2966 static EXT_ATTR_RO(signal, running, 0); 2967 static EXT_ATTR_RO(signal, running, 1); 2968 static EXT_ATTR_RO(signal, running, 2); 2969 static EXT_ATTR_RO(signal, running, 3); 2970 2971 static ssize_t 2972 start_show(struct device *dev, struct device_attribute *attr, char *buf) 2973 { 2974 struct dev_ext_attribute *ea = to_ext_attr(attr); 2975 struct ptp_ocp *bp = dev_get_drvdata(dev); 2976 int i = (uintptr_t)ea->var; 2977 struct timespec64 ts; 2978 2979 ts = ktime_to_timespec64(bp->signal[i].start); 2980 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); 2981 } 2982 static EXT_ATTR_RO(signal, start, 0); 2983 static EXT_ATTR_RO(signal, start, 1); 2984 static EXT_ATTR_RO(signal, start, 2); 2985 static EXT_ATTR_RO(signal, start, 3); 2986 2987 static ssize_t 2988 seconds_store(struct device *dev, struct device_attribute *attr, 2989 const char *buf, size_t count) 2990 { 2991 struct dev_ext_attribute *ea = to_ext_attr(attr); 2992 struct ptp_ocp *bp = dev_get_drvdata(dev); 2993 int idx = (uintptr_t)ea->var; 2994 u32 val; 2995 int err; 2996 2997 err = kstrtou32(buf, 0, &val); 2998 if (err) 2999 return err; 3000 if (val > 0xff) 3001 return -EINVAL; 3002 3003 if (val) 3004 val = (val << 8) | 0x1; 3005 3006 iowrite32(val, &bp->freq_in[idx]->ctrl); 3007 3008 return count; 3009 } 3010 3011 static ssize_t 3012 seconds_show(struct device *dev, struct device_attribute *attr, char *buf) 3013 { 3014 struct dev_ext_attribute *ea = to_ext_attr(attr); 3015 struct ptp_ocp *bp = dev_get_drvdata(dev); 3016 int idx = (uintptr_t)ea->var; 3017 u32 val; 3018 3019 val = ioread32(&bp->freq_in[idx]->ctrl); 3020 if (val & 1) 3021 val = (val >> 8) & 0xff; 3022 else 3023 val = 0; 3024 3025 return sysfs_emit(buf, "%u\n", val); 3026 } 3027 static EXT_ATTR_RW(freq, seconds, 0); 3028 static EXT_ATTR_RW(freq, seconds, 1); 3029 static EXT_ATTR_RW(freq, seconds, 2); 3030 static EXT_ATTR_RW(freq, seconds, 3); 3031 3032 static ssize_t 3033 frequency_show(struct device *dev, struct device_attribute *attr, char *buf) 3034 { 3035 struct dev_ext_attribute *ea = to_ext_attr(attr); 3036 struct ptp_ocp *bp = dev_get_drvdata(dev); 3037 int idx = (uintptr_t)ea->var; 3038 u32 val; 3039 3040 val = ioread32(&bp->freq_in[idx]->status); 3041 if (val & FREQ_STATUS_ERROR) 3042 return sysfs_emit(buf, "error\n"); 3043 if (val & FREQ_STATUS_OVERRUN) 3044 return sysfs_emit(buf, "overrun\n"); 3045 if (val & FREQ_STATUS_VALID) 3046 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); 3047 return 0; 3048 } 3049 static EXT_ATTR_RO(freq, frequency, 0); 3050 static EXT_ATTR_RO(freq, frequency, 1); 3051 static EXT_ATTR_RO(freq, frequency, 2); 3052 static EXT_ATTR_RO(freq, frequency, 3); 3053 3054 static ssize_t 3055 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) 3056 { 3057 struct ptp_ocp *bp = dev_get_drvdata(dev); 3058 3059 if (!bp->has_eeprom_data) 3060 ptp_ocp_read_eeprom(bp); 3061 3062 return sysfs_emit(buf, "%pM\n", bp->serial); 3063 } 3064 static DEVICE_ATTR_RO(serialnum); 3065 3066 static ssize_t 3067 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) 3068 { 3069 struct ptp_ocp *bp = dev_get_drvdata(dev); 3070 ssize_t ret; 3071 3072 if (bp->gnss_lost) 3073 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); 3074 else 3075 ret = sysfs_emit(buf, "SYNC\n"); 3076 3077 return ret; 3078 } 3079 static DEVICE_ATTR_RO(gnss_sync); 3080 3081 static ssize_t 3082 utc_tai_offset_show(struct device *dev, 3083 struct device_attribute *attr, char *buf) 3084 { 3085 struct ptp_ocp *bp = dev_get_drvdata(dev); 3086 3087 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); 3088 } 3089 3090 static ssize_t 3091 utc_tai_offset_store(struct device *dev, 3092 struct device_attribute *attr, 3093 const char *buf, size_t count) 3094 { 3095 struct ptp_ocp *bp = dev_get_drvdata(dev); 3096 int err; 3097 u32 val; 3098 3099 err = kstrtou32(buf, 0, &val); 3100 if (err) 3101 return err; 3102 3103 ptp_ocp_utc_distribute(bp, val); 3104 3105 return count; 3106 } 3107 static DEVICE_ATTR_RW(utc_tai_offset); 3108 3109 static ssize_t 3110 ts_window_adjust_show(struct device *dev, 3111 struct device_attribute *attr, char *buf) 3112 { 3113 struct ptp_ocp *bp = dev_get_drvdata(dev); 3114 3115 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); 3116 } 3117 3118 static ssize_t 3119 ts_window_adjust_store(struct device *dev, 3120 struct device_attribute *attr, 3121 const char *buf, size_t count) 3122 { 3123 struct ptp_ocp *bp = dev_get_drvdata(dev); 3124 int err; 3125 u32 val; 3126 3127 err = kstrtou32(buf, 0, &val); 3128 if (err) 3129 return err; 3130 3131 bp->ts_window_adjust = val; 3132 3133 return count; 3134 } 3135 static DEVICE_ATTR_RW(ts_window_adjust); 3136 3137 static ssize_t 3138 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) 3139 { 3140 struct ptp_ocp *bp = dev_get_drvdata(dev); 3141 u32 val; 3142 3143 val = ioread32(&bp->irig_out->ctrl); 3144 val = (val >> 16) & 0x07; 3145 return sysfs_emit(buf, "%d\n", val); 3146 } 3147 3148 static ssize_t 3149 irig_b_mode_store(struct device *dev, 3150 struct device_attribute *attr, 3151 const char *buf, size_t count) 3152 { 3153 struct ptp_ocp *bp = dev_get_drvdata(dev); 3154 unsigned long flags; 3155 int err; 3156 u32 reg; 3157 u8 val; 3158 3159 err = kstrtou8(buf, 0, &val); 3160 if (err) 3161 return err; 3162 if (val > 7) 3163 return -EINVAL; 3164 3165 reg = ((val & 0x7) << 16); 3166 3167 spin_lock_irqsave(&bp->lock, flags); 3168 iowrite32(0, &bp->irig_out->ctrl); /* disable */ 3169 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ 3170 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); 3171 spin_unlock_irqrestore(&bp->lock, flags); 3172 3173 return count; 3174 } 3175 static DEVICE_ATTR_RW(irig_b_mode); 3176 3177 static ssize_t 3178 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) 3179 { 3180 struct ptp_ocp *bp = dev_get_drvdata(dev); 3181 const char *p; 3182 u32 select; 3183 3184 select = ioread32(&bp->reg->select); 3185 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); 3186 3187 return sysfs_emit(buf, "%s\n", p); 3188 } 3189 3190 static ssize_t 3191 clock_source_store(struct device *dev, struct device_attribute *attr, 3192 const char *buf, size_t count) 3193 { 3194 struct ptp_ocp *bp = dev_get_drvdata(dev); 3195 unsigned long flags; 3196 int val; 3197 3198 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); 3199 if (val < 0) 3200 return val; 3201 3202 spin_lock_irqsave(&bp->lock, flags); 3203 iowrite32(val, &bp->reg->select); 3204 spin_unlock_irqrestore(&bp->lock, flags); 3205 3206 return count; 3207 } 3208 static DEVICE_ATTR_RW(clock_source); 3209 3210 static ssize_t 3211 available_clock_sources_show(struct device *dev, 3212 struct device_attribute *attr, char *buf) 3213 { 3214 return ptp_ocp_select_table_show(ptp_ocp_clock, buf); 3215 } 3216 static DEVICE_ATTR_RO(available_clock_sources); 3217 3218 static ssize_t 3219 clock_status_drift_show(struct device *dev, 3220 struct device_attribute *attr, char *buf) 3221 { 3222 struct ptp_ocp *bp = dev_get_drvdata(dev); 3223 u32 val; 3224 int res; 3225 3226 val = ioread32(&bp->reg->status_drift); 3227 res = (val & ~INT_MAX) ? -1 : 1; 3228 res *= (val & INT_MAX); 3229 return sysfs_emit(buf, "%d\n", res); 3230 } 3231 static DEVICE_ATTR_RO(clock_status_drift); 3232 3233 static ssize_t 3234 clock_status_offset_show(struct device *dev, 3235 struct device_attribute *attr, char *buf) 3236 { 3237 struct ptp_ocp *bp = dev_get_drvdata(dev); 3238 u32 val; 3239 int res; 3240 3241 val = ioread32(&bp->reg->status_offset); 3242 res = (val & ~INT_MAX) ? -1 : 1; 3243 res *= (val & INT_MAX); 3244 return sysfs_emit(buf, "%d\n", res); 3245 } 3246 static DEVICE_ATTR_RO(clock_status_offset); 3247 3248 static ssize_t 3249 tod_correction_show(struct device *dev, 3250 struct device_attribute *attr, char *buf) 3251 { 3252 struct ptp_ocp *bp = dev_get_drvdata(dev); 3253 u32 val; 3254 int res; 3255 3256 val = ioread32(&bp->tod->adj_sec); 3257 res = (val & ~INT_MAX) ? -1 : 1; 3258 res *= (val & INT_MAX); 3259 return sysfs_emit(buf, "%d\n", res); 3260 } 3261 3262 static ssize_t 3263 tod_correction_store(struct device *dev, struct device_attribute *attr, 3264 const char *buf, size_t count) 3265 { 3266 struct ptp_ocp *bp = dev_get_drvdata(dev); 3267 unsigned long flags; 3268 int err, res; 3269 u32 val = 0; 3270 3271 err = kstrtos32(buf, 0, &res); 3272 if (err) 3273 return err; 3274 if (res < 0) { 3275 res *= -1; 3276 val |= BIT(31); 3277 } 3278 val |= res; 3279 3280 spin_lock_irqsave(&bp->lock, flags); 3281 iowrite32(val, &bp->tod->adj_sec); 3282 spin_unlock_irqrestore(&bp->lock, flags); 3283 3284 return count; 3285 } 3286 static DEVICE_ATTR_RW(tod_correction); 3287 3288 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ 3289 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ 3290 &dev_attr_signal##_nr##_signal.attr.attr, \ 3291 &dev_attr_signal##_nr##_duty.attr.attr, \ 3292 &dev_attr_signal##_nr##_phase.attr.attr, \ 3293 &dev_attr_signal##_nr##_period.attr.attr, \ 3294 &dev_attr_signal##_nr##_polarity.attr.attr, \ 3295 &dev_attr_signal##_nr##_running.attr.attr, \ 3296 &dev_attr_signal##_nr##_start.attr.attr, \ 3297 NULL, \ 3298 } 3299 3300 #define DEVICE_SIGNAL_GROUP(_name, _nr) \ 3301 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ 3302 static const struct attribute_group \ 3303 fb_timecard_signal##_nr##_group = { \ 3304 .name = #_name, \ 3305 .attrs = fb_timecard_signal##_nr##_attrs, \ 3306 } 3307 3308 DEVICE_SIGNAL_GROUP(gen1, 0); 3309 DEVICE_SIGNAL_GROUP(gen2, 1); 3310 DEVICE_SIGNAL_GROUP(gen3, 2); 3311 DEVICE_SIGNAL_GROUP(gen4, 