1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PTP 1588 clock support 4 * 5 * Copyright (C) 2010 OMICRON electronics GmbH 6 */ 7 #include <linux/device.h> 8 #include <linux/err.h> 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/posix-clock.h> 13 #include <linux/pps_kernel.h> 14 #include <linux/slab.h> 15 #include <linux/syscalls.h> 16 #include <linux/uaccess.h> 17 #include <linux/debugfs.h> 18 #include <linux/xarray.h> 19 #include <uapi/linux/sched/types.h> 20 21 #include "ptp_private.h" 22 23 #define PTP_MAX_ALARMS 4 24 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) 25 #define PTP_PPS_EVENT PPS_CAPTUREASSERT 26 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) 27 28 const struct class ptp_class = { 29 .name = "ptp", 30 .dev_groups = ptp_groups 31 }; 32 33 /* private globals */ 34 35 static dev_t ptp_devt; 36 37 static DEFINE_XARRAY_ALLOC(ptp_clocks_map); 38 39 /* time stamp event queue operations */ 40 41 static inline int queue_free(struct timestamp_event_queue *q) 42 { 43 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; 44 } 45 46 static void enqueue_external_timestamp(struct timestamp_event_queue *queue, 47 struct ptp_clock_event *src) 48 { 49 struct ptp_extts_event *dst; 50 struct timespec64 offset_ts; 51 unsigned long flags; 52 s64 seconds; 53 u32 remainder; 54 55 if (src->type == PTP_CLOCK_EXTTS) { 56 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); 57 } else if (src->type == PTP_CLOCK_EXTOFF) { 58 offset_ts = ns_to_timespec64(src->offset); 59 seconds = offset_ts.tv_sec; 60 remainder = offset_ts.tv_nsec; 61 } else { 62 WARN(1, "%s: unknown type %d\n", __func__, src->type); 63 return; 64 } 65 66 spin_lock_irqsave(&queue->lock, flags); 67 68 dst = &queue->buf[queue->tail]; 69 dst->index = src->index; 70 dst->flags = PTP_EXTTS_EVENT_VALID; 71 dst->t.sec = seconds; 72 dst->t.nsec = remainder; 73 if (src->type == PTP_CLOCK_EXTOFF) 74 dst->flags |= PTP_EXT_OFFSET; 75 76 /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */ 77 if (!queue_free(queue)) 78 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS); 79 80 WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS); 81 82 spin_unlock_irqrestore(&queue->lock, flags); 83 } 84 85 /* posix clock implementation */ 86 87 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) 88 { 89 tp->tv_sec = 0; 90 tp->tv_nsec = 1; 91 return 0; 92 } 93 94 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) 95 { 96 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 97 98 if (ptp_clock_freerun(ptp)) { 99 pr_err("ptp: physical clock is free running\n"); 100 return -EBUSY; 101 } 102 103 return ptp->info->settime64(ptp->info, tp); 104 } 105 106 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) 107 { 108 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 109 int err; 110 111 if (ptp->info->gettimex64) 112 err = ptp->info->gettimex64(ptp->info, tp, NULL); 113 else 114 err = ptp->info->gettime64(ptp->info, tp); 115 return err; 116 } 117 118 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) 119 { 120 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); 121 struct ptp_clock_info *ops; 122 int err = -EOPNOTSUPP; 123 124 if (ptp_clock_freerun(ptp)) { 125 pr_err("ptp: physical clock is free running\n"); 126 return -EBUSY; 127 } 128 129 ops = ptp->info; 130 131 if (tx->modes & ADJ_SETOFFSET) { 132 struct timespec64 ts; 133 ktime_t kt; 134 s64 delta; 135 136 ts.tv_sec = tx->time.tv_sec; 137 ts.tv_nsec = tx->time.tv_usec; 138 139 if (!