xref: /linux/drivers/ptp/ptp_clock.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/bitops.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 
32 #include "ptp_private.h"
33 
34 #define PTP_MAX_ALARMS 4
35 #define PTP_MAX_CLOCKS 8
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 
40 /* private globals */
41 
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44 
45 static DECLARE_BITMAP(ptp_clocks_map, PTP_MAX_CLOCKS);
46 static DEFINE_MUTEX(ptp_clocks_mutex); /* protects 'ptp_clocks_map' */
47 
48 /* time stamp event queue operations */
49 
50 static inline int queue_free(struct timestamp_event_queue *q)
51 {
52 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
53 }
54 
55 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
56 				       struct ptp_clock_event *src)
57 {
58 	struct ptp_extts_event *dst;
59 	unsigned long flags;
60 	s64 seconds;
61 	u32 remainder;
62 
63 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
64 
65 	spin_lock_irqsave(&queue->lock, flags);
66 
67 	dst = &queue->buf[queue->tail];
68 	dst->index = src->index;
69 	dst->t.sec = seconds;
70 	dst->t.nsec = remainder;
71 
72 	if (!queue_free(queue))
73 		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
74 
75 	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
76 
77 	spin_unlock_irqrestore(&queue->lock, flags);
78 }
79 
80 static s32 scaled_ppm_to_ppb(long ppm)
81 {
82 	/*
83 	 * The 'freq' field in the 'struct timex' is in parts per
84 	 * million, but with a 16 bit binary fractional field.
85 	 *
86 	 * We want to calculate
87 	 *
88 	 *    ppb = scaled_ppm * 1000 / 2^16
89 	 *
90 	 * which simplifies to
91 	 *
92 	 *    ppb = scaled_ppm * 125 / 2^13
93 	 */
94 	s64 ppb = 1 + ppm;
95 	ppb *= 125;
96 	ppb >>= 13;
97 	return (s32) ppb;
98 }
99 
100 /* posix clock implementation */
101 
102 static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
103 {
104 	return 1; /* always round timer functions to one nanosecond */
105 }
106 
107 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
108 {
109 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
110 	return ptp->info->settime(ptp->info, tp);
111 }
112 
113 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
114 {
115 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
116 	return ptp->info->gettime(ptp->info, tp);
117 }
118 
119 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
120 {
121 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
122 	struct ptp_clock_info *ops;
123 	int err = -EOPNOTSUPP;
124 
125 	ops = ptp->info;
126 
127 	if (tx->modes & ADJ_SETOFFSET) {
128 		struct timespec ts;
129 		ktime_t kt;
130 		s64 delta;
131 
132 		ts.tv_sec  = tx->time.tv_sec;
133 		ts.tv_nsec = tx->time.tv_usec;
134 
135 		if (!(tx->modes & ADJ_NANO))
136 			ts.tv_nsec *= 1000;
137 
138 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
139 			return -EINVAL;
140 
141 		kt = timespec_to_ktime(ts);
142 		delta = ktime_to_ns(kt);
143 		err = ops->adjtime(ops, delta);
144 
145 	} else if (tx->modes & ADJ_FREQUENCY) {
146 
147 		err = ops->adjfreq(ops, scaled_ppm_to_ppb(tx->freq));
148 	}
149 
150 	return err;
151 }
152 
153 static struct posix_clock_operations ptp_clock_ops = {
154 	.owner		= THIS_MODULE,
155 	.clock_adjtime	= ptp_clock_adjtime,
156 	.clock_gettime	= ptp_clock_gettime,
157 	.clock_getres	= ptp_clock_getres,
158 	.clock_settime	= ptp_clock_settime,
159 	.ioctl		= ptp_ioctl,
160 	.open		= ptp_open,
161 	.poll		= ptp_poll,
162 	.read		= ptp_read,
163 };
164 
165 static void delete_ptp_clock(struct posix_clock *pc)
166 {
167 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
168 
169 	mutex_destroy(&ptp->tsevq_mux);
170 
171 	/* Remove the clock from the bit map. */
172 	mutex_lock(&ptp_clocks_mutex);
173 	clear_bit(ptp->index, ptp_clocks_map);
174 	mutex_unlock(&ptp_clocks_mutex);
175 
176 	kfree(ptp);
177 }
178 
179 /* public interface */
180 
181 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info)
182 {
183 	struct ptp_clock *ptp;
184 	int err = 0, index, major = MAJOR(ptp_devt);
185 
186 	if (info->n_alarm > PTP_MAX_ALARMS)
