1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PTP 1588 clock support 4 * 5 * Copyright (C) 2010 OMICRON electronics GmbH 6 */ 7 #include <linux/idr.h> 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/init.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/posix-clock.h> 14 #include <linux/pps_kernel.h> 15 #include <linux/slab.h> 16 #include <linux/syscalls.h> 17 #include <linux/uaccess.h> 18 #include <linux/debugfs.h> 19 #include <uapi/linux/sched/types.h> 20 21 #include "ptp_private.h" 22 23 #define PTP_MAX_ALARMS 4 24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) 25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT 26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) 27 28 struct class *ptp_class; 29 30 /* private globals */ 31 32 static dev_t ptp_devt; 33 34 static DEFINE_IDA(ptp_clocks_map); 35 36 /* time stamp event queue operations */ 37 38 static inline int queue_free(struct timestamp_event_queue *q) 39 { 40 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; 41 } 42 43 static void enqueue_external_timestamp(struct timestamp_event_queue *queue, 44 struct ptp_clock_event *src) 45 { 46 struct ptp_extts_event *dst; 47 unsigned long flags; 48 s64 seconds; 49 u32 remainder; 50 51 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); 52 53 spin_lock_irqsave(&queue->lock, flags); 54 55 dst = &queue->buf[queue->tail]; 56 dst->index = src->index; 57 dst->t.sec = seconds; 58 dst->t.nsec = remainder; 59 60 /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */ 61 if (!queue_free(queue)) 62 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS); 63 64 WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS); 65 66 spin_unlock_irqrestore(&queue->lock, flags); 67 } 68 69 /* posix clock implementation */ 70 71 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) 72 { 73 tp->tv_sec = 0; 74 tp->tv_nsec = 1; 75 return 0; 76 } 77 78 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) 79 { 80 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 81 82 if (ptp_clock_freerun(ptp)) { 83 pr_err("ptp: physical clock is free running\n"); 84 return -EBUSY; 85 } 86 87 return ptp->info->settime64(ptp->info, tp); 88 } 89 90 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) 91 { 92 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 93 int err; 94 95 if (ptp->info->gettimex64) 96 err = ptp->info->gettimex64(ptp->info, tp, NULL); 97 else 98 err = ptp->info->gettime64(ptp->info, tp); 99 return err; 100 } 101 102 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) 103 { 104 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 105 struct ptp_clock_info *ops; 106 int err = -EOPNOTSUPP; 107 108 if (ptp_clock_freerun(ptp)) { 109 pr_err("ptp: physical clock is free running\n"); 110 return -EBUSY; 111 } 112 113 ops = ptp->info; 114 115 if (tx->modes & ADJ_SETOFFSET) { 116 struct timespec64 ts; 117 ktime_t kt; 118 s64 delta; 119 120 ts.tv_sec = tx->time.tv_sec; 121 ts.tv_nsec = tx->time.tv_usec; 122 123 if (!(tx->modes & ADJ_NANO)) 124 ts.tv_nsec *= 1000; 125 126 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) 127 return -EINVAL; 128 129 kt = timespec64_to_ktime(ts); 130 delta = ktime_to_ns(kt); 131 err = ops->adjtime(ops, delta); 132 } else if (tx->modes & ADJ_FREQUENCY) { 133 long ppb = scaled_ppm_to_ppb(tx->freq); 134 if (ppb > ops->max_adj || ppb < -ops->max_adj) 135 return -ERANGE; 136 err = ops->adjfine(ops, tx->freq); 137 ptp->dialed_frequency = tx->freq; 138 } else if (tx->modes & ADJ_OFFSET) { 139 if (ops->adjphase) { 140 s32 max_phase_adj = ops->getmaxphase(ops); 141 s32 offset = tx->offset; 142 143 if (!