1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Common code for Intel Running Average Power Limit (RAPL) support. 4 * Copyright (c) 2019, Intel Corporation. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/bitmap.h> 9 #include <linux/cleanup.h> 10 #include <linux/cpu.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/intel_rapl.h> 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/log2.h> 17 #include <linux/module.h> 18 #include <linux/nospec.h> 19 #include <linux/perf_event.h> 20 #include <linux/platform_device.h> 21 #include <linux/powercap.h> 22 #include <linux/processor.h> 23 #include <linux/slab.h> 24 #include <linux/suspend.h> 25 #include <linux/sysfs.h> 26 #include <linux/types.h> 27 28 #include <asm/cpu_device_id.h> 29 #include <asm/intel-family.h> 30 #include <asm/iosf_mbi.h> 31 #include <asm/msr.h> 32 33 /* bitmasks for RAPL MSRs, used by primitive access functions */ 34 #define ENERGY_STATUS_MASK 0xffffffff 35 36 #define POWER_LIMIT1_MASK 0x7FFF 37 #define POWER_LIMIT1_ENABLE BIT(15) 38 #define POWER_LIMIT1_CLAMP BIT(16) 39 40 #define POWER_LIMIT2_MASK (0x7FFFULL<<32) 41 #define POWER_LIMIT2_ENABLE BIT_ULL(47) 42 #define POWER_LIMIT2_CLAMP BIT_ULL(48) 43 #define POWER_HIGH_LOCK BIT_ULL(63) 44 #define POWER_LOW_LOCK BIT(31) 45 46 #define POWER_LIMIT4_MASK 0x1FFF 47 48 #define TIME_WINDOW1_MASK (0x7FULL<<17) 49 #define TIME_WINDOW2_MASK (0x7FULL<<49) 50 51 #define POWER_UNIT_OFFSET 0 52 #define POWER_UNIT_MASK 0x0F 53 54 #define ENERGY_UNIT_OFFSET 0x08 55 #define ENERGY_UNIT_MASK 0x1F00 56 57 #define TIME_UNIT_OFFSET 0x10 58 #define TIME_UNIT_MASK 0xF0000 59 60 #define POWER_INFO_MAX_MASK (0x7fffULL<<32) 61 #define POWER_INFO_MIN_MASK (0x7fffULL<<16) 62 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48) 63 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff 64 65 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff 66 #define PP_POLICY_MASK 0x1F 67 68 /* 69 * SPR has different layout for Psys Domain PowerLimit registers. 70 * There are 17 bits of PL1 and PL2 instead of 15 bits. 71 * The Enable bits and TimeWindow bits are also shifted as a result. 72 */ 73 #define PSYS_POWER_LIMIT1_MASK 0x1FFFF 74 #define PSYS_POWER_LIMIT1_ENABLE BIT(17) 75 76 #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32) 77 #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49) 78 79 #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19) 80 #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51) 81 82 /* bitmasks for RAPL TPMI, used by primitive access functions */ 83 #define TPMI_POWER_LIMIT_MASK 0x3FFFF 84 #define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62) 85 #define TPMI_TIME_WINDOW_MASK (0x7FULL<<18) 86 #define TPMI_INFO_SPEC_MASK 0x3FFFF 87 #define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18) 88 #define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36) 89 #define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54) 90 91 /* Non HW constants */ 92 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */ 93 #define RAPL_PRIMITIVE_DUMMY BIT(2) 94 95 #define TIME_WINDOW_MAX_MSEC 40000 96 #define TIME_WINDOW_MIN_MSEC 250 97 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */ 98 enum unit_type { 99 ARBITRARY_UNIT, /* no translation */ 100 POWER_UNIT, 101 ENERGY_UNIT, 102 TIME_UNIT, 103 }; 104 105 /* per domain data, some are optional */ 106 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2) 107 108 #define DOMAIN_STATE_INACTIVE BIT(0) 109 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1) 110 111 static const char *pl_names[NR_POWER_LIMITS] = { 112 [POWER_LIMIT1] = "long_term", 113 [POWER_LIMIT2] = "short_term", 114 [POWER_LIMIT4] = "peak_power", 115 }; 116 117 enum pl_prims { 118 PL_ENABLE, 119 PL_CLAMP, 120 PL_LIMIT, 121 PL_TIME_WINDOW, 122 PL_MAX_POWER, 123 PL_LOCK, 124 }; 125 126 static bool is_pl_valid(struct rapl_domain *rd, int pl) 127 { 128 if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4) 129 return false; 130 return rd->rpl[pl].name ? true : false; 131 } 132 133 static int get_pl_lock_prim(struct rapl_domain *rd, int pl) 134 { 135 if (rd->rp->priv->type == RAPL_IF_TPMI) { 136 if (pl == POWER_LIMIT1) 137 return PL1_LOCK; 138 if (pl == POWER_LIMIT2) 139 return PL2_LOCK; 140 if (pl == POWER_LIMIT4) 141 return PL4_LOCK; 142 } 143 144 /* MSR/MMIO Interface doesn't have Lock bit for PL4 */ 145 if (pl == POWER_LIMIT4) 146 return -EINVAL; 147 148 /* 149 * Power Limit register that supports two power limits has a different 150 * bit position for the Lock bit. 151 */ 152 if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2)) 153 return FW_HIGH_LOCK; 154 return FW_LOCK; 155 } 156 157 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim) 158 { 159 switch (pl) { 160 case POWER_LIMIT1: 161 if (prim == PL_ENABLE) 162 return PL1_ENABLE; 163 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) 164 return PL1_CLAMP; 165 if (prim == PL_LIMIT) 166 return POWER_LIMIT1; 167 if (prim == PL_TIME_WINDOW) 168 return TIME_WINDOW1; 169 if (prim == PL_MAX_POWER) 170 return THERMAL_SPEC_POWER; 171 if (prim == PL_LOCK) 172 return get_pl_lock_prim(rd, pl); 173 return -EINVAL; 174 case POWER_LIMIT2: 175 if (prim == PL_ENABLE) 176 return PL2_ENABLE; 177 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) 178 return PL2_CLAMP; 179 if (prim == PL_LIMIT) 180 return POWER_LIMIT2; 181 if (prim == PL_TIME_WINDOW) 182 return TIME_WINDOW2; 183 if (prim == PL_MAX_POWER) 184 return MAX_POWER; 185 if (prim == PL_LOCK) 186 return get_pl_lock_prim(rd, pl); 187 return -EINVAL; 188 case POWER_LIMIT4: 189 if (prim == PL_LIMIT) 190 return POWER_LIMIT4; 191 if (prim == PL_ENABLE) 192 return PL4_ENABLE; 193 /* PL4 would be around two times PL2, use same prim as PL2. */ 194 if (prim == PL_MAX_POWER) 195 return MAX_POWER; 196 if (prim == PL_LOCK) 197 return get_pl_lock_prim(rd, pl); 198 return -EINVAL; 199 default: 200 return -EINVAL; 201 } 202 } 203 204 #define power_zone_to_rapl_domain(_zone) \ 