xref: /linux/drivers/ptp/ptp_clock.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * PTP 1588 clock support
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/bitops.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
31 
32 #include "ptp_private.h"
33 
34 #define PTP_MAX_ALARMS 4
35 #define PTP_MAX_CLOCKS 8
36 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
37 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
38 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 
40 /* private globals */
41 
42 static dev_t ptp_devt;
43 static struct class *ptp_class;
44 
45 static DECLARE_BITMAP(ptp_clocks_map, PTP_MAX_CLOCKS);
46 static DEFINE_MUTEX(ptp_clocks_mutex); /* protects 'ptp_clocks_map' */
47 
48 /* time stamp event queue operations */
49 
50 static inline int queue_free(struct timestamp_event_queue *q)
51 {
52 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
53 }
54 
55 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
56 				       struct ptp_clock_event *src)
57 {
58 	struct ptp_extts_event *dst;
59 	unsigned long flags;
60 	s64 seconds;
61 	u32 remainder;
62 
63 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
64 
65 	spin_lock_irqsave(&queue->lock, flags);
66 
67 	dst = &queue->buf[queue->tail];
68 	dst->index = src->index;
69 	dst->t.sec = seconds;
70 	dst->t.nsec = remainder;
71 
72 	if (!queue_free(queue))
73 		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
74 
75 	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
76 
77 	spin_unlock_irqrestore(&queue->lock, flags);
78 }
79 
80 static s32 scaled_ppm_to_ppb(long ppm)
81 {
82 	/*
83 	 * The 'freq' field in the 'struct timex' is in parts per
84 	 * million, but with a 16 bit binary fractional field.
85 	 *
86 	 * We want to calculate
87 	 *
88 	 *    ppb = scaled_ppm * 1000 / 2^16
89 	 *
90 	 * which simplifies to
91 	 *
92 	 *    ppb = scaled_ppm * 125 / 2^13
93 	 */
94 	s64 ppb = 1 + ppm;
95 	ppb *= 125;
96 	ppb >>= 13;
97 	return (s32) ppb;
98 }
99 
100 /* posix clock implementation */
101 
102 static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
103 {
104 	tp->tv_sec = 0;
105 	tp->tv_nsec = 1;
106 	return 0;
107 }
108 
109 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
110 {
111 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
112 	return ptp->info->settime(ptp->info, tp);
113 }
114 
115 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
116 {
117 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118 	return ptp->info->gettime(ptp->info, tp);
119 }
120 
121 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
122 {
123 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
124 	struct ptp_clock_info *ops;
125 	int err = -EOPNOTSUPP;
126 
127 	ops = ptp->info;
128 
129 	if (tx->modes & ADJ_SETOFFSET) {
130 		struct timespec ts;
131 		ktime_t kt;
132 		s64 delta;
133 
134 		ts.tv_sec  = tx->time.tv_sec;
135 		ts.tv_nsec = tx->time.tv_usec;
136 
137 		if (!(tx->modes & ADJ_NANO))
138 			ts.tv_nsec *= 1000;
139 
140 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
141 			return -EINVAL;
142 
143 		kt = timespec_to_ktime(ts);
144 		delta = ktime_to_ns(kt);
145 		err = ops->adjtime(ops, delta);
146 	} else if (tx->modes & ADJ_FREQUENCY) {
147 		err = ops->adjfreq(ops, scaled_ppm_to_ppb(tx->freq));
148 		ptp->dialed_frequency = tx->freq;
149 	} else if (tx->modes == 0) {
150 		tx->freq = ptp->dialed_frequency;
151 		err = 0;
152 	}
153 
154 	return err;
155 }
156 
157 static struct posix_clock_operations ptp_clock_ops = {
158 	.owner		= THIS_MODULE,
159 	.clock_adjtime	= ptp_clock_adjtime,
160 	.clock_gettime	= ptp_clock_gettime,
161 	.clock_getres	= ptp_clock_getres,
162 	.clock_settime	= ptp_clock_settime,
163 	.ioctl		= ptp_ioctl,
164 	.open		= ptp_open,
165 	.poll		= ptp_poll,
166 	.read		= ptp_read,
167 };
168 
169 static void delete_ptp_clock(struct posix_clock *pc)
170 {
171 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172 
173 	mutex_destroy(&ptp->tsevq_mux);
174 
175 	/* Remove the clock from the bit map. */
176 	mutex_lock(&ptp_clocks_mutex);
177 	clear_bit(ptp->index, ptp_clocks_map);
178 	mutex_unlock(&ptp_clocks_mutex);
179 
180 	kfree(ptp);
181 }
182 
183 /* public interface */
184 
185 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
186 				     struct device *parent)
187 {
188 	struct ptp_clock *ptp;
189 	int err = 0, index, major = MAJOR(ptp_devt);
190 
191 	if (info->n_alarm > PTP_MAX_ALARMS)
192 		return ERR_PTR(-EINVAL);
193 
194 	/* Find a free clock slot and reserve it. */
195 	err = -EBUSY;
196 	mutex_lock(&ptp_clocks_mutex);
197 	index = find_first_zero_bit(ptp_clocks_map, PTP_MAX_CLOCKS);
198 	if (index < PTP_MAX_CLOCKS)
199 		set_bit(index, ptp_clocks_map);
200 	else
201 		goto no_slot;
202 
203 	/* Initialize a clock structure. */
204 	err = -ENOMEM;
205 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206 	if (ptp == NULL)
207 		goto no_memory;
208 
209 	ptp->clock.ops = ptp_clock_ops;
210 	ptp->clock.release = delete_ptp_clock;
211 	ptp->info = info;
212 	ptp->devid = MKDEV(major, index);
213 	ptp->index = index;
214 	spin_lock_init(&ptp->tsevq.lock);
215 	mutex_init(&ptp->tsevq_mux);
216 	init_waitqueue_head(&ptp->tsev_wq);
217 
218 	/* Create a new device in our class. */
219 	ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
220 				 "ptp%d", ptp->index);
221 	if (IS_ERR(ptp->dev))
222 		goto no_device;
223 
224 	dev_set_drvdata(ptp->dev, ptp);
225 
226 	err = ptp_populate_sysfs(ptp);
227 	if (err)
228 		goto no_sysfs;
229 
230 	/* Register a new PPS source. */
231 	if (info->pps) {
232 		struct pps_source_info pps;
233 		memset(&pps, 0, sizeof(pps));
234 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
235 		pps.mode = PTP_PPS_MODE;
236 		pps.owner = info->owner;
237 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
238 		if (!ptp->pps_source) {
239 			pr_err("failed to register pps source\n");
240 			goto no_pps;
241 		}
242 	}
243 
244 	/* Create a posix clock. */
245 	err = posix_clock_register(&ptp->clock, ptp->devid);
246 	if (err) {
247 		pr_err("failed to create posix clock\n");
248 		goto no_clock;
249 	}
250 
251 	mutex_unlock(&ptp_clocks_mutex);
252 	return ptp;
253 
254 no_clock:
255 	if (ptp->pps_source)
256 		pps_unregister_source(ptp->pps_source);
257 no_pps:
258 	ptp_cleanup_sysfs(ptp);
259 no_sysfs:
260 	device_destroy(ptp_class, ptp->devid);
261 no_device:
262 	mutex_destroy(&ptp->tsevq_mux);
263 	kfree(ptp);
264 no_memory:
265 	clear_bit(index, ptp_clocks_map);
266 no_slot:
267 	mutex_unlock(&ptp_clocks_mutex);
268 	return ERR_PTR(err);
269 }
270 EXPORT_SYMBOL(ptp_clock_register);
271 
272 int ptp_clock_unregister(struct ptp_clock *ptp)
273 {
274 	ptp->defunct = 1;
275 	wake_up_interruptible(&ptp->tsev_wq);
276 
277 	/* Release the clock's resources. */
278 	if (ptp->pps_source)
279 		pps_unregister_source(ptp->pps_source);
280 	ptp_cleanup_sysfs(ptp);
281 	device_destroy(ptp_class, ptp->devid);
282 
283 	posix_clock_unregister(&ptp->clock);
284 	return 0;
285 }
286 EXPORT_SYMBOL(ptp_clock_unregister);
287 
288 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
289 {
290 	struct pps_event_time evt;
291 
292 	switch (event->type) {
293 
294 	case PTP_CLOCK_ALARM:
295 		break;
296 
297 	case PTP_CLOCK_EXTTS:
298 		enqueue_external_timestamp(&ptp->tsevq, event);
299 		wake_up_interruptible(&ptp->tsev_wq);
300 		break;
301 
302 	case PTP_CLOCK_PPS:
303 		pps_get_ts(&evt);
304 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
305 		break;
306 
307 	case PTP_CLOCK_PPSUSR:
308 		pps_event(ptp->pps_source, &event->pps_times,
309 			  PTP_PPS_EVENT, NULL);
310 		break;
311 	}
312 }
313 EXPORT_SYMBOL(ptp_clock_event);
314 
315 int ptp_clock_index(struct ptp_clock *ptp)
316 {
317 	return ptp->index;
318 }
319 EXPORT_SYMBOL(ptp_clock_index);
320 
321 /* module operations */
322 
323 static void __exit ptp_exit(void)
324 {
325 	class_destroy(ptp_class);
326 	unregister_chrdev_region(ptp_devt, PTP_MAX_CLOCKS);
327 }
328 
329 static int __init ptp_init(void)
330 {
331 	int err;
332 
333 	ptp_class = class_create(THIS_MODULE, "ptp");
334 	if (IS_ERR(ptp_class)) {
335 		pr_err("ptp: failed to allocate class\n");
336 		return PTR_ERR(ptp_class);
337 	}
338 
339 	err = alloc_chrdev_region(&ptp_devt, 0, PTP_MAX_CLOCKS, "ptp");
340 	if (err < 0) {
341 		pr_err("ptp: failed to allocate device region\n");
342 		goto no_region;
343 	}
344 
345 	ptp_class->dev_attrs = ptp_dev_attrs;
346 	pr_info("PTP clock support registered\n");
347 	return 0;
348 
349 no_region:
350 	class_destroy(ptp_class);
351 	return err;
352 }
353 
354 subsys_initcall(ptp_init);
355 module_exit(ptp_exit);
356 
357 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
358 MODULE_DESCRIPTION("PTP clocks support");
359 MODULE_LICENSE("GPL");
360