(tx->modes & ADJ_NANO)) 144 offset *= NSEC_PER_USEC; 145 146 if (offset > max_phase_adj || offset < -max_phase_adj) 147 return -ERANGE; 148 149 err = ops->adjphase(ops, offset); 150 } 151 } else if (tx->modes == 0) { 152 tx->freq = ptp->dialed_frequency; 153 err = 0; 154 } 155 156 return err; 157 } 158 159 static struct posix_clock_operations ptp_clock_ops = { 160 .owner = THIS_MODULE, 161 .clock_adjtime = ptp_clock_adjtime, 162 .clock_gettime = ptp_clock_gettime, 163 .clock_getres = ptp_clock_getres, 164 .clock_settime = ptp_clock_settime, 165 .ioctl = ptp_ioctl, 166 .open = ptp_open, 167 .release = ptp_release, 168 .poll = ptp_poll, 169 .read = ptp_read, 170 }; 171 172 static void ptp_clock_release(struct device *dev) 173 { 174 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev); 175 struct timestamp_event_queue *tsevq; 176 unsigned long flags; 177 178 ptp_cleanup_pin_groups(ptp); 179 kfree(ptp->vclock_index); 180 mutex_destroy(&ptp->pincfg_mux); 181 mutex_destroy(&ptp->n_vclocks_mux); 182 /* Delete first entry */ 183 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 184 tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue, 185 qlist); 186 list_del(&tsevq->qlist); 187 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 188 bitmap_free(tsevq->mask); 189 kfree(tsevq); 190 debugfs_remove(ptp->debugfs_root); 191 ida_free(&ptp_clocks_map, ptp->index); 192 kfree(ptp); 193 } 194 195 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts) 196 { 197 if (info->getcyclesx64) 198 return info->getcyclesx64(info, ts, NULL); 199 else 200 return info->gettime64(info, ts); 201 } 202 203 static void ptp_aux_kworker(struct kthread_work *work) 204 { 205 struct ptp_clock *ptp = container_of(work, struct ptp_clock, 206 aux_work.work); 207 struct ptp_clock_info *info = ptp->info; 208 long delay; 209 210 delay = info->do_aux_work(info); 211 212 if (delay >= 0) 213 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); 214 } 215 216 /* public interface */ 217 218 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, 219 struct device *parent) 220 { 221 struct ptp_clock *ptp; 222 struct timestamp_event_queue *queue = NULL; 223 int err = 0, index, major = MAJOR(ptp_devt); 224 char debugfsname[16]; 225 size_t size; 226 227 if (info->n_alarm > PTP_MAX_ALARMS) 228 return ERR_PTR(-EINVAL); 229 230 /* Initialize a clock structure. */ 231 err = -ENOMEM; 232 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); 233 if (ptp == NULL) 234 goto no_memory; 235 236 index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL); 237 if (index < 0) { 238 err = index; 239 goto no_slot; 240 } 241 242 ptp->clock.ops = ptp_clock_ops; 243 ptp->info = info; 244 ptp->devid = MKDEV(major, index); 245 ptp->index = index; 246 INIT_LIST_HEAD(&ptp->tsevqs); 247 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 248 if (!queue) 249 goto no_memory_queue; 250 list_add_tail(&queue->qlist, &ptp->tsevqs); 251 spin_lock_init(&ptp->tsevqs_lock); 252 queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL); 253 if (!queue->mask) 254 goto no_memory_bitmap; 255 bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS); 256 spin_lock_init(&queue->lock); 257 mutex_init(&ptp->pincfg_mux); 258 mutex_init(&ptp->n_vclocks_mux); 259 init_waitqueue_head(&ptp->tsev_wq); 260 261 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) { 262 ptp->has_cycles = true; 263 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64) 264 ptp->info->getcycles64 = ptp_getcycles64; 265 } else { 266 /* Free running cycle counter not supported, use time. */ 267 ptp->info->getcycles64 = ptp_getcycles64; 268 269 if (ptp->info->gettimex64) 270 ptp->info->getcyclesx64 = ptp->info->gettimex64; 271 272 if (ptp->info->getcrosststamp) 273 ptp->info->getcrosscycles = ptp->info->getcrosststamp; 274 } 275 276 if (ptp->info->do_aux_work) { 277 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); 278 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index); 279 if (IS_ERR(ptp->kworker)) { 280 err = PTR_ERR(ptp->kworker); 281 pr_err("failed to create ptp aux_worker %d\n", err); 282 goto kworker_err; 283 } 284 } 285 286 /* PTP virtual clock is being registered under physical clock */ 287 if (parent && parent->class && parent->class->name && 288 strcmp(parent->class->name, "ptp") == 0) 289 ptp->is_virtual_clock = true; 290 291 if (!ptp->is_virtual_clock) { 292 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS; 293 294 size = sizeof(int) * ptp->max_vclocks; 295 ptp->vclock_index = kzalloc(size, GFP_KERNEL); 296 if (!ptp->vclock_index) { 297 err = -ENOMEM; 298 goto no_mem_for_vclocks; 299 } 300 } 301 302 err = ptp_populate_pin_groups(ptp); 303 if (err) 304 goto no_pin_groups; 305 306 /* Register a new PPS source. */ 307 if (info->pps) { 308 struct pps_source_info pps; 309 memset(&pps, 0, sizeof(pps)); 310 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); 311 pps.mode = PTP_PPS_MODE; 312 pps.owner = info->owner; 313 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); 314 if (IS_ERR(ptp->pps_source)) { 315 err = PTR_ERR(ptp->pps_source); 316 pr_err("failed to register pps source\n"); 317 goto no_pps; 318 } 319 ptp->pps_source->lookup_cookie = ptp; 320 } 321 322 /* Initialize a new device of our class in our clock structure. */ 323 device_initialize(&ptp->dev); 324 ptp->dev.devt = ptp->devid; 325 ptp->dev.class = ptp_class; 326 ptp->dev.parent = parent; 327 ptp->dev.groups = ptp->pin_attr_groups; 328 ptp->dev.release = ptp_clock_release; 329 dev_set_drvdata(&ptp->dev, ptp); 330 dev_set_name(&ptp->dev, "ptp%d", ptp->index); 331 332 /* Create a posix clock and link it to the device. */ 333 err = posix_clock_register(&ptp->clock, &ptp->dev); 334 if (err) { 335 if (ptp->pps_source) 336 pps_unregister_source(ptp->pps_source); 337 338 if (ptp->kworker) 339 kthread_destroy_worker(ptp->kworker); 340 341 put_device(&ptp->dev); 342 343 pr_err("failed to create posix clock\n"); 344 return ERR_PTR(err); 345 } 346 347 /* Debugfs initialization */ 348 snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index); 349 ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL); 350 351 return ptp; 352 353 no_pps: 354 ptp_cleanup_pin_groups(ptp); 355 no_pin_groups: 356 kfree(ptp->vclock_index); 357 no_mem_for_vclocks: 358 if (ptp->kworker) 359 kthread_destroy_worker(ptp->kworker); 360 kworker_err: 361 mutex_destroy(&ptp->pincfg_mux); 362 mutex_destroy(&ptp->n_vclocks_mux); 363 bitmap_free(queue->mask); 364 no_memory_bitmap: 365 list_del(&queue->qlist); 366 kfree(queue); 367 no_memory_queue: 368 ida_free(&ptp_clocks_map, index); 369 no_slot: 370 kfree(ptp); 371 no_memory: 372 return ERR_PTR(err); 373 } 374 EXPORT_SYMBOL(ptp_clock_register); 375 376 static int unregister_vclock(struct device *dev, void *data) 377 { 378 struct ptp_clock *ptp = dev_get_drvdata(dev); 379 380 ptp_vclock_unregister(info_to_vclock(ptp->info)); 381 return 0; 382 } 383 384 int ptp_clock_unregister(struct ptp_clock *ptp) 385 { 386 if (ptp_vclock_in_use(ptp)) { 387 device_for_each_child(&ptp->dev, NULL, unregister_vclock); 388 } 389 390 ptp->defunct = 1; 391 wake_up_interruptible(&ptp->tsev_wq); 392 393 if (ptp->kworker) { 394 kthread_cancel_delayed_work_sync(&ptp->aux_work); 395 kthread_destroy_worker(ptp->kworker); 396 } 397 398 /* Release the clock's resources. */ 399 if (ptp->pps_source) 400 pps_unregister_source(ptp->pps_source); 401 402 posix_clock_unregister(&ptp->clock); 403 404 return 0; 405 } 406 EXPORT_SYMBOL(ptp_clock_unregister); 407 408 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) 409 { 410 struct timestamp_event_queue *tsevq; 411 struct pps_event_time evt; 412 unsigned long flags; 413 414 switch (event->type) { 415 416 case PTP_CLOCK_ALARM: 417 break; 418 419 case PTP_CLOCK_EXTTS: 420 /* Enqueue timestamp on selected queues */ 421 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 422 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) { 423 if (test_bit((unsigned int)event->index, tsevq->mask)) 424 enqueue_external_timestamp(tsevq, event); 425 } 426 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 427 wake_up_interruptible(&ptp->tsev_wq); 428 break; 429 430 case PTP_CLOCK_PPS: 431 pps_get_ts(&evt); 432 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); 433 break; 434 435 case PTP_CLOCK_PPSUSR: 436 pps_event(ptp->pps_source, &event->pps_times, 437 PTP_PPS_EVENT, NULL); 438 break; 439 } 440 } 441 EXPORT_SYMBOL(ptp_clock_event); 442 443 int ptp_clock_index(struct ptp_clock *ptp) 444 { 445 return ptp->index; 446 } 447 EXPORT_SYMBOL(ptp_clock_index); 448 449 int ptp_find_pin(struct ptp_clock *ptp, 450 enum ptp_pin_function func, unsigned int chan) 451 { 452 struct ptp_pin_desc *pin = NULL; 453 int i; 454 455 for (i = 0; i < ptp->info->n_pins; i++) { 456 if (ptp->info->pin_config[i].func == func && 457 ptp->info->pin_config[i].chan == chan) { 458 pin = &ptp->info->pin_config[i]; 459 break; 460 } 461 } 462 463 return pin ? i : -1; 464 } 465 EXPORT_SYMBOL(ptp_find_pin); 466 467 int ptp_find_pin_unlocked(struct ptp_clock *ptp, 468 enum ptp_pin_function func, unsigned int chan) 469 { 470 int result; 471 472 mutex_lock(&ptp->pincfg_mux); 473 474 result = ptp_find_pin(ptp, func, chan); 475 476 mutex_unlock(&ptp->pincfg_mux); 477 478 return result; 479 } 480 EXPORT_SYMBOL(ptp_find_pin_unlocked); 481 482 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) 483 { 484 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); 485 } 486 EXPORT_SYMBOL(ptp_schedule_worker); 487 488 void ptp_cancel_worker_sync(struct ptp_clock *ptp) 489 { 490 kthread_cancel_delayed_work_sync(&ptp->aux_work); 491 } 492 EXPORT_SYMBOL(ptp_cancel_worker_sync); 493 494 /* module operations */ 495 496 static void __exit ptp_exit(void) 497 { 498 class_destroy(ptp_class); 499 unregister_chrdev_region(ptp_devt, MINORMASK + 1); 500 ida_destroy(&ptp_clocks_map); 501 } 502 503 static int __init ptp_init(void) 504 { 505 int err; 506 507 ptp_class = class_create("ptp"); 508 if (IS_ERR(ptp_class)) { 509 pr_err("ptp: failed to allocate class\n"); 510 return PTR_ERR(ptp_class); 511 } 512 513 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); 514 if (err < 0) { 515 pr_err("ptp: failed to allocate device region\n"); 516 goto no_region; 517 } 518 519 ptp_class->dev_groups = ptp_groups; 520 pr_info("PTP clock support registered\n"); 521 return 0; 522 523 no_region: 524 class_destroy(ptp_class); 525 return err; 526 } 527 528 subsys_initcall(ptp_init); 529 module_exit(ptp_exit); 530 531 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 532 MODULE_DESCRIPTION("PTP clocks support"); 533 MODULE_LICENSE("GPL"); 534