205 container_of(_zone, struct rapl_domain, power_zone) 206 207 struct rapl_defaults { 208 u8 floor_freq_reg_addr; 209 int (*check_unit)(struct rapl_domain *rd); 210 void (*set_floor_freq)(struct rapl_domain *rd, bool mode); 211 u64 (*compute_time_window)(struct rapl_domain *rd, u64 val, 212 bool to_raw); 213 unsigned int dram_domain_energy_unit; 214 unsigned int psys_domain_energy_unit; 215 bool spr_psys_bits; 216 }; 217 static struct rapl_defaults *defaults_msr; 218 static const struct rapl_defaults defaults_tpmi; 219 220 static struct rapl_defaults *get_defaults(struct rapl_package *rp) 221 { 222 return rp->priv->defaults; 223 } 224 225 /* Sideband MBI registers */ 226 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2) 227 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf) 228 229 #define PACKAGE_PLN_INT_SAVED BIT(0) 230 #define MAX_PRIM_NAME (32) 231 232 /* per domain data. used to describe individual knobs such that access function 233 * can be consolidated into one instead of many inline functions. 234 */ 235 struct rapl_primitive_info { 236 const char *name; 237 u64 mask; 238 int shift; 239 enum rapl_domain_reg_id id; 240 enum unit_type unit; 241 u32 flag; 242 }; 243 244 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \ 245 .name = #p, \ 246 .mask = m, \ 247 .shift = s, \ 248 .id = i, \ 249 .unit = u, \ 250 .flag = f \ 251 } 252 253 static void rapl_init_domains(struct rapl_package *rp); 254 static int rapl_read_data_raw(struct rapl_domain *rd, 255 enum rapl_primitives prim, 256 bool xlate, u64 *data, 257 bool atomic); 258 static int rapl_write_data_raw(struct rapl_domain *rd, 259 enum rapl_primitives prim, 260 unsigned long long value); 261 static int rapl_read_pl_data(struct rapl_domain *rd, int pl, 262 enum pl_prims pl_prim, 263 bool xlate, u64 *data); 264 static int rapl_write_pl_data(struct rapl_domain *rd, int pl, 265 enum pl_prims pl_prim, 266 unsigned long long value); 267 static u64 rapl_unit_xlate(struct rapl_domain *rd, 268 enum unit_type type, u64 value, int to_raw); 269 static void package_power_limit_irq_save(struct rapl_package *rp); 270 271 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */ 272 273 static const char *const rapl_domain_names[] = { 274 "package", 275 "core", 276 "uncore", 277 "dram", 278 "psys", 279 }; 280 281 static int get_energy_counter(struct powercap_zone *power_zone, 282 u64 *energy_raw) 283 { 284 struct rapl_domain *rd; 285 u64 energy_now; 286 287 /* prevent CPU hotplug, make sure the RAPL domain does not go 288 * away while reading the counter. 289 */ 290 cpus_read_lock(); 291 rd = power_zone_to_rapl_domain(power_zone); 292 293 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now, false)) { 294 *energy_raw = energy_now; 295 cpus_read_unlock(); 296 297 return 0; 298 } 299 cpus_read_unlock(); 300 301 return -EIO; 302 } 303 304 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy) 305 { 306 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev); 307 308 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0); 309 return 0; 310 } 311 312 static int release_zone(struct powercap_zone *power_zone) 313 { 314 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); 315 struct rapl_package *rp = rd->rp; 316 317 /* package zone is the last zone of a package, we can free 318 * memory here since all children has been unregistered. 319 */ 320 if (rd->id == RAPL_DOMAIN_PACKAGE) { 321 kfree(rd); 322 rp->domains = NULL; 323 } 324 325 return 0; 326 327 } 328 329 static int find_nr_power_limit(struct rapl_domain *rd) 330 { 331 int i, nr_pl = 0; 332 333 for (i = 0; i < NR_POWER_LIMITS; i++) { 334 if (is_pl_valid(rd, i)) 335 nr_pl++; 336 } 337 338 return nr_pl; 339 } 340 341 static int set_domain_enable(struct powercap_zone *power_zone, bool mode) 342 { 343 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); 344 struct rapl_defaults *defaults = get_defaults(rd->rp); 345 u64 val; 346 int ret; 347 348 cpus_read_lock(); 349 ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode); 350 if (ret) 351 goto end; 352 353 ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, false, &val); 354 if (ret) 355 goto end; 356 357 if (mode != val) { 358 pr_debug("%s cannot be %s\n", power_zone->name, 359 str_enabled_disabled(mode)); 360 goto end; 361 } 362 363 if (defaults->set_floor_freq) 364 defaults->set_floor_freq(rd, mode); 365 366 end: 367 cpus_read_unlock(); 368 369 return ret; 370 } 371 372 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode) 373 { 374 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); 375 u64 val; 376 int ret; 377 378 if (rd->rpl[POWER_LIMIT1].locked) { 379 *mode = false; 380 return 0; 381 } 382 cpus_read_lock(); 383 ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val); 384 if (!ret) 385 *mode = val; 386 cpus_read_unlock(); 387 388 return ret; 389 } 390 391 /* per RAPL domain ops, in the order of rapl_domain_type */ 392 static const struct powercap_zone_ops zone_ops[] = { 393 /* RAPL_DOMAIN_PACKAGE */ 394 { 395 .get_energy_uj = get_energy_counter, 396 .get_max_energy_range_uj = get_max_energy_counter, 397 .release = release_zone, 398 .set_enable = set_domain_enable, 399 .get_enable = get_domain_enable, 400 }, 401 /* RAPL_DOMAIN_PP0 */ 402 { 403 .get_energy_uj = get_energy_counter, 404 .get_max_energy_range_uj = get_max_energy_counter, 405 .release = release_zone, 406 .set_enable = set_domain_enable, 407 .get_enable = get_domain_enable, 408 }, 409 /* RAPL_DOMAIN_PP1 */ 410 { 411 .get_energy_uj = get_energy_counter, 412 .get_max_energy_range_uj = get_max_energy_counter, 413 .release = release_zone, 414 .set_enable = set_domain_enable, 415 .get_enable = get_domain_enable, 416 }, 417 /* RAPL_DOMAIN_DRAM */ 418 { 419 .get_energy_uj = get_energy_counter, 420 .get_max_energy_range_uj = get_max_energy_counter, 421 .release = release_zone, 422 .set_enable = set_domain_enable, 423 .get_enable = get_domain_enable, 424 }, 425 /* RAPL_DOMAIN_PLATFORM */ 426 { 427 .get_energy_uj = get_energy_counter, 428 .get_max_energy_range_uj = get_max_energy_counter, 429 .release = release_zone, 430 .set_enable = set_domain_enable, 431 .get_enable = get_domain_enable, 432 }, 433 }; 434 435 /* 436 * Constraint index used by powercap can be different than power limit (PL) 437 * index in that some PLs maybe missing due to non-existent MSRs. So we 438 * need to convert here by finding the valid PLs only (name populated). 