3); 3312 3313 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ 3314 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ 3315 &dev_attr_freq##_nr##_seconds.attr.attr, \ 3316 &dev_attr_freq##_nr##_frequency.attr.attr, \ 3317 NULL, \ 3318 } 3319 3320 #define DEVICE_FREQ_GROUP(_name, _nr) \ 3321 _DEVICE_FREQ_GROUP_ATTRS(_nr); \ 3322 static const struct attribute_group \ 3323 fb_timecard_freq##_nr##_group = { \ 3324 .name = #_name, \ 3325 .attrs = fb_timecard_freq##_nr##_attrs, \ 3326 } 3327 3328 DEVICE_FREQ_GROUP(freq1, 0); 3329 DEVICE_FREQ_GROUP(freq2, 1); 3330 DEVICE_FREQ_GROUP(freq3, 2); 3331 DEVICE_FREQ_GROUP(freq4, 3); 3332 3333 static ssize_t 3334 disciplining_config_read(struct file *filp, struct kobject *kobj, 3335 struct bin_attribute *bin_attr, char *buf, 3336 loff_t off, size_t count) 3337 { 3338 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3339 size_t size = OCP_ART_CONFIG_SIZE; 3340 struct nvmem_device *nvmem; 3341 ssize_t err; 3342 3343 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3344 if (IS_ERR(nvmem)) 3345 return PTR_ERR(nvmem); 3346 3347 if (off > size) { 3348 err = 0; 3349 goto out; 3350 } 3351 3352 if (off + count > size) 3353 count = size - off; 3354 3355 // the configuration is in the very beginning of the EEPROM 3356 err = nvmem_device_read(nvmem, off, count, buf); 3357 if (err != count) { 3358 err = -EFAULT; 3359 goto out; 3360 } 3361 3362 out: 3363 ptp_ocp_nvmem_device_put(&nvmem); 3364 3365 return err; 3366 } 3367 3368 static ssize_t 3369 disciplining_config_write(struct file *filp, struct kobject *kobj, 3370 struct bin_attribute *bin_attr, char *buf, 3371 loff_t off, size_t count) 3372 { 3373 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3374 struct nvmem_device *nvmem; 3375 ssize_t err; 3376 3377 /* Allow write of the whole area only */ 3378 if (off || count != OCP_ART_CONFIG_SIZE) 3379 return -EFAULT; 3380 3381 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3382 if (IS_ERR(nvmem)) 3383 return PTR_ERR(nvmem); 3384 3385 err = nvmem_device_write(nvmem, 0x00, count, buf); 3386 if (err != count) 3387 err = -EFAULT; 3388 3389 ptp_ocp_nvmem_device_put(&nvmem); 3390 3391 return err; 3392 } 3393 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE); 3394 3395 static ssize_t 3396 temperature_table_read(struct file *filp, struct kobject *kobj, 3397 struct bin_attribute *bin_attr, char *buf, 3398 loff_t off, size_t count) 3399 { 3400 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3401 size_t size = OCP_ART_TEMP_TABLE_SIZE; 3402 struct nvmem_device *nvmem; 3403 ssize_t err; 3404 3405 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3406 if (IS_ERR(nvmem)) 3407 return PTR_ERR(nvmem); 3408 3409 if (off > size) { 3410 err = 0; 3411 goto out; 3412 } 3413 3414 if (off + count > size) 3415 count = size - off; 3416 3417 // the configuration is in the very beginning of the EEPROM 3418 err = nvmem_device_read(nvmem, 0x90 + off, count, buf); 3419 if (err != count) { 3420 err = -EFAULT; 3421 goto out; 3422 } 3423 3424 out: 3425 ptp_ocp_nvmem_device_put(&nvmem); 3426 3427 return err; 3428 } 3429 3430 static ssize_t 3431 temperature_table_write(struct file *filp, struct kobject *kobj, 3432 struct bin_attribute *bin_attr, char *buf, 3433 loff_t off, size_t count) 3434 { 3435 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3436 struct nvmem_device *nvmem; 3437 ssize_t err; 3438 3439 /* Allow write of the whole area only */ 3440 if (off || count != OCP_ART_TEMP_TABLE_SIZE) 3441 return -EFAULT; 3442 3443 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3444 if (IS_ERR(nvmem)) 3445 return PTR_ERR(nvmem); 3446 3447 err = nvmem_device_write(nvmem, 0x90, count, buf); 3448 if (err != count) 3449 err = -EFAULT; 3450 3451 ptp_ocp_nvmem_device_put(&nvmem); 3452 3453 return err; 3454 } 3455 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE); 3456 3457 static struct attribute *fb_timecard_attrs[] = { 3458 &dev_attr_serialnum.attr, 3459 &dev_attr_gnss_sync.attr, 3460 &dev_attr_clock_source.attr, 3461 &dev_attr_available_clock_sources.attr, 3462 &dev_attr_sma1.attr, 3463 &dev_attr_sma2.attr, 3464 &dev_attr_sma3.attr, 3465 &dev_attr_sma4.attr, 3466 &dev_attr_available_sma_inputs.attr, 3467 &dev_attr_available_sma_outputs.attr, 3468 &dev_attr_clock_status_drift.attr, 3469 &dev_attr_clock_status_offset.attr, 3470 &dev_attr_irig_b_mode.attr, 3471 &dev_attr_utc_tai_offset.attr, 3472 &dev_attr_ts_window_adjust.attr, 3473 &dev_attr_tod_correction.attr, 3474 NULL, 3475 }; 3476 3477 static const struct attribute_group fb_timecard_group = { 3478 .attrs = fb_timecard_attrs, 3479 }; 3480 3481 static const struct ocp_attr_group fb_timecard_groups[] = { 3482 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, 3483 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3484 