187 		return ERR_PTR(-EINVAL);
188 
189 	/* Find a free clock slot and reserve it. */
190 	err = -EBUSY;
191 	mutex_lock(&ptp_clocks_mutex);
192 	index = find_first_zero_bit(ptp_clocks_map, PTP_MAX_CLOCKS);
193 	if (index < PTP_MAX_CLOCKS)
194 		set_bit(index, ptp_clocks_map);
195 	else
196 		goto no_slot;
197 
198 	/* Initialize a clock structure. */
199 	err = -ENOMEM;
200 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
201 	if (ptp == NULL)
202 		goto no_memory;
203 
204 	ptp->clock.ops = ptp_clock_ops;
205 	ptp->clock.release = delete_ptp_clock;
206 	ptp->info = info;
207 	ptp->devid = MKDEV(major, index);
208 	ptp->index = index;
209 	spin_lock_init(&ptp->tsevq.lock);
210 	mutex_init(&ptp->tsevq_mux);
211 	init_waitqueue_head(&ptp->tsev_wq);
212 
213 	/* Create a new device in our class. */
214 	ptp->dev = device_create(ptp_class, NULL, ptp->devid, ptp,
215 				 "ptp%d", ptp->index);
216 	if (IS_ERR(ptp->dev))
217 		goto no_device;
218 
219 	dev_set_drvdata(ptp->dev, ptp);
220 
221 	err = ptp_populate_sysfs(ptp);
222 	if (err)
223 		goto no_sysfs;
224 
225 	/* Register a new PPS source. */
226 	if (info->pps) {
227 		struct pps_source_info pps;
228 		memset(&pps, 0, sizeof(pps));
229 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
230 		pps.mode = PTP_PPS_MODE;
231 		pps.owner = info->owner;
232 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
233 		if (!ptp->pps_source) {
234 			pr_err("failed to register pps source\n");
235 			goto no_pps;
236 		}
237 	}
238 
239 	/* Create a posix clock. */
240 	err = posix_clock_register(&ptp->clock, ptp->devid);
241 	if (err) {
242 		pr_err("failed to create posix clock\n");
243 		goto no_clock;
244 	}
245 
246 	mutex_unlock(&ptp_clocks_mutex);
247 	return ptp;
248 
249 no_clock:
250 	if (ptp->pps_source)
251 		pps_unregister_source(ptp->pps_source);
252 no_pps:
253 	ptp_cleanup_sysfs(ptp);
254 no_sysfs:
255 	device_destroy(ptp_class, ptp->devid);
256 no_device:
257 	mutex_destroy(&ptp->tsevq_mux);
258 	kfree(ptp);
259 no_memory:
260 	clear_bit(index, ptp_clocks_map);
261 no_slot:
262 	mutex_unlock(&ptp_clocks_mutex);
263 	return ERR_PTR(err);
264 }
265 EXPORT_SYMBOL(ptp_clock_register);
266 
267 int ptp_clock_unregister(struct ptp_clock *ptp)
268 {
269 	ptp->defunct = 1;
270 	wake_up_interruptible(&ptp->tsev_wq);
271 
272 	/* Release the clock's resources. */
273 	if (ptp->pps_source)
274 		pps_unregister_source(ptp->pps_source);
275 	ptp_cleanup_sysfs(ptp);
276 	device_destroy(ptp_class, ptp->devid);
277 
278 	posix_clock_unregister(&ptp->clock);
279 	return 0;
280 }
281 EXPORT_SYMBOL(ptp_clock_unregister);
282 
283 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
284 {
285 	struct pps_event_time evt;
286 
287 	switch (event->type) {
288 
289 	case PTP_CLOCK_ALARM:
290 		break;
291 
292 	case PTP_CLOCK_EXTTS:
293 		enqueue_external_timestamp(&ptp->tsevq, event);
294 		wake_up_interruptible(&ptp->tsev_wq);
295 		break;
296 
297 	case PTP_CLOCK_PPS:
298 		pps_get_ts(&evt);
299 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
300 		break;
301 	}
302 }
303 EXPORT_SYMBOL(ptp_clock_event);
304 
305 /* module operations */
306 
307 static void __exit ptp_exit(void)
308 {
309 	class_destroy(ptp_class);
310 	unregister_chrdev_region(ptp_devt, PTP_MAX_CLOCKS);
311 }
312 
313 static int __init ptp_init(void)
314 {
315 	int err;
316 
317 	ptp_class = class_create(THIS_MODULE, "ptp");
318 	if (IS_ERR(ptp_class)) {
319 		pr_err("ptp: failed to allocate class\n");
320 		return PTR_ERR(ptp_class);
321 	}
322 
323 	err = alloc_chrdev_region(&ptp_devt, 0, PTP_MAX_CLOCKS, "ptp");
324 	if (err < 0) {
325 		pr_err("ptp: failed to allocate device region\n");
326 		goto no_region;
327 	}
328 
329 	ptp_class->dev_attrs = ptp_dev_attrs;
330 	pr_info("PTP clock support registered\n");
331 	return 0;
332 
333 no_region:
334 	class_destroy(ptp_class);
335 	return err;
336 }
337 
338 subsys_initcall(ptp_init);
339 module_exit(ptp_exit);
340 
341 MODULE_AUTHOR("Richard Cochran <richard.cochran@omicron.at>");
342 MODULE_DESCRIPTION("PTP clocks support");
343 MODULE_LICENSE("GPL");
344