439 */ 440 static int contraint_to_pl(struct rapl_domain *rd, int cid) 441 { 442 int i, j; 443 444 for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) { 445 if (is_pl_valid(rd, i) && j++ == cid) { 446 pr_debug("%s: index %d\n", __func__, i); 447 return i; 448 } 449 } 450 pr_err("Cannot find matching power limit for constraint %d\n", cid); 451 452 return -EINVAL; 453 } 454 455 static int set_power_limit(struct powercap_zone *power_zone, int cid, 456 u64 power_limit) 457 { 458 struct rapl_domain *rd; 459 struct rapl_package *rp; 460 int ret = 0; 461 int id; 462 463 cpus_read_lock(); 464 rd = power_zone_to_rapl_domain(power_zone); 465 id = contraint_to_pl(rd, cid); 466 rp = rd->rp; 467 468 ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit); 469 if (!ret) 470 package_power_limit_irq_save(rp); 471 cpus_read_unlock(); 472 return ret; 473 } 474 475 static int get_current_power_limit(struct powercap_zone *power_zone, int cid, 476 u64 *data) 477 { 478 struct rapl_domain *rd; 479 u64 val; 480 int ret = 0; 481 int id; 482 483 cpus_read_lock(); 484 rd = power_zone_to_rapl_domain(power_zone); 485 id = contraint_to_pl(rd, cid); 486 487 ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val); 488 if (!ret) 489 *data = val; 490 491 cpus_read_unlock(); 492 493 return ret; 494 } 495 496 static int set_time_window(struct powercap_zone *power_zone, int cid, 497 u64 window) 498 { 499 struct rapl_domain *rd; 500 int ret = 0; 501 int id; 502 503 cpus_read_lock(); 504 rd = power_zone_to_rapl_domain(power_zone); 505 id = contraint_to_pl(rd, cid); 506 507 ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window); 508 509 cpus_read_unlock(); 510 return ret; 511 } 512 513 static int get_time_window(struct powercap_zone *power_zone, int cid, 514 u64 *data) 515 { 516 struct rapl_domain *rd; 517 u64 val; 518 int ret = 0; 519 int id; 520 521 cpus_read_lock(); 522 rd = power_zone_to_rapl_domain(power_zone); 523 id = contraint_to_pl(rd, cid); 524 525 ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val); 526 if (!ret) 527 *data = val; 528 529 cpus_read_unlock(); 530 531 return ret; 532 } 533 534 static const char *get_constraint_name(struct powercap_zone *power_zone, 535 int cid) 536 { 537 struct rapl_domain *rd; 538 int id; 539 540 rd = power_zone_to_rapl_domain(power_zone); 541 id = contraint_to_pl(rd, cid); 542 if (id >= 0) 543 return rd->rpl[id].name; 544 545 return NULL; 546 } 547 548 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data) 549 { 550 struct rapl_domain *rd; 551 u64 val; 552 int ret = 0; 553 int id; 554 555 cpus_read_lock(); 556 rd = power_zone_to_rapl_domain(power_zone); 557 id = contraint_to_pl(rd, cid); 558 559 ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val); 560 if (!ret) 561 *data = val; 562 563 /* As a generalization rule, PL4 would be around two times PL2. */ 564 if (id == POWER_LIMIT4) 565 *data = *data * 2; 566 567 cpus_read_unlock(); 568 569 return ret; 570 } 571 572 static const struct powercap_zone_constraint_ops constraint_ops = { 573 .set_power_limit_uw = set_power_limit, 574 .get_power_limit_uw = get_current_power_limit, 575 .set_time_window_us = set_time_window, 576 .get_time_window_us = get_time_window, 577 .get_max_power_uw = get_max_power, 578 .get_name = get_constraint_name, 579 }; 580 581 /* Return the id used for read_raw/write_raw callback */ 582 static int get_rid(struct rapl_package *rp) 583 { 584 return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id; 585 } 586 587 /* called after domain detection and package level data are set */ 588 static void rapl_init_domains(struct rapl_package *rp) 589 { 590 enum rapl_domain_type i; 591 enum rapl_domain_reg_id j; 592 struct rapl_domain *rd = rp->domains; 593 594 for (i = 0; i < RAPL_DOMAIN_MAX; i++) { 595 unsigned int mask = rp->domain_map & (1 << i); 596 int t; 597 598 if (!mask) 599 continue; 600 601 rd->rp = rp; 602 603 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) { 604 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d", 605 rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) : 606 rp->id); 607 } else { 608 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s", 609 rapl_domain_names[i]); 610 } 611 612 rd->id = i; 613 614 /* PL1 is supported by default */ 615 rp->priv->limits[i] |= BIT(POWER_LIMIT1); 616 617 for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) { 618 if (rp->priv->limits[i] & BIT(t)) 619 rd->rpl[t].name = pl_names[t]; 620 } 621 622 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++) 623 rd->regs[j] = rp->priv->regs[i][j]; 624 625 rd++; 626 } 627 } 628 629 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type, 630 u64 value, int to_raw) 631 { 632 u64 units = 1; 633 struct rapl_defaults *defaults = get_defaults(rd->rp); 634 u64 scale = 1; 635 636 switch (type) { 637 case POWER_UNIT: 638 units = rd->power_unit; 639 break; 640 case ENERGY_UNIT: 641 scale = ENERGY_UNIT_SCALE; 642 units = rd->energy_unit; 643 break; 644 case TIME_UNIT: 645 return defaults->compute_time_window(rd, value, to_raw); 646 case ARBITRARY_UNIT: 647 default: 648 return value; 649 } 650 651 if (to_raw) 652 return div64_u64(value, units) * scale; 653 654 value *= units; 655 656 return div64_u64(value, scale); 657 } 658 659 /* RAPL primitives for MSR and MMIO I/F */ 660 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = { 661 /* name, mask, shift, msr index, unit divisor */ 662 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0, 663 