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3485 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, 3486 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, 3487 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3488 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3489 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, 3490 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, 3491 { }, 3492 }; 3493 3494 static struct attribute *art_timecard_attrs[] = { 3495 &dev_attr_serialnum.attr, 3496 &dev_attr_clock_source.attr, 3497 &dev_attr_available_clock_sources.attr, 3498 &dev_attr_utc_tai_offset.attr, 3499 &dev_attr_ts_window_adjust.attr, 3500 &dev_attr_sma1.attr, 3501 &dev_attr_sma2.attr, 3502 &dev_attr_sma3.attr, 3503 &dev_attr_sma4.attr, 3504 &dev_attr_available_sma_inputs.attr, 3505 &dev_attr_available_sma_outputs.attr, 3506 NULL, 3507 }; 3508 3509 static struct bin_attribute *bin_art_timecard_attrs[] = { 3510 &bin_attr_disciplining_config, 3511 &bin_attr_temperature_table, 3512 NULL, 3513 }; 3514 3515 static const struct attribute_group art_timecard_group = { 3516 .attrs = art_timecard_attrs, 3517 .bin_attrs = bin_art_timecard_attrs, 3518 }; 3519 3520 static const struct ocp_attr_group art_timecard_groups[] = { 3521 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group }, 3522 { }, 3523 }; 3524 3525 static void 3526 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, 3527 const char *def) 3528 { 3529 int i; 3530 3531 for (i = 0; i < 4; i++) { 3532 if (bp->sma[i].mode != SMA_MODE_IN) 3533 continue; 3534 if (map[i][0] & (1 << bit)) { 3535 sprintf(buf, "sma%d", i + 1); 3536 return; 3537 } 3538 } 3539 if (!def) 3540 def = "----"; 3541 strcpy(buf, def); 3542 } 3543 3544 static void 3545 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) 3546 { 3547 char *ans = buf; 3548 int i; 3549 3550 strcpy(ans, "----"); 3551 for (i = 0; i < 4; i++) { 3552 if (bp->sma[i].mode != SMA_MODE_OUT) 3553 continue; 3554 if (map[i][1] & (1 << bit)) 3555 ans += sprintf(ans, "sma%d ", i + 1); 3556 } 3557 } 3558 3559 static void 3560 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) 3561 { 3562 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; 3563 struct ptp_ocp_signal *signal = &bp->signal[nr]; 3564 char label[8]; 3565 bool on; 3566 u32 val; 3567 3568 if (!signal) 3569 return; 3570 3571 on = signal->running; 3572 sprintf(label, "GEN%d", nr + 1); 3573 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", 3574 label, on ? " ON" : "OFF", 3575 signal->period, signal->duty, signal->phase, 3576 signal->polarity); 3577 3578 val = ioread32(®->enable); 3579 seq_printf(s, " [%x", val); 3580 val = ioread32(®->status); 3581 seq_printf(s, " %x]", val); 3582 3583 seq_printf(s, " start:%llu\n", signal->start); 3584 } 3585 3586 static void 3587 _frequency_summary_show(struct seq_file *s, int nr, 3588 struct frequency_reg __iomem *reg) 3589 { 3590 char label[8]; 3591 bool on; 3592 u32 val; 3593 3594 if (!reg) 3595 return; 3596 3597 sprintf(label, "FREQ%d", nr + 1); 3598 val = ioread32(®->ctrl); 3599 on = val & 1; 3600 val = (val >> 8) & 0xff; 3601 seq_printf(s, "%7s: %s, sec:%u", 3602 label, 3603 on ? " ON" : "OFF", 3604 val); 3605 3606 val = ioread32(®->status); 3607 if (val & FREQ_STATUS_ERROR) 3608 seq_printf(s, ", error"); 3609 if (val & FREQ_STATUS_OVERRUN) 3610 seq_printf(s, ", overrun"); 3611 if (val & FREQ_STATUS_VALID) 3612 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); 3613 seq_printf(s, " reg:%x\n", val); 3614 } 3615 3616 static int 3617 ptp_ocp_summary_show(struct seq_file *s, void *data) 3618 { 3619 struct device *dev = s->private; 3620 struct ptp_system_timestamp sts; 3621 struct ts_reg __iomem *ts_reg; 3622 char *buf, *src, *mac_src; 3623 struct timespec64 ts; 3624 struct ptp_ocp *bp; 3625 u16 sma_val[4][2]; 3626 u32 ctrl, val; 3627 bool on, map; 3628 int i; 3629 3630 buf = (char *)__get_free_page(GFP_KERNEL); 3631 if (!buf) 3632 return -ENOMEM; 3633 3634 bp = dev_get_drvdata(dev); 3635 3636 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); 3637 if (bp->gnss_port.line != -1) 3638 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", 3639 bp->gnss_port.line); 3640 if (bp->gnss2_port.line != -1) 3641 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", 3642 bp->gnss2_port.line); 3643 if (bp->mac_port.line != -1) 3644 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line); 3645 if (bp->nmea_port.line != -1) 3646 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line); 3647 3648 memset(sma_val, 0xff, sizeof(sma_val)); 3649 if (bp->sma_map1) { 3650 u32 reg; 3651 3652 reg = ioread32(&bp->sma_map1->gpio1); 3653 sma_val[0][0] = reg & 0xffff; 3654 sma_val[1][0] = reg >> 16; 3655 3656 reg = ioread32(&bp->sma_map1->gpio2); 