(tx->modes & ADJ_NANO)) 140 ts.tv_nsec *= 1000; 141 142 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) 143 return -EINVAL; 144 145 kt = timespec64_to_ktime(ts); 146 delta = ktime_to_ns(kt); 147 err = ops->adjtime(ops, delta); 148 } else if (tx->modes & ADJ_FREQUENCY) { 149 long ppb = scaled_ppm_to_ppb(tx->freq); 150 if (ppb > ops->max_adj || ppb < -ops->max_adj) 151 return -ERANGE; 152 err = ops->adjfine(ops, tx->freq); 153 if (!err) 154 ptp->dialed_frequency = tx->freq; 155 } else if (tx->modes & ADJ_OFFSET) { 156 if (ops->adjphase) { 157 s32 max_phase_adj = ops->getmaxphase(ops); 158 s32 offset = tx->offset; 159 160 if (!(tx->modes & ADJ_NANO)) 161 offset *= NSEC_PER_USEC; 162 163 if (offset > max_phase_adj || offset < -max_phase_adj) 164 return -ERANGE; 165 166 err = ops->adjphase(ops, offset); 167 } 168 } else if (tx->modes == 0) { 169 tx->freq = ptp->dialed_frequency; 170 err = 0; 171 } 172 173 return err; 174 } 175 176 static struct posix_clock_operations ptp_clock_ops = { 177 .owner = THIS_MODULE, 178 .clock_adjtime = ptp_clock_adjtime, 179 .clock_gettime = ptp_clock_gettime, 180 .clock_getres = ptp_clock_getres, 181 .clock_settime = ptp_clock_settime, 182 .ioctl = ptp_ioctl, 183 .open = ptp_open, 184 .release = ptp_release, 185 .poll = ptp_poll, 186 .read = ptp_read, 187 }; 188 189 static void ptp_clock_release(struct device *dev) 190 { 191 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev); 192 struct timestamp_event_queue *tsevq; 193 unsigned long flags; 194 195 ptp_cleanup_pin_groups(ptp); 196 kfree(ptp->vclock_index); 197 mutex_destroy(&ptp->pincfg_mux); 198 mutex_destroy(&ptp->n_vclocks_mux); 199 /* Delete first entry */ 200 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 201 tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue, 202 qlist); 203 list_del(&tsevq->qlist); 204 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 205 bitmap_free(tsevq->mask); 206 kfree(tsevq); 207 debugfs_remove(ptp->debugfs_root); 208 xa_erase(&ptp_clocks_map, ptp->index); 209 kfree(ptp); 210 } 211 212 static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts) 213 { 214 if (info->getcyclesx64) 215 return info->getcyclesx64(info, ts, NULL); 216 else 217 return info->gettime64(info, ts); 218 } 219 220 static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on) 221 { 222 return -EOPNOTSUPP; 223 } 224 225 static void ptp_aux_kworker(struct kthread_work *work) 226 { 227 struct ptp_clock *ptp = container_of(work, struct ptp_clock, 228 aux_work.work); 229 struct ptp_clock_info *info = ptp->info; 230 long delay; 231 232 delay = info->do_aux_work(info); 233 234 if (delay >= 0) 235 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); 236 } 237 238 /* public interface */ 239 240 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, 241 struct device *parent) 242 { 243 struct ptp_clock *ptp; 244 struct timestamp_event_queue *queue = NULL; 245 int err, index, major = MAJOR(ptp_devt); 246 char debugfsname[16]; 247 size_t size; 248 249 if (info->n_alarm > PTP_MAX_ALARMS) 250 return ERR_PTR(-EINVAL); 251 252 /* Initialize a clock structure. */ 253 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); 254 if (!ptp) { 255 err = -ENOMEM; 256 goto no_memory; 257 } 258 259 err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b, 260 GFP_KERNEL); 261 if (err) 262 goto no_slot; 263 264 ptp->clock.ops = ptp_clock_ops; 265 ptp->info = info; 266 ptp->devid = MKDEV(major, index); 267 ptp->index = index; 268 INIT_LIST_HEAD(&ptp->tsevqs); 269 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 270 if (!queue) { 271 err = -ENOMEM; 272 goto no_memory_queue; 273 } 274 list_add_tail(&queue->qlist, &ptp->tsevqs); 275 spin_lock_init(&ptp->tsevqs_lock); 276 queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL); 277 if (!queue->mask) { 278 err = -ENOMEM; 279 goto no_memory_bitmap; 280 } 281 bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS); 282 spin_lock_init(&queue->lock); 283 mutex_init(&ptp->pincfg_mux); 284 mutex_init(&ptp->n_vclocks_mux); 285 init_waitqueue_head(&ptp->tsev_wq); 286 287 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) { 288 ptp->has_cycles = true; 289 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64) 290 ptp->info->getcycles64 = ptp_getcycles64; 291 } else { 292 /* Free running cycle counter not supported, use time. */ 293 ptp->info->getcycles64 = ptp_getcycles64; 294 295 if (ptp->info->gettimex64) 296 ptp->info->getcyclesx64 = ptp->info->gettimex64; 297 298 if (ptp->info->getcrosststamp) 299 ptp->info->getcrosscycles = ptp->info->getcrosststamp; 300 } 301 302 if (!ptp->info->enable) 303 ptp->info->enable = ptp_enable; 304 305 if (ptp->info->do_aux_work) { 306 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); 307 ptp->kworker = kthread_run_worker(0, "ptp%d", ptp->index); 308 if (IS_ERR(ptp->kworker)) { 309 err = PTR_ERR(ptp->kworker); 310 pr_err("failed to create ptp aux_worker %d\n", err); 311 goto kworker_err; 312 } 313 } 314 315 /* PTP virtual clock is being registered under physical clock */ 316 if (parent && parent->class && parent->class->name && 317 strcmp(parent->class->name, "ptp") == 0) 318 ptp->is_virtual_clock = true; 319 320 if (!ptp->is_virtual_clock) { 321 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS; 322 323 size = sizeof(int) * ptp->max_vclocks; 324 ptp->vclock_index = kzalloc(size, GFP_KERNEL); 325 if (!ptp->vclock_index) { 326 err = -ENOMEM; 327 goto no_mem_for_vclocks; 328 } 329 } 330 331 err = ptp_populate_pin_groups(ptp); 332 if (err) 333 goto no_pin_groups; 334 335 /* Register a new PPS source. */ 336 if (info->pps) { 337 struct pps_source_info pps; 338 memset(&pps, 0, sizeof(pps)); 339 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); 340 pps.mode = PTP_PPS_MODE; 341 pps.owner = info->owner; 342 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); 343 if (IS_ERR(ptp->pps_source)) { 344 err = PTR_ERR(ptp->pps_source); 345 pr_err("failed to register pps source\n"); 346 goto no_pps; 347 } 348 ptp->pps_source->lookup_cookie = ptp; 349 } 350 351 /* Initialize a new device of our class in our clock structure. */ 352 device_initialize(&ptp->dev); 353 ptp->dev.devt = ptp->devid; 354 ptp->dev.class = &ptp_class; 355 ptp->dev.parent = parent; 356 ptp->dev.groups = ptp->pin_attr_groups; 357 ptp->dev.release = ptp_clock_release; 358 dev_set_drvdata(&ptp->dev, ptp); 359 dev_set_name(&ptp->dev, "ptp%d", ptp->index); 360 361 /* Create a posix clock and link it to the device. */ 362 err = posix_clock_register(&ptp->clock, &ptp->dev); 363 if (err) { 364 if (ptp->pps_source) 365 pps_unregister_source(ptp->pps_source); 366 367 if (ptp->kworker) 368 kthread_destroy_worker(ptp->kworker); 369 370 put_device(&ptp->dev); 371 372 pr_err("failed to create posix clock\n"); 373 return ERR_PTR(err); 374 } 375 376 /* Debugfs initialization */ 377 snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index); 378 ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL); 379 380 return ptp; 381 382 no_pps: 383 ptp_cleanup_pin_groups(ptp); 384 no_pin_groups: 385 kfree(ptp->vclock_index); 386 no_mem_for_vclocks: 387 if (ptp->kworker) 388 kthread_destroy_worker(ptp->kworker); 389 kworker_err: 390 mutex_destroy(&ptp->pincfg_mux); 391 mutex_destroy(&ptp->n_vclocks_mux); 392 bitmap_free(queue->mask); 393 no_memory_bitmap: 394 list_del(&queue->qlist); 395 kfree(queue); 396 no_memory_queue: 397 xa_erase(&ptp_clocks_map, index); 398 no_slot: 399 kfree(ptp); 400 no_memory: 401 return ERR_PTR(err); 402 } 403 EXPORT_SYMBOL(ptp_clock_register); 404 405 static int unregister_vclock(struct device *dev, void *data) 406 { 407 struct ptp_clock *ptp = dev_get_drvdata(dev); 408 409 ptp_vclock_unregister(info_to_vclock(ptp->info)); 410 return 0; 411 } 412 413 int ptp_clock_unregister(struct ptp_clock *ptp) 414 { 415 if (ptp_vclock_in_use(ptp)) { 416 device_for_each_child(&ptp->dev, NULL, unregister_vclock); 417 } 418 419 ptp->defunct = 1; 420 wake_up_interruptible(&ptp->tsev_wq); 421 422 if (ptp->kworker) { 423 kthread_cancel_delayed_work_sync(&ptp->aux_work); 424 kthread_destroy_worker(ptp->kworker); 425 } 426 427 /* Release the clock's resources. */ 428 if (ptp->pps_source) 429 pps_unregister_source(ptp->pps_source); 430 431 posix_clock_unregister(&ptp->clock); 432 433 return 0; 434 } 435 EXPORT_SYMBOL(ptp_clock_unregister); 436 437 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) 438 { 439 struct timestamp_event_queue *tsevq; 440 struct pps_event_time evt; 441 unsigned long flags; 442 443 switch (event->type) { 444 445 case PTP_CLOCK_ALARM: 446 break; 447 448 case PTP_CLOCK_EXTTS: 449 case PTP_CLOCK_EXTOFF: 450 /* Enqueue timestamp on selected queues */ 451 spin_lock_irqsave(&ptp->tsevqs_lock, flags); 452 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) { 453 if (test_bit((unsigned int)event->index, tsevq->mask)) 454 enqueue_external_timestamp(tsevq, event); 455 } 456 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); 457 wake_up_interruptible(&ptp->tsev_wq); 458 break; 459 460 case PTP_CLOCK_PPS: 461 pps_get_ts(&evt); 462 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); 463 break; 464 465 case PTP_CLOCK_PPSUSR: 466 pps_event(ptp->pps_source, &event->pps_times, 467 PTP_PPS_EVENT, NULL); 468 break; 469 } 470 } 471 EXPORT_SYMBOL(ptp_clock_event); 472 473 int ptp_clock_index(struct ptp_clock *ptp) 474 { 475 return ptp->index; 476 } 477 EXPORT_SYMBOL(ptp_clock_index); 478 479 int ptp_find_pin(struct ptp_clock *ptp, 480 enum ptp_pin_function func, unsigned int chan) 481 { 482 struct ptp_pin_desc *pin = NULL; 483 int i; 484 485 for (i = 0; i < ptp->info->n_pins; i++) { 486 if (ptp->info->pin_config[i].func == func && 487 ptp->info->pin_config[i].chan == chan) { 488 pin = &ptp->info->pin_config[i]; 489 break; 490 } 491 } 492 493 return pin ? i : -1; 494 } 495 EXPORT_SYMBOL(ptp_find_pin); 496 497 int ptp_find_pin_unlocked(struct ptp_clock *ptp, 498 enum ptp_pin_function func, unsigned int chan) 499 { 500 int result; 501 502 mutex_lock(&ptp->pincfg_mux); 503 504 result = ptp_find_pin(ptp, func, chan); 505 506 mutex_unlock(&ptp->pincfg_mux); 507 508 return result; 509 } 510 EXPORT_SYMBOL(ptp_find_pin_unlocked); 511 512 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) 513 { 514 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); 515 } 516 EXPORT_SYMBOL(ptp_schedule_worker); 517 518 void ptp_cancel_worker_sync(struct ptp_clock *ptp) 519 { 520 kthread_cancel_delayed_work_sync(&ptp->aux_work); 521 } 522 EXPORT_SYMBOL(ptp_cancel_worker_sync); 523 524 /* module operations */ 525 526 static void __exit ptp_exit(void) 527 { 528 class_unregister(&ptp_class); 529 unregister_chrdev_region(ptp_devt, MINORMASK + 1); 530 xa_destroy(&ptp_clocks_map); 531 } 532 533 static int __init ptp_init(void) 534 { 535 int err; 536 537 err = class_register(&ptp_class); 538 if (err) { 539 pr_err("ptp: failed to allocate class\n"); 540 return err; 541 } 542 543 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); 544 if (err < 0) { 545 pr_err("ptp: failed to allocate device region\n"); 546 goto no_region; 547 } 548 549 pr_info("PTP clock support registered\n"); 550 return 0; 551 552 no_region: 553 class_unregister(&ptp_class); 554 return err; 555 } 556 557 subsys_initcall(ptp_init); 558 module_exit(ptp_exit); 559 560 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); 561 MODULE_DESCRIPTION("PTP clocks support"); 562 MODULE_LICENSE("GPL"); 563