1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PTP 1588 clock support 4 * 5 * Copyright (C) 2010 OMICRON electronics GmbH 6 */ 7 #include <linux/device.h> 8 #include <linux/err.h> 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/posix-clock.h> 13 #include <linux/pps_kernel.h> 14 #include <linux/slab.h> 15 #include <linux/syscalls.h> 16 #include <linux/uaccess.h> 17 #include <linux/debugfs.h> 18 #include <linux/xarray.h> 19 #include <uapi/linux/sched/types.h> 20 21 #include "ptp_private.h" 22 23 #define PTP_MAX_ALARMS 4 24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) 25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT 26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) 27 28 const struct class ptp_class = { 29 .name = "ptp", 30 .dev_groups = ptp_groups 31 }; 32 33 /* private globals */ 34 35 static dev_t ptp_devt; 36 37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map); 38 39 /* time stamp event queue operations */ 40 41 static inline int queue_free(struct timestamp_event_queue *q) 42 { 43 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; 44 } 45 46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue, 47 struct ptp_clock_event *src) 48 { 49 struct ptp_extts_event *dst; 50 struct timespec64 offset_ts; 51 unsigned long flags; 52 s64 seconds; 53 u32 remainder; 54 55 if (src->type == PTP_CLOCK_EXTTS) { 56 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); 57 } else if (src->type == PTP_CLOCK_EXTOFF) { 58 offset_ts = ns_to_timespec64(src->offset); 59 seconds = offset_ts.tv_sec; 60 remainder = offset_ts.tv_nsec; 61 } else { 62 WARN(1, "%s: unknown type %d\n", __func__, src->type); 63 return; 64 } 65 66 spin_lock_irqsave(&queue->lock, flags); 67 68 dst = &queue->buf[queue->tail]; 69 dst->index = src->index; 70 dst->flags = PTP_EXTTS_EVENT_VALID; 71 dst->t.sec = seconds; 72 dst->t.nsec = remainder; 73 if (src->type == PTP_CLOCK_EXTOFF) 74 dst->flags |= PTP_EXT_OFFSET; 75 76 /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */ 77 if (!queue_free(queue)) 78 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS); 79 80 WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS); 81 82 spin_unlock_irqrestore(&queue->lock, flags); 83 } 84 85 /* posix clock implementation */ 86 87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) 88 { 89 tp->tv_sec = 0; 90 tp->tv_nsec = 1; 91 return 0; 92 } 93 94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) 95 { 96 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 97 98 if (ptp_clock_freerun(ptp)) { 99 pr_err_ratelimited("ptp: physical clock is free running\n"); 100 return -EBUSY; 101 } 102 103 if (!timespec64_valid_settod(tp)) 104 return -EINVAL; 105 106 return ptp->info->settime64(ptp->info, tp); 107 } 108 109 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) 110 { 111 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 112 int err; 113 114 if (ptp->info->gettimex64) 115 err = ptp->info->gettimex64(ptp->info, tp, NULL); 116 else 117 err = ptp->info->gettime64(ptp->info, tp); 118 return err; 119 } 120 121 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) 122 { 123 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 124 struct ptp_clock_info *ops; 125 int err = -EOPNOTSUPP; 126 127 if (tx->modes & (ADJ_SETOFFSET | ADJ_FREQUENCY | ADJ_OFFSET) && 128 ptp_clock_freerun(ptp)) { 129 pr_err("ptp: physical clock is free running\n"); 130 return -EBUSY; 131 } 132 133 ops = ptp->info; 134 135 if (tx->modes & ADJ_SETOFFSET) { 136 struct timespec64 ts, ts2; 137 ktime_t kt; 138 s64 delta; 139 140 ts.tv_sec = tx->time.tv_sec; 141 ts.tv_nsec = tx->time.tv_usec; 142 143 if (!