3657 sma_val[2][1] = reg & 0xffff; 3658 sma_val[3][1] = reg >> 16; 3659 3660 reg = ioread32(&bp->sma_map2->gpio1); 3661 sma_val[2][0] = reg & 0xffff; 3662 sma_val[3][0] = reg >> 16; 3663 3664 reg = ioread32(&bp->sma_map2->gpio2); 3665 sma_val[0][1] = reg & 0xffff; 3666 sma_val[1][1] = reg >> 16; 3667 } 3668 3669 sma1_show(dev, NULL, buf); 3670 seq_printf(s, " sma1: %04x,%04x %s", 3671 sma_val[0][0], sma_val[0][1], buf); 3672 3673 sma2_show(dev, NULL, buf); 3674 seq_printf(s, " sma2: %04x,%04x %s", 3675 sma_val[1][0], sma_val[1][1], buf); 3676 3677 sma3_show(dev, NULL, buf); 3678 seq_printf(s, " sma3: %04x,%04x %s", 3679 sma_val[2][0], sma_val[2][1], buf); 3680 3681 sma4_show(dev, NULL, buf); 3682 seq_printf(s, " sma4: %04x,%04x %s", 3683 sma_val[3][0], sma_val[3][1], buf); 3684 3685 if (bp->ts0) { 3686 ts_reg = bp->ts0->mem; 3687 on = ioread32(&ts_reg->enable); 3688 src = "GNSS1"; 3689 seq_printf(s, "%7s: %s, src: %s\n", "TS0", 3690 on ? " ON" : "OFF", src); 3691 } 3692 3693 if (bp->ts1) { 3694 ts_reg = bp->ts1->mem; 3695 on = ioread32(&ts_reg->enable); 3696 gpio_input_map(buf, bp, sma_val, 2, NULL); 3697 seq_printf(s, "%7s: %s, src: %s\n", "TS1", 3698 on ? " ON" : "OFF", buf); 3699 } 3700 3701 if (bp->ts2) { 3702 ts_reg = bp->ts2->mem; 3703 on = ioread32(&ts_reg->enable); 3704 gpio_input_map(buf, bp, sma_val, 3, NULL); 3705 seq_printf(s, "%7s: %s, src: %s\n", "TS2", 3706 on ? " ON" : "OFF", buf); 3707 } 3708 3709 if (bp->ts3) { 3710 ts_reg = bp->ts3->mem; 3711 on = ioread32(&ts_reg->enable); 3712 gpio_input_map(buf, bp, sma_val, 6, NULL); 3713 seq_printf(s, "%7s: %s, src: %s\n", "TS3", 3714 on ? " ON" : "OFF", buf); 3715 } 3716 3717 if (bp->ts4) { 3718 ts_reg = bp->ts4->mem; 3719 on = ioread32(&ts_reg->enable); 3720 gpio_input_map(buf, bp, sma_val, 7, NULL); 3721 seq_printf(s, "%7s: %s, src: %s\n", "TS4", 3722 on ? " ON" : "OFF", buf); 3723 } 3724 3725 if (bp->pps) { 3726 ts_reg = bp->pps->mem; 3727 src = "PHC"; 3728 on = ioread32(&ts_reg->enable); 3729 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); 3730 seq_printf(s, "%7s: %s, src: %s\n", "TS5", 3731 on && map ? " ON" : "OFF", src); 3732 3733 map = !!(bp->pps_req_map & OCP_REQ_PPS); 3734 seq_printf(s, "%7s: %s, src: %s\n", "PPS", 3735 on && map ? " ON" : "OFF", src); 3736 } 3737 3738 if (bp->fw_cap & OCP_CAP_SIGNAL) 3739 for (i = 0; i < 4; i++) 3740 _signal_summary_show(s, bp, i); 3741 3742 if (bp->fw_cap & OCP_CAP_FREQ) 3743 for (i = 0; i < 4; i++) 3744 _frequency_summary_show(s, i, bp->freq_in[i]); 3745 3746 if (bp->irig_out) { 3747 ctrl = ioread32(&bp->irig_out->ctrl); 3748 on = ctrl & IRIG_M_CTRL_ENABLE; 3749 val = ioread32(&bp->irig_out->status); 3750 gpio_output_map(buf, bp, sma_val, 4); 3751 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", 3752 on ? " ON" : "OFF", val, (ctrl >> 16), buf); 3753 } 3754 3755 if (bp->irig_in) { 3756 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; 3757 val = ioread32(&bp->irig_in->status); 3758 gpio_input_map(buf, bp, sma_val, 4, NULL); 3759 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", 3760 on ? " ON" : "OFF", val, buf); 3761 } 3762 3763 if (bp->dcf_out) { 3764 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; 3765 val = ioread32(&bp->dcf_out->status); 3766 gpio_output_map(buf, bp, sma_val, 5); 3767 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", 3768 on ? " ON" : "OFF", val, buf); 3769 } 3770 3771 if (bp->dcf_in) { 3772 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; 3773 val = ioread32(&bp->dcf_in->status); 3774 gpio_input_map(buf, bp, sma_val, 5, NULL); 3775 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", 3776 on ? " ON" : "OFF", val, buf); 3777 } 3778 3779 if (bp->nmea_out) { 3780 on = ioread32(&bp->nmea_out->ctrl) & 1; 3781 val = ioread32(&bp->nmea_out->status); 3782 seq_printf(s, "%7s: %s, error: %d\n", "NMEA", 3783 on ? " ON" : "OFF", val); 3784 } 3785 3786 /* compute src for PPS1, used below. */ 3787 if (bp->pps_select) { 3788 val = ioread32(&bp->pps_select->gpio1); 3789 src = &buf[80]; 3790 mac_src = "GNSS1"; 3791 if (val & 0x01) { 3792 gpio_input_map(src, bp, sma_val, 0, NULL); 3793 mac_src = src; 3794 } else if (val & 0x02) { 3795 src = "MAC"; 3796 } else if (val & 0x04) { 3797 src = "GNSS1"; 3798 } else { 3799 src = "----"; 3800 mac_src = src; 3801 } 3802 } else { 3803 src = "?"; 3804 mac_src = src; 3805 } 3806 seq_printf(s, "MAC PPS1 src: %s\n", mac_src); 3807 3808 gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); 3809 seq_printf(s, "MAC PPS2 src: %s\n", buf); 3810 3811 /* assumes automatic switchover/selection */ 3812 val = ioread32(&bp->reg->select); 3813 switch (val >> 16) { 3814 case 0: 3815 sprintf(buf, "----"); 3816 break; 3817 case 2: 3818 sprintf(buf, "IRIG"); 3819 break; 3820 case 3: 3821 sprintf(buf, "%s via PPS1", src); 3822 break; 3823 case 6: 3824 sprintf(buf, "DCF"); 3825 break; 3826 default: 3827 strcpy(buf, "unknown"); 3828 break; 3829 } 3830 val = ioread32(&bp->reg->status); 3831 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, 3832 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced"); 3833 3834 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { 3835 struct timespec64 sys_ts; 3836 s64 pre_ns, post_ns, ns; 3837 3838 pre_ns = timespec64_to_ns(&sts.pre_ts); 3839 post_ns = timespec64_to_ns(&sts.post_ts); 3840 ns = (pre_ns + post_ns) / 2; 3841 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; 3842 sys_ts = ns_to_timespec64(ns); 3843 3844 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", 3845 ts.tv_sec, ts.tv_nsec, &ts); 3846 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", 3847 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, 3848 bp->utc_tai_offset); 3849 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", 3850 timespec64_to_ns(&ts) - ns, 3851 post_ns - pre_ns); 3852 } 3853 3854 free_page((unsigned long)buf); 3855 return 0; 3856 } 3857 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); 3858 3859 static int 3860 ptp_ocp_tod_status_show(struct seq_file *s, void *data) 3861 { 3862 struct device *dev = s->private; 3863 struct ptp_ocp *bp; 3864 u32 val; 3865 int idx; 3866 3867 bp = dev_get_drvdata(dev); 3868 3869 val = ioread32(&bp->tod->ctrl); 3870 if (!(val & TOD_CTRL_ENABLE)) { 3871 seq_printf(s, "TOD Slave disabled\n"); 3872 return 0; 3873 } 3874 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); 3875 3876 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; 3877 idx += (val >> 16) & 3; 3878 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); 3879 3880 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; 3881 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); 3882 3883 val = ioread32(&bp->tod->version); 3884 seq_printf(s, "TOD Version %d.%d.%d\n", 3885 val >> 24, (val >> 16) & 0xff, val & 0xffff); 3886 3887 val = ioread32(&bp->tod->status); 3888 seq_printf(s, "Status register: 0x%08X\n", val); 3889 3890 val = ioread32(&bp->tod->adj_sec); 3891 idx = (val & ~INT_MAX) ? -1 : 1; 3892 idx *= (val & INT_MAX); 3893 seq_printf(s, "Correction seconds: %d\n", idx); 3894 3895 val = ioread32(&bp->tod->utc_status); 3896 seq_printf(s, "UTC status register: 0x%08X\n", val); 3897 seq_printf(s, "UTC offset: %ld valid:%d\n", 3898 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); 3899 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", 3900 val & TOD_STATUS_LEAP_VALID ? 1 : 0, 3901 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); 3902 3903 val = ioread32(&bp->tod->leap); 3904 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); 3905 3906 return 0; 3907 } 3908 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); 3909 3910 static struct dentry *ptp_ocp_debugfs_root; 3911 3912 static void 3913 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) 3914 { 3915 struct dentry *d; 3916 3917 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); 3918 bp->debug_root = d; 3919 debugfs_create_file("summary", 0444, bp->debug_root, 3920 &bp->dev, &ptp_ocp_summary_fops); 3921 if (bp->tod) 3922 debugfs_create_file("tod_status", 0444, bp->debug_root, 3923 &bp->dev, &ptp_ocp_tod_status_fops); 3924 } 3925 3926 static void 3927 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) 3928 { 3929 debugfs_remove_recursive(bp->debug_root); 3930 } 3931 3932 static void 3933 ptp_ocp_debugfs_init(void) 3934 { 3935 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); 3936 } 3937 3938 static void 3939 ptp_ocp_debugfs_fini(void) 3940 { 3941 debugfs_remove_recursive(ptp_ocp_debugfs_root); 3942 } 3943 3944 static void 3945 ptp_ocp_dev_release(struct device *dev) 3946 { 3947 struct ptp_ocp *bp = dev_get_drvdata(dev); 3948 3949 mutex_lock(&ptp_ocp_lock); 3950 idr_remove(&ptp_ocp_idr, bp->id); 3951 mutex_unlock(&ptp_ocp_lock); 3952 } 3953 3954 static int 3955 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) 3956 { 3957 int err; 3958 3959 mutex_lock(&ptp_ocp_lock); 3960 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); 3961 mutex_unlock(&ptp_ocp_lock); 3962 if (err < 0) { 3963 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); 3964 return err; 3965 } 3966 bp->id = err; 3967 3968 bp->ptp_info = ptp_ocp_clock_info; 3969 spin_lock_init(&bp->lock); 3970 bp->gnss_port.line = -1; 3971 bp->gnss2_port.line = -1; 3972 bp->mac_port.line = -1; 3973 bp->nmea_port.line = -1; 3974 bp->pdev = pdev; 3975 3976 device_initialize(&bp->dev); 3977 dev_set_name(&bp->dev, "ocp%d", bp->id); 3978 bp->dev.class = &timecard_class; 3979 bp->dev.parent = &pdev->dev; 3980 bp->dev.release = ptp_ocp_dev_release; 3981 dev_set_drvdata(&bp->dev, bp); 3982 3983 err = device_add(&bp->dev); 3984 if (err) { 3985 dev_err(&bp->dev, "device add failed: %d\n", err); 3986 goto out; 3987 } 3988 3989 pci_set_drvdata(pdev, bp); 3990 3991 return 0; 3992 3993 out: 3994 ptp_ocp_dev_release(&bp->dev); 3995 put_device(&bp->dev); 3996 return err; 3997 } 3998 3999 static void 4000 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) 4001 { 4002 struct device *dev = &bp->dev; 4003 4004 if (sysfs_create_link(&dev->kobj, &child->kobj, link)) 4005 dev_err(dev, "%s symlink failed\n", link); 4006 } 4007 4008 static void 4009 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) 4010 { 4011 struct device *dev, *child; 4012 4013 dev = &bp->pdev->dev; 4014 4015 child = device_find_child_by_name(dev, name); 4016 if (!child) { 4017 dev_err(dev, "Could not find device %s\n", name); 4018 return; 4019 } 4020 4021 ptp_ocp_symlink(bp, child, link); 4022 put_device(child); 4023 } 4024 4025 static int 4026 ptp_ocp_complete(struct ptp_ocp *bp) 4027 { 4028 struct pps_device *pps; 4029 char buf[32]; 4030 4031 if (bp->gnss_port.line != -1) { 4032 sprintf(buf, "ttyS%d", bp->gnss_port.line); 4033 ptp_ocp_link_child(bp, buf, "ttyGNSS"); 4034 } 4035 if (bp->gnss2_port.line != -1) { 4036 sprintf(buf, "ttyS%d", bp->gnss2_port.line); 4037 ptp_ocp_link_child(bp, buf, "ttyGNSS2"); 4038 } 4039 if (bp->mac_port.line != -1) { 4040 sprintf(buf, "ttyS%d", bp->mac_port.line); 4041 ptp_ocp_link_child(bp, buf, "ttyMAC"); 4042 } 4043 if (bp->nmea_port.line != -1) { 4044 sprintf(buf, "ttyS%d", bp->nmea_port.line); 4045 ptp_ocp_link_child(bp, buf, "ttyNMEA"); 4046 } 4047 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); 4048 ptp_ocp_link_child(bp, buf, "ptp"); 4049 4050 pps = pps_lookup_dev(bp->ptp); 4051 if (pps) 4052 ptp_ocp_symlink(bp, pps->dev, "pps"); 4053 4054 ptp_ocp_debugfs_add_device(bp); 4055 4056 return 0; 4057 } 4058 4059 static void 4060 ptp_ocp_phc_info(struct ptp_ocp *bp) 4061 { 4062 struct timespec64 ts; 4063 u32 version, select; 4064 bool sync; 4065 4066 version = ioread32(&bp->reg->version); 4067 select = ioread32(&bp->reg->select); 4068 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", 4069 version >> 24, (version >> 16) & 0xff, version & 0xffff, 4070 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), 4071 ptp_clock_index(bp->ptp)); 4072 4073 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 4074 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) 4075 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", 4076 ts.tv_sec, ts.tv_nsec, 4077 sync ? "in-sync" : "UNSYNCED"); 4078 } 4079 4080 static void 4081 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) 4082 { 4083 if (port != -1) 4084 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); 4085 } 4086 4087 static void 4088 ptp_ocp_info(struct ptp_ocp *bp) 4089 { 4090 static int nmea_baud[] = { 4091 1200, 2400, 4800, 9600, 19200, 38400, 4092 57600, 115200, 230400, 460800, 921600, 4093 1000000, 2000000 4094 }; 4095 struct device *dev = &bp->pdev->dev; 4096 u32 reg; 4097 4098 ptp_ocp_phc_info(bp); 4099 4100 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line, 4101 bp->gnss_port.baud); 4102 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line, 4103 bp->gnss2_port.baud); 4104 ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud); 4105 if (bp->nmea_out && bp->nmea_port.line != -1) { 4106 bp->nmea_port.baud = -1; 4107 4108 reg = ioread32(&bp->nmea_out->uart_baud); 4109 if (reg < ARRAY_SIZE(nmea_baud)) 4110 bp->nmea_port.baud = nmea_baud[reg]; 4111 4112 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line, 4113 bp->nmea_port.baud); 4114 } 4115 } 4116 4117 static void 4118 ptp_ocp_detach_sysfs(struct ptp_ocp *bp) 4119 { 4120 struct device *dev = &bp->dev; 4121 4122 sysfs_remove_link(&dev->kobj, "ttyGNSS"); 4123 sysfs_remove_link(&dev->kobj, "ttyGNSS2"); 4124 sysfs_remove_link(&dev->kobj, "ttyMAC"); 4125 sysfs_remove_link(&dev->kobj, "ptp"); 4126 sysfs_remove_link(&dev->kobj, "pps"); 4127 } 4128 4129 static void 4130 ptp_ocp_detach(struct ptp_ocp *bp) 4131 { 4132 int i; 4133 4134 ptp_ocp_debugfs_remove_device(bp); 4135 ptp_ocp_detach_sysfs(bp); 4136 ptp_ocp_attr_group_del(bp); 4137 if (timer_pending(&bp->watchdog)) 4138 del_timer_sync(&bp->watchdog); 4139 if (bp->ts0) 4140 ptp_ocp_unregister_ext(bp->ts0); 4141 if (bp->ts1) 4142 ptp_ocp_unregister_ext(bp->ts1); 4143 if (bp->ts2) 4144 ptp_ocp_unregister_ext(bp->ts2); 4145 if (bp->ts3) 4146 ptp_ocp_unregister_ext(bp->ts3); 4147 if (bp->ts4) 4148 ptp_ocp_unregister_ext(bp->ts4); 4149 if (bp->pps) 4150 ptp_ocp_unregister_ext(bp->pps); 4151 for (i = 0; i < 4; i++) 4152 if (bp->signal_out[i]) 4153 ptp_ocp_unregister_ext(bp->signal_out[i]); 4154 if (bp->gnss_port.line != -1) 4155 serial8250_unregister_port(bp->gnss_port.line); 4156 if (bp->gnss2_port.line != -1) 4157 serial8250_unregister_port(bp->gnss2_port.line); 4158 if (bp->mac_port.line != -1) 4159 serial8250_unregister_port(bp->mac_port.line); 4160 if (bp->nmea_port.line != -1) 4161 serial8250_unregister_port(bp->nmea_port.line); 4162 platform_device_unregister(bp->spi_flash); 4163 platform_device_unregister(bp->i2c_ctrl); 4164 if (bp->i2c_clk) 4165 clk_hw_unregister_fixed_rate(bp->i2c_clk); 4166 if (bp->n_irqs) 4167 pci_free_irq_vectors(bp->pdev); 4168 if (bp->ptp) 4169 ptp_clock_unregister(bp->ptp); 4170 kfree(bp->ptp_info.pin_config); 4171 device_unregister(&bp->dev); 4172 } 4173 4174 static int 4175 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) 4176 { 4177 struct devlink *devlink; 4178 struct ptp_ocp *bp; 4179 int err; 4180 4181 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); 4182 if (!devlink) { 4183 dev_err(&pdev->dev, "devlink_alloc failed\n"); 4184 return -ENOMEM; 4185 } 4186 4187 err = pci_enable_device(pdev); 4188 if (err) { 4189 dev_err(&pdev->dev, "pci_enable_device\n"); 4190 goto out_free; 4191 } 4192 4193 bp = devlink_priv(devlink); 4194 err = ptp_ocp_device_init(bp, pdev); 4195 if (err) 4196 goto out_disable; 4197 4198 /* compat mode. 4199 * Older FPGA firmware only returns 2 irq's. 4200 * allow this - if not all of the IRQ's are returned, skip the 4201 * extra devices and just register the clock. 4202 */ 4203 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); 4204 if (err < 0) { 4205 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); 4206 goto out; 4207 } 4208 bp->n_irqs = err; 4209 pci_set_master(pdev); 4210 4211 err = ptp_ocp_register_resources(bp, id->driver_data); 4212 if (err) 4213 goto out; 4214 4215 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); 4216 if (IS_ERR(bp->ptp)) { 4217 err = PTR_ERR(bp->ptp); 4218 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); 4219 bp->ptp = NULL; 4220 goto out; 4221 } 4222 4223 err = ptp_ocp_complete(bp); 4224 if (err) 4225 goto out; 4226 4227 ptp_ocp_info(bp); 4228 devlink_register(devlink); 4229 return 0; 4230 4231 out: 4232 ptp_ocp_detach(bp); 4233 out_disable: 4234 pci_disable_device(pdev); 4235 out_free: 4236 devlink_free(devlink); 4237 return err; 4238 } 4239 4240 static void 4241 ptp_ocp_remove(struct pci_dev *pdev) 4242 { 4243 struct ptp_ocp *bp = pci_get_drvdata(pdev); 4244 struct devlink *devlink = priv_to_devlink(bp); 4245 4246 devlink_unregister(devlink); 4247 ptp_ocp_detach(bp); 4248 pci_disable_device(pdev); 4249 4250 devlink_free(devlink); 4251 } 4252 4253 static struct pci_driver ptp_ocp_driver = { 4254 .name = KBUILD_MODNAME, 4255 .id_table = ptp_ocp_pcidev_id, 4256 .probe = ptp_ocp_probe, 4257 .remove = ptp_ocp_remove, 4258 }; 4259 4260 static int 4261 ptp_ocp_i2c_notifier_call(struct notifier_block *nb, 4262 unsigned long action, void *data) 4263 { 4264 struct device *dev, *child = data; 4265 struct ptp_ocp *bp; 4266 bool add; 4267 4268 switch (action) { 4269 case BUS_NOTIFY_ADD_DEVICE: 4270 case BUS_NOTIFY_DEL_DEVICE: 4271 add = action == BUS_NOTIFY_ADD_DEVICE; 4272 break; 4273 default: 4274 return 0; 4275 } 4276 4277 if (!i2c_verify_adapter(child)) 4278 return 0; 4279 4280 dev = child; 4281 while ((dev = dev->parent)) 4282 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 4283 goto found; 4284 return 0; 4285 4286 found: 4287 bp = dev_get_drvdata(dev); 4288 if (add) 4289 ptp_ocp_symlink(bp, child, "i2c"); 4290 else 4291 sysfs_remove_link(&bp->dev.kobj, "i2c"); 4292 4293 return 0; 4294 } 4295 4296 static struct notifier_block ptp_ocp_i2c_notifier = { 4297 .notifier_call = ptp_ocp_i2c_notifier_call, 4298 }; 4299 4300 static int __init 4301 ptp_ocp_init(void) 4302 { 4303 const char *what; 4304 int err; 4305 4306 ptp_ocp_debugfs_init(); 4307 4308 what = "timecard class"; 4309 err = class_register(&timecard_class); 4310 if (err) 4311 goto out; 4312 4313 what = "i2c notifier"; 4314 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4315 if (err) 4316 goto out_notifier; 4317 4318 what = "ptp_ocp driver"; 4319 err = pci_register_driver(&ptp_ocp_driver); 4320 if (err) 4321 goto out_register; 4322 4323 return 0; 4324 4325 out_register: 4326 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4327 out_notifier: 4328 class_unregister(&timecard_class); 4329 out: 4330 ptp_ocp_debugfs_fini(); 4331 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); 4332 return err; 4333 } 4334 4335 static void __exit 4336 ptp_ocp_fini(void) 4337 { 4338 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4339 pci_unregister_driver(&ptp_ocp_driver); 4340 class_unregister(&timecard_class); 4341 ptp_ocp_debugfs_fini(); 4342 } 4343 4344 module_init(ptp_ocp_init); 4345 module_exit(ptp_ocp_fini); 4346 4347 MODULE_DESCRIPTION("OpenCompute TimeCard driver"); 4348 MODULE_LICENSE("GPL v2"); 4349