1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2020 Facebook */ 3 4 #include <linux/bits.h> 5 #include <linux/err.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/debugfs.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/serial_8250.h> 12 #include <linux/clkdev.h> 13 #include <linux/clk-provider.h> 14 #include <linux/platform_device.h> 15 #include <linux/platform_data/i2c-xiic.h> 16 #include <linux/platform_data/i2c-ocores.h> 17 #include <linux/ptp_clock_kernel.h> 18 #include <linux/spi/spi.h> 19 #include <linux/spi/xilinx_spi.h> 20 #include <linux/spi/altera.h> 21 #include <net/devlink.h> 22 #include <linux/i2c.h> 23 #include <linux/mtd/mtd.h> 24 #include <linux/nvmem-consumer.h> 25 #include <linux/crc16.h> 26 #include <linux/dpll.h> 27 28 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b 29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 30 31 #define PCI_VENDOR_ID_CELESTICA 0x18d4 32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 33 34 #define PCI_VENDOR_ID_OROLIA 0x1ad7 35 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000 36 37 #define PCI_VENDOR_ID_ADVA 0xad5a 38 #define PCI_DEVICE_ID_ADVA_TIMECARD 0x0400 39 40 static struct class timecard_class = { 41 .name = "timecard", 42 }; 43 44 struct ocp_reg { 45 u32 ctrl; 46 u32 status; 47 u32 select; 48 u32 version; 49 u32 time_ns; 50 u32 time_sec; 51 u32 __pad0[2]; 52 u32 adjust_ns; 53 u32 adjust_sec; 54 u32 __pad1[2]; 55 u32 offset_ns; 56 u32 offset_window_ns; 57 u32 __pad2[2]; 58 u32 drift_ns; 59 u32 drift_window_ns; 60 u32 __pad3[6]; 61 u32 servo_offset_p; 62 u32 servo_offset_i; 63 u32 servo_drift_p; 64 u32 servo_drift_i; 65 u32 status_offset; 66 u32 status_drift; 67 }; 68 69 struct ptp_ocp_servo_conf { 70 u32 servo_offset_p; 71 u32 servo_offset_i; 72 u32 servo_drift_p; 73 u32 servo_drift_i; 74 }; 75 76 #define OCP_CTRL_ENABLE BIT(0) 77 #define OCP_CTRL_ADJUST_TIME BIT(1) 78 #define OCP_CTRL_ADJUST_OFFSET BIT(2) 79 #define OCP_CTRL_ADJUST_DRIFT BIT(3) 80 #define OCP_CTRL_ADJUST_SERVO BIT(8) 81 #define OCP_CTRL_READ_TIME_REQ BIT(30) 82 #define OCP_CTRL_READ_TIME_DONE BIT(31) 83 84 #define OCP_STATUS_IN_SYNC BIT(0) 85 #define OCP_STATUS_IN_HOLDOVER BIT(1) 86 87 #define OCP_SELECT_CLK_NONE 0 88 #define OCP_SELECT_CLK_REG 0xfe 89 90 struct tod_reg { 91 u32 ctrl; 92 u32 status; 93 u32 uart_polarity; 94 u32 version; 95 u32 adj_sec; 96 u32 __pad0[3]; 97 u32 uart_baud; 98 u32 __pad1[3]; 99 u32 utc_status; 100 u32 leap; 101 }; 102 103 #define TOD_CTRL_PROTOCOL BIT(28) 104 #define TOD_CTRL_DISABLE_FMT_A BIT(17) 105 #define TOD_CTRL_DISABLE_FMT_B BIT(16) 106 #define TOD_CTRL_ENABLE BIT(0) 107 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) 108 #define TOD_CTRL_GNSS_SHIFT 24 109 110 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) 111 #define TOD_STATUS_UTC_VALID BIT(8) 112 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) 113 #define TOD_STATUS_LEAP_VALID BIT(16) 114 115 struct ts_reg { 116 u32 enable; 117 u32 error; 118 u32 polarity; 119 u32 version; 120 u32 __pad0[4]; 121 u32 cable_delay; 122 u32 __pad1[3]; 123 u32 intr; 124 u32 intr_mask; 125 u32 event_count; 126 u32 __pad2[1]; 127 u32 ts_count; 128 u32 time_ns; 129 u32 time_sec; 130 u32 data_width; 131 u32 data; 132 }; 133 134 struct pps_reg { 135 u32 ctrl; 136 u32 status; 137 u32 __pad0[6]; 138 u32 cable_delay; 139 }; 140 141 #define PPS_STATUS_FILTER_ERR BIT(0) 142 #define PPS_STATUS_SUPERV_ERR BIT(1) 143 144 struct img_reg { 145 u32 version; 146 }; 147 148 struct gpio_reg { 149 u32 gpio1; 150 u32 __pad0; 151 u32 gpio2; 152 u32 __pad1; 153 }; 154 155 struct irig_master_reg { 156 u32 ctrl; 157 u32 status; 158 u32 __pad0; 159 u32 version; 160 u32 adj_sec; 161 u32 mode_ctrl; 162 }; 163 164 #define IRIG_M_CTRL_ENABLE BIT(0) 165 166 struct irig_slave_reg { 167 u32 ctrl; 168 u32 status; 169 u32 __pad0; 170 u32 version; 171 u32 adj_sec; 172 u32 mode_ctrl; 173 }; 174 175 #define IRIG_S_CTRL_ENABLE BIT(0) 176 177 struct dcf_master_reg { 178 u32 ctrl; 179 u32 status; 180 u32 __pad0; 181 u32 version; 182 u32 adj_sec; 183 }; 184 185 #define DCF_M_CTRL_ENABLE BIT(0) 186 187 struct dcf_slave_reg { 188 u32 ctrl; 189 u32 status; 190 u32 __pad0; 191 u32 version; 192 u32 adj_sec; 193 }; 194 195 #define DCF_S_CTRL_ENABLE BIT(0) 196 197 struct signal_reg { 198 u32 enable; 199 u32 status; 200 u32 polarity; 201 u32 version; 202 u32 __pad0[4]; 203 u32 cable_delay; 204 u32 __pad1[3]; 205 u32 intr; 206 u32 intr_mask; 207 u32 __pad2[2]; 208 u32 start_ns; 209 u32 start_sec; 210 u32 pulse_ns; 211 u32 pulse_sec; 212 u32 period_ns; 213 u32 period_sec; 214 u32 repeat_count; 215 }; 216 217 struct frequency_reg { 218 u32 ctrl; 219 u32 status; 220 }; 221 222 struct board_config_reg { 223 u32 mro50_serial_activate; 224 }; 225 226 #define FREQ_STATUS_VALID BIT(31) 227 #define FREQ_STATUS_ERROR BIT(30) 228 #define FREQ_STATUS_OVERRUN BIT(29) 229 #define FREQ_STATUS_MASK GENMASK(23, 0) 230 231 struct ptp_ocp_flash_info { 232 const char *name; 233 int pci_offset; 234 int data_size; 235 void *data; 236 }; 237 238 struct ptp_ocp_firmware_header { 239 char magic[4]; 240 __be16 pci_vendor_id; 241 __be16 pci_device_id; 242 __be32 image_size; 243 __be16 hw_revision; 244 __be16 crc; 245 }; 246 247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" 248 249 struct ptp_ocp_i2c_info { 250 const char *name; 251 unsigned long fixed_rate; 252 size_t data_size; 253 void *data; 254 }; 255 256 struct ptp_ocp_ext_info { 257 int index; 258 irqreturn_t (*irq_fcn)(int irq, void *priv); 259 int (*enable)(void *priv, u32 req, bool enable); 260 }; 261 262 struct ptp_ocp_ext_src { 263 void __iomem *mem; 264 struct ptp_ocp *bp; 265 struct ptp_ocp_ext_info *info; 266 int irq_vec; 267 }; 268 269 enum ptp_ocp_sma_mode { 270 SMA_MODE_IN, 271 SMA_MODE_OUT, 272 }; 273 274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = { 275 DPLL_PIN_FREQUENCY_1PPS, 276 DPLL_PIN_FREQUENCY_10MHZ, 277 DPLL_PIN_FREQUENCY_IRIG_B, 278 DPLL_PIN_FREQUENCY_DCF77, 279 }; 280 281 struct ptp_ocp_sma_connector { 282 enum ptp_ocp_sma_mode mode; 283 bool fixed_fcn; 284 bool fixed_dir; 285 bool disabled; 286 u8 default_fcn; 287 struct dpll_pin *dpll_pin; 288 struct dpll_pin_properties dpll_prop; 289 }; 290 291 struct ocp_attr_group { 292 u64 cap; 293 const struct attribute_group *group; 294 }; 295 296 #define OCP_CAP_BASIC BIT(0) 297 #define OCP_CAP_SIGNAL BIT(1) 298 #define OCP_CAP_FREQ BIT(2) 299 300 struct ptp_ocp_signal { 301 ktime_t period; 302 ktime_t pulse; 303 ktime_t phase; 304 ktime_t start; 305 int duty; 306 bool polarity; 307 bool running; 308 }; 309 310 struct ptp_ocp_serial_port { 311 int line; 312 int baud; 313 }; 314 315 #define OCP_BOARD_ID_LEN 13 316 #define OCP_SERIAL_LEN 6 317 #define OCP_SMA_NUM 4 318 319 enum { 320 PORT_GNSS, 321 PORT_GNSS2, 322 PORT_MAC, /* miniature atomic clock */ 323 PORT_NMEA, 324 325 __PORT_COUNT, 326 }; 327 328 struct ptp_ocp { 329 struct pci_dev *pdev; 330 struct device dev; 331 spinlock_t lock; 332 struct ocp_reg __iomem *reg; 333 struct tod_reg __iomem *tod; 334 struct pps_reg __iomem *pps_to_ext; 335 struct pps_reg __iomem *pps_to_clk; 336 struct board_config_reg __iomem *board_config; 337 struct gpio_reg __iomem *pps_select; 338 struct gpio_reg __iomem *sma_map1; 339 struct gpio_reg __iomem *sma_map2; 340 struct irig_master_reg __iomem *irig_out; 341 struct irig_slave_reg __iomem *irig_in; 342 struct dcf_master_reg __iomem *dcf_out; 343 struct dcf_slave_reg __iomem *dcf_in; 344 struct tod_reg __iomem *nmea_out; 345 struct frequency_reg __iomem *freq_in[4]; 346 struct ptp_ocp_ext_src *signal_out[4]; 347 struct ptp_ocp_ext_src *pps; 348 struct ptp_ocp_ext_src *ts0; 349 struct ptp_ocp_ext_src *ts1; 350 struct ptp_ocp_ext_src *ts2; 351 struct ptp_ocp_ext_src *ts3; 352 struct ptp_ocp_ext_src *ts4; 353 struct ocp_art_gpio_reg __iomem *art_sma; 354 struct img_reg __iomem *image; 355 struct ptp_clock *ptp; 356 struct ptp_clock_info ptp_info; 357 struct platform_device *i2c_ctrl; 358 struct platform_device *spi_flash; 359 struct clk_hw *i2c_clk; 360 struct timer_list watchdog; 361 const struct attribute_group **attr_group; 362 const struct ptp_ocp_eeprom_map *eeprom_map; 363 struct dentry *debug_root; 364 bool sync; 365 time64_t gnss_lost; 366 struct delayed_work sync_work; 367 int id; 368 int n_irqs; 369 struct ptp_ocp_serial_port port[__PORT_COUNT]; 370 bool fw_loader; 371 u8 fw_tag; 372 u16 fw_version; 373 u8 board_id[OCP_BOARD_ID_LEN]; 374 u8 serial[OCP_SERIAL_LEN]; 375 bool has_eeprom_data; 376 u32 pps_req_map; 377 int flash_start; 378 u32 utc_tai_offset; 379 u32 ts_window_adjust; 380 u64 fw_cap; 381 struct ptp_ocp_signal signal[4]; 382 struct ptp_ocp_sma_connector sma[OCP_SMA_NUM]; 383 const struct ocp_sma_op *sma_op; 384 struct dpll_device *dpll; 385 }; 386 387 #define OCP_REQ_TIMESTAMP BIT(0) 388 #define OCP_REQ_PPS BIT(1) 389 390 struct ocp_resource { 391 unsigned long offset; 392 int size; 393 int irq_vec; 394 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); 395 void *extra; 396 unsigned long bp_offset; 397 const char * const name; 398 }; 399 400 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); 401 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); 402 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); 403 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); 404 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); 405 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 406 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); 407 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); 408 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); 409 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 410 struct ptp_perout_request *req); 411 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); 412 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); 413 414 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 415 416 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r); 417 418 static const struct ocp_attr_group fb_timecard_groups[]; 419 420 static const struct ocp_attr_group art_timecard_groups[]; 421 422 static const struct ocp_attr_group adva_timecard_groups[]; 423 424 struct ptp_ocp_eeprom_map { 425 u16 off; 426 u16 len; 427 u32 bp_offset; 428 const void * const tag; 429 }; 430 431 #define EEPROM_ENTRY(addr, member) \ 432 .off = addr, \ 433 .len = sizeof_field(struct ptp_ocp, member), \ 434 .bp_offset = offsetof(struct ptp_ocp, member) 435 436 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ 437 (void *)((uintptr_t)(bp) + (map)->bp_offset); \ 438 }) 439 440 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { 441 { EEPROM_ENTRY(0x43, board_id) }, 442 { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, 443 { } 444 }; 445 446 static struct ptp_ocp_eeprom_map art_eeprom_map[] = { 447 { EEPROM_ENTRY(0x200 + 0x43, board_id) }, 448 { EEPROM_ENTRY(0x200 + 0x63, serial) }, 449 { } 450 }; 451 452 #define bp_assign_entry(bp, res, val) ({ \ 453 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ 454 *(typeof(val) *)addr = val; \ 455 }) 456 457 #define OCP_RES_LOCATION(member) \ 458 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) 459 460 #define OCP_MEM_RESOURCE(member) \ 461 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem 462 463 #define OCP_SERIAL_RESOURCE(member) \ 464 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial 465 466 #define OCP_I2C_RESOURCE(member) \ 467 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c 468 469 #define OCP_SPI_RESOURCE(member) \ 470 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi 471 472 #define OCP_EXT_RESOURCE(member) \ 473 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext 474 475 /* This is the MSI vector mapping used. 476 * 0: PPS (TS5) 477 * 1: TS0 478 * 2: TS1 479 * 3: GNSS1 480 * 4: GNSS2 481 * 5: MAC 482 * 6: TS2 483 * 7: I2C controller 484 * 8: HWICAP (notused) 485 * 9: SPI Flash 486 * 10: NMEA 487 * 11: Signal Generator 1 488 * 12: Signal Generator 2 489 * 13: Signal Generator 3 490 * 14: Signal Generator 4 491 * 15: TS3 492 * 16: TS4 493 -- 494 * 8: Orolia TS1 495 * 10: Orolia TS2 496 * 11: Orolia TS0 (GNSS) 497 * 12: Orolia PPS 498 * 14: Orolia TS3 499 * 15: Orolia TS4 500 */ 501 502 static struct ocp_resource ocp_fb_resource[] = { 503 { 504 OCP_MEM_RESOURCE(reg), 505 .offset = 0x01000000, .size = 0x10000, 506 }, 507 { 508 OCP_EXT_RESOURCE(ts0), 509 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 510 .extra = &(struct ptp_ocp_ext_info) { 511 .index = 0, 512 .irq_fcn = ptp_ocp_ts_irq, 513 .enable = ptp_ocp_ts_enable, 514 }, 515 }, 516 { 517 OCP_EXT_RESOURCE(ts1), 518 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 519 .extra = &(struct ptp_ocp_ext_info) { 520 .index = 1, 521 .irq_fcn = ptp_ocp_ts_irq, 522 .enable = ptp_ocp_ts_enable, 523 }, 524 }, 525 { 526 OCP_EXT_RESOURCE(ts2), 527 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 528 .extra = &(struct ptp_ocp_ext_info) { 529 .index = 2, 530 .irq_fcn = ptp_ocp_ts_irq, 531 .enable = ptp_ocp_ts_enable, 532 }, 533 }, 534 { 535 OCP_EXT_RESOURCE(ts3), 536 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, 537 .extra = &(struct ptp_ocp_ext_info) { 538 .index = 3, 539 .irq_fcn = ptp_ocp_ts_irq, 540 .enable = ptp_ocp_ts_enable, 541 }, 542 }, 543 { 544 OCP_EXT_RESOURCE(ts4), 545 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, 546 .extra = &(struct ptp_ocp_ext_info) { 547 .index = 4, 548 .irq_fcn = ptp_ocp_ts_irq, 549 .enable = ptp_ocp_ts_enable, 550 }, 551 }, 552 /* Timestamp for PHC and/or PPS generator */ 553 { 554 OCP_EXT_RESOURCE(pps), 555 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 556 .extra = &(struct ptp_ocp_ext_info) { 557 .index = 5, 558 .irq_fcn = ptp_ocp_ts_irq, 559 .enable = ptp_ocp_ts_enable, 560 }, 561 }, 562 { 563 OCP_EXT_RESOURCE(signal_out[0]), 564 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 565 .extra = &(struct ptp_ocp_ext_info) { 566 .index = 1, 567 .irq_fcn = ptp_ocp_signal_irq, 568 .enable = ptp_ocp_signal_enable, 569 }, 570 }, 571 { 572 OCP_EXT_RESOURCE(signal_out[1]), 573 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 574 .extra = &(struct ptp_ocp_ext_info) { 575 .index = 2, 576 .irq_fcn = ptp_ocp_signal_irq, 577 .enable = ptp_ocp_signal_enable, 578 }, 579 }, 580 { 581 OCP_EXT_RESOURCE(signal_out[2]), 582 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, 583 .extra = &(struct ptp_ocp_ext_info) { 584 .index = 3, 585 .irq_fcn = ptp_ocp_signal_irq, 586 .enable = ptp_ocp_signal_enable, 587 }, 588 }, 589 { 590 OCP_EXT_RESOURCE(signal_out[3]), 591 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, 592 .extra = &(struct ptp_ocp_ext_info) { 593 .index = 4, 594 .irq_fcn = ptp_ocp_signal_irq, 595 .enable = ptp_ocp_signal_enable, 596 }, 597 }, 598 { 599 OCP_MEM_RESOURCE(pps_to_ext), 600 .offset = 0x01030000, .size = 0x10000, 601 }, 602 { 603 OCP_MEM_RESOURCE(pps_to_clk), 604 .offset = 0x01040000, .size = 0x10000, 605 }, 606 { 607 OCP_MEM_RESOURCE(tod), 608 .offset = 0x01050000, .size = 0x10000, 609 }, 610 { 611 OCP_MEM_RESOURCE(irig_in), 612 .offset = 0x01070000, .size = 0x10000, 613 }, 614 { 615 OCP_MEM_RESOURCE(irig_out), 616 .offset = 0x01080000, .size = 0x10000, 617 }, 618 { 619 OCP_MEM_RESOURCE(dcf_in), 620 .offset = 0x01090000, .size = 0x10000, 621 }, 622 { 623 OCP_MEM_RESOURCE(dcf_out), 624 .offset = 0x010A0000, .size = 0x10000, 625 }, 626 { 627 OCP_MEM_RESOURCE(nmea_out), 628 .offset = 0x010B0000, .size = 0x10000, 629 }, 630 { 631 OCP_MEM_RESOURCE(image), 632 .offset = 0x00020000, .size = 0x1000, 633 }, 634 { 635 OCP_MEM_RESOURCE(pps_select), 636 .offset = 0x00130000, .size = 0x1000, 637 }, 638 { 639 OCP_MEM_RESOURCE(sma_map1), 640 .offset = 0x00140000, .size = 0x1000, 641 }, 642 { 643 OCP_MEM_RESOURCE(sma_map2), 644 .offset = 0x00220000, .size = 0x1000, 645 }, 646 { 647 OCP_I2C_RESOURCE(i2c_ctrl), 648 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, 649 .extra = &(struct ptp_ocp_i2c_info) { 650 .name = "xiic-i2c", 651 .fixed_rate = 50000000, 652 .data_size = sizeof(struct xiic_i2c_platform_data), 653 .data = &(struct xiic_i2c_platform_data) { 654 .num_devices = 2, 655 .devices = (struct i2c_board_info[]) { 656 { I2C_BOARD_INFO("24c02", 0x50) }, 657 { I2C_BOARD_INFO("24mac402", 0x58), 658 .platform_data = "mac" }, 659 }, 660 }, 661 }, 662 }, 663 { 664 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 665 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 666 .extra = &(struct ptp_ocp_serial_port) { 667 .baud = 115200, 668 }, 669 }, 670 { 671 OCP_SERIAL_RESOURCE(port[PORT_GNSS2]), 672 .offset = 0x00170000 + 0x1000, .irq_vec = 4, 673 .extra = &(struct ptp_ocp_serial_port) { 674 .baud = 115200, 675 }, 676 }, 677 { 678 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 679 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 680 .extra = &(struct ptp_ocp_serial_port) { 681 .baud = 57600, 682 }, 683 }, 684 { 685 OCP_SERIAL_RESOURCE(port[PORT_NMEA]), 686 .offset = 0x00190000 + 0x1000, .irq_vec = 10, 687 }, 688 { 689 OCP_SPI_RESOURCE(spi_flash), 690 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 691 .extra = &(struct ptp_ocp_flash_info) { 692 .name = "xilinx_spi", .pci_offset = 0, 693 .data_size = sizeof(struct xspi_platform_data), 694 .data = &(struct xspi_platform_data) { 695 .num_chipselect = 1, 696 .bits_per_word = 8, 697 .num_devices = 1, 698 .force_irq = true, 699 .devices = &(struct spi_board_info) { 700 .modalias = "spi-nor", 701 }, 702 }, 703 }, 704 }, 705 { 706 OCP_MEM_RESOURCE(freq_in[0]), 707 .offset = 0x01200000, .size = 0x10000, 708 }, 709 { 710 OCP_MEM_RESOURCE(freq_in[1]), 711 .offset = 0x01210000, .size = 0x10000, 712 }, 713 { 714 OCP_MEM_RESOURCE(freq_in[2]), 715 .offset = 0x01220000, .size = 0x10000, 716 }, 717 { 718 OCP_MEM_RESOURCE(freq_in[3]), 719 .offset = 0x01230000, .size = 0x10000, 720 }, 721 { 722 .setup = ptp_ocp_fb_board_init, 723 .extra = &(struct ptp_ocp_servo_conf) { 724 .servo_offset_p = 0x2000, 725 .servo_offset_i = 0x1000, 726 .servo_drift_p = 0, 727 .servo_drift_i = 0, 728 }, 729 }, 730 { } 731 }; 732 733 #define OCP_ART_CONFIG_SIZE 144 734 #define OCP_ART_TEMP_TABLE_SIZE 368 735 736 struct ocp_art_gpio_reg { 737 struct { 738 u32 gpio; 739 u32 __pad[3]; 740 } map[4]; 741 }; 742 743 static struct ocp_resource ocp_art_resource[] = { 744 { 745 OCP_MEM_RESOURCE(reg), 746 .offset = 0x01000000, .size = 0x10000, 747 }, 748 { 749 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 750 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 751 .extra = &(struct ptp_ocp_serial_port) { 752 .baud = 115200, 753 }, 754 }, 755 { 756 OCP_MEM_RESOURCE(art_sma), 757 .offset = 0x003C0000, .size = 0x1000, 758 }, 759 /* Timestamp associated with GNSS1 receiver PPS */ 760 { 761 OCP_EXT_RESOURCE(ts0), 762 .offset = 0x360000, .size = 0x20, .irq_vec = 12, 763 .extra = &(struct ptp_ocp_ext_info) { 764 .index = 0, 765 .irq_fcn = ptp_ocp_ts_irq, 766 .enable = ptp_ocp_ts_enable, 767 }, 768 }, 769 { 770 OCP_EXT_RESOURCE(ts1), 771 .offset = 0x380000, .size = 0x20, .irq_vec = 8, 772 .extra = &(struct ptp_ocp_ext_info) { 773 .index = 1, 774 .irq_fcn = ptp_ocp_ts_irq, 775 .enable = ptp_ocp_ts_enable, 776 }, 777 }, 778 { 779 OCP_EXT_RESOURCE(ts2), 780 .offset = 0x390000, .size = 0x20, .irq_vec = 10, 781 .extra = &(struct ptp_ocp_ext_info) { 782 .index = 2, 783 .irq_fcn = ptp_ocp_ts_irq, 784 .enable = ptp_ocp_ts_enable, 785 }, 786 }, 787 { 788 OCP_EXT_RESOURCE(ts3), 789 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14, 790 .extra = &(struct ptp_ocp_ext_info) { 791 .index = 3, 792 .irq_fcn = ptp_ocp_ts_irq, 793 .enable = ptp_ocp_ts_enable, 794 }, 795 }, 796 { 797 OCP_EXT_RESOURCE(ts4), 798 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15, 799 .extra = &(struct ptp_ocp_ext_info) { 800 .index = 4, 801 .irq_fcn = ptp_ocp_ts_irq, 802 .enable = ptp_ocp_ts_enable, 803 }, 804 }, 805 /* Timestamp associated with Internal PPS of the card */ 806 { 807 OCP_EXT_RESOURCE(pps), 808 .offset = 0x00330000, .size = 0x20, .irq_vec = 11, 809 .extra = &(struct ptp_ocp_ext_info) { 810 .index = 5, 811 .irq_fcn = ptp_ocp_ts_irq, 812 .enable = ptp_ocp_ts_enable, 813 }, 814 }, 815 { 816 OCP_SPI_RESOURCE(spi_flash), 817 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, 818 .extra = &(struct ptp_ocp_flash_info) { 819 .name = "spi_altera", .pci_offset = 0, 820 .data_size = sizeof(struct altera_spi_platform_data), 821 .data = &(struct altera_spi_platform_data) { 822 .num_chipselect = 1, 823 .num_devices = 1, 824 .devices = &(struct spi_board_info) { 825 .modalias = "spi-nor", 826 }, 827 }, 828 }, 829 }, 830 { 831 OCP_I2C_RESOURCE(i2c_ctrl), 832 .offset = 0x350000, .size = 0x100, .irq_vec = 4, 833 .extra = &(struct ptp_ocp_i2c_info) { 834 .name = "ocores-i2c", 835 .fixed_rate = 400000, 836 .data_size = sizeof(struct ocores_i2c_platform_data), 837 .data = &(struct ocores_i2c_platform_data) { 838 .clock_khz = 125000, 839 .bus_khz = 400, 840 .num_devices = 1, 841 .devices = &(struct i2c_board_info) { 842 I2C_BOARD_INFO("24c08", 0x50), 843 }, 844 }, 845 }, 846 }, 847 { 848 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 849 .offset = 0x00190000, .irq_vec = 7, 850 .extra = &(struct ptp_ocp_serial_port) { 851 .baud = 9600, 852 }, 853 }, 854 { 855 OCP_MEM_RESOURCE(board_config), 856 .offset = 0x210000, .size = 0x1000, 857 }, 858 { 859 .setup = ptp_ocp_art_board_init, 860 .extra = &(struct ptp_ocp_servo_conf) { 861 .servo_offset_p = 0x2000, 862 .servo_offset_i = 0x1000, 863 .servo_drift_p = 0, 864 .servo_drift_i = 0, 865 }, 866 }, 867 { } 868 }; 869 870 static struct ocp_resource ocp_adva_resource[] = { 871 { 872 OCP_MEM_RESOURCE(reg), 873 .offset = 0x01000000, .size = 0x10000, 874 }, 875 { 876 OCP_EXT_RESOURCE(ts0), 877 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, 878 .extra = &(struct ptp_ocp_ext_info) { 879 .index = 0, 880 .irq_fcn = ptp_ocp_ts_irq, 881 .enable = ptp_ocp_ts_enable, 882 }, 883 }, 884 { 885 OCP_EXT_RESOURCE(ts1), 886 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, 887 .extra = &(struct ptp_ocp_ext_info) { 888 .index = 1, 889 .irq_fcn = ptp_ocp_ts_irq, 890 .enable = ptp_ocp_ts_enable, 891 }, 892 }, 893 { 894 OCP_EXT_RESOURCE(ts2), 895 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, 896 .extra = &(struct ptp_ocp_ext_info) { 897 .index = 2, 898 .irq_fcn = ptp_ocp_ts_irq, 899 .enable = ptp_ocp_ts_enable, 900 }, 901 }, 902 /* Timestamp for PHC and/or PPS generator */ 903 { 904 OCP_EXT_RESOURCE(pps), 905 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, 906 .extra = &(struct ptp_ocp_ext_info) { 907 .index = 5, 908 .irq_fcn = ptp_ocp_ts_irq, 909 .enable = ptp_ocp_ts_enable, 910 }, 911 }, 912 { 913 OCP_EXT_RESOURCE(signal_out[0]), 914 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, 915 .extra = &(struct ptp_ocp_ext_info) { 916 .index = 1, 917 .irq_fcn = ptp_ocp_signal_irq, 918 .enable = ptp_ocp_signal_enable, 919 }, 920 }, 921 { 922 OCP_EXT_RESOURCE(signal_out[1]), 923 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, 924 .extra = &(struct ptp_ocp_ext_info) { 925 .index = 2, 926 .irq_fcn = ptp_ocp_signal_irq, 927 .enable = ptp_ocp_signal_enable, 928 }, 929 }, 930 { 931 OCP_MEM_RESOURCE(pps_to_ext), 932 .offset = 0x01030000, .size = 0x10000, 933 }, 934 { 935 OCP_MEM_RESOURCE(pps_to_clk), 936 .offset = 0x01040000, .size = 0x10000, 937 }, 938 { 939 OCP_MEM_RESOURCE(tod), 940 .offset = 0x01050000, .size = 0x10000, 941 }, 942 { 943 OCP_MEM_RESOURCE(image), 944 .offset = 0x00020000, .size = 0x1000, 945 }, 946 { 947 OCP_MEM_RESOURCE(pps_select), 948 .offset = 0x00130000, .size = 0x1000, 949 }, 950 { 951 OCP_MEM_RESOURCE(sma_map1), 952 .offset = 0x00140000, .size = 0x1000, 953 }, 954 { 955 OCP_MEM_RESOURCE(sma_map2), 956 .offset = 0x00220000, .size = 0x1000, 957 }, 958 { 959 OCP_SERIAL_RESOURCE(port[PORT_GNSS]), 960 .offset = 0x00160000 + 0x1000, .irq_vec = 3, 961 .extra = &(struct ptp_ocp_serial_port) { 962 .baud = 9600, 963 }, 964 }, 965 { 966 OCP_SERIAL_RESOURCE(port[PORT_MAC]), 967 .offset = 0x00180000 + 0x1000, .irq_vec = 5, 968 .extra = &(struct ptp_ocp_serial_port) { 969 .baud = 115200, 970 }, 971 }, 972 { 973 OCP_MEM_RESOURCE(freq_in[0]), 974 .offset = 0x01200000, .size = 0x10000, 975 }, 976 { 977 OCP_MEM_RESOURCE(freq_in[1]), 978 .offset = 0x01210000, .size = 0x10000, 979 }, 980 { 981 OCP_SPI_RESOURCE(spi_flash), 982 .offset = 0x00310400, .size = 0x10000, .irq_vec = 9, 983 .extra = &(struct ptp_ocp_flash_info) { 984 .name = "spi_altera", .pci_offset = 0, 985 .data_size = sizeof(struct altera_spi_platform_data), 986 .data = &(struct altera_spi_platform_data) { 987 .num_chipselect = 1, 988 .num_devices = 1, 989 .devices = &(struct spi_board_info) { 990 .modalias = "spi-nor", 991 }, 992 }, 993 }, 994 }, 995 { 996 OCP_I2C_RESOURCE(i2c_ctrl), 997 .offset = 0x150000, .size = 0x100, .irq_vec = 7, 998 .extra = &(struct ptp_ocp_i2c_info) { 999 .name = "ocores-i2c", 1000 .fixed_rate = 50000000, 1001 .data_size = sizeof(struct ocores_i2c_platform_data), 1002 .data = &(struct ocores_i2c_platform_data) { 1003 .clock_khz = 50000, 1004 .bus_khz = 100, 1005 .reg_io_width = 4, // 32-bit/4-byte 1006 .reg_shift = 2, // 32-bit addressing 1007 .num_devices = 2, 1008 .devices = (struct i2c_board_info[]) { 1009 { I2C_BOARD_INFO("24c02", 0x50) }, 1010 { I2C_BOARD_INFO("24mac402", 0x58), 1011 .platform_data = "mac" }, 1012 }, 1013 }, 1014 }, 1015 }, 1016 { 1017 .setup = ptp_ocp_adva_board_init, 1018 .extra = &(struct ptp_ocp_servo_conf) { 1019 .servo_offset_p = 0xc000, 1020 .servo_offset_i = 0x1000, 1021 .servo_drift_p = 0, 1022 .servo_drift_i = 0, 1023 }, 1024 }, 1025 { } 1026 }; 1027 1028 static const struct pci_device_id ptp_ocp_pcidev_id[] = { 1029 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, 1030 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, 1031 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) }, 1032 { PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) }, 1033 { } 1034 }; 1035 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); 1036 1037 static DEFINE_MUTEX(ptp_ocp_lock); 1038 static DEFINE_IDR(ptp_ocp_idr); 1039 1040 struct ocp_selector { 1041 const char *name; 1042 int value; 1043 u64 frequency; 1044 }; 1045 1046 static const struct ocp_selector ptp_ocp_clock[] = { 1047 { .name = "NONE", .value = 0 }, 1048 { .name = "TOD", .value = 1 }, 1049 { .name = "IRIG", .value = 2 }, 1050 { .name = "PPS", .value = 3 }, 1051 { .name = "PTP", .value = 4 }, 1052 { .name = "RTC", .value = 5 }, 1053 { .name = "DCF", .value = 6 }, 1054 { .name = "REGS", .value = 0xfe }, 1055 { .name = "EXT", .value = 0xff }, 1056 { } 1057 }; 1058 1059 #define SMA_DISABLE BIT(16) 1060 #define SMA_ENABLE BIT(15) 1061 #define SMA_SELECT_MASK GENMASK(14, 0) 1062 1063 static const struct ocp_selector ptp_ocp_sma_in[] = { 1064 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, 1065 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1066 { .name = "PPS2", .value = 0x0002, .frequency = 1 }, 1067 { .name = "TS1", .value = 0x0004, .frequency = 0 }, 1068 { .name = "TS2", .value = 0x0008, .frequency = 0 }, 1069 { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, 1070 { .name = "DCF", .value = 0x0020, .frequency = 77500 }, 1071 { .name = "TS3", .value = 0x0040, .frequency = 0 }, 1072 { .name = "TS4", .value = 0x0080, .frequency = 0 }, 1073 { .name = "FREQ1", .value = 0x0100, .frequency = 0 }, 1074 { .name = "FREQ2", .value = 0x0200, .frequency = 0 }, 1075 { .name = "FREQ3", .value = 0x0400, .frequency = 0 }, 1076 { .name = "FREQ4", .value = 0x0800, .frequency = 0 }, 1077 { .name = "None", .value = SMA_DISABLE, .frequency = 0 }, 1078 { } 1079 }; 1080 1081 static const struct ocp_selector ptp_ocp_sma_out[] = { 1082 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, 1083 { .name = "PHC", .value = 0x0001, .frequency = 1 }, 1084 { .name = "MAC", .value = 0x0002, .frequency = 1 }, 1085 { .name = "GNSS1", .value = 0x0004, .frequency = 1 }, 1086 { .name = "GNSS2", .value = 0x0008, .frequency = 1 }, 1087 { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, 1088 { .name = "DCF", .value = 0x0020, .frequency = 77000 }, 1089 { .name = "GEN1", .value = 0x0040 }, 1090 { .name = "GEN2", .value = 0x0080 }, 1091 { .name = "GEN3", .value = 0x0100 }, 1092 { .name = "GEN4", .value = 0x0200 }, 1093 { .name = "GND", .value = 0x2000 }, 1094 { .name = "VCC", .value = 0x4000 }, 1095 { } 1096 }; 1097 1098 static const struct ocp_selector ptp_ocp_art_sma_in[] = { 1099 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1100 { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 }, 1101 { } 1102 }; 1103 1104 static const struct ocp_selector ptp_ocp_art_sma_out[] = { 1105 { .name = "PHC", .value = 0x0002, .frequency = 1 }, 1106 { .name = "GNSS", .value = 0x0004, .frequency = 1 }, 1107 { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 }, 1108 { } 1109 }; 1110 1111 static const struct ocp_selector ptp_ocp_adva_sma_in[] = { 1112 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000}, 1113 { .name = "PPS1", .value = 0x0001, .frequency = 1 }, 1114 { .name = "PPS2", .value = 0x0002, .frequency = 1 }, 1115 { .name = "TS1", .value = 0x0004, .frequency = 0 }, 1116 { .name = "TS2", .value = 0x0008, .frequency = 0 }, 1117 { .name = "FREQ1", .value = 0x0100, .frequency = 0 }, 1118 { .name = "FREQ2", .value = 0x0200, .frequency = 0 }, 1119 { .name = "None", .value = SMA_DISABLE, .frequency = 0 }, 1120 { } 1121 }; 1122 1123 static const struct ocp_selector ptp_ocp_adva_sma_out[] = { 1124 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000}, 1125 { .name = "PHC", .value = 0x0001, .frequency = 1 }, 1126 { .name = "MAC", .value = 0x0002, .frequency = 1 }, 1127 { .name = "GNSS1", .value = 0x0004, .frequency = 1 }, 1128 { .name = "GEN1", .value = 0x0040 }, 1129 { .name = "GEN2", .value = 0x0080 }, 1130 { .name = "GND", .value = 0x2000 }, 1131 { .name = "VCC", .value = 0x4000 }, 1132 { } 1133 }; 1134 1135 struct ocp_sma_op { 1136 const struct ocp_selector *tbl[2]; 1137 void (*init)(struct ptp_ocp *bp); 1138 u32 (*get)(struct ptp_ocp *bp, int sma_nr); 1139 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); 1140 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); 1141 }; 1142 1143 static void 1144 ptp_ocp_sma_init(struct ptp_ocp *bp) 1145 { 1146 return bp->sma_op->init(bp); 1147 } 1148 1149 static u32 1150 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) 1151 { 1152 return bp->sma_op->get(bp, sma_nr); 1153 } 1154 1155 static int 1156 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 1157 { 1158 return bp->sma_op->set_inputs(bp, sma_nr, val); 1159 } 1160 1161 static int 1162 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 1163 { 1164 return bp->sma_op->set_output(bp, sma_nr, val); 1165 } 1166 1167 static const char * 1168 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) 1169 { 1170 int i; 1171 1172 for (i = 0; tbl[i].name; i++) 1173 if (tbl[i].value == val) 1174 return tbl[i].name; 1175 return NULL; 1176 } 1177 1178 static int 1179 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) 1180 { 1181 const char *select; 1182 int i; 1183 1184 for (i = 0; tbl[i].name; i++) { 1185 select = tbl[i].name; 1186 if (!strncasecmp(name, select, strlen(select))) 1187 return tbl[i].value; 1188 } 1189 return -EINVAL; 1190 } 1191 1192 static ssize_t 1193 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) 1194 { 1195 ssize_t count; 1196 int i; 1197 1198 count = 0; 1199 for (i = 0; tbl[i].name; i++) 1200 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); 1201 if (count) 1202 count--; 1203 count += sysfs_emit_at(buf, count, "\n"); 1204 return count; 1205 } 1206 1207 static int 1208 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, 1209 struct ptp_system_timestamp *sts) 1210 { 1211 u32 ctrl, time_sec, time_ns; 1212 int i; 1213 1214 ptp_read_system_prets(sts); 1215 1216 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1217 iowrite32(ctrl, &bp->reg->ctrl); 1218 1219 for (i = 0; i < 100; i++) { 1220 ctrl = ioread32(&bp->reg->ctrl); 1221 if (ctrl & OCP_CTRL_READ_TIME_DONE) 1222 break; 1223 } 1224 ptp_read_system_postts(sts); 1225 1226 if (sts && bp->ts_window_adjust) { 1227 s64 ns = timespec64_to_ns(&sts->post_ts); 1228 1229 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); 1230 } 1231 1232 time_ns = ioread32(&bp->reg->time_ns); 1233 time_sec = ioread32(&bp->reg->time_sec); 1234 1235 ts->tv_sec = time_sec; 1236 ts->tv_nsec = time_ns; 1237 1238 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; 1239 } 1240 1241 static int 1242 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, 1243 struct ptp_system_timestamp *sts) 1244 { 1245 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1246 unsigned long flags; 1247 int err; 1248 1249 spin_lock_irqsave(&bp->lock, flags); 1250 err = __ptp_ocp_gettime_locked(bp, ts, sts); 1251 spin_unlock_irqrestore(&bp->lock, flags); 1252 1253 return err; 1254 } 1255 1256 static void 1257 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) 1258 { 1259 u32 ctrl, time_sec, time_ns; 1260 u32 select; 1261 1262 time_ns = ts->tv_nsec; 1263 time_sec = ts->tv_sec; 1264 1265 select = ioread32(&bp->reg->select); 1266 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1267 1268 iowrite32(time_ns, &bp->reg->adjust_ns); 1269 iowrite32(time_sec, &bp->reg->adjust_sec); 1270 1271 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; 1272 iowrite32(ctrl, &bp->reg->ctrl); 1273 1274 /* restore clock selection */ 1275 iowrite32(select >> 16, &bp->reg->select); 1276 } 1277 1278 static int 1279 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) 1280 { 1281 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1282 unsigned long flags; 1283 1284 spin_lock_irqsave(&bp->lock, flags); 1285 __ptp_ocp_settime_locked(bp, ts); 1286 spin_unlock_irqrestore(&bp->lock, flags); 1287 1288 return 0; 1289 } 1290 1291 static void 1292 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) 1293 { 1294 u32 select, ctrl; 1295 1296 select = ioread32(&bp->reg->select); 1297 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1298 1299 iowrite32(adj_val, &bp->reg->offset_ns); 1300 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); 1301 1302 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; 1303 iowrite32(ctrl, &bp->reg->ctrl); 1304 1305 /* restore clock selection */ 1306 iowrite32(select >> 16, &bp->reg->select); 1307 } 1308 1309 static void 1310 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) 1311 { 1312 struct timespec64 ts; 1313 unsigned long flags; 1314 int err; 1315 1316 spin_lock_irqsave(&bp->lock, flags); 1317 err = __ptp_ocp_gettime_locked(bp, &ts, NULL); 1318 if (likely(!err)) { 1319 set_normalized_timespec64(&ts, ts.tv_sec, 1320 ts.tv_nsec + delta_ns); 1321 __ptp_ocp_settime_locked(bp, &ts); 1322 } 1323 spin_unlock_irqrestore(&bp->lock, flags); 1324 } 1325 1326 static int 1327 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) 1328 { 1329 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1330 unsigned long flags; 1331 u32 adj_ns, sign; 1332 1333 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { 1334 ptp_ocp_adjtime_coarse(bp, delta_ns); 1335 return 0; 1336 } 1337 1338 sign = delta_ns < 0 ? BIT(31) : 0; 1339 adj_ns = sign ? -delta_ns : delta_ns; 1340 1341 spin_lock_irqsave(&bp->lock, flags); 1342 __ptp_ocp_adjtime_locked(bp, sign | adj_ns); 1343 spin_unlock_irqrestore(&bp->lock, flags); 1344 1345 return 0; 1346 } 1347 1348 static int 1349 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) 1350 { 1351 if (scaled_ppm == 0) 1352 return 0; 1353 1354 return -EOPNOTSUPP; 1355 } 1356 1357 static s32 1358 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info) 1359 { 1360 return 0; 1361 } 1362 1363 static int 1364 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) 1365 { 1366 return -EOPNOTSUPP; 1367 } 1368 1369 static int 1370 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, 1371 int on) 1372 { 1373 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1374 struct ptp_ocp_ext_src *ext = NULL; 1375 u32 req; 1376 int err; 1377 1378 switch (rq->type) { 1379 case PTP_CLK_REQ_EXTTS: 1380 req = OCP_REQ_TIMESTAMP; 1381 switch (rq->extts.index) { 1382 case 0: 1383 ext = bp->ts0; 1384 break; 1385 case 1: 1386 ext = bp->ts1; 1387 break; 1388 case 2: 1389 ext = bp->ts2; 1390 break; 1391 case 3: 1392 ext = bp->ts3; 1393 break; 1394 case 4: 1395 ext = bp->ts4; 1396 break; 1397 case 5: 1398 ext = bp->pps; 1399 break; 1400 } 1401 break; 1402 case PTP_CLK_REQ_PPS: 1403 req = OCP_REQ_PPS; 1404 ext = bp->pps; 1405 break; 1406 case PTP_CLK_REQ_PEROUT: 1407 switch (rq->perout.index) { 1408 case 0: 1409 /* This is a request for 1PPS on an output SMA. 1410 * Allow, but assume manual configuration. 1411 */ 1412 if (on && (rq->perout.period.sec != 1 || 1413 rq->perout.period.nsec != 0)) 1414 return -EINVAL; 1415 return 0; 1416 case 1: 1417 case 2: 1418 case 3: 1419 case 4: 1420 req = rq->perout.index - 1; 1421 ext = bp->signal_out[req]; 1422 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); 1423 if (err) 1424 return err; 1425 break; 1426 } 1427 break; 1428 default: 1429 return -EOPNOTSUPP; 1430 } 1431 1432 err = -ENXIO; 1433 if (ext) 1434 err = ext->info->enable(ext, req, on); 1435 1436 return err; 1437 } 1438 1439 static int 1440 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, 1441 enum ptp_pin_function func, unsigned chan) 1442 { 1443 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); 1444 char buf[16]; 1445 1446 switch (func) { 1447 case PTP_PF_NONE: 1448 snprintf(buf, sizeof(buf), "IN: None"); 1449 break; 1450 case PTP_PF_EXTTS: 1451 /* Allow timestamps, but require sysfs configuration. */ 1452 return 0; 1453 case PTP_PF_PEROUT: 1454 /* channel 0 is 1PPS from PHC. 1455 * channels 1..4 are the frequency generators. 1456 */ 1457 if (chan) 1458 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); 1459 else 1460 snprintf(buf, sizeof(buf), "OUT: PHC"); 1461 break; 1462 default: 1463 return -EOPNOTSUPP; 1464 } 1465 1466 return ptp_ocp_sma_store(bp, buf, pin + 1); 1467 } 1468 1469 static const struct ptp_clock_info ptp_ocp_clock_info = { 1470 .owner = THIS_MODULE, 1471 .name = KBUILD_MODNAME, 1472 .max_adj = 100000000, 1473 .gettimex64 = ptp_ocp_gettimex, 1474 .settime64 = ptp_ocp_settime, 1475 .adjtime = ptp_ocp_adjtime, 1476 .adjfine = ptp_ocp_null_adjfine, 1477 .adjphase = ptp_ocp_null_adjphase, 1478 .getmaxphase = ptp_ocp_null_getmaxphase, 1479 .enable = ptp_ocp_enable, 1480 .verify = ptp_ocp_verify, 1481 .pps = true, 1482 .n_ext_ts = 6, 1483 .n_per_out = 5, 1484 }; 1485 1486 static void 1487 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) 1488 { 1489 u32 ctrl, select; 1490 1491 select = ioread32(&bp->reg->select); 1492 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); 1493 1494 iowrite32(0, &bp->reg->drift_ns); 1495 1496 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; 1497 iowrite32(ctrl, &bp->reg->ctrl); 1498 1499 /* restore clock selection */ 1500 iowrite32(select >> 16, &bp->reg->select); 1501 } 1502 1503 static void 1504 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) 1505 { 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&bp->lock, flags); 1509 1510 bp->utc_tai_offset = val; 1511 1512 if (bp->irig_out) 1513 iowrite32(val, &bp->irig_out->adj_sec); 1514 if (bp->dcf_out) 1515 iowrite32(val, &bp->dcf_out->adj_sec); 1516 if (bp->nmea_out) 1517 iowrite32(val, &bp->nmea_out->adj_sec); 1518 1519 spin_unlock_irqrestore(&bp->lock, flags); 1520 } 1521 1522 static void 1523 ptp_ocp_watchdog(struct timer_list *t) 1524 { 1525 struct ptp_ocp *bp = from_timer(bp, t, watchdog); 1526 unsigned long flags; 1527 u32 status, utc_offset; 1528 1529 status = ioread32(&bp->pps_to_clk->status); 1530 1531 if (status & PPS_STATUS_SUPERV_ERR) { 1532 iowrite32(status, &bp->pps_to_clk->status); 1533 if (!bp->gnss_lost) { 1534 spin_lock_irqsave(&bp->lock, flags); 1535 __ptp_ocp_clear_drift_locked(bp); 1536 spin_unlock_irqrestore(&bp->lock, flags); 1537 bp->gnss_lost = ktime_get_real_seconds(); 1538 } 1539 1540 } else if (bp->gnss_lost) { 1541 bp->gnss_lost = 0; 1542 } 1543 1544 /* if GNSS provides correct data we can rely on 1545 * it to get leap second information 1546 */ 1547 if (bp->tod) { 1548 status = ioread32(&bp->tod->utc_status); 1549 utc_offset = status & TOD_STATUS_UTC_MASK; 1550 if (status & TOD_STATUS_UTC_VALID && 1551 utc_offset != bp->utc_tai_offset) 1552 ptp_ocp_utc_distribute(bp, utc_offset); 1553 } 1554 1555 mod_timer(&bp->watchdog, jiffies + HZ); 1556 } 1557 1558 static void 1559 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) 1560 { 1561 ktime_t start, end, delay = U64_MAX; 1562 u32 ctrl; 1563 int i; 1564 1565 for (i = 0; i < 3; i++) { 1566 ctrl = ioread32(&bp->reg->ctrl); 1567 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; 1568 1569 iowrite32(ctrl, &bp->reg->ctrl); 1570 1571 start = ktime_get_raw_ns(); 1572 1573 ctrl = ioread32(&bp->reg->ctrl); 1574 1575 end = ktime_get_raw_ns(); 1576 1577 delay = min(delay, end - start); 1578 } 1579 bp->ts_window_adjust = (delay >> 5) * 3; 1580 } 1581 1582 static int 1583 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf) 1584 { 1585 struct timespec64 ts; 1586 u32 ctrl; 1587 1588 ctrl = OCP_CTRL_ENABLE; 1589 iowrite32(ctrl, &bp->reg->ctrl); 1590 1591 /* servo configuration */ 1592 iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p); 1593 iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i); 1594 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p); 1595 iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i); 1596 1597 /* latch servo values */ 1598 ctrl |= OCP_CTRL_ADJUST_SERVO; 1599 iowrite32(ctrl, &bp->reg->ctrl); 1600 1601 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { 1602 dev_err(&bp->pdev->dev, "clock not enabled\n"); 1603 return -ENODEV; 1604 } 1605 1606 ptp_ocp_estimate_pci_timing(bp); 1607 1608 bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; 1609 if (!bp->sync) { 1610 ktime_get_clocktai_ts64(&ts); 1611 ptp_ocp_settime(&bp->ptp_info, &ts); 1612 } 1613 1614 /* If there is a clock supervisor, then enable the watchdog */ 1615 if (bp->pps_to_clk) { 1616 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); 1617 mod_timer(&bp->watchdog, jiffies + HZ); 1618 } 1619 1620 return 0; 1621 } 1622 1623 static void 1624 ptp_ocp_tod_init(struct ptp_ocp *bp) 1625 { 1626 u32 ctrl, reg; 1627 1628 ctrl = ioread32(&bp->tod->ctrl); 1629 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; 1630 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); 1631 iowrite32(ctrl, &bp->tod->ctrl); 1632 1633 reg = ioread32(&bp->tod->utc_status); 1634 if (reg & TOD_STATUS_UTC_VALID) 1635 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); 1636 } 1637 1638 static const char * 1639 ptp_ocp_tod_proto_name(const int idx) 1640 { 1641 static const char * const proto_name[] = { 1642 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", 1643 "UBX", "UBX_UTC", "UBX_LS", "UBX_none" 1644 }; 1645 return proto_name[idx]; 1646 } 1647 1648 static const char * 1649 ptp_ocp_tod_gnss_name(int idx) 1650 { 1651 static const char * const gnss_name[] = { 1652 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", 1653 "Unknown" 1654 }; 1655 if (idx >= ARRAY_SIZE(gnss_name)) 1656 idx = ARRAY_SIZE(gnss_name) - 1; 1657 return gnss_name[idx]; 1658 } 1659 1660 static const char * 1661 ptp_ocp_tty_port_name(int idx) 1662 { 1663 static const char * const tty_name[] = { 1664 "GNSS", "GNSS2", "MAC", "NMEA" 1665 }; 1666 return tty_name[idx]; 1667 } 1668 1669 struct ptp_ocp_nvmem_match_info { 1670 struct ptp_ocp *bp; 1671 const void * const tag; 1672 }; 1673 1674 static int 1675 ptp_ocp_nvmem_match(struct device *dev, const void *data) 1676 { 1677 const struct ptp_ocp_nvmem_match_info *info = data; 1678 1679 dev = dev->parent; 1680 if (!i2c_verify_client(dev) || info->tag != dev->platform_data) 1681 return 0; 1682 1683 while ((dev = dev->parent)) 1684 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 1685 return info->bp == dev_get_drvdata(dev); 1686 return 0; 1687 } 1688 1689 static inline struct nvmem_device * 1690 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) 1691 { 1692 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; 1693 1694 return nvmem_device_find(&info, ptp_ocp_nvmem_match); 1695 } 1696 1697 static inline void 1698 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) 1699 { 1700 if (!IS_ERR_OR_NULL(*nvmemp)) 1701 nvmem_device_put(*nvmemp); 1702 *nvmemp = NULL; 1703 } 1704 1705 static void 1706 ptp_ocp_read_eeprom(struct ptp_ocp *bp) 1707 { 1708 const struct ptp_ocp_eeprom_map *map; 1709 struct nvmem_device *nvmem; 1710 const void *tag; 1711 int ret; 1712 1713 if (!bp->i2c_ctrl) 1714 return; 1715 1716 tag = NULL; 1717 nvmem = NULL; 1718 1719 for (map = bp->eeprom_map; map->len; map++) { 1720 if (map->tag != tag) { 1721 tag = map->tag; 1722 ptp_ocp_nvmem_device_put(&nvmem); 1723 } 1724 if (!nvmem) { 1725 nvmem = ptp_ocp_nvmem_device_get(bp, tag); 1726 if (IS_ERR(nvmem)) { 1727 ret = PTR_ERR(nvmem); 1728 goto fail; 1729 } 1730 } 1731 ret = nvmem_device_read(nvmem, map->off, map->len, 1732 BP_MAP_ENTRY_ADDR(bp, map)); 1733 if (ret != map->len) 1734 goto fail; 1735 } 1736 1737 bp->has_eeprom_data = true; 1738 1739 out: 1740 ptp_ocp_nvmem_device_put(&nvmem); 1741 return; 1742 1743 fail: 1744 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); 1745 goto out; 1746 } 1747 1748 static struct device * 1749 ptp_ocp_find_flash(struct ptp_ocp *bp) 1750 { 1751 struct device *dev, *last; 1752 1753 last = NULL; 1754 dev = &bp->spi_flash->dev; 1755 1756 while ((dev = device_find_any_child(dev))) { 1757 if (!strcmp("mtd", dev_bus_name(dev))) 1758 break; 1759 put_device(last); 1760 last = dev; 1761 } 1762 put_device(last); 1763 1764 return dev; 1765 } 1766 1767 static int 1768 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, 1769 const u8 **data, size_t *size) 1770 { 1771 struct ptp_ocp *bp = devlink_priv(devlink); 1772 const struct ptp_ocp_firmware_header *hdr; 1773 size_t offset, length; 1774 u16 crc; 1775 1776 hdr = (const struct ptp_ocp_firmware_header *)fw->data; 1777 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { 1778 devlink_flash_update_status_notify(devlink, 1779 "No firmware header found, cancel firmware upgrade", 1780 NULL, 0, 0); 1781 return -EINVAL; 1782 } 1783 1784 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || 1785 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { 1786 devlink_flash_update_status_notify(devlink, 1787 "Firmware image compatibility check failed", 1788 NULL, 0, 0); 1789 return -EINVAL; 1790 } 1791 1792 offset = sizeof(*hdr); 1793 length = be32_to_cpu(hdr->image_size); 1794 if (length != (fw->size - offset)) { 1795 devlink_flash_update_status_notify(devlink, 1796 "Firmware image size check failed", 1797 NULL, 0, 0); 1798 return -EINVAL; 1799 } 1800 1801 crc = crc16(0xffff, &fw->data[offset], length); 1802 if (be16_to_cpu(hdr->crc) != crc) { 1803 devlink_flash_update_status_notify(devlink, 1804 "Firmware image CRC check failed", 1805 NULL, 0, 0); 1806 return -EINVAL; 1807 } 1808 1809 *data = &fw->data[offset]; 1810 *size = length; 1811 1812 return 0; 1813 } 1814 1815 static int 1816 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, 1817 const struct firmware *fw) 1818 { 1819 struct mtd_info *mtd = dev_get_drvdata(dev); 1820 struct ptp_ocp *bp = devlink_priv(devlink); 1821 size_t off, len, size, resid, wrote; 1822 struct erase_info erase; 1823 size_t base, blksz; 1824 const u8 *data; 1825 int err; 1826 1827 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); 1828 if (err) 1829 goto out; 1830 1831 off = 0; 1832 base = bp->flash_start; 1833 blksz = 4096; 1834 resid = size; 1835 1836 while (resid) { 1837 devlink_flash_update_status_notify(devlink, "Flashing", 1838 NULL, off, size); 1839 1840 len = min_t(size_t, resid, blksz); 1841 erase.addr = base + off; 1842 erase.len = blksz; 1843 1844 err = mtd_erase(mtd, &erase); 1845 if (err) 1846 goto out; 1847 1848 err = mtd_write(mtd, base + off, len, &wrote, data + off); 1849 if (err) 1850 goto out; 1851 1852 off += blksz; 1853 resid -= len; 1854 } 1855 out: 1856 return err; 1857 } 1858 1859 static int 1860 ptp_ocp_devlink_flash_update(struct devlink *devlink, 1861 struct devlink_flash_update_params *params, 1862 struct netlink_ext_ack *extack) 1863 { 1864 struct ptp_ocp *bp = devlink_priv(devlink); 1865 struct device *dev; 1866 const char *msg; 1867 int err; 1868 1869 dev = ptp_ocp_find_flash(bp); 1870 if (!dev) { 1871 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); 1872 return -ENODEV; 1873 } 1874 1875 devlink_flash_update_status_notify(devlink, "Preparing to flash", 1876 NULL, 0, 0); 1877 1878 err = ptp_ocp_devlink_flash(devlink, dev, params->fw); 1879 1880 msg = err ? "Flash error" : "Flash complete"; 1881 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); 1882 1883 put_device(dev); 1884 return err; 1885 } 1886 1887 static int 1888 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, 1889 struct netlink_ext_ack *extack) 1890 { 1891 struct ptp_ocp *bp = devlink_priv(devlink); 1892 const char *fw_image; 1893 char buf[32]; 1894 int err; 1895 1896 fw_image = bp->fw_loader ? "loader" : "fw"; 1897 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); 1898 err = devlink_info_version_running_put(req, fw_image, buf); 1899 if (err) 1900 return err; 1901 1902 if (!bp->has_eeprom_data) { 1903 ptp_ocp_read_eeprom(bp); 1904 if (!bp->has_eeprom_data) 1905 return 0; 1906 } 1907 1908 sprintf(buf, "%pM", bp->serial); 1909 err = devlink_info_serial_number_put(req, buf); 1910 if (err) 1911 return err; 1912 1913 err = devlink_info_version_fixed_put(req, 1914 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, 1915 bp->board_id); 1916 if (err) 1917 return err; 1918 1919 return 0; 1920 } 1921 1922 static const struct devlink_ops ptp_ocp_devlink_ops = { 1923 .flash_update = ptp_ocp_devlink_flash_update, 1924 .info_get = ptp_ocp_devlink_info_get, 1925 }; 1926 1927 static void __iomem * 1928 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) 1929 { 1930 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); 1931 1932 return devm_ioremap_resource(&bp->pdev->dev, &res); 1933 } 1934 1935 static void __iomem * 1936 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) 1937 { 1938 resource_size_t start; 1939 1940 start = pci_resource_start(bp->pdev, 0) + r->offset; 1941 return __ptp_ocp_get_mem(bp, start, r->size); 1942 } 1943 1944 static int 1945 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) 1946 { 1947 struct ptp_ocp_flash_info *info; 1948 struct pci_dev *pdev = bp->pdev; 1949 struct platform_device *p; 1950 struct resource res[2]; 1951 resource_size_t start; 1952 int id; 1953 1954 start = pci_resource_start(pdev, 0) + r->offset; 1955 res[0] = DEFINE_RES_MEM(start, r->size); 1956 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); 1957 1958 info = r->extra; 1959 id = pci_dev_id(pdev) << 1; 1960 id += info->pci_offset; 1961 1962 p = platform_device_register_resndata(&pdev->dev, info->name, id, 1963 res, ARRAY_SIZE(res), info->data, 1964 info->data_size); 1965 if (IS_ERR(p)) 1966 return PTR_ERR(p); 1967 1968 bp_assign_entry(bp, r, p); 1969 1970 return 0; 1971 } 1972 1973 static struct platform_device * 1974 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) 1975 { 1976 struct ptp_ocp_i2c_info *info; 1977 struct resource res[2]; 1978 resource_size_t start; 1979 1980 info = r->extra; 1981 start = pci_resource_start(pdev, 0) + r->offset; 1982 res[0] = DEFINE_RES_MEM(start, r->size); 1983 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); 1984 1985 return platform_device_register_resndata(&pdev->dev, info->name, 1986 id, res, ARRAY_SIZE(res), 1987 info->data, info->data_size); 1988 } 1989 1990 static int 1991 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) 1992 { 1993 struct pci_dev *pdev = bp->pdev; 1994 struct ptp_ocp_i2c_info *info; 1995 struct platform_device *p; 1996 struct clk_hw *clk; 1997 char buf[32]; 1998 int id; 1999 2000 info = r->extra; 2001 id = pci_dev_id(bp->pdev); 2002 2003 sprintf(buf, "AXI.%d", id); 2004 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, 2005 info->fixed_rate); 2006 if (IS_ERR(clk)) 2007 return PTR_ERR(clk); 2008 bp->i2c_clk = clk; 2009 2010 sprintf(buf, "%s.%d", info->name, id); 2011 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); 2012 p = ptp_ocp_i2c_bus(bp->pdev, r, id); 2013 if (IS_ERR(p)) 2014 return PTR_ERR(p); 2015 2016 bp_assign_entry(bp, r, p); 2017 2018 return 0; 2019 } 2020 2021 /* The expectation is that this is triggered only on error. */ 2022 static irqreturn_t 2023 ptp_ocp_signal_irq(int irq, void *priv) 2024 { 2025 struct ptp_ocp_ext_src *ext = priv; 2026 struct signal_reg __iomem *reg = ext->mem; 2027 struct ptp_ocp *bp = ext->bp; 2028 u32 enable, status; 2029 int gen; 2030 2031 gen = ext->info->index - 1; 2032 2033 enable = ioread32(®->enable); 2034 status = ioread32(®->status); 2035 2036 /* disable generator on error */ 2037 if (status || !enable) { 2038 iowrite32(0, ®->intr_mask); 2039 iowrite32(0, ®->enable); 2040 bp->signal[gen].running = false; 2041 } 2042 2043 iowrite32(0, ®->intr); /* ack interrupt */ 2044 2045 return IRQ_HANDLED; 2046 } 2047 2048 static int 2049 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) 2050 { 2051 struct ptp_system_timestamp sts; 2052 struct timespec64 ts; 2053 ktime_t start_ns; 2054 int err; 2055 2056 if (!s->period) 2057 return 0; 2058 2059 if (!s->pulse) 2060 s->pulse = ktime_divns(s->period * s->duty, 100); 2061 2062 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); 2063 if (err) 2064 return err; 2065 2066 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; 2067 if (!s->start) { 2068 /* roundup() does not work on 32-bit systems */ 2069 s->start = DIV64_U64_ROUND_UP(start_ns, s->period); 2070 s->start = ktime_add(s->start, s->phase); 2071 } 2072 2073 if (s->duty < 1 || s->duty > 99) 2074 return -EINVAL; 2075 2076 if (s->pulse < 1 || s->pulse > s->period) 2077 return -EINVAL; 2078 2079 if (s->start < start_ns) 2080 return -EINVAL; 2081 2082 bp->signal[gen] = *s; 2083 2084 return 0; 2085 } 2086 2087 static int 2088 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, 2089 struct ptp_perout_request *req) 2090 { 2091 struct ptp_ocp_signal s = { }; 2092 2093 if (req->flags & ~(PTP_PEROUT_DUTY_CYCLE | 2094 PTP_PEROUT_PHASE)) 2095 return -EOPNOTSUPP; 2096 2097 s.polarity = bp->signal[gen].polarity; 2098 s.period = ktime_set(req->period.sec, req->period.nsec); 2099 if (!s.period) 2100 return 0; 2101 2102 if (req->flags & PTP_PEROUT_DUTY_CYCLE) { 2103 s.pulse = ktime_set(req->on.sec, req->on.nsec); 2104 s.duty = ktime_divns(s.pulse * 100, s.period); 2105 } 2106 2107 if (req->flags & PTP_PEROUT_PHASE) 2108 s.phase = ktime_set(req->phase.sec, req->phase.nsec); 2109 else 2110 s.start = ktime_set(req->start.sec, req->start.nsec); 2111 2112 return ptp_ocp_signal_set(bp, gen, &s); 2113 } 2114 2115 static int 2116 ptp_ocp_signal_enable(void *priv, u32 req, bool enable) 2117 { 2118 struct ptp_ocp_ext_src *ext = priv; 2119 struct signal_reg __iomem *reg = ext->mem; 2120 struct ptp_ocp *bp = ext->bp; 2121 struct timespec64 ts; 2122 int gen; 2123 2124 gen = ext->info->index - 1; 2125 2126 iowrite32(0, ®->intr_mask); 2127 iowrite32(0, ®->enable); 2128 bp->signal[gen].running = false; 2129 if (!enable) 2130 return 0; 2131 2132 ts = ktime_to_timespec64(bp->signal[gen].start); 2133 iowrite32(ts.tv_sec, ®->start_sec); 2134 iowrite32(ts.tv_nsec, ®->start_ns); 2135 2136 ts = ktime_to_timespec64(bp->signal[gen].period); 2137 iowrite32(ts.tv_sec, ®->period_sec); 2138 iowrite32(ts.tv_nsec, ®->period_ns); 2139 2140 ts = ktime_to_timespec64(bp->signal[gen].pulse); 2141 iowrite32(ts.tv_sec, ®->pulse_sec); 2142 iowrite32(ts.tv_nsec, ®->pulse_ns); 2143 2144 iowrite32(bp->signal[gen].polarity, ®->polarity); 2145 iowrite32(0, ®->repeat_count); 2146 2147 iowrite32(0, ®->intr); /* clear interrupt state */ 2148 iowrite32(1, ®->intr_mask); /* enable interrupt */ 2149 iowrite32(3, ®->enable); /* valid & enable */ 2150 2151 bp->signal[gen].running = true; 2152 2153 return 0; 2154 } 2155 2156 static irqreturn_t 2157 ptp_ocp_ts_irq(int irq, void *priv) 2158 { 2159 struct ptp_ocp_ext_src *ext = priv; 2160 struct ts_reg __iomem *reg = ext->mem; 2161 struct ptp_clock_event ev; 2162 u32 sec, nsec; 2163 2164 if (ext == ext->bp->pps) { 2165 if (ext->bp->pps_req_map & OCP_REQ_PPS) { 2166 ev.type = PTP_CLOCK_PPS; 2167 ptp_clock_event(ext->bp->ptp, &ev); 2168 } 2169 2170 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) 2171 goto out; 2172 } 2173 2174 /* XXX should fix API - this converts s/ns -> ts -> s/ns */ 2175 sec = ioread32(®->time_sec); 2176 nsec = ioread32(®->time_ns); 2177 2178 ev.type = PTP_CLOCK_EXTTS; 2179 ev.index = ext->info->index; 2180 ev.timestamp = sec * NSEC_PER_SEC + nsec; 2181 2182 ptp_clock_event(ext->bp->ptp, &ev); 2183 2184 out: 2185 iowrite32(1, ®->intr); /* write 1 to ack */ 2186 2187 return IRQ_HANDLED; 2188 } 2189 2190 static int 2191 ptp_ocp_ts_enable(void *priv, u32 req, bool enable) 2192 { 2193 struct ptp_ocp_ext_src *ext = priv; 2194 struct ts_reg __iomem *reg = ext->mem; 2195 struct ptp_ocp *bp = ext->bp; 2196 2197 if (ext == bp->pps) { 2198 u32 old_map = bp->pps_req_map; 2199 2200 if (enable) 2201 bp->pps_req_map |= req; 2202 else 2203 bp->pps_req_map &= ~req; 2204 2205 /* if no state change, just return */ 2206 if ((!!old_map ^ !!bp->pps_req_map) == 0) 2207 return 0; 2208 } 2209 2210 if (enable) { 2211 iowrite32(1, ®->enable); 2212 iowrite32(1, ®->intr_mask); 2213 iowrite32(1, ®->intr); 2214 } else { 2215 iowrite32(0, ®->intr_mask); 2216 iowrite32(0, ®->enable); 2217 } 2218 2219 return 0; 2220 } 2221 2222 static void 2223 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) 2224 { 2225 ext->info->enable(ext, ~0, false); 2226 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); 2227 kfree(ext); 2228 } 2229 2230 static int 2231 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) 2232 { 2233 struct pci_dev *pdev = bp->pdev; 2234 struct ptp_ocp_ext_src *ext; 2235 int err; 2236 2237 ext = kzalloc(sizeof(*ext), GFP_KERNEL); 2238 if (!ext) 2239 return -ENOMEM; 2240 2241 ext->mem = ptp_ocp_get_mem(bp, r); 2242 if (IS_ERR(ext->mem)) { 2243 err = PTR_ERR(ext->mem); 2244 goto out; 2245 } 2246 2247 ext->bp = bp; 2248 ext->info = r->extra; 2249 ext->irq_vec = r->irq_vec; 2250 2251 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, 2252 ext, "ocp%d.%s", bp->id, r->name); 2253 if (err) { 2254 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); 2255 goto out; 2256 } 2257 2258 bp_assign_entry(bp, r, ext); 2259 2260 return 0; 2261 2262 out: 2263 kfree(ext); 2264 return err; 2265 } 2266 2267 static int 2268 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) 2269 { 2270 struct pci_dev *pdev = bp->pdev; 2271 struct uart_8250_port uart; 2272 2273 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets 2274 * the serial port device claim and release the pci resource. 2275 */ 2276 memset(&uart, 0, sizeof(uart)); 2277 uart.port.dev = &pdev->dev; 2278 uart.port.iotype = UPIO_MEM; 2279 uart.port.regshift = 2; 2280 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; 2281 uart.port.irq = pci_irq_vector(pdev, r->irq_vec); 2282 uart.port.uartclk = 50000000; 2283 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; 2284 uart.port.type = PORT_16550A; 2285 2286 return serial8250_register_8250_port(&uart); 2287 } 2288 2289 static int 2290 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) 2291 { 2292 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra; 2293 struct ptp_ocp_serial_port port = {}; 2294 2295 port.line = ptp_ocp_serial_line(bp, r); 2296 if (port.line < 0) 2297 return port.line; 2298 2299 if (p) 2300 port.baud = p->baud; 2301 2302 bp_assign_entry(bp, r, port); 2303 2304 return 0; 2305 } 2306 2307 static int 2308 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) 2309 { 2310 void __iomem *mem; 2311 2312 mem = ptp_ocp_get_mem(bp, r); 2313 if (IS_ERR(mem)) 2314 return PTR_ERR(mem); 2315 2316 bp_assign_entry(bp, r, mem); 2317 2318 return 0; 2319 } 2320 2321 static void 2322 ptp_ocp_nmea_out_init(struct ptp_ocp *bp) 2323 { 2324 if (!bp->nmea_out) 2325 return; 2326 2327 iowrite32(0, &bp->nmea_out->ctrl); /* disable */ 2328 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ 2329 iowrite32(1, &bp->nmea_out->ctrl); /* enable */ 2330 } 2331 2332 static void 2333 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) 2334 { 2335 u32 val; 2336 2337 iowrite32(0, ®->enable); /* disable */ 2338 2339 val = ioread32(®->polarity); 2340 s->polarity = val ? true : false; 2341 s->duty = 50; 2342 } 2343 2344 static void 2345 ptp_ocp_signal_init(struct ptp_ocp *bp) 2346 { 2347 int i; 2348 2349 for (i = 0; i < 4; i++) 2350 if (bp->signal_out[i]) 2351 _ptp_ocp_signal_init(&bp->signal[i], 2352 bp->signal_out[i]->mem); 2353 } 2354 2355 static void 2356 ptp_ocp_attr_group_del(struct ptp_ocp *bp) 2357 { 2358 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); 2359 kfree(bp->attr_group); 2360 } 2361 2362 static int 2363 ptp_ocp_attr_group_add(struct ptp_ocp *bp, 2364 const struct ocp_attr_group *attr_tbl) 2365 { 2366 int count, i; 2367 int err; 2368 2369 count = 0; 2370 for (i = 0; attr_tbl[i].cap; i++) 2371 if (attr_tbl[i].cap & bp->fw_cap) 2372 count++; 2373 2374 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), 2375 GFP_KERNEL); 2376 if (!bp->attr_group) 2377 return -ENOMEM; 2378 2379 count = 0; 2380 for (i = 0; attr_tbl[i].cap; i++) 2381 if (attr_tbl[i].cap & bp->fw_cap) 2382 bp->attr_group[count++] = attr_tbl[i].group; 2383 2384 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); 2385 if (err) 2386 bp->attr_group[0] = NULL; 2387 2388 return err; 2389 } 2390 2391 static void 2392 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) 2393 { 2394 u32 ctrl; 2395 bool on; 2396 2397 ctrl = ioread32(reg); 2398 on = ctrl & bit; 2399 if (on ^ enable) { 2400 ctrl &= ~bit; 2401 ctrl |= enable ? bit : 0; 2402 iowrite32(ctrl, reg); 2403 } 2404 } 2405 2406 static void 2407 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) 2408 { 2409 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, 2410 IRIG_M_CTRL_ENABLE, enable); 2411 } 2412 2413 static void 2414 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) 2415 { 2416 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, 2417 IRIG_S_CTRL_ENABLE, enable); 2418 } 2419 2420 static void 2421 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) 2422 { 2423 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, 2424 DCF_M_CTRL_ENABLE, enable); 2425 } 2426 2427 static void 2428 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) 2429 { 2430 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, 2431 DCF_S_CTRL_ENABLE, enable); 2432 } 2433 2434 static void 2435 __handle_signal_outputs(struct ptp_ocp *bp, u32 val) 2436 { 2437 ptp_ocp_irig_out(bp, val & 0x00100010); 2438 ptp_ocp_dcf_out(bp, val & 0x00200020); 2439 } 2440 2441 static void 2442 __handle_signal_inputs(struct ptp_ocp *bp, u32 val) 2443 { 2444 ptp_ocp_irig_in(bp, val & 0x00100010); 2445 ptp_ocp_dcf_in(bp, val & 0x00200020); 2446 } 2447 2448 static u32 2449 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) 2450 { 2451 u32 __iomem *gpio; 2452 u32 shift; 2453 2454 if (bp->sma[sma_nr - 1].fixed_fcn) 2455 return (sma_nr - 1) & 1; 2456 2457 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) 2458 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2459 else 2460 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2461 shift = sma_nr & 1 ? 0 : 16; 2462 2463 return (ioread32(gpio) >> shift) & 0xffff; 2464 } 2465 2466 static int 2467 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) 2468 { 2469 u32 reg, mask, shift; 2470 unsigned long flags; 2471 u32 __iomem *gpio; 2472 2473 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; 2474 shift = sma_nr & 1 ? 0 : 16; 2475 2476 mask = 0xffff << (16 - shift); 2477 2478 spin_lock_irqsave(&bp->lock, flags); 2479 2480 reg = ioread32(gpio); 2481 reg = (reg & mask) | (val << shift); 2482 2483 __handle_signal_outputs(bp, reg); 2484 2485 iowrite32(reg, gpio); 2486 2487 spin_unlock_irqrestore(&bp->lock, flags); 2488 2489 return 0; 2490 } 2491 2492 static int 2493 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) 2494 { 2495 u32 reg, mask, shift; 2496 unsigned long flags; 2497 u32 __iomem *gpio; 2498 2499 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; 2500 shift = sma_nr & 1 ? 0 : 16; 2501 2502 mask = 0xffff << (16 - shift); 2503 2504 spin_lock_irqsave(&bp->lock, flags); 2505 2506 reg = ioread32(gpio); 2507 reg = (reg & mask) | (val << shift); 2508 2509 __handle_signal_inputs(bp, reg); 2510 2511 iowrite32(reg, gpio); 2512 2513 spin_unlock_irqrestore(&bp->lock, flags); 2514 2515 return 0; 2516 } 2517 2518 static void 2519 ptp_ocp_sma_fb_init(struct ptp_ocp *bp) 2520 { 2521 struct dpll_pin_properties prop = { 2522 .board_label = NULL, 2523 .type = DPLL_PIN_TYPE_EXT, 2524 .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE, 2525 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), 2526 .freq_supported = ptp_ocp_sma_freq, 2527 2528 }; 2529 u32 reg; 2530 int i; 2531 2532 /* defaults */ 2533 for (i = 0; i < OCP_SMA_NUM; i++) { 2534 bp->sma[i].default_fcn = i & 1; 2535 bp->sma[i].dpll_prop = prop; 2536 bp->sma[i].dpll_prop.board_label = 2537 bp->ptp_info.pin_config[i].name; 2538 } 2539 bp->sma[0].mode = SMA_MODE_IN; 2540 bp->sma[1].mode = SMA_MODE_IN; 2541 bp->sma[2].mode = SMA_MODE_OUT; 2542 bp->sma[3].mode = SMA_MODE_OUT; 2543 /* If no SMA1 map, the pin functions and directions are fixed. */ 2544 if (!bp->sma_map1) { 2545 for (i = 0; i < OCP_SMA_NUM; i++) { 2546 bp->sma[i].fixed_fcn = true; 2547 bp->sma[i].fixed_dir = true; 2548 bp->sma[1].dpll_prop.capabilities &= 2549 ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2550 } 2551 return; 2552 } 2553 2554 /* If SMA2 GPIO output map is all 1, it is not present. 2555 * This indicates the firmware has fixed direction SMA pins. 2556 */ 2557 reg = ioread32(&bp->sma_map2->gpio2); 2558 if (reg == 0xffffffff) { 2559 for (i = 0; i < OCP_SMA_NUM; i++) 2560 bp->sma[i].fixed_dir = true; 2561 } else { 2562 reg = ioread32(&bp->sma_map1->gpio1); 2563 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; 2564 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; 2565 2566 reg = ioread32(&bp->sma_map1->gpio2); 2567 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; 2568 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; 2569 } 2570 } 2571 2572 static const struct ocp_sma_op ocp_fb_sma_op = { 2573 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, 2574 .init = ptp_ocp_sma_fb_init, 2575 .get = ptp_ocp_sma_fb_get, 2576 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2577 .set_output = ptp_ocp_sma_fb_set_output, 2578 }; 2579 2580 static const struct ocp_sma_op ocp_adva_sma_op = { 2581 .tbl = { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out }, 2582 .init = ptp_ocp_sma_fb_init, 2583 .get = ptp_ocp_sma_fb_get, 2584 .set_inputs = ptp_ocp_sma_fb_set_inputs, 2585 .set_output = ptp_ocp_sma_fb_set_output, 2586 }; 2587 2588 static int 2589 ptp_ocp_set_pins(struct ptp_ocp *bp) 2590 { 2591 struct ptp_pin_desc *config; 2592 int i; 2593 2594 config = kcalloc(4, sizeof(*config), GFP_KERNEL); 2595 if (!config) 2596 return -ENOMEM; 2597 2598 for (i = 0; i < 4; i++) { 2599 sprintf(config[i].name, "sma%d", i + 1); 2600 config[i].index = i; 2601 } 2602 2603 bp->ptp_info.n_pins = 4; 2604 bp->ptp_info.pin_config = config; 2605 2606 return 0; 2607 } 2608 2609 static void 2610 ptp_ocp_fb_set_version(struct ptp_ocp *bp) 2611 { 2612 u64 cap = OCP_CAP_BASIC; 2613 u32 version; 2614 2615 version = ioread32(&bp->image->version); 2616 2617 /* if lower 16 bits are empty, this is the fw loader. */ 2618 if ((version & 0xffff) == 0) { 2619 version = version >> 16; 2620 bp->fw_loader = true; 2621 } 2622 2623 bp->fw_tag = version >> 15; 2624 bp->fw_version = version & 0x7fff; 2625 2626 if (bp->fw_tag) { 2627 /* FPGA firmware */ 2628 if (version >= 5) 2629 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2630 } else { 2631 /* SOM firmware */ 2632 if (version >= 19) 2633 cap |= OCP_CAP_SIGNAL; 2634 if (version >= 20) 2635 cap |= OCP_CAP_FREQ; 2636 } 2637 2638 bp->fw_cap = cap; 2639 } 2640 2641 /* FB specific board initializers; last "resource" registered. */ 2642 static int 2643 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2644 { 2645 int err; 2646 2647 bp->flash_start = 1024 * 4096; 2648 bp->eeprom_map = fb_eeprom_map; 2649 bp->fw_version = ioread32(&bp->image->version); 2650 bp->sma_op = &ocp_fb_sma_op; 2651 2652 ptp_ocp_fb_set_version(bp); 2653 2654 ptp_ocp_tod_init(bp); 2655 ptp_ocp_nmea_out_init(bp); 2656 ptp_ocp_signal_init(bp); 2657 2658 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); 2659 if (err) 2660 return err; 2661 2662 err = ptp_ocp_set_pins(bp); 2663 if (err) 2664 return err; 2665 ptp_ocp_sma_init(bp); 2666 2667 return ptp_ocp_init_clock(bp, r->extra); 2668 } 2669 2670 static bool 2671 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) 2672 { 2673 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; 2674 2675 if (!allow) 2676 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", 2677 r->irq_vec, r->name); 2678 return allow; 2679 } 2680 2681 static int 2682 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) 2683 { 2684 struct ocp_resource *r, *table; 2685 int err = 0; 2686 2687 table = (struct ocp_resource *)driver_data; 2688 for (r = table; r->setup; r++) { 2689 if (!ptp_ocp_allow_irq(bp, r)) 2690 continue; 2691 err = r->setup(bp, r); 2692 if (err) { 2693 dev_err(&bp->pdev->dev, 2694 "Could not register %s: err %d\n", 2695 r->name, err); 2696 break; 2697 } 2698 } 2699 return err; 2700 } 2701 2702 static void 2703 ptp_ocp_art_sma_init(struct ptp_ocp *bp) 2704 { 2705 struct dpll_pin_properties prop = { 2706 .board_label = NULL, 2707 .type = DPLL_PIN_TYPE_EXT, 2708 .capabilities = 0, 2709 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), 2710 .freq_supported = ptp_ocp_sma_freq, 2711 2712 }; 2713 u32 reg; 2714 int i; 2715 2716 /* defaults */ 2717 bp->sma[0].mode = SMA_MODE_IN; 2718 bp->sma[1].mode = SMA_MODE_IN; 2719 bp->sma[2].mode = SMA_MODE_OUT; 2720 bp->sma[3].mode = SMA_MODE_OUT; 2721 2722 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */ 2723 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */ 2724 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */ 2725 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */ 2726 2727 for (i = 0; i < OCP_SMA_NUM; i++) { 2728 /* If no SMA map, the pin functions and directions are fixed. */ 2729 bp->sma[i].dpll_prop = prop; 2730 bp->sma[i].dpll_prop.board_label = 2731 bp->ptp_info.pin_config[i].name; 2732 if (!bp->art_sma) { 2733 bp->sma[i].fixed_fcn = true; 2734 bp->sma[i].fixed_dir = true; 2735 continue; 2736 } 2737 reg = ioread32(&bp->art_sma->map[i].gpio); 2738 2739 switch (reg & 0xff) { 2740 case 0: 2741 bp->sma[i].fixed_fcn = true; 2742 bp->sma[i].fixed_dir = true; 2743 break; 2744 case 1: 2745 case 8: 2746 bp->sma[i].mode = SMA_MODE_IN; 2747 bp->sma[i].dpll_prop.capabilities = 2748 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2749 break; 2750 default: 2751 bp->sma[i].mode = SMA_MODE_OUT; 2752 bp->sma[i].dpll_prop.capabilities = 2753 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; 2754 break; 2755 } 2756 } 2757 } 2758 2759 static u32 2760 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr) 2761 { 2762 if (bp->sma[sma_nr - 1].fixed_fcn) 2763 return bp->sma[sma_nr - 1].default_fcn; 2764 2765 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff; 2766 } 2767 2768 /* note: store 0 is considered invalid. */ 2769 static int 2770 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val) 2771 { 2772 unsigned long flags; 2773 u32 __iomem *gpio; 2774 int err = 0; 2775 u32 reg; 2776 2777 val &= SMA_SELECT_MASK; 2778 if (hweight32(val) > 1) 2779 return -EINVAL; 2780 2781 gpio = &bp->art_sma->map[sma_nr - 1].gpio; 2782 2783 spin_lock_irqsave(&bp->lock, flags); 2784 reg = ioread32(gpio); 2785 if (((reg >> 16) & val) == 0) { 2786 err = -EOPNOTSUPP; 2787 } else { 2788 reg = (reg & 0xff00) | (val & 0xff); 2789 iowrite32(reg, gpio); 2790 } 2791 spin_unlock_irqrestore(&bp->lock, flags); 2792 2793 return err; 2794 } 2795 2796 static const struct ocp_sma_op ocp_art_sma_op = { 2797 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out }, 2798 .init = ptp_ocp_art_sma_init, 2799 .get = ptp_ocp_art_sma_get, 2800 .set_inputs = ptp_ocp_art_sma_set, 2801 .set_output = ptp_ocp_art_sma_set, 2802 }; 2803 2804 /* ART specific board initializers; last "resource" registered. */ 2805 static int 2806 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2807 { 2808 int err; 2809 2810 bp->flash_start = 0x1000000; 2811 bp->eeprom_map = art_eeprom_map; 2812 bp->fw_cap = OCP_CAP_BASIC; 2813 bp->fw_version = ioread32(&bp->reg->version); 2814 bp->fw_tag = 2; 2815 bp->sma_op = &ocp_art_sma_op; 2816 2817 /* Enable MAC serial port during initialisation */ 2818 iowrite32(1, &bp->board_config->mro50_serial_activate); 2819 2820 err = ptp_ocp_set_pins(bp); 2821 if (err) 2822 return err; 2823 ptp_ocp_sma_init(bp); 2824 2825 err = ptp_ocp_attr_group_add(bp, art_timecard_groups); 2826 if (err) 2827 return err; 2828 2829 return ptp_ocp_init_clock(bp, r->extra); 2830 } 2831 2832 /* ADVA specific board initializers; last "resource" registered. */ 2833 static int 2834 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r) 2835 { 2836 int err; 2837 u32 version; 2838 2839 bp->flash_start = 0xA00000; 2840 bp->eeprom_map = fb_eeprom_map; 2841 bp->sma_op = &ocp_adva_sma_op; 2842 2843 version = ioread32(&bp->image->version); 2844 /* if lower 16 bits are empty, this is the fw loader. */ 2845 if ((version & 0xffff) == 0) { 2846 version = version >> 16; 2847 bp->fw_loader = true; 2848 } 2849 bp->fw_tag = 3; 2850 bp->fw_version = version & 0xffff; 2851 bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ; 2852 2853 ptp_ocp_tod_init(bp); 2854 ptp_ocp_nmea_out_init(bp); 2855 ptp_ocp_signal_init(bp); 2856 2857 err = ptp_ocp_attr_group_add(bp, adva_timecard_groups); 2858 if (err) 2859 return err; 2860 2861 err = ptp_ocp_set_pins(bp); 2862 if (err) 2863 return err; 2864 ptp_ocp_sma_init(bp); 2865 2866 return ptp_ocp_init_clock(bp, r->extra); 2867 } 2868 2869 static ssize_t 2870 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, 2871 int def_val) 2872 { 2873 const char *name; 2874 ssize_t count; 2875 2876 count = sysfs_emit(buf, "OUT: "); 2877 name = ptp_ocp_select_name_from_val(tbl, val); 2878 if (!name) 2879 name = ptp_ocp_select_name_from_val(tbl, def_val); 2880 count += sysfs_emit_at(buf, count, "%s\n", name); 2881 return count; 2882 } 2883 2884 static ssize_t 2885 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, 2886 int def_val) 2887 { 2888 const char *name; 2889 ssize_t count; 2890 int i; 2891 2892 count = sysfs_emit(buf, "IN: "); 2893 for (i = 0; tbl[i].name; i++) { 2894 if (val & tbl[i].value) { 2895 name = tbl[i].name; 2896 count += sysfs_emit_at(buf, count, "%s ", name); 2897 } 2898 } 2899 if (!val && def_val >= 0) { 2900 name = ptp_ocp_select_name_from_val(tbl, def_val); 2901 count += sysfs_emit_at(buf, count, "%s ", name); 2902 } 2903 if (count) 2904 count--; 2905 count += sysfs_emit_at(buf, count, "\n"); 2906 return count; 2907 } 2908 2909 static int 2910 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, 2911 enum ptp_ocp_sma_mode *mode) 2912 { 2913 int idx, count, dir; 2914 char **argv; 2915 int ret; 2916 2917 argv = argv_split(GFP_KERNEL, buf, &count); 2918 if (!argv) 2919 return -ENOMEM; 2920 2921 ret = -EINVAL; 2922 if (!count) 2923 goto out; 2924 2925 idx = 0; 2926 dir = *mode == SMA_MODE_IN ? 0 : 1; 2927 if (!strcasecmp("IN:", argv[0])) { 2928 dir = 0; 2929 idx++; 2930 } 2931 if (!strcasecmp("OUT:", argv[0])) { 2932 dir = 1; 2933 idx++; 2934 } 2935 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; 2936 2937 ret = 0; 2938 for (; idx < count; idx++) 2939 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); 2940 if (ret < 0) 2941 ret = -EINVAL; 2942 2943 out: 2944 argv_free(argv); 2945 return ret; 2946 } 2947 2948 static ssize_t 2949 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, 2950 int default_in_val, int default_out_val) 2951 { 2952 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 2953 const struct ocp_selector * const *tbl; 2954 u32 val; 2955 2956 tbl = bp->sma_op->tbl; 2957 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; 2958 2959 if (sma->mode == SMA_MODE_IN) { 2960 if (sma->disabled) 2961 val = SMA_DISABLE; 2962 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); 2963 } 2964 2965 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); 2966 } 2967 2968 static ssize_t 2969 sma1_show(struct device *dev, struct device_attribute *attr, char *buf) 2970 { 2971 struct ptp_ocp *bp = dev_get_drvdata(dev); 2972 2973 return ptp_ocp_sma_show(bp, 1, buf, 0, 1); 2974 } 2975 2976 static ssize_t 2977 sma2_show(struct device *dev, struct device_attribute *attr, char *buf) 2978 { 2979 struct ptp_ocp *bp = dev_get_drvdata(dev); 2980 2981 return ptp_ocp_sma_show(bp, 2, buf, -1, 1); 2982 } 2983 2984 static ssize_t 2985 sma3_show(struct device *dev, struct device_attribute *attr, char *buf) 2986 { 2987 struct ptp_ocp *bp = dev_get_drvdata(dev); 2988 2989 return ptp_ocp_sma_show(bp, 3, buf, -1, 0); 2990 } 2991 2992 static ssize_t 2993 sma4_show(struct device *dev, struct device_attribute *attr, char *buf) 2994 { 2995 struct ptp_ocp *bp = dev_get_drvdata(dev); 2996 2997 return ptp_ocp_sma_show(bp, 4, buf, -1, 1); 2998 } 2999 3000 static int 3001 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr) 3002 { 3003 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 3004 3005 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) 3006 return -EOPNOTSUPP; 3007 3008 if (sma->fixed_fcn) { 3009 if (val != sma->default_fcn) 3010 return -EOPNOTSUPP; 3011 return 0; 3012 } 3013 3014 sma->disabled = !!(val & SMA_DISABLE); 3015 3016 if (mode != sma->mode) { 3017 if (mode == SMA_MODE_IN) 3018 ptp_ocp_sma_set_output(bp, sma_nr, 0); 3019 else 3020 ptp_ocp_sma_set_inputs(bp, sma_nr, 0); 3021 sma->mode = mode; 3022 } 3023 3024 if (!sma->fixed_dir) 3025 val |= SMA_ENABLE; /* add enable bit */ 3026 3027 if (sma->disabled) 3028 val = 0; 3029 3030 if (mode == SMA_MODE_IN) 3031 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); 3032 else 3033 val = ptp_ocp_sma_set_output(bp, sma_nr, val); 3034 3035 return val; 3036 } 3037 3038 static int 3039 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) 3040 { 3041 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; 3042 enum ptp_ocp_sma_mode mode; 3043 int val; 3044 3045 mode = sma->mode; 3046 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); 3047 if (val < 0) 3048 return val; 3049 return ptp_ocp_sma_store_val(bp, val, mode, sma_nr); 3050 } 3051 3052 static ssize_t 3053 sma1_store(struct device *dev, struct device_attribute *attr, 3054 const char *buf, size_t count) 3055 { 3056 struct ptp_ocp *bp = dev_get_drvdata(dev); 3057 int err; 3058 3059 err = ptp_ocp_sma_store(bp, buf, 1); 3060 return err ? err : count; 3061 } 3062 3063 static ssize_t 3064 sma2_store(struct device *dev, struct device_attribute *attr, 3065 const char *buf, size_t count) 3066 { 3067 struct ptp_ocp *bp = dev_get_drvdata(dev); 3068 int err; 3069 3070 err = ptp_ocp_sma_store(bp, buf, 2); 3071 return err ? err : count; 3072 } 3073 3074 static ssize_t 3075 sma3_store(struct device *dev, struct device_attribute *attr, 3076 const char *buf, size_t count) 3077 { 3078 struct ptp_ocp *bp = dev_get_drvdata(dev); 3079 int err; 3080 3081 err = ptp_ocp_sma_store(bp, buf, 3); 3082 return err ? err : count; 3083 } 3084 3085 static ssize_t 3086 sma4_store(struct device *dev, struct device_attribute *attr, 3087 const char *buf, size_t count) 3088 { 3089 struct ptp_ocp *bp = dev_get_drvdata(dev); 3090 int err; 3091 3092 err = ptp_ocp_sma_store(bp, buf, 4); 3093 return err ? err : count; 3094 } 3095 static DEVICE_ATTR_RW(sma1); 3096 static DEVICE_ATTR_RW(sma2); 3097 static DEVICE_ATTR_RW(sma3); 3098 static DEVICE_ATTR_RW(sma4); 3099 3100 static ssize_t 3101 available_sma_inputs_show(struct device *dev, 3102 struct device_attribute *attr, char *buf) 3103 { 3104 struct ptp_ocp *bp = dev_get_drvdata(dev); 3105 3106 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); 3107 } 3108 static DEVICE_ATTR_RO(available_sma_inputs); 3109 3110 static ssize_t 3111 available_sma_outputs_show(struct device *dev, 3112 struct device_attribute *attr, char *buf) 3113 { 3114 struct ptp_ocp *bp = dev_get_drvdata(dev); 3115 3116 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); 3117 } 3118 static DEVICE_ATTR_RO(available_sma_outputs); 3119 3120 #define EXT_ATTR_RO(_group, _name, _val) \ 3121 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 3122 { __ATTR_RO(_name), (void *)_val } 3123 #define EXT_ATTR_RW(_group, _name, _val) \ 3124 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ 3125 { __ATTR_RW(_name), (void *)_val } 3126 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 3127 3128 /* period [duty [phase [polarity]]] */ 3129 static ssize_t 3130 signal_store(struct device *dev, struct device_attribute *attr, 3131 const char *buf, size_t count) 3132 { 3133 struct dev_ext_attribute *ea = to_ext_attr(attr); 3134 struct ptp_ocp *bp = dev_get_drvdata(dev); 3135 struct ptp_ocp_signal s = { }; 3136 int gen = (uintptr_t)ea->var; 3137 int argc, err; 3138 char **argv; 3139 3140 argv = argv_split(GFP_KERNEL, buf, &argc); 3141 if (!argv) 3142 return -ENOMEM; 3143 3144 err = -EINVAL; 3145 s.duty = bp->signal[gen].duty; 3146 s.phase = bp->signal[gen].phase; 3147 s.period = bp->signal[gen].period; 3148 s.polarity = bp->signal[gen].polarity; 3149 3150 switch (argc) { 3151 case 4: 3152 argc--; 3153 err = kstrtobool(argv[argc], &s.polarity); 3154 if (err) 3155 goto out; 3156 fallthrough; 3157 case 3: 3158 argc--; 3159 err = kstrtou64(argv[argc], 0, &s.phase); 3160 if (err) 3161 goto out; 3162 fallthrough; 3163 case 2: 3164 argc--; 3165 err = kstrtoint(argv[argc], 0, &s.duty); 3166 if (err) 3167 goto out; 3168 fallthrough; 3169 case 1: 3170 argc--; 3171 err = kstrtou64(argv[argc], 0, &s.period); 3172 if (err) 3173 goto out; 3174 break; 3175 default: 3176 goto out; 3177 } 3178 3179 err = ptp_ocp_signal_set(bp, gen, &s); 3180 if (err) 3181 goto out; 3182 3183 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); 3184 3185 out: 3186 argv_free(argv); 3187 return err ? err : count; 3188 } 3189 3190 static ssize_t 3191 signal_show(struct device *dev, struct device_attribute *attr, char *buf) 3192 { 3193 struct dev_ext_attribute *ea = to_ext_attr(attr); 3194 struct ptp_ocp *bp = dev_get_drvdata(dev); 3195 struct ptp_ocp_signal *signal; 3196 struct timespec64 ts; 3197 ssize_t count; 3198 int i; 3199 3200 i = (uintptr_t)ea->var; 3201 signal = &bp->signal[i]; 3202 3203 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, 3204 signal->duty, signal->phase, signal->polarity); 3205 3206 ts = ktime_to_timespec64(signal->start); 3207 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); 3208 3209 return count; 3210 } 3211 static EXT_ATTR_RW(signal, signal, 0); 3212 static EXT_ATTR_RW(signal, signal, 1); 3213 static EXT_ATTR_RW(signal, signal, 2); 3214 static EXT_ATTR_RW(signal, signal, 3); 3215 3216 static ssize_t 3217 duty_show(struct device *dev, struct device_attribute *attr, char *buf) 3218 { 3219 struct dev_ext_attribute *ea = to_ext_attr(attr); 3220 struct ptp_ocp *bp = dev_get_drvdata(dev); 3221 int i = (uintptr_t)ea->var; 3222 3223 return sysfs_emit(buf, "%d\n", bp->signal[i].duty); 3224 } 3225 static EXT_ATTR_RO(signal, duty, 0); 3226 static EXT_ATTR_RO(signal, duty, 1); 3227 static EXT_ATTR_RO(signal, duty, 2); 3228 static EXT_ATTR_RO(signal, duty, 3); 3229 3230 static ssize_t 3231 period_show(struct device *dev, struct device_attribute *attr, char *buf) 3232 { 3233 struct dev_ext_attribute *ea = to_ext_attr(attr); 3234 struct ptp_ocp *bp = dev_get_drvdata(dev); 3235 int i = (uintptr_t)ea->var; 3236 3237 return sysfs_emit(buf, "%llu\n", bp->signal[i].period); 3238 } 3239 static EXT_ATTR_RO(signal, period, 0); 3240 static EXT_ATTR_RO(signal, period, 1); 3241 static EXT_ATTR_RO(signal, period, 2); 3242 static EXT_ATTR_RO(signal, period, 3); 3243 3244 static ssize_t 3245 phase_show(struct device *dev, struct device_attribute *attr, char *buf) 3246 { 3247 struct dev_ext_attribute *ea = to_ext_attr(attr); 3248 struct ptp_ocp *bp = dev_get_drvdata(dev); 3249 int i = (uintptr_t)ea->var; 3250 3251 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); 3252 } 3253 static EXT_ATTR_RO(signal, phase, 0); 3254 static EXT_ATTR_RO(signal, phase, 1); 3255 static EXT_ATTR_RO(signal, phase, 2); 3256 static EXT_ATTR_RO(signal, phase, 3); 3257 3258 static ssize_t 3259 polarity_show(struct device *dev, struct device_attribute *attr, 3260 char *buf) 3261 { 3262 struct dev_ext_attribute *ea = to_ext_attr(attr); 3263 struct ptp_ocp *bp = dev_get_drvdata(dev); 3264 int i = (uintptr_t)ea->var; 3265 3266 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); 3267 } 3268 static EXT_ATTR_RO(signal, polarity, 0); 3269 static EXT_ATTR_RO(signal, polarity, 1); 3270 static EXT_ATTR_RO(signal, polarity, 2); 3271 static EXT_ATTR_RO(signal, polarity, 3); 3272 3273 static ssize_t 3274 running_show(struct device *dev, struct device_attribute *attr, char *buf) 3275 { 3276 struct dev_ext_attribute *ea = to_ext_attr(attr); 3277 struct ptp_ocp *bp = dev_get_drvdata(dev); 3278 int i = (uintptr_t)ea->var; 3279 3280 return sysfs_emit(buf, "%d\n", bp->signal[i].running); 3281 } 3282 static EXT_ATTR_RO(signal, running, 0); 3283 static EXT_ATTR_RO(signal, running, 1); 3284 static EXT_ATTR_RO(signal, running, 2); 3285 static EXT_ATTR_RO(signal, running, 3); 3286 3287 static ssize_t 3288 start_show(struct device *dev, struct device_attribute *attr, char *buf) 3289 { 3290 struct dev_ext_attribute *ea = to_ext_attr(attr); 3291 struct ptp_ocp *bp = dev_get_drvdata(dev); 3292 int i = (uintptr_t)ea->var; 3293 struct timespec64 ts; 3294 3295 ts = ktime_to_timespec64(bp->signal[i].start); 3296 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); 3297 } 3298 static EXT_ATTR_RO(signal, start, 0); 3299 static EXT_ATTR_RO(signal, start, 1); 3300 static EXT_ATTR_RO(signal, start, 2); 3301 static EXT_ATTR_RO(signal, start, 3); 3302 3303 static ssize_t 3304 seconds_store(struct device *dev, struct device_attribute *attr, 3305 const char *buf, size_t count) 3306 { 3307 struct dev_ext_attribute *ea = to_ext_attr(attr); 3308 struct ptp_ocp *bp = dev_get_drvdata(dev); 3309 int idx = (uintptr_t)ea->var; 3310 u32 val; 3311 int err; 3312 3313 err = kstrtou32(buf, 0, &val); 3314 if (err) 3315 return err; 3316 if (val > 0xff) 3317 return -EINVAL; 3318 3319 if (val) 3320 val = (val << 8) | 0x1; 3321 3322 iowrite32(val, &bp->freq_in[idx]->ctrl); 3323 3324 return count; 3325 } 3326 3327 static ssize_t 3328 seconds_show(struct device *dev, struct device_attribute *attr, char *buf) 3329 { 3330 struct dev_ext_attribute *ea = to_ext_attr(attr); 3331 struct ptp_ocp *bp = dev_get_drvdata(dev); 3332 int idx = (uintptr_t)ea->var; 3333 u32 val; 3334 3335 val = ioread32(&bp->freq_in[idx]->ctrl); 3336 if (val & 1) 3337 val = (val >> 8) & 0xff; 3338 else 3339 val = 0; 3340 3341 return sysfs_emit(buf, "%u\n", val); 3342 } 3343 static EXT_ATTR_RW(freq, seconds, 0); 3344 static EXT_ATTR_RW(freq, seconds, 1); 3345 static EXT_ATTR_RW(freq, seconds, 2); 3346 static EXT_ATTR_RW(freq, seconds, 3); 3347 3348 static ssize_t 3349 frequency_show(struct device *dev, struct device_attribute *attr, char *buf) 3350 { 3351 struct dev_ext_attribute *ea = to_ext_attr(attr); 3352 struct ptp_ocp *bp = dev_get_drvdata(dev); 3353 int idx = (uintptr_t)ea->var; 3354 u32 val; 3355 3356 val = ioread32(&bp->freq_in[idx]->status); 3357 if (val & FREQ_STATUS_ERROR) 3358 return sysfs_emit(buf, "error\n"); 3359 if (val & FREQ_STATUS_OVERRUN) 3360 return sysfs_emit(buf, "overrun\n"); 3361 if (val & FREQ_STATUS_VALID) 3362 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); 3363 return 0; 3364 } 3365 static EXT_ATTR_RO(freq, frequency, 0); 3366 static EXT_ATTR_RO(freq, frequency, 1); 3367 static EXT_ATTR_RO(freq, frequency, 2); 3368 static EXT_ATTR_RO(freq, frequency, 3); 3369 3370 static ssize_t 3371 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf) 3372 { 3373 struct dev_ext_attribute *ea = to_ext_attr(attr); 3374 struct ptp_ocp *bp = dev_get_drvdata(dev); 3375 3376 return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line); 3377 } 3378 3379 static umode_t 3380 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n) 3381 { 3382 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3383 struct ptp_ocp_serial_port *port; 3384 struct device_attribute *dattr; 3385 struct dev_ext_attribute *ea; 3386 3387 if (strncmp(attr->name, "tty", 3)) 3388 return attr->mode; 3389 3390 dattr = container_of(attr, struct device_attribute, attr); 3391 ea = container_of(dattr, struct dev_ext_attribute, attr); 3392 port = &bp->port[(uintptr_t)ea->var]; 3393 return port->line == -1 ? 0 : 0444; 3394 } 3395 3396 #define EXT_TTY_ATTR_RO(_name, _val) \ 3397 struct dev_ext_attribute dev_attr_tty##_name = \ 3398 { __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val } 3399 3400 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS); 3401 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2); 3402 static EXT_TTY_ATTR_RO(MAC, PORT_MAC); 3403 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA); 3404 static struct attribute *ptp_ocp_timecard_tty_attrs[] = { 3405 &dev_attr_ttyGNSS.attr.attr, 3406 &dev_attr_ttyGNSS2.attr.attr, 3407 &dev_attr_ttyMAC.attr.attr, 3408 &dev_attr_ttyNMEA.attr.attr, 3409 NULL, 3410 }; 3411 3412 static const struct attribute_group ptp_ocp_timecard_tty_group = { 3413 .name = "tty", 3414 .attrs = ptp_ocp_timecard_tty_attrs, 3415 .is_visible = ptp_ocp_timecard_tty_is_visible, 3416 }; 3417 3418 static ssize_t 3419 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) 3420 { 3421 struct ptp_ocp *bp = dev_get_drvdata(dev); 3422 3423 if (!bp->has_eeprom_data) 3424 ptp_ocp_read_eeprom(bp); 3425 3426 return sysfs_emit(buf, "%pM\n", bp->serial); 3427 } 3428 static DEVICE_ATTR_RO(serialnum); 3429 3430 static ssize_t 3431 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) 3432 { 3433 struct ptp_ocp *bp = dev_get_drvdata(dev); 3434 ssize_t ret; 3435 3436 if (bp->gnss_lost) 3437 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); 3438 else 3439 ret = sysfs_emit(buf, "SYNC\n"); 3440 3441 return ret; 3442 } 3443 static DEVICE_ATTR_RO(gnss_sync); 3444 3445 static ssize_t 3446 utc_tai_offset_show(struct device *dev, 3447 struct device_attribute *attr, char *buf) 3448 { 3449 struct ptp_ocp *bp = dev_get_drvdata(dev); 3450 3451 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); 3452 } 3453 3454 static ssize_t 3455 utc_tai_offset_store(struct device *dev, 3456 struct device_attribute *attr, 3457 const char *buf, size_t count) 3458 { 3459 struct ptp_ocp *bp = dev_get_drvdata(dev); 3460 int err; 3461 u32 val; 3462 3463 err = kstrtou32(buf, 0, &val); 3464 if (err) 3465 return err; 3466 3467 ptp_ocp_utc_distribute(bp, val); 3468 3469 return count; 3470 } 3471 static DEVICE_ATTR_RW(utc_tai_offset); 3472 3473 static ssize_t 3474 ts_window_adjust_show(struct device *dev, 3475 struct device_attribute *attr, char *buf) 3476 { 3477 struct ptp_ocp *bp = dev_get_drvdata(dev); 3478 3479 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); 3480 } 3481 3482 static ssize_t 3483 ts_window_adjust_store(struct device *dev, 3484 struct device_attribute *attr, 3485 const char *buf, size_t count) 3486 { 3487 struct ptp_ocp *bp = dev_get_drvdata(dev); 3488 int err; 3489 u32 val; 3490 3491 err = kstrtou32(buf, 0, &val); 3492 if (err) 3493 return err; 3494 3495 bp->ts_window_adjust = val; 3496 3497 return count; 3498 } 3499 static DEVICE_ATTR_RW(ts_window_adjust); 3500 3501 static ssize_t 3502 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) 3503 { 3504 struct ptp_ocp *bp = dev_get_drvdata(dev); 3505 u32 val; 3506 3507 val = ioread32(&bp->irig_out->ctrl); 3508 val = (val >> 16) & 0x07; 3509 return sysfs_emit(buf, "%d\n", val); 3510 } 3511 3512 static ssize_t 3513 irig_b_mode_store(struct device *dev, 3514 struct device_attribute *attr, 3515 const char *buf, size_t count) 3516 { 3517 struct ptp_ocp *bp = dev_get_drvdata(dev); 3518 unsigned long flags; 3519 int err; 3520 u32 reg; 3521 u8 val; 3522 3523 err = kstrtou8(buf, 0, &val); 3524 if (err) 3525 return err; 3526 if (val > 7) 3527 return -EINVAL; 3528 3529 reg = ((val & 0x7) << 16); 3530 3531 spin_lock_irqsave(&bp->lock, flags); 3532 iowrite32(0, &bp->irig_out->ctrl); /* disable */ 3533 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ 3534 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); 3535 spin_unlock_irqrestore(&bp->lock, flags); 3536 3537 return count; 3538 } 3539 static DEVICE_ATTR_RW(irig_b_mode); 3540 3541 static ssize_t 3542 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) 3543 { 3544 struct ptp_ocp *bp = dev_get_drvdata(dev); 3545 const char *p; 3546 u32 select; 3547 3548 select = ioread32(&bp->reg->select); 3549 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); 3550 3551 return sysfs_emit(buf, "%s\n", p); 3552 } 3553 3554 static ssize_t 3555 clock_source_store(struct device *dev, struct device_attribute *attr, 3556 const char *buf, size_t count) 3557 { 3558 struct ptp_ocp *bp = dev_get_drvdata(dev); 3559 unsigned long flags; 3560 int val; 3561 3562 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); 3563 if (val < 0) 3564 return val; 3565 3566 spin_lock_irqsave(&bp->lock, flags); 3567 iowrite32(val, &bp->reg->select); 3568 spin_unlock_irqrestore(&bp->lock, flags); 3569 3570 return count; 3571 } 3572 static DEVICE_ATTR_RW(clock_source); 3573 3574 static ssize_t 3575 available_clock_sources_show(struct device *dev, 3576 struct device_attribute *attr, char *buf) 3577 { 3578 return ptp_ocp_select_table_show(ptp_ocp_clock, buf); 3579 } 3580 static DEVICE_ATTR_RO(available_clock_sources); 3581 3582 static ssize_t 3583 clock_status_drift_show(struct device *dev, 3584 struct device_attribute *attr, char *buf) 3585 { 3586 struct ptp_ocp *bp = dev_get_drvdata(dev); 3587 u32 val; 3588 int res; 3589 3590 val = ioread32(&bp->reg->status_drift); 3591 res = (val & ~INT_MAX) ? -1 : 1; 3592 res *= (val & INT_MAX); 3593 return sysfs_emit(buf, "%d\n", res); 3594 } 3595 static DEVICE_ATTR_RO(clock_status_drift); 3596 3597 static ssize_t 3598 clock_status_offset_show(struct device *dev, 3599 struct device_attribute *attr, char *buf) 3600 { 3601 struct ptp_ocp *bp = dev_get_drvdata(dev); 3602 u32 val; 3603 int res; 3604 3605 val = ioread32(&bp->reg->status_offset); 3606 res = (val & ~INT_MAX) ? -1 : 1; 3607 res *= (val & INT_MAX); 3608 return sysfs_emit(buf, "%d\n", res); 3609 } 3610 static DEVICE_ATTR_RO(clock_status_offset); 3611 3612 static ssize_t 3613 tod_correction_show(struct device *dev, 3614 struct device_attribute *attr, char *buf) 3615 { 3616 struct ptp_ocp *bp = dev_get_drvdata(dev); 3617 u32 val; 3618 int res; 3619 3620 val = ioread32(&bp->tod->adj_sec); 3621 res = (val & ~INT_MAX) ? -1 : 1; 3622 res *= (val & INT_MAX); 3623 return sysfs_emit(buf, "%d\n", res); 3624 } 3625 3626 static ssize_t 3627 tod_correction_store(struct device *dev, struct device_attribute *attr, 3628 const char *buf, size_t count) 3629 { 3630 struct ptp_ocp *bp = dev_get_drvdata(dev); 3631 unsigned long flags; 3632 int err, res; 3633 u32 val = 0; 3634 3635 err = kstrtos32(buf, 0, &res); 3636 if (err) 3637 return err; 3638 if (res < 0) { 3639 res *= -1; 3640 val |= BIT(31); 3641 } 3642 val |= res; 3643 3644 spin_lock_irqsave(&bp->lock, flags); 3645 iowrite32(val, &bp->tod->adj_sec); 3646 spin_unlock_irqrestore(&bp->lock, flags); 3647 3648 return count; 3649 } 3650 static DEVICE_ATTR_RW(tod_correction); 3651 3652 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ 3653 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ 3654 &dev_attr_signal##_nr##_signal.attr.attr, \ 3655 &dev_attr_signal##_nr##_duty.attr.attr, \ 3656 &dev_attr_signal##_nr##_phase.attr.attr, \ 3657 &dev_attr_signal##_nr##_period.attr.attr, \ 3658 &dev_attr_signal##_nr##_polarity.attr.attr, \ 3659 &dev_attr_signal##_nr##_running.attr.attr, \ 3660 &dev_attr_signal##_nr##_start.attr.attr, \ 3661 NULL, \ 3662 } 3663 3664 #define DEVICE_SIGNAL_GROUP(_name, _nr) \ 3665 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ 3666 static const struct attribute_group \ 3667 fb_timecard_signal##_nr##_group = { \ 3668 .name = #_name, \ 3669 .attrs = fb_timecard_signal##_nr##_attrs, \ 3670 } 3671 3672 DEVICE_SIGNAL_GROUP(gen1, 0); 3673 DEVICE_SIGNAL_GROUP(gen2, 1); 3674 DEVICE_SIGNAL_GROUP(gen3, 2); 3675 DEVICE_SIGNAL_GROUP(gen4, 3); 3676 3677 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ 3678 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ 3679 &dev_attr_freq##_nr##_seconds.attr.attr, \ 3680 &dev_attr_freq##_nr##_frequency.attr.attr, \ 3681 NULL, \ 3682 } 3683 3684 #define DEVICE_FREQ_GROUP(_name, _nr) \ 3685 _DEVICE_FREQ_GROUP_ATTRS(_nr); \ 3686 static const struct attribute_group \ 3687 fb_timecard_freq##_nr##_group = { \ 3688 .name = #_name, \ 3689 .attrs = fb_timecard_freq##_nr##_attrs, \ 3690 } 3691 3692 DEVICE_FREQ_GROUP(freq1, 0); 3693 DEVICE_FREQ_GROUP(freq2, 1); 3694 DEVICE_FREQ_GROUP(freq3, 2); 3695 DEVICE_FREQ_GROUP(freq4, 3); 3696 3697 static ssize_t 3698 disciplining_config_read(struct file *filp, struct kobject *kobj, 3699 const struct bin_attribute *bin_attr, char *buf, 3700 loff_t off, size_t count) 3701 { 3702 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3703 size_t size = OCP_ART_CONFIG_SIZE; 3704 struct nvmem_device *nvmem; 3705 ssize_t err; 3706 3707 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3708 if (IS_ERR(nvmem)) 3709 return PTR_ERR(nvmem); 3710 3711 if (off > size) { 3712 err = 0; 3713 goto out; 3714 } 3715 3716 if (off + count > size) 3717 count = size - off; 3718 3719 // the configuration is in the very beginning of the EEPROM 3720 err = nvmem_device_read(nvmem, off, count, buf); 3721 if (err != count) { 3722 err = -EFAULT; 3723 goto out; 3724 } 3725 3726 out: 3727 ptp_ocp_nvmem_device_put(&nvmem); 3728 3729 return err; 3730 } 3731 3732 static ssize_t 3733 disciplining_config_write(struct file *filp, struct kobject *kobj, 3734 const struct bin_attribute *bin_attr, char *buf, 3735 loff_t off, size_t count) 3736 { 3737 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3738 struct nvmem_device *nvmem; 3739 ssize_t err; 3740 3741 /* Allow write of the whole area only */ 3742 if (off || count != OCP_ART_CONFIG_SIZE) 3743 return -EFAULT; 3744 3745 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3746 if (IS_ERR(nvmem)) 3747 return PTR_ERR(nvmem); 3748 3749 err = nvmem_device_write(nvmem, 0x00, count, buf); 3750 if (err != count) 3751 err = -EFAULT; 3752 3753 ptp_ocp_nvmem_device_put(&nvmem); 3754 3755 return err; 3756 } 3757 static const BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE); 3758 3759 static ssize_t 3760 temperature_table_read(struct file *filp, struct kobject *kobj, 3761 const struct bin_attribute *bin_attr, char *buf, 3762 loff_t off, size_t count) 3763 { 3764 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3765 size_t size = OCP_ART_TEMP_TABLE_SIZE; 3766 struct nvmem_device *nvmem; 3767 ssize_t err; 3768 3769 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3770 if (IS_ERR(nvmem)) 3771 return PTR_ERR(nvmem); 3772 3773 if (off > size) { 3774 err = 0; 3775 goto out; 3776 } 3777 3778 if (off + count > size) 3779 count = size - off; 3780 3781 // the configuration is in the very beginning of the EEPROM 3782 err = nvmem_device_read(nvmem, 0x90 + off, count, buf); 3783 if (err != count) { 3784 err = -EFAULT; 3785 goto out; 3786 } 3787 3788 out: 3789 ptp_ocp_nvmem_device_put(&nvmem); 3790 3791 return err; 3792 } 3793 3794 static ssize_t 3795 temperature_table_write(struct file *filp, struct kobject *kobj, 3796 const struct bin_attribute *bin_attr, char *buf, 3797 loff_t off, size_t count) 3798 { 3799 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); 3800 struct nvmem_device *nvmem; 3801 ssize_t err; 3802 3803 /* Allow write of the whole area only */ 3804 if (off || count != OCP_ART_TEMP_TABLE_SIZE) 3805 return -EFAULT; 3806 3807 nvmem = ptp_ocp_nvmem_device_get(bp, NULL); 3808 if (IS_ERR(nvmem)) 3809 return PTR_ERR(nvmem); 3810 3811 err = nvmem_device_write(nvmem, 0x90, count, buf); 3812 if (err != count) 3813 err = -EFAULT; 3814 3815 ptp_ocp_nvmem_device_put(&nvmem); 3816 3817 return err; 3818 } 3819 static const BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE); 3820 3821 static struct attribute *fb_timecard_attrs[] = { 3822 &dev_attr_serialnum.attr, 3823 &dev_attr_gnss_sync.attr, 3824 &dev_attr_clock_source.attr, 3825 &dev_attr_available_clock_sources.attr, 3826 &dev_attr_sma1.attr, 3827 &dev_attr_sma2.attr, 3828 &dev_attr_sma3.attr, 3829 &dev_attr_sma4.attr, 3830 &dev_attr_available_sma_inputs.attr, 3831 &dev_attr_available_sma_outputs.attr, 3832 &dev_attr_clock_status_drift.attr, 3833 &dev_attr_clock_status_offset.attr, 3834 &dev_attr_irig_b_mode.attr, 3835 &dev_attr_utc_tai_offset.attr, 3836 &dev_attr_ts_window_adjust.attr, 3837 &dev_attr_tod_correction.attr, 3838 NULL, 3839 }; 3840 3841 static const struct attribute_group fb_timecard_group = { 3842 .attrs = fb_timecard_attrs, 3843 }; 3844 3845 static const struct ocp_attr_group fb_timecard_groups[] = { 3846 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, 3847 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3848 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3849 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3850 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, 3851 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, 3852 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3853 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3854 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, 3855 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, 3856 { }, 3857 }; 3858 3859 static struct attribute *art_timecard_attrs[] = { 3860 &dev_attr_serialnum.attr, 3861 &dev_attr_clock_source.attr, 3862 &dev_attr_available_clock_sources.attr, 3863 &dev_attr_utc_tai_offset.attr, 3864 &dev_attr_ts_window_adjust.attr, 3865 &dev_attr_sma1.attr, 3866 &dev_attr_sma2.attr, 3867 &dev_attr_sma3.attr, 3868 &dev_attr_sma4.attr, 3869 &dev_attr_available_sma_inputs.attr, 3870 &dev_attr_available_sma_outputs.attr, 3871 NULL, 3872 }; 3873 3874 static const struct bin_attribute *const bin_art_timecard_attrs[] = { 3875 &bin_attr_disciplining_config, 3876 &bin_attr_temperature_table, 3877 NULL, 3878 }; 3879 3880 static const struct attribute_group art_timecard_group = { 3881 .attrs = art_timecard_attrs, 3882 .bin_attrs_new = bin_art_timecard_attrs, 3883 }; 3884 3885 static const struct ocp_attr_group art_timecard_groups[] = { 3886 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group }, 3887 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3888 { }, 3889 }; 3890 3891 static struct attribute *adva_timecard_attrs[] = { 3892 &dev_attr_serialnum.attr, 3893 &dev_attr_gnss_sync.attr, 3894 &dev_attr_clock_source.attr, 3895 &dev_attr_available_clock_sources.attr, 3896 &dev_attr_sma1.attr, 3897 &dev_attr_sma2.attr, 3898 &dev_attr_sma3.attr, 3899 &dev_attr_sma4.attr, 3900 &dev_attr_available_sma_inputs.attr, 3901 &dev_attr_available_sma_outputs.attr, 3902 &dev_attr_clock_status_drift.attr, 3903 &dev_attr_clock_status_offset.attr, 3904 &dev_attr_ts_window_adjust.attr, 3905 &dev_attr_tod_correction.attr, 3906 NULL, 3907 }; 3908 3909 static const struct attribute_group adva_timecard_group = { 3910 .attrs = adva_timecard_attrs, 3911 }; 3912 3913 static const struct ocp_attr_group adva_timecard_groups[] = { 3914 { .cap = OCP_CAP_BASIC, .group = &adva_timecard_group }, 3915 { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group }, 3916 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, 3917 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, 3918 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, 3919 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, 3920 { }, 3921 }; 3922 3923 static void 3924 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, 3925 const char *def) 3926 { 3927 int i; 3928 3929 for (i = 0; i < 4; i++) { 3930 if (bp->sma[i].mode != SMA_MODE_IN) 3931 continue; 3932 if (map[i][0] & (1 << bit)) { 3933 sprintf(buf, "sma%d", i + 1); 3934 return; 3935 } 3936 } 3937 if (!def) 3938 def = "----"; 3939 strcpy(buf, def); 3940 } 3941 3942 static void 3943 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) 3944 { 3945 char *ans = buf; 3946 int i; 3947 3948 strcpy(ans, "----"); 3949 for (i = 0; i < 4; i++) { 3950 if (bp->sma[i].mode != SMA_MODE_OUT) 3951 continue; 3952 if (map[i][1] & (1 << bit)) 3953 ans += sprintf(ans, "sma%d ", i + 1); 3954 } 3955 } 3956 3957 static void 3958 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) 3959 { 3960 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; 3961 struct ptp_ocp_signal *signal = &bp->signal[nr]; 3962 char label[8]; 3963 bool on; 3964 u32 val; 3965 3966 on = signal->running; 3967 sprintf(label, "GEN%d", nr + 1); 3968 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", 3969 label, on ? " ON" : "OFF", 3970 signal->period, signal->duty, signal->phase, 3971 signal->polarity); 3972 3973 val = ioread32(®->enable); 3974 seq_printf(s, " [%x", val); 3975 val = ioread32(®->status); 3976 seq_printf(s, " %x]", val); 3977 3978 seq_printf(s, " start:%llu\n", signal->start); 3979 } 3980 3981 static void 3982 _frequency_summary_show(struct seq_file *s, int nr, 3983 struct frequency_reg __iomem *reg) 3984 { 3985 char label[8]; 3986 bool on; 3987 u32 val; 3988 3989 if (!reg) 3990 return; 3991 3992 sprintf(label, "FREQ%d", nr + 1); 3993 val = ioread32(®->ctrl); 3994 on = val & 1; 3995 val = (val >> 8) & 0xff; 3996 seq_printf(s, "%7s: %s, sec:%u", 3997 label, 3998 on ? " ON" : "OFF", 3999 val); 4000 4001 val = ioread32(®->status); 4002 if (val & FREQ_STATUS_ERROR) 4003 seq_printf(s, ", error"); 4004 if (val & FREQ_STATUS_OVERRUN) 4005 seq_printf(s, ", overrun"); 4006 if (val & FREQ_STATUS_VALID) 4007 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); 4008 seq_printf(s, " reg:%x\n", val); 4009 } 4010 4011 static int 4012 ptp_ocp_summary_show(struct seq_file *s, void *data) 4013 { 4014 struct device *dev = s->private; 4015 struct ptp_system_timestamp sts; 4016 struct ts_reg __iomem *ts_reg; 4017 char *buf, *src, *mac_src; 4018 struct timespec64 ts; 4019 struct ptp_ocp *bp; 4020 u16 sma_val[4][2]; 4021 u32 ctrl, val; 4022 bool on, map; 4023 int i; 4024 4025 buf = (char *)__get_free_page(GFP_KERNEL); 4026 if (!buf) 4027 return -ENOMEM; 4028 4029 bp = dev_get_drvdata(dev); 4030 4031 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); 4032 for (i = 0; i < __PORT_COUNT; i++) { 4033 if (bp->port[i].line != -1) 4034 seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i), 4035 bp->port[i].line); 4036 } 4037 4038 memset(sma_val, 0xff, sizeof(sma_val)); 4039 if (bp->sma_map1) { 4040 u32 reg; 4041 4042 reg = ioread32(&bp->sma_map1->gpio1); 4043 sma_val[0][0] = reg & 0xffff; 4044 sma_val[1][0] = reg >> 16; 4045 4046 reg = ioread32(&bp->sma_map1->gpio2); 4047 sma_val[2][1] = reg & 0xffff; 4048 sma_val[3][1] = reg >> 16; 4049 4050 reg = ioread32(&bp->sma_map2->gpio1); 4051 sma_val[2][0] = reg & 0xffff; 4052 sma_val[3][0] = reg >> 16; 4053 4054 reg = ioread32(&bp->sma_map2->gpio2); 4055 sma_val[0][1] = reg & 0xffff; 4056 sma_val[1][1] = reg >> 16; 4057 } 4058 4059 sma1_show(dev, NULL, buf); 4060 seq_printf(s, " sma1: %04x,%04x %s", 4061 sma_val[0][0], sma_val[0][1], buf); 4062 4063 sma2_show(dev, NULL, buf); 4064 seq_printf(s, " sma2: %04x,%04x %s", 4065 sma_val[1][0], sma_val[1][1], buf); 4066 4067 sma3_show(dev, NULL, buf); 4068 seq_printf(s, " sma3: %04x,%04x %s", 4069 sma_val[2][0], sma_val[2][1], buf); 4070 4071 sma4_show(dev, NULL, buf); 4072 seq_printf(s, " sma4: %04x,%04x %s", 4073 sma_val[3][0], sma_val[3][1], buf); 4074 4075 if (bp->ts0) { 4076 ts_reg = bp->ts0->mem; 4077 on = ioread32(&ts_reg->enable); 4078 src = "GNSS1"; 4079 seq_printf(s, "%7s: %s, src: %s\n", "TS0", 4080 on ? " ON" : "OFF", src); 4081 } 4082 4083 if (bp->ts1) { 4084 ts_reg = bp->ts1->mem; 4085 on = ioread32(&ts_reg->enable); 4086 gpio_input_map(buf, bp, sma_val, 2, NULL); 4087 seq_printf(s, "%7s: %s, src: %s\n", "TS1", 4088 on ? " ON" : "OFF", buf); 4089 } 4090 4091 if (bp->ts2) { 4092 ts_reg = bp->ts2->mem; 4093 on = ioread32(&ts_reg->enable); 4094 gpio_input_map(buf, bp, sma_val, 3, NULL); 4095 seq_printf(s, "%7s: %s, src: %s\n", "TS2", 4096 on ? " ON" : "OFF", buf); 4097 } 4098 4099 if (bp->ts3) { 4100 ts_reg = bp->ts3->mem; 4101 on = ioread32(&ts_reg->enable); 4102 gpio_input_map(buf, bp, sma_val, 6, NULL); 4103 seq_printf(s, "%7s: %s, src: %s\n", "TS3", 4104 on ? " ON" : "OFF", buf); 4105 } 4106 4107 if (bp->ts4) { 4108 ts_reg = bp->ts4->mem; 4109 on = ioread32(&ts_reg->enable); 4110 gpio_input_map(buf, bp, sma_val, 7, NULL); 4111 seq_printf(s, "%7s: %s, src: %s\n", "TS4", 4112 on ? " ON" : "OFF", buf); 4113 } 4114 4115 if (bp->pps) { 4116 ts_reg = bp->pps->mem; 4117 src = "PHC"; 4118 on = ioread32(&ts_reg->enable); 4119 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); 4120 seq_printf(s, "%7s: %s, src: %s\n", "TS5", 4121 on && map ? " ON" : "OFF", src); 4122 4123 map = !!(bp->pps_req_map & OCP_REQ_PPS); 4124 seq_printf(s, "%7s: %s, src: %s\n", "PPS", 4125 on && map ? " ON" : "OFF", src); 4126 } 4127 4128 if (bp->fw_cap & OCP_CAP_SIGNAL) 4129 for (i = 0; i < 4; i++) 4130 _signal_summary_show(s, bp, i); 4131 4132 if (bp->fw_cap & OCP_CAP_FREQ) 4133 for (i = 0; i < 4; i++) 4134 _frequency_summary_show(s, i, bp->freq_in[i]); 4135 4136 if (bp->irig_out) { 4137 ctrl = ioread32(&bp->irig_out->ctrl); 4138 on = ctrl & IRIG_M_CTRL_ENABLE; 4139 val = ioread32(&bp->irig_out->status); 4140 gpio_output_map(buf, bp, sma_val, 4); 4141 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", 4142 on ? " ON" : "OFF", val, (ctrl >> 16), buf); 4143 } 4144 4145 if (bp->irig_in) { 4146 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; 4147 val = ioread32(&bp->irig_in->status); 4148 gpio_input_map(buf, bp, sma_val, 4, NULL); 4149 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", 4150 on ? " ON" : "OFF", val, buf); 4151 } 4152 4153 if (bp->dcf_out) { 4154 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; 4155 val = ioread32(&bp->dcf_out->status); 4156 gpio_output_map(buf, bp, sma_val, 5); 4157 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", 4158 on ? " ON" : "OFF", val, buf); 4159 } 4160 4161 if (bp->dcf_in) { 4162 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; 4163 val = ioread32(&bp->dcf_in->status); 4164 gpio_input_map(buf, bp, sma_val, 5, NULL); 4165 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", 4166 on ? " ON" : "OFF", val, buf); 4167 } 4168 4169 if (bp->nmea_out) { 4170 on = ioread32(&bp->nmea_out->ctrl) & 1; 4171 val = ioread32(&bp->nmea_out->status); 4172 seq_printf(s, "%7s: %s, error: %d\n", "NMEA", 4173 on ? " ON" : "OFF", val); 4174 } 4175 4176 /* compute src for PPS1, used below. */ 4177 if (bp->pps_select) { 4178 val = ioread32(&bp->pps_select->gpio1); 4179 src = &buf[80]; 4180 mac_src = "GNSS1"; 4181 if (val & 0x01) { 4182 gpio_input_map(src, bp, sma_val, 0, NULL); 4183 mac_src = src; 4184 } else if (val & 0x02) { 4185 src = "MAC"; 4186 } else if (val & 0x04) { 4187 src = "GNSS1"; 4188 } else { 4189 src = "----"; 4190 mac_src = src; 4191 } 4192 } else { 4193 src = "?"; 4194 mac_src = src; 4195 } 4196 seq_printf(s, "MAC PPS1 src: %s\n", mac_src); 4197 4198 gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); 4199 seq_printf(s, "MAC PPS2 src: %s\n", buf); 4200 4201 /* assumes automatic switchover/selection */ 4202 val = ioread32(&bp->reg->select); 4203 switch (val >> 16) { 4204 case 0: 4205 sprintf(buf, "----"); 4206 break; 4207 case 2: 4208 sprintf(buf, "IRIG"); 4209 break; 4210 case 3: 4211 sprintf(buf, "%s via PPS1", src); 4212 break; 4213 case 6: 4214 sprintf(buf, "DCF"); 4215 break; 4216 default: 4217 strcpy(buf, "unknown"); 4218 break; 4219 } 4220 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, 4221 bp->sync ? "sync" : "unsynced"); 4222 4223 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { 4224 struct timespec64 sys_ts; 4225 s64 pre_ns, post_ns, ns; 4226 4227 pre_ns = timespec64_to_ns(&sts.pre_ts); 4228 post_ns = timespec64_to_ns(&sts.post_ts); 4229 ns = (pre_ns + post_ns) / 2; 4230 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; 4231 sys_ts = ns_to_timespec64(ns); 4232 4233 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", 4234 ts.tv_sec, ts.tv_nsec, &ts); 4235 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", 4236 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, 4237 bp->utc_tai_offset); 4238 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", 4239 timespec64_to_ns(&ts) - ns, 4240 post_ns - pre_ns); 4241 } 4242 4243 free_page((unsigned long)buf); 4244 return 0; 4245 } 4246 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); 4247 4248 static int 4249 ptp_ocp_tod_status_show(struct seq_file *s, void *data) 4250 { 4251 struct device *dev = s->private; 4252 struct ptp_ocp *bp; 4253 u32 val; 4254 int idx; 4255 4256 bp = dev_get_drvdata(dev); 4257 4258 val = ioread32(&bp->tod->ctrl); 4259 if (!(val & TOD_CTRL_ENABLE)) { 4260 seq_printf(s, "TOD Slave disabled\n"); 4261 return 0; 4262 } 4263 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); 4264 4265 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; 4266 idx += (val >> 16) & 3; 4267 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); 4268 4269 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; 4270 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); 4271 4272 val = ioread32(&bp->tod->version); 4273 seq_printf(s, "TOD Version %d.%d.%d\n", 4274 val >> 24, (val >> 16) & 0xff, val & 0xffff); 4275 4276 val = ioread32(&bp->tod->status); 4277 seq_printf(s, "Status register: 0x%08X\n", val); 4278 4279 val = ioread32(&bp->tod->adj_sec); 4280 idx = (val & ~INT_MAX) ? -1 : 1; 4281 idx *= (val & INT_MAX); 4282 seq_printf(s, "Correction seconds: %d\n", idx); 4283 4284 val = ioread32(&bp->tod->utc_status); 4285 seq_printf(s, "UTC status register: 0x%08X\n", val); 4286 seq_printf(s, "UTC offset: %ld valid:%d\n", 4287 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); 4288 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", 4289 val & TOD_STATUS_LEAP_VALID ? 1 : 0, 4290 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); 4291 4292 val = ioread32(&bp->tod->leap); 4293 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); 4294 4295 return 0; 4296 } 4297 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); 4298 4299 static struct dentry *ptp_ocp_debugfs_root; 4300 4301 static void 4302 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) 4303 { 4304 struct dentry *d; 4305 4306 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); 4307 bp->debug_root = d; 4308 debugfs_create_file("summary", 0444, bp->debug_root, 4309 &bp->dev, &ptp_ocp_summary_fops); 4310 if (bp->tod) 4311 debugfs_create_file("tod_status", 0444, bp->debug_root, 4312 &bp->dev, &ptp_ocp_tod_status_fops); 4313 } 4314 4315 static void 4316 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) 4317 { 4318 debugfs_remove_recursive(bp->debug_root); 4319 } 4320 4321 static void 4322 ptp_ocp_debugfs_init(void) 4323 { 4324 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); 4325 } 4326 4327 static void 4328 ptp_ocp_debugfs_fini(void) 4329 { 4330 debugfs_remove_recursive(ptp_ocp_debugfs_root); 4331 } 4332 4333 static void 4334 ptp_ocp_dev_release(struct device *dev) 4335 { 4336 struct ptp_ocp *bp = dev_get_drvdata(dev); 4337 4338 mutex_lock(&ptp_ocp_lock); 4339 idr_remove(&ptp_ocp_idr, bp->id); 4340 mutex_unlock(&ptp_ocp_lock); 4341 } 4342 4343 static int 4344 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) 4345 { 4346 int i, err; 4347 4348 mutex_lock(&ptp_ocp_lock); 4349 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); 4350 mutex_unlock(&ptp_ocp_lock); 4351 if (err < 0) { 4352 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); 4353 return err; 4354 } 4355 bp->id = err; 4356 4357 bp->ptp_info = ptp_ocp_clock_info; 4358 spin_lock_init(&bp->lock); 4359 4360 for (i = 0; i < __PORT_COUNT; i++) 4361 bp->port[i].line = -1; 4362 4363 bp->pdev = pdev; 4364 4365 device_initialize(&bp->dev); 4366 dev_set_name(&bp->dev, "ocp%d", bp->id); 4367 bp->dev.class = &timecard_class; 4368 bp->dev.parent = &pdev->dev; 4369 bp->dev.release = ptp_ocp_dev_release; 4370 dev_set_drvdata(&bp->dev, bp); 4371 4372 err = device_add(&bp->dev); 4373 if (err) { 4374 dev_err(&bp->dev, "device add failed: %d\n", err); 4375 goto out; 4376 } 4377 4378 pci_set_drvdata(pdev, bp); 4379 4380 return 0; 4381 4382 out: 4383 put_device(&bp->dev); 4384 return err; 4385 } 4386 4387 static void 4388 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) 4389 { 4390 struct device *dev = &bp->dev; 4391 4392 if (sysfs_create_link(&dev->kobj, &child->kobj, link)) 4393 dev_err(dev, "%s symlink failed\n", link); 4394 } 4395 4396 static void 4397 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) 4398 { 4399 struct device *dev, *child; 4400 4401 dev = &bp->pdev->dev; 4402 4403 child = device_find_child_by_name(dev, name); 4404 if (!child) { 4405 dev_err(dev, "Could not find device %s\n", name); 4406 return; 4407 } 4408 4409 ptp_ocp_symlink(bp, child, link); 4410 put_device(child); 4411 } 4412 4413 static int 4414 ptp_ocp_complete(struct ptp_ocp *bp) 4415 { 4416 struct pps_device *pps; 4417 char buf[32]; 4418 4419 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); 4420 ptp_ocp_link_child(bp, buf, "ptp"); 4421 4422 pps = pps_lookup_dev(bp->ptp); 4423 if (pps) 4424 ptp_ocp_symlink(bp, &pps->dev, "pps"); 4425 4426 ptp_ocp_debugfs_add_device(bp); 4427 4428 return 0; 4429 } 4430 4431 static void 4432 ptp_ocp_phc_info(struct ptp_ocp *bp) 4433 { 4434 struct timespec64 ts; 4435 u32 version, select; 4436 4437 version = ioread32(&bp->reg->version); 4438 select = ioread32(&bp->reg->select); 4439 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", 4440 version >> 24, (version >> 16) & 0xff, version & 0xffff, 4441 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), 4442 ptp_clock_index(bp->ptp)); 4443 4444 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) 4445 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", 4446 ts.tv_sec, ts.tv_nsec, 4447 bp->sync ? "in-sync" : "UNSYNCED"); 4448 } 4449 4450 static void 4451 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) 4452 { 4453 if (port != -1) 4454 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); 4455 } 4456 4457 static void 4458 ptp_ocp_info(struct ptp_ocp *bp) 4459 { 4460 static int nmea_baud[] = { 4461 1200, 2400, 4800, 9600, 19200, 38400, 4462 57600, 115200, 230400, 460800, 921600, 4463 1000000, 2000000 4464 }; 4465 struct device *dev = &bp->pdev->dev; 4466 u32 reg; 4467 int i; 4468 4469 ptp_ocp_phc_info(bp); 4470 4471 for (i = 0; i < __PORT_COUNT; i++) { 4472 if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) { 4473 bp->port[PORT_NMEA].baud = -1; 4474 4475 reg = ioread32(&bp->nmea_out->uart_baud); 4476 if (reg < ARRAY_SIZE(nmea_baud)) 4477 bp->port[PORT_NMEA].baud = nmea_baud[reg]; 4478 } 4479 ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line, 4480 bp->port[i].baud); 4481 } 4482 } 4483 4484 static void 4485 ptp_ocp_detach_sysfs(struct ptp_ocp *bp) 4486 { 4487 struct device *dev = &bp->dev; 4488 4489 sysfs_remove_link(&dev->kobj, "ptp"); 4490 sysfs_remove_link(&dev->kobj, "pps"); 4491 } 4492 4493 static void 4494 ptp_ocp_detach(struct ptp_ocp *bp) 4495 { 4496 int i; 4497 4498 ptp_ocp_debugfs_remove_device(bp); 4499 ptp_ocp_detach_sysfs(bp); 4500 ptp_ocp_attr_group_del(bp); 4501 if (timer_pending(&bp->watchdog)) 4502 del_timer_sync(&bp->watchdog); 4503 if (bp->ts0) 4504 ptp_ocp_unregister_ext(bp->ts0); 4505 if (bp->ts1) 4506 ptp_ocp_unregister_ext(bp->ts1); 4507 if (bp->ts2) 4508 ptp_ocp_unregister_ext(bp->ts2); 4509 if (bp->ts3) 4510 ptp_ocp_unregister_ext(bp->ts3); 4511 if (bp->ts4) 4512 ptp_ocp_unregister_ext(bp->ts4); 4513 if (bp->pps) 4514 ptp_ocp_unregister_ext(bp->pps); 4515 for (i = 0; i < 4; i++) 4516 if (bp->signal_out[i]) 4517 ptp_ocp_unregister_ext(bp->signal_out[i]); 4518 for (i = 0; i < __PORT_COUNT; i++) 4519 if (bp->port[i].line != -1) 4520 serial8250_unregister_port(bp->port[i].line); 4521 platform_device_unregister(bp->spi_flash); 4522 platform_device_unregister(bp->i2c_ctrl); 4523 if (bp->i2c_clk) 4524 clk_hw_unregister_fixed_rate(bp->i2c_clk); 4525 if (bp->n_irqs) 4526 pci_free_irq_vectors(bp->pdev); 4527 if (bp->ptp) 4528 ptp_clock_unregister(bp->ptp); 4529 kfree(bp->ptp_info.pin_config); 4530 device_unregister(&bp->dev); 4531 } 4532 4533 static int 4534 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv, 4535 enum dpll_lock_status *status, 4536 enum dpll_lock_status_error *status_error, 4537 struct netlink_ext_ack *extack) 4538 { 4539 struct ptp_ocp *bp = priv; 4540 4541 *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED; 4542 4543 return 0; 4544 } 4545 4546 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv, 4547 const struct dpll_device *dpll, void *priv, 4548 enum dpll_pin_state *state, 4549 struct netlink_ext_ack *extack) 4550 { 4551 struct ptp_ocp *bp = priv; 4552 int idx; 4553 4554 if (bp->pps_select) { 4555 idx = ioread32(&bp->pps_select->gpio1); 4556 *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED : 4557 DPLL_PIN_STATE_SELECTABLE; 4558 return 0; 4559 } 4560 NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW"); 4561 return -EINVAL; 4562 } 4563 4564 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv, 4565 enum dpll_mode *mode, struct netlink_ext_ack *extack) 4566 { 4567 *mode = DPLL_MODE_AUTOMATIC; 4568 return 0; 4569 } 4570 4571 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin, 4572 void *pin_priv, 4573 const struct dpll_device *dpll, 4574 void *priv, 4575 enum dpll_pin_direction *direction, 4576 struct netlink_ext_ack *extack) 4577 { 4578 struct ptp_ocp_sma_connector *sma = pin_priv; 4579 4580 *direction = sma->mode == SMA_MODE_IN ? 4581 DPLL_PIN_DIRECTION_INPUT : 4582 DPLL_PIN_DIRECTION_OUTPUT; 4583 return 0; 4584 } 4585 4586 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin, 4587 void *pin_priv, 4588 const struct dpll_device *dpll, 4589 void *dpll_priv, 4590 enum dpll_pin_direction direction, 4591 struct netlink_ext_ack *extack) 4592 { 4593 struct ptp_ocp_sma_connector *sma = pin_priv; 4594 struct ptp_ocp *bp = dpll_priv; 4595 enum ptp_ocp_sma_mode mode; 4596 int sma_nr = (sma - bp->sma); 4597 4598 if (sma->fixed_dir) 4599 return -EOPNOTSUPP; 4600 mode = direction == DPLL_PIN_DIRECTION_INPUT ? 4601 SMA_MODE_IN : SMA_MODE_OUT; 4602 return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1); 4603 } 4604 4605 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin, 4606 void *pin_priv, 4607 const struct dpll_device *dpll, 4608 void *dpll_priv, u64 frequency, 4609 struct netlink_ext_ack *extack) 4610 { 4611 struct ptp_ocp_sma_connector *sma = pin_priv; 4612 struct ptp_ocp *bp = dpll_priv; 4613 const struct ocp_selector *tbl; 4614 int sma_nr = (sma - bp->sma); 4615 int i; 4616 4617 if (sma->fixed_fcn) 4618 return -EOPNOTSUPP; 4619 4620 tbl = bp->sma_op->tbl[sma->mode]; 4621 for (i = 0; tbl[i].name; i++) 4622 if (tbl[i].frequency == frequency) 4623 return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1); 4624 return -EINVAL; 4625 } 4626 4627 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin, 4628 void *pin_priv, 4629 const struct dpll_device *dpll, 4630 void *dpll_priv, u64 *frequency, 4631 struct netlink_ext_ack *extack) 4632 { 4633 struct ptp_ocp_sma_connector *sma = pin_priv; 4634 struct ptp_ocp *bp = dpll_priv; 4635 const struct ocp_selector *tbl; 4636 int sma_nr = (sma - bp->sma); 4637 u32 val; 4638 int i; 4639 4640 val = bp->sma_op->get(bp, sma_nr + 1); 4641 tbl = bp->sma_op->tbl[sma->mode]; 4642 for (i = 0; tbl[i].name; i++) 4643 if (val == tbl[i].value) { 4644 *frequency = tbl[i].frequency; 4645 return 0; 4646 } 4647 4648 return -EINVAL; 4649 } 4650 4651 static const struct dpll_device_ops dpll_ops = { 4652 .lock_status_get = ptp_ocp_dpll_lock_status_get, 4653 .mode_get = ptp_ocp_dpll_mode_get, 4654 }; 4655 4656 static const struct dpll_pin_ops dpll_pins_ops = { 4657 .frequency_get = ptp_ocp_dpll_frequency_get, 4658 .frequency_set = ptp_ocp_dpll_frequency_set, 4659 .direction_get = ptp_ocp_dpll_direction_get, 4660 .direction_set = ptp_ocp_dpll_direction_set, 4661 .state_on_dpll_get = ptp_ocp_dpll_state_get, 4662 }; 4663 4664 static void 4665 ptp_ocp_sync_work(struct work_struct *work) 4666 { 4667 struct ptp_ocp *bp; 4668 bool sync; 4669 4670 bp = container_of(work, struct ptp_ocp, sync_work.work); 4671 sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC); 4672 4673 if (bp->sync != sync) 4674 dpll_device_change_ntf(bp->dpll); 4675 4676 bp->sync = sync; 4677 4678 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); 4679 } 4680 4681 static int 4682 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) 4683 { 4684 struct devlink *devlink; 4685 struct ptp_ocp *bp; 4686 int err, i; 4687 u64 clkid; 4688 4689 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); 4690 if (!devlink) { 4691 dev_err(&pdev->dev, "devlink_alloc failed\n"); 4692 return -ENOMEM; 4693 } 4694 4695 err = pci_enable_device(pdev); 4696 if (err) { 4697 dev_err(&pdev->dev, "pci_enable_device\n"); 4698 goto out_free; 4699 } 4700 4701 bp = devlink_priv(devlink); 4702 err = ptp_ocp_device_init(bp, pdev); 4703 if (err) 4704 goto out_disable; 4705 4706 INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work); 4707 4708 /* compat mode. 4709 * Older FPGA firmware only returns 2 irq's. 4710 * allow this - if not all of the IRQ's are returned, skip the 4711 * extra devices and just register the clock. 4712 */ 4713 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); 4714 if (err < 0) { 4715 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); 4716 goto out; 4717 } 4718 bp->n_irqs = err; 4719 pci_set_master(pdev); 4720 4721 err = ptp_ocp_register_resources(bp, id->driver_data); 4722 if (err) 4723 goto out; 4724 4725 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); 4726 if (IS_ERR(bp->ptp)) { 4727 err = PTR_ERR(bp->ptp); 4728 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); 4729 bp->ptp = NULL; 4730 goto out; 4731 } 4732 4733 err = ptp_ocp_complete(bp); 4734 if (err) 4735 goto out; 4736 4737 ptp_ocp_info(bp); 4738 devlink_register(devlink); 4739 4740 clkid = pci_get_dsn(pdev); 4741 bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE); 4742 if (IS_ERR(bp->dpll)) { 4743 err = PTR_ERR(bp->dpll); 4744 dev_err(&pdev->dev, "dpll_device_alloc failed\n"); 4745 goto out; 4746 } 4747 4748 err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp); 4749 if (err) 4750 goto out; 4751 4752 for (i = 0; i < OCP_SMA_NUM; i++) { 4753 bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop); 4754 if (IS_ERR(bp->sma[i].dpll_pin)) { 4755 err = PTR_ERR(bp->sma[i].dpll_pin); 4756 goto out_dpll; 4757 } 4758 4759 err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, 4760 &bp->sma[i]); 4761 if (err) { 4762 dpll_pin_put(bp->sma[i].dpll_pin); 4763 goto out_dpll; 4764 } 4765 } 4766 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); 4767 4768 return 0; 4769 out_dpll: 4770 while (i) { 4771 --i; 4772 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); 4773 dpll_pin_put(bp->sma[i].dpll_pin); 4774 } 4775 dpll_device_put(bp->dpll); 4776 out: 4777 ptp_ocp_detach(bp); 4778 out_disable: 4779 pci_disable_device(pdev); 4780 out_free: 4781 devlink_free(devlink); 4782 return err; 4783 } 4784 4785 static void 4786 ptp_ocp_remove(struct pci_dev *pdev) 4787 { 4788 struct ptp_ocp *bp = pci_get_drvdata(pdev); 4789 struct devlink *devlink = priv_to_devlink(bp); 4790 int i; 4791 4792 cancel_delayed_work_sync(&bp->sync_work); 4793 for (i = 0; i < OCP_SMA_NUM; i++) { 4794 if (bp->sma[i].dpll_pin) { 4795 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); 4796 dpll_pin_put(bp->sma[i].dpll_pin); 4797 } 4798 } 4799 dpll_device_unregister(bp->dpll, &dpll_ops, bp); 4800 dpll_device_put(bp->dpll); 4801 devlink_unregister(devlink); 4802 ptp_ocp_detach(bp); 4803 pci_disable_device(pdev); 4804 4805 devlink_free(devlink); 4806 } 4807 4808 static struct pci_driver ptp_ocp_driver = { 4809 .name = KBUILD_MODNAME, 4810 .id_table = ptp_ocp_pcidev_id, 4811 .probe = ptp_ocp_probe, 4812 .remove = ptp_ocp_remove, 4813 }; 4814 4815 static int 4816 ptp_ocp_i2c_notifier_call(struct notifier_block *nb, 4817 unsigned long action, void *data) 4818 { 4819 struct device *dev, *child = data; 4820 struct ptp_ocp *bp; 4821 bool add; 4822 4823 switch (action) { 4824 case BUS_NOTIFY_ADD_DEVICE: 4825 case BUS_NOTIFY_DEL_DEVICE: 4826 add = action == BUS_NOTIFY_ADD_DEVICE; 4827 break; 4828 default: 4829 return 0; 4830 } 4831 4832 if (!i2c_verify_adapter(child)) 4833 return 0; 4834 4835 dev = child; 4836 while ((dev = dev->parent)) 4837 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) 4838 goto found; 4839 return 0; 4840 4841 found: 4842 bp = dev_get_drvdata(dev); 4843 if (add) 4844 ptp_ocp_symlink(bp, child, "i2c"); 4845 else 4846 sysfs_remove_link(&bp->dev.kobj, "i2c"); 4847 4848 return 0; 4849 } 4850 4851 static struct notifier_block ptp_ocp_i2c_notifier = { 4852 .notifier_call = ptp_ocp_i2c_notifier_call, 4853 }; 4854 4855 static int __init 4856 ptp_ocp_init(void) 4857 { 4858 const char *what; 4859 int err; 4860 4861 ptp_ocp_debugfs_init(); 4862 4863 what = "timecard class"; 4864 err = class_register(&timecard_class); 4865 if (err) 4866 goto out; 4867 4868 what = "i2c notifier"; 4869 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4870 if (err) 4871 goto out_notifier; 4872 4873 what = "ptp_ocp driver"; 4874 err = pci_register_driver(&ptp_ocp_driver); 4875 if (err) 4876 goto out_register; 4877 4878 return 0; 4879 4880 out_register: 4881 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4882 out_notifier: 4883 class_unregister(&timecard_class); 4884 out: 4885 ptp_ocp_debugfs_fini(); 4886 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); 4887 return err; 4888 } 4889 4890 static void __exit 4891 ptp_ocp_fini(void) 4892 { 4893 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); 4894 pci_unregister_driver(&ptp_ocp_driver); 4895 class_unregister(&timecard_class); 4896 ptp_ocp_debugfs_fini(); 4897 } 4898 4899 module_init(ptp_ocp_init); 4900 module_exit(ptp_ocp_fini); 4901 4902 MODULE_DESCRIPTION("OpenCompute TimeCard driver"); 4903 MODULE_LICENSE("GPL v2"); 4904