(tx->modes & ADJ_NANO)) 144 ts.tv_nsec *= 1000; 145 146 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) 147 return -EINVAL; 148 149 /* Make sure the offset is valid */ 150 err = ptp_clock_gettime(pc, &ts2); 151 if (err) 152 return err; 153 ts2 = timespec64_add(ts2, ts); 154 if (!timespec64_valid_settod(&ts2)) 155 return -EINVAL; 156 157 kt = timespec64_to_ktime(ts); 158 delta = ktime_to_ns(kt); 159 err = ops->adjtime(ops, delta); 160 } else if (tx->modes & ADJ_FREQUENCY) { 161 long ppb = scaled_ppm_to_ppb(tx->freq); 162 if (ppb > ops->max_adj || ppb < -ops->max_adj) 163 return -ERANGE; 164 err = ops->adjfine(ops, tx->freq); 165 if (!err) 166 ptp->dialed_frequency = tx->freq; 167 } else if (tx->modes & ADJ_OFFSET) { 168 if (ops->adjphase) { 169 s32 max_phase_adj = ops->getmaxphase(ops); 170 s32 offset = tx->offset; 171 172 if (!(tx->modes & ADJ_NANO)) 173 offset *= NSEC_PER_USEC; 174 175 if (offset > max_phase_adj || offset < -max_phase_adj) 176 return -ERANGE; 177 178 err = ops->adjphase(ops, offset); 179 } 180 } else if (tx->modes == 0) { 181 tx->freq = ptp->dialed_frequency; 182 err = 0; 183 } 184 185 return err; 186 } 187 188 static struct posix_clock_operations ptp_clock_ops = { 189 .owner = THIS_MODULE, 190 .clock_adjtime = ptp_clock_adjtime, 191 .clock_gettime = ptp_clock_gettime, 192 .clock_getres = ptp_clock_getres, 193 .clock_settime = ptp_clock_settime, 194 .ioctl = ptp_ioctl, 195 .open = ptp_open, 196 .release = ptp_release, 197 .poll = ptp_poll, 198 .read = ptp_read, 199 }; 200 201 static void ptp_clock_release(struct device *dev) 202 { 203 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev); 204 struct timestamp_event_queue *tsevq; 205 unsigned long flags; 206 207 ptp_cleanup_pin_groups(ptp); 208 kfree(ptp->vclock_index); 209 mutex_destroy(&ptp->pincfg_mux); 210 mutex_destroy(&ptp->n_vclocks_mux); 211 /* Delete first entry */ 212 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 213 tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue, 214 qlist); 215 list_del(&tsevq->qlist); 216 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 217 bitmap_free(tsevq->mask); 218 kfree(tsevq); 219 debugfs_remove(ptp->debugfs_root); 220 xa_erase(&ptp_clocks_map, ptp->index); 221 kfree(ptp); 222 } 223 224 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts) 225 { 226 if (info->getcyclesx64) 227 return info->getcyclesx64(info, ts, NULL); 228 else 229 return info->gettime64(info, ts); 230 } 231 232 static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on) 233 { 234 return -EOPNOTSUPP; 235 } 236 237 static void ptp_aux_kworker(struct kthread_work *work) 238 { 239 struct ptp_clock *ptp = container_of(work, struct ptp_clock, 240 aux_work.work); 241 struct ptp_clock_info *info = ptp->info; 242 long delay; 243 244 delay = info->do_aux_work(info); 245 246 if (delay >= 0) 247 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); 248 } 249 250 /* public interface */ 251 252 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, 253 struct device *parent) 254 { 255 struct ptp_clock *ptp; 256 struct timestamp_event_queue *queue = NULL; 257 int err, index, major = MAJOR(ptp_devt); 258 char debugfsname[16]; 259 size_t size; 260 261 if (info->n_alarm > PTP_MAX_ALARMS) 262 return ERR_PTR(-EINVAL); 263 264 /* Initialize a clock structure. */ 265 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); 266 if (!ptp) { 267 err = -ENOMEM; 268 goto no_memory; 269 } 270 271 err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b, 272 GFP_KERNEL); 273 if (err) 274 goto no_slot; 275 276 ptp->clock.ops = ptp_clock_ops; 277 ptp->info = info; 278 ptp->devid = MKDEV(major, index); 279 ptp->index = index; 280 INIT_LIST_HEAD(&ptp->tsevqs); 281 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 282 if (!queue) { 283 err = -ENOMEM; 284 goto no_memory_queue; 285 } 286 list_add_tail(&queue->qlist, &ptp->tsevqs); 287 spin_lock_init(&ptp->tsevqs_lock); 288 queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL); 289 if (!queue->mask) { 290 err = -ENOMEM; 291 goto no_memory_bitmap; 292 } 293 bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS); 294 spin_lock_init(&queue->lock); 295 mutex_init(&ptp->pincfg_mux); 296 mutex_init(&ptp->n_vclocks_mux); 297 init_waitqueue_head(&ptp->tsev_wq); 298 299 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) { 300 ptp->has_cycles = true; 301 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64) 302 ptp->info->getcycles64 = ptp_getcycles64; 303 } else { 304 /* Free running cycle counter not supported, use time. */ 305 ptp->info->getcycles64 = ptp_getcycles64; 306 307 if (ptp->info->gettimex64) 308 ptp->info->getcyclesx64 = ptp->info->gettimex64; 309 310 if (ptp->info->getcrosststamp) 311 ptp->info->getcrosscycles = ptp->info->getcrosststamp; 312 } 313 314 if (!ptp->info->enable) 315 ptp->info->enable = ptp_enable; 316 317 if (ptp->info->do_aux_work) { 318 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); 319 ptp->kworker = kthread_run_worker(0, "ptp%d", ptp->index); 320 if (IS_ERR(ptp->kworker)) { 321 err = PTR_ERR(ptp->kworker); 322 pr_err("failed to create ptp aux_worker %d\n", err); 323 goto kworker_err; 324 } 325 } 326 327 /* PTP virtual clock is being registered under physical clock */ 328 if (parent && parent->class && parent->class->name && 329 strcmp(parent->class->name, "ptp") == 0) 330 ptp->is_virtual_clock = true; 331 332 if (!ptp->is_virtual_clock) { 333 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS; 334 335 size = sizeof(int) * ptp->max_vclocks; 336 ptp->vclock_index = kzalloc(size, GFP_KERNEL); 337 if (!ptp->vclock_index) { 338 err = -ENOMEM; 339 goto no_mem_for_vclocks; 340 } 341 } 342 343 err = ptp_populate_pin_groups(ptp); 344 if (err) 345 goto no_pin_groups; 346 347 /* Register a new PPS source. */ 348 if (info->pps) { 349 struct pps_source_info pps; 350 memset(&pps, 0, sizeof(pps)); 351 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); 352 pps.mode = PTP_PPS_MODE; 353 pps.owner = info->owner; 354 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); 355 if (IS_ERR(ptp->pps_source)) { 356 err = PTR_ERR(ptp->pps_source); 357 pr_err("failed to register pps source\n"); 358 goto no_pps; 359 } 360 ptp->pps_source->lookup_cookie = ptp; 361 } 362 363 /* Initialize a new device of our class in our clock structure. */ 364 device_initialize(&ptp->dev); 365 ptp->dev.devt = ptp->devid; 366 ptp->dev.class = &ptp_class; 367 ptp->dev.parent = parent; 368 ptp->dev.groups = ptp->pin_attr_groups; 369 ptp->dev.release = ptp_clock_release; 370 dev_set_drvdata(&ptp->dev, ptp); 371 dev_set_name(&ptp->dev, "ptp%d", ptp->index); 372 373 /* Create a posix clock and link it to the device. */ 374 err = posix_clock_register(&ptp->clock, &ptp->dev); 375 if (err) { 376 if (ptp->pps_source) 377 pps_unregister_source(ptp->pps_source); 378 379 if (ptp->kworker) 380 kthread_destroy_worker(ptp->kworker); 381 382 put_device(&ptp->dev); 383 384 pr_err("failed to create posix clock\n"); 385 return ERR_PTR(err); 386 } 387 388 /* Debugfs initialization */ 389 snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index); 390 ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL); 391 392 return ptp; 393 394 no_pps: 395 ptp_cleanup_pin_groups(ptp); 396 no_pin_groups: 397 kfree(ptp->vclock_index); 398 no_mem_for_vclocks: 399 if (ptp->kworker) 400 kthread_destroy_worker(ptp->kworker); 401 kworker_err: 402 mutex_destroy(&ptp->pincfg_mux); 403 mutex_destroy(&ptp->n_vclocks_mux); 404 bitmap_free(queue->mask); 405 no_memory_bitmap: 406 list_del(&queue->qlist); 407 kfree(queue); 408 no_memory_queue: 409 xa_erase(&ptp_clocks_map, index); 410 no_slot: 411 kfree(ptp); 412 no_memory: 413 return ERR_PTR(err); 414 } 415 EXPORT_SYMBOL(ptp_clock_register); 416 417 static int unregister_vclock(struct device *dev, void *data) 418 { 419 struct ptp_clock *ptp = dev_get_drvdata(dev); 420 421 ptp_vclock_unregister(info_to_vclock(ptp->info)); 422 return 0; 423 } 424 425 int ptp_clock_unregister(struct ptp_clock *ptp) 426 { 427 if (ptp_vclock_in_use(ptp)) { 428 device_for_each_child(&ptp->dev, NULL, unregister_vclock); 429 } 430 431 ptp->defunct = 1; 432 wake_up_interruptible(&ptp->tsev_wq); 433 434 if (ptp->kworker) { 435 kthread_cancel_delayed_work_sync(&ptp->aux_work); 436 kthread_destroy_worker(ptp->kworker); 437 } 438 439 /* Release the clock's resources. */ 440 if (ptp->pps_source) 441 pps_unregister_source(ptp->pps_source); 442 443 posix_clock_unregister(&ptp->clock); 444 445 return 0; 446 } 447 EXPORT_SYMBOL(ptp_clock_unregister); 448 449 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) 450 { 451 struct timestamp_event_queue *tsevq; 452 struct pps_event_time evt; 453 unsigned long flags; 454 455 switch (event->type) { 456 457 case PTP_CLOCK_ALARM: 458 break; 459 460 case PTP_CLOCK_EXTTS: 461 case PTP_CLOCK_EXTOFF: 462 /* Enqueue timestamp on selected queues */ 463 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 464 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) { 465 if (test_bit((unsigned int)event->index, tsevq->mask)) 466 enqueue_external_timestamp(tsevq, event); 467 } 468 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 469 wake_up_interruptible(&ptp->tsev_wq); 470 break; 471 472 case PTP_CLOCK_PPS: 473 pps_get_ts(&evt); 474 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); 475 break; 476 477 case PTP_CLOCK_PPSUSR: 478 pps_event(ptp->pps_source, &event->pps_times, 479 PTP_PPS_EVENT, NULL); 480 break; 481 } 482 } 483 EXPORT_SYMBOL(ptp_clock_event); 484 485 int ptp_clock_index(struct ptp_clock *ptp) 486 { 487 return ptp->index; 488 } 489 EXPORT_SYMBOL(ptp_clock_index); 490 491 int ptp_find_pin(struct ptp_clock *ptp, 492 enum ptp_pin_function func, unsigned int chan) 493 { 494 struct ptp_pin_desc *pin = NULL; 495 int i; 496 497 for (i = 0; i < ptp->info->n_pins; i++) { 498 if (ptp->info->pin_config[i].func == func && 499 ptp->info->pin_config[i].chan == chan) { 500 pin = &ptp->info->pin_config[i]; 501 break; 502 } 503 } 504 505 return pin ? i : -1; 506 } 507 EXPORT_SYMBOL(ptp_find_pin); 508 509 int ptp_find_pin_unlocked(struct ptp_clock *ptp, 510 enum ptp_pin_function func, unsigned int chan) 511 { 512 int result; 513 514 mutex_lock(&ptp->pincfg_mux); 515 516 result = ptp_find_pin(ptp, func, chan); 517 518 mutex_unlock(&ptp->pincfg_mux); 519 520 return result; 521 } 522 EXPORT_SYMBOL(ptp_find_pin_unlocked); 523 524 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) 525 { 526 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); 527 } 528 EXPORT_SYMBOL(ptp_schedule_worker); 529 530 void ptp_cancel_worker_sync(struct ptp_clock *ptp) 531 { 532 kthread_cancel_delayed_work_sync(&ptp->aux_work); 533 } 534 EXPORT_SYMBOL(ptp_cancel_worker_sync); 535 536 /* module operations */ 537 538 static void __exit ptp_exit(void) 539 { 540 class_unregister(&ptp_class); 541 unregister_chrdev_region(ptp_devt, MINORMASK + 1); 542 xa_destroy(&ptp_clocks_map); 543 } 544 545 static int __init ptp_init(void) 546 { 547 int err; 548 549 err = class_register(&ptp_class); 550 if (err) { 551 pr_err("ptp: failed to allocate class\n"); 552 return err; 553 } 554 555 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); 556 if (err < 0) { 557 pr_err("ptp: failed to allocate device region\n"); 558 goto no_region; 559 } 560 561 pr_info("PTP clock support registered\n"); 562 return 0; 563 564 no_region: 565 class_unregister(&ptp_class); 566 return err; 567 } 568 569 subsys_initcall(ptp_init); 570 module_exit(ptp_exit); 571 572 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 573 MODULE_DESCRIPTION("PTP clocks support"); 574 MODULE_LICENSE("GPL"); 575