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), 664 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32, 665 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), 666 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0, 667 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), 668 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, 669 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), 670 [FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31, 671 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 672 [FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63, 673 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 674 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15, 675 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 676 [PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16, 677 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 678 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47, 679 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 680 [PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48, 681 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 682 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17, 683 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), 684 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49, 685 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), 686 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK, 687 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 688 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32, 689 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 690 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16, 691 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 692 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48, 693 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), 694 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, 695 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), 696 [PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0, 697 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0), 698 [PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0, 699 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), 700 [PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32, 701 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), 702 [PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17, 703 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 704 [PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49, 705 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 706 [PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19, 707 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), 708 [PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51, 709 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), 710 /* non-hardware */ 711 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT, 712 RAPL_PRIMITIVE_DERIVED), 713 }; 714 715 /* RAPL primitives for TPMI I/F */ 716 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = { 717 /* name, mask, shift, msr index, unit divisor */ 718 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0, 719 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), 720 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0, 721 RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0), 722 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0, 723 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), 724 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, 725 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), 726 [PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63, 727 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 728 [PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63, 729 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), 730 [PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63, 731 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), 732 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, 733 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), 734 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, 735 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), 736 [PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, 737 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), 738 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18, 739 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), 740 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18, 741 RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0), 742 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0, 743 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 744 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36, 745 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 746 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18, 747 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), 748 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54, 749 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), 750 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, 751 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), 752 /* non-hardware */ 753 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, 754 POWER_UNIT, RAPL_PRIMITIVE_DERIVED), 755 }; 756 757 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim) 758 { 759 struct rapl_primitive_info *rpi = rp->priv->rpi; 760 761 if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi) 762 return NULL; 763 764 return &rpi[prim]; 765 } 766 767 static int rapl_config(struct rapl_package *rp) 768 { 769 switch (rp->priv->type) { 770 /* MMIO I/F shares the same register layout as MSR registers */ 771 case RAPL_IF_MMIO: 772 case RAPL_IF_MSR: 773 rp->priv->defaults = (void *)defaults_msr; 774 rp->priv->rpi = (void *)rpi_msr; 775 break; 776 case RAPL_IF_TPMI: 777 rp->priv->defaults = (void *)&defaults_tpmi; 778 rp->priv->rpi = (void *)rpi_tpmi; 779 break; 780 default: 781 return -EINVAL; 782 } 783 784 /* defaults_msr can be NULL on unsupported platforms */ 785 if (!rp->priv->defaults || !rp->priv->rpi) 786 return -ENODEV; 787 788 return 0; 789 } 790 791 static enum rapl_primitives 792 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim) 793 { 794 struct rapl_defaults *defaults = get_defaults(rd->rp); 795 796 if (!defaults->spr_psys_bits) 797 return prim; 798 799 if (rd->id != RAPL_DOMAIN_PLATFORM) 800 return prim; 801 802 switch (prim) { 803 case POWER_LIMIT1: 804 return PSYS_POWER_LIMIT1; 805 case POWER_LIMIT2: 806 return PSYS_POWER_LIMIT2; 807 case PL1_ENABLE: 808 return PSYS_PL1_ENABLE; 809 case PL2_ENABLE: 810 return PSYS_PL2_ENABLE; 811 case TIME_WINDOW1: 812 return PSYS_TIME_WINDOW1; 813 case TIME_WINDOW2: 814 return PSYS_TIME_WINDOW2; 815 default: 816 return prim; 817 } 818 } 819 820 /* Read primitive data based on its related struct rapl_primitive_info. 821 * if xlate flag is set, return translated data based on data units, i.e. 822 * time, energy, and power. 823 * RAPL MSRs are non-architectual and are laid out not consistently across 824 * domains. Here we use primitive info to allow writing consolidated access 825 * functions. 826 * For a given primitive, it is processed by MSR mask and shift. Unit conversion 827 * is pre-assigned based on RAPL unit MSRs read at init time. 828 * 63-------------------------- 31--------------------------- 0 829 * | xxxxx (mask) | 830 * | |<- shift ----------------| 831 * 63-------------------------- 31--------------------------- 0 832 */ 833 static int rapl_read_data_raw(struct rapl_domain *rd, 834 enum rapl_primitives prim, bool xlate, u64 *data, 835 bool atomic) 836 { 837 u64 value; 838 enum rapl_primitives prim_fixed = prim_fixups(rd, prim); 839 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); 840 struct reg_action ra; 841 842 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) 843 return -EINVAL; 844 845 ra.reg = rd->regs[rpi->id]; 846 if (!ra.reg.val) 847 return -EINVAL; 848 849 /* non-hardware data are collected by the polling thread */ 850 if (rpi->flag & RAPL_PRIMITIVE_DERIVED) { 851 *data = rd->rdd.primitives[prim]; 852 return 0; 853 } 854 855 ra.mask = rpi->mask; 856 857 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, atomic)) { 858 pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name); 859 return -EIO; 860 } 861 862 value = ra.value >> rpi->shift; 863 864 if (xlate) 865 *data = rapl_unit_xlate(rd, rpi->unit, value, 0); 866 else 867 *data = value; 868 869 return 0; 870 } 871 872 /* Similar use of primitive info in the read counterpart */ 873 static int rapl_write_data_raw(struct rapl_domain *rd, 874 enum rapl_primitives prim, 875 unsigned long long value) 876 { 877 enum rapl_primitives prim_fixed = prim_fixups(rd, prim); 878 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); 879 u64 bits; 880 struct reg_action ra; 881 int ret; 882 883 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) 884 return -EINVAL; 885 886 bits = rapl_unit_xlate(rd, rpi->unit, value, 1); 887 bits <<= rpi->shift; 888 bits &= rpi->mask; 889 890 memset(&ra, 0, sizeof(ra)); 891 892 ra.reg = rd->regs[rpi->id]; 893 ra.mask = rpi->mask; 894 ra.value = bits; 895 896 ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra); 897 898 return ret; 899 } 900 901 static int rapl_read_pl_data(struct rapl_domain *rd, int pl, 902 enum pl_prims pl_prim, bool xlate, u64 *data) 903 { 904 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); 905 906 if (!is_pl_valid(rd, pl)) 907 return -EINVAL; 908 909 return rapl_read_data_raw(rd, prim, xlate, data, false); 910 } 911 912 static int rapl_write_pl_data(struct rapl_domain *rd, int pl, 913 enum pl_prims pl_prim, 914 unsigned long long value) 915 { 916 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); 917 918 if (!is_pl_valid(rd, pl)) 919 return -EINVAL; 920 921 if (rd->rpl[pl].locked) { 922 pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]); 923 return -EACCES; 924 } 925 926 return rapl_write_data_raw(rd, prim, value); 927 } 928 /* 929 * Raw RAPL data stored in MSRs are in certain scales. We need to 930 * convert them into standard units based on the units reported in 931 * the RAPL unit MSRs. This is specific to CPUs as the method to 932 * calculate units differ on different CPUs. 933 * We convert the units to below format based on CPUs. 934 * i.e. 935 * energy unit: picoJoules : Represented in picoJoules by default 936 * power unit : microWatts : Represented in milliWatts by default 937 * time unit : microseconds: Represented in seconds by default 938 */ 939 static int rapl_check_unit_core(struct rapl_domain *rd) 940 { 941 struct reg_action ra; 942 u32 value; 943 944 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; 945 ra.mask = ~0; 946 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) { 947 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", 948 ra.reg.val, rd->rp->name, rd->name); 949 return -ENODEV; 950 } 951 952 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; 953 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); 954 955 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; 956 rd->power_unit = 1000000 / (1 << value); 957 958 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; 959 rd->time_unit = 1000000 / (1 << value); 960 961 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", 962 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); 963 964 return 0; 965 } 966 967 static int rapl_check_unit_atom(struct rapl_domain *rd) 968 { 969 struct reg_action ra; 970 u32 value; 971 972 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; 973 ra.mask = ~0; 974 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) { 975 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", 976 ra.reg.val, rd->rp->name, rd->name); 977 return -ENODEV; 978 } 979 980 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; 981 rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value; 982 983 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; 984 rd->power_unit = (1 << value) * 1000; 985 986 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; 987 rd->time_unit = 1000000 / (1 << value); 988 989 pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n", 990 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); 991 992 return 0; 993 } 994 995 static void power_limit_irq_save_cpu(void *info) 996 { 997 u32 l, h = 0; 998 struct rapl_package *rp = (struct rapl_package *)info; 999 1000 /* save the state of PLN irq mask bit before disabling it */ 1001 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); 1002 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) { 1003 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE; 1004 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED; 1005 } 1006 l &= ~PACKAGE_THERM_INT_PLN_ENABLE; 1007 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); 1008 } 1009 1010 /* REVISIT: 1011 * When package power limit is set artificially low by RAPL, LVT 1012 * thermal interrupt for package power limit should be ignored 1013 * since we are not really exceeding the real limit. The intention 1014 * is to avoid excessive interrupts while we are trying to save power. 1015 * A useful feature might be routing the package_power_limit interrupt 1016 * to userspace via eventfd. once we have a usecase, this is simple 1017 * to do by adding an atomic notifier. 1018 */ 1019 1020 static void package_power_limit_irq_save(struct rapl_package *rp) 1021 { 1022 if (rp->lead_cpu < 0) 1023 return; 1024 1025 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) 1026 return; 1027 1028 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1); 1029 } 1030 1031 /* 1032 * Restore per package power limit interrupt enable state. Called from cpu 1033 * hotplug code on package removal. 1034 */ 1035 static void package_power_limit_irq_restore(struct rapl_package *rp) 1036 { 1037 u32 l, h; 1038 1039 if (rp->lead_cpu < 0) 1040 return; 1041 1042 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) 1043 return; 1044 1045 /* irq enable state not saved, nothing to restore */ 1046 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) 1047 return; 1048 1049 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); 1050 1051 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE) 1052 l |= PACKAGE_THERM_INT_PLN_ENABLE; 1053 else 1054 l &= ~PACKAGE_THERM_INT_PLN_ENABLE; 1055 1056 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); 1057 } 1058 1059 static void set_floor_freq_default(struct rapl_domain *rd, bool mode) 1060 { 1061 int i; 1062 1063 /* always enable clamp such that p-state can go below OS requested 1064 * range. power capping priority over guranteed frequency. 1065 */ 1066 rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode); 1067 1068 for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) { 1069 rapl_write_pl_data(rd, i, PL_ENABLE, mode); 1070 rapl_write_pl_data(rd, i, PL_CLAMP, mode); 1071 } 1072 } 1073 1074 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable) 1075 { 1076 static u32 power_ctrl_orig_val; 1077 struct rapl_defaults *defaults = get_defaults(rd->rp); 1078 u32 mdata; 1079 1080 if (!defaults->floor_freq_reg_addr) { 1081 pr_err("Invalid floor frequency config register\n"); 1082 return; 1083 } 1084 1085 if (!power_ctrl_orig_val) 1086 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ, 1087 defaults->floor_freq_reg_addr, 1088 &power_ctrl_orig_val); 1089 mdata = power_ctrl_orig_val; 1090 if (enable) { 1091 mdata &= ~(0x7f << 8); 1092 mdata |= 1 << 8; 1093 } 1094 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE, 1095 defaults->floor_freq_reg_addr, mdata); 1096 } 1097 1098 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value, 1099 bool to_raw) 1100 { 1101 u64 f, y; /* fraction and exp. used for time unit */ 1102 1103 /* 1104 * Special processing based on 2^Y*(1+F/4), refer 1105 * to Intel Software Developer's manual Vol.3B: CH 14.9.3. 1106 */ 1107 if (!to_raw) { 1108 f = (value & 0x60) >> 5; 1109 y = value & 0x1f; 1110 value = (1 << y) * (4 + f) * rd->time_unit / 4; 1111 } else { 1112 if (value < rd->time_unit) 1113 return 0; 1114 1115 do_div(value, rd->time_unit); 1116 y = ilog2(value); 1117 1118 /* 1119 * The target hardware field is 7 bits wide, so return all ones 1120 * if the exponent is too large. 1121 */ 1122 if (y > 0x1f) 1123 return 0x7f; 1124 1125 f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y); 1126 value = (y & 0x1f) | ((f & 0x3) << 5); 1127 } 1128 return value; 1129 } 1130 1131 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value, 1132 bool to_raw) 1133 { 1134 /* 1135 * Atom time unit encoding is straight forward val * time_unit, 1136 * where time_unit is default to 1 sec. Never 0. 1137 */ 1138 if (!to_raw) 1139 return (value) ? value * rd->time_unit : rd->time_unit; 1140 1141 value = div64_u64(value, rd->time_unit); 1142 1143 return value; 1144 } 1145 1146 /* TPMI Unit register has different layout */ 1147 #define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET 1148 #define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK 1149 #define TPMI_ENERGY_UNIT_OFFSET 0x06 1150 #define TPMI_ENERGY_UNIT_MASK 0x7C0 1151 #define TPMI_TIME_UNIT_OFFSET 0x0C 1152 #define TPMI_TIME_UNIT_MASK 0xF000 1153 1154 static int rapl_check_unit_tpmi(struct rapl_domain *rd) 1155 { 1156 struct reg_action ra; 1157 u32 value; 1158 1159 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; 1160 ra.mask = ~0; 1161 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) { 1162 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", 1163 ra.reg.val, rd->rp->name, rd->name); 1164 return -ENODEV; 1165 } 1166 1167 value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET; 1168 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); 1169 1170 value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET; 1171 rd->power_unit = 1000000 / (1 << value); 1172 1173 value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET; 1174 rd->time_unit = 1000000 / (1 << value); 1175 1176 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", 1177 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); 1178 1179 return 0; 1180 } 1181 1182 static const struct rapl_defaults defaults_tpmi = { 1183 .check_unit = rapl_check_unit_tpmi, 1184 /* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */ 1185 .set_floor_freq = set_floor_freq_default, 1186 .compute_time_window = rapl_compute_time_window_core, 1187 }; 1188 1189 static const struct rapl_defaults rapl_defaults_core = { 1190 .floor_freq_reg_addr = 0, 1191 .check_unit = rapl_check_unit_core, 1192 .set_floor_freq = set_floor_freq_default, 1193 .compute_time_window = rapl_compute_time_window_core, 1194 }; 1195 1196 static const struct rapl_defaults rapl_defaults_hsw_server = { 1197 .check_unit = rapl_check_unit_core, 1198 .set_floor_freq = set_floor_freq_default, 1199 .compute_time_window = rapl_compute_time_window_core, 1200 .dram_domain_energy_unit = 15300, 1201 }; 1202 1203 static const struct rapl_defaults rapl_defaults_spr_server = { 1204 .check_unit = rapl_check_unit_core, 1205 .set_floor_freq = set_floor_freq_default, 1206 .compute_time_window = rapl_compute_time_window_core, 1207 .psys_domain_energy_unit = 1000000000, 1208 .spr_psys_bits = true, 1209 }; 1210 1211 static const struct rapl_defaults rapl_defaults_byt = { 1212 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT, 1213 .check_unit = rapl_check_unit_atom, 1214 .set_floor_freq = set_floor_freq_atom, 1215 .compute_time_window = rapl_compute_time_window_atom, 1216 }; 1217 1218 static const struct rapl_defaults rapl_defaults_tng = { 1219 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG, 1220 .check_unit = rapl_check_unit_atom, 1221 .set_floor_freq = set_floor_freq_atom, 1222 .compute_time_window = rapl_compute_time_window_atom, 1223 }; 1224 1225 static const struct rapl_defaults rapl_defaults_ann = { 1226 .floor_freq_reg_addr = 0, 1227 .check_unit = rapl_check_unit_atom, 1228 .set_floor_freq = NULL, 1229 .compute_time_window = rapl_compute_time_window_atom, 1230 }; 1231 1232 static const struct rapl_defaults rapl_defaults_cht = { 1233 .floor_freq_reg_addr = 0, 1234 .check_unit = rapl_check_unit_atom, 1235 .set_floor_freq = NULL, 1236 .compute_time_window = rapl_compute_time_window_atom, 1237 }; 1238 1239 static const struct rapl_defaults rapl_defaults_amd = { 1240 .check_unit = rapl_check_unit_core, 1241 }; 1242 1243 static const struct x86_cpu_id rapl_ids[] __initconst = { 1244 X86_MATCH_VFM(INTEL_SANDYBRIDGE, &rapl_defaults_core), 1245 X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &rapl_defaults_core), 1246 1247 X86_MATCH_VFM(INTEL_IVYBRIDGE, &rapl_defaults_core), 1248 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &rapl_defaults_core), 1249 1250 X86_MATCH_VFM(INTEL_HASWELL, &rapl_defaults_core), 1251 X86_MATCH_VFM(INTEL_HASWELL_L, &rapl_defaults_core), 1252 X86_MATCH_VFM(INTEL_HASWELL_G, &rapl_defaults_core), 1253 X86_MATCH_VFM(INTEL_HASWELL_X, &rapl_defaults_hsw_server), 1254 1255 X86_MATCH_VFM(INTEL_BROADWELL, &rapl_defaults_core), 1256 X86_MATCH_VFM(INTEL_BROADWELL_G, &rapl_defaults_core), 1257 X86_MATCH_VFM(INTEL_BROADWELL_D, &rapl_defaults_core), 1258 X86_MATCH_VFM(INTEL_BROADWELL_X, &rapl_defaults_hsw_server), 1259 1260 X86_MATCH_VFM(INTEL_SKYLAKE, &rapl_defaults_core), 1261 X86_MATCH_VFM(INTEL_SKYLAKE_L, &rapl_defaults_core), 1262 X86_MATCH_VFM(INTEL_SKYLAKE_X, &rapl_defaults_hsw_server), 1263 X86_MATCH_VFM(INTEL_KABYLAKE_L, &rapl_defaults_core), 1264 X86_MATCH_VFM(INTEL_KABYLAKE, &rapl_defaults_core), 1265 X86_MATCH_VFM(INTEL_CANNONLAKE_L, &rapl_defaults_core), 1266 X86_MATCH_VFM(INTEL_ICELAKE_L, &rapl_defaults_core), 1267 X86_MATCH_VFM(INTEL_ICELAKE, &rapl_defaults_core), 1268 X86_MATCH_VFM(INTEL_ICELAKE_NNPI, &rapl_defaults_core), 1269 X86_MATCH_VFM(INTEL_ICELAKE_X, &rapl_defaults_hsw_server), 1270 X86_MATCH_VFM(INTEL_ICELAKE_D, &rapl_defaults_hsw_server), 1271 X86_MATCH_VFM(INTEL_COMETLAKE_L, &rapl_defaults_core), 1272 X86_MATCH_VFM(INTEL_COMETLAKE, &rapl_defaults_core), 1273 X86_MATCH_VFM(INTEL_TIGERLAKE_L, &rapl_defaults_core), 1274 X86_MATCH_VFM(INTEL_TIGERLAKE, &rapl_defaults_core), 1275 X86_MATCH_VFM(INTEL_ROCKETLAKE, &rapl_defaults_core), 1276 X86_MATCH_VFM(INTEL_ALDERLAKE, &rapl_defaults_core), 1277 X86_MATCH_VFM(INTEL_ALDERLAKE_L, &rapl_defaults_core), 1278 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &rapl_defaults_core), 1279 X86_MATCH_VFM(INTEL_RAPTORLAKE, &rapl_defaults_core), 1280 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, &rapl_defaults_core), 1281 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, &rapl_defaults_core), 1282 X86_MATCH_VFM(INTEL_BARTLETTLAKE, &rapl_defaults_core), 1283 X86_MATCH_VFM(INTEL_METEORLAKE, &rapl_defaults_core), 1284 X86_MATCH_VFM(INTEL_METEORLAKE_L, &rapl_defaults_core), 1285 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &rapl_defaults_spr_server), 1286 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &rapl_defaults_spr_server), 1287 X86_MATCH_VFM(INTEL_LUNARLAKE_M, &rapl_defaults_core), 1288 X86_MATCH_VFM(INTEL_PANTHERLAKE_L, &rapl_defaults_core), 1289 X86_MATCH_VFM(INTEL_WILDCATLAKE_L, &rapl_defaults_core), 1290 X86_MATCH_VFM(INTEL_NOVALAKE, &rapl_defaults_core), 1291 X86_MATCH_VFM(INTEL_NOVALAKE_L, &rapl_defaults_core), 1292 X86_MATCH_VFM(INTEL_ARROWLAKE_H, &rapl_defaults_core), 1293 X86_MATCH_VFM(INTEL_ARROWLAKE, &rapl_defaults_core), 1294 X86_MATCH_VFM(INTEL_ARROWLAKE_U, &rapl_defaults_core), 1295 X86_MATCH_VFM(INTEL_LAKEFIELD, &rapl_defaults_core), 1296 1297 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT, &rapl_defaults_byt), 1298 X86_MATCH_VFM(INTEL_ATOM_AIRMONT, &rapl_defaults_cht), 1299 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng), 1300 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID2,&rapl_defaults_ann), 1301 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT, &rapl_defaults_core), 1302 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS, &rapl_defaults_core), 1303 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D, &rapl_defaults_core), 1304 X86_MATCH_VFM(INTEL_ATOM_TREMONT, &rapl_defaults_core), 1305 X86_MATCH_VFM(INTEL_ATOM_TREMONT_D, &rapl_defaults_core), 1306 X86_MATCH_VFM(INTEL_ATOM_TREMONT_L, &rapl_defaults_core), 1307 1308 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &rapl_defaults_hsw_server), 1309 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &rapl_defaults_hsw_server), 1310 1311 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd), 1312 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd), 1313 X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd), 1314 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd), 1315 {} 1316 }; 1317 MODULE_DEVICE_TABLE(x86cpu, rapl_ids); 1318 1319 /* Read once for all raw primitive data for domains */ 1320 static void rapl_update_domain_data(struct rapl_package *rp) 1321 { 1322 int dmn, prim; 1323 u64 val; 1324 1325 for (dmn = 0; dmn < rp->nr_domains; dmn++) { 1326 pr_debug("update %s domain %s data\n", rp->name, 1327 rp->domains[dmn].name); 1328 /* exclude non-raw primitives */ 1329 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) { 1330 struct rapl_primitive_info *rpi = get_rpi(rp, prim); 1331 1332 if (!rapl_read_data_raw(&rp->domains[dmn], prim, 1333 rpi->unit, &val, false)) 1334 rp->domains[dmn].rdd.primitives[prim] = val; 1335 } 1336 } 1337 1338 } 1339 1340 static int rapl_package_register_powercap(struct rapl_package *rp) 1341 { 1342 struct rapl_domain *rd; 1343 struct powercap_zone *power_zone = NULL; 1344 int nr_pl, ret; 1345 1346 /* Update the domain data of the new package */ 1347 rapl_update_domain_data(rp); 1348 1349 /* first we register package domain as the parent zone */ 1350 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { 1351 if (rd->id == RAPL_DOMAIN_PACKAGE) { 1352 nr_pl = find_nr_power_limit(rd); 1353 pr_debug("register package domain %s\n", rp->name); 1354 power_zone = powercap_register_zone(&rd->power_zone, 1355 rp->priv->control_type, rp->name, 1356 NULL, &zone_ops[rd->id], nr_pl, 1357 &constraint_ops); 1358 if (IS_ERR(power_zone)) { 1359 pr_debug("failed to register power zone %s\n", 1360 rp->name); 1361 return PTR_ERR(power_zone); 1362 } 1363 /* track parent zone in per package/socket data */ 1364 rp->power_zone = power_zone; 1365 /* done, only one package domain per socket */ 1366 break; 1367 } 1368 } 1369 if (!power_zone) { 1370 pr_err("no package domain found, unknown topology!\n"); 1371 return -ENODEV; 1372 } 1373 /* now register domains as children of the socket/package */ 1374 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { 1375 struct powercap_zone *parent = rp->power_zone; 1376 1377 if (rd->id == RAPL_DOMAIN_PACKAGE) 1378 continue; 1379 if (rd->id == RAPL_DOMAIN_PLATFORM) 1380 parent = NULL; 1381 /* number of power limits per domain varies */ 1382 nr_pl = find_nr_power_limit(rd); 1383 power_zone = powercap_register_zone(&rd->power_zone, 1384 rp->priv->control_type, 1385 rd->name, parent, 1386 &zone_ops[rd->id], nr_pl, 1387 &constraint_ops); 1388 1389 if (IS_ERR(power_zone)) { 1390 pr_debug("failed to register power_zone, %s:%s\n", 1391 rp->name, rd->name); 1392 ret = PTR_ERR(power_zone); 1393 goto err_cleanup; 1394 } 1395 } 1396 return 0; 1397 1398 err_cleanup: 1399 /* 1400 * Clean up previously initialized domains within the package if we 1401 * failed after the first domain setup. 1402 */ 1403 while (--rd >= rp->domains) { 1404 pr_debug("unregister %s domain %s\n", rp->name, rd->name); 1405 powercap_unregister_zone(rp->priv->control_type, 1406 &rd->power_zone); 1407 } 1408 1409 return ret; 1410 } 1411 1412 static int rapl_check_domain(int domain, struct rapl_package *rp) 1413 { 1414 struct reg_action ra; 1415 1416 switch (domain) { 1417 case RAPL_DOMAIN_PACKAGE: 1418 case RAPL_DOMAIN_PP0: 1419 case RAPL_DOMAIN_PP1: 1420 case RAPL_DOMAIN_DRAM: 1421 case RAPL_DOMAIN_PLATFORM: 1422 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS]; 1423 break; 1424 default: 1425 pr_err("invalid domain id %d\n", domain); 1426 return -EINVAL; 1427 } 1428 /* make sure domain counters are available and contains non-zero 1429 * values, otherwise skip it. 1430 */ 1431 1432 ra.mask = ENERGY_STATUS_MASK; 1433 if (rp->priv->read_raw(get_rid(rp), &ra, false) || !ra.value) 1434 return -ENODEV; 1435 1436 return 0; 1437 } 1438 1439 /* 1440 * Get per domain energy/power/time unit. 1441 * RAPL Interfaces without per domain unit register will use the package 1442 * scope unit register to set per domain units. 1443 */ 1444 static int rapl_get_domain_unit(struct rapl_domain *rd) 1445 { 1446 struct rapl_defaults *defaults = get_defaults(rd->rp); 1447 int ret; 1448 1449 if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) { 1450 if (!rd->rp->priv->reg_unit.val) { 1451 pr_err("No valid Unit register found\n"); 1452 return -ENODEV; 1453 } 1454 rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit; 1455 } 1456 1457 if (!defaults->check_unit) { 1458 pr_err("missing .check_unit() callback\n"); 1459 return -ENODEV; 1460 } 1461 1462 ret = defaults->check_unit(rd); 1463 if (ret) 1464 return ret; 1465 1466 if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit) 1467 rd->energy_unit = defaults->dram_domain_energy_unit; 1468 if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit) 1469 rd->energy_unit = defaults->psys_domain_energy_unit; 1470 return 0; 1471 } 1472 1473 /* 1474 * Check if power limits are available. Two cases when they are not available: 1475 * 1. Locked by BIOS, in this case we still provide read-only access so that 1476 * users can see what limit is set by the BIOS. 1477 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not 1478 * exist at all. In this case, we do not show the constraints in powercap. 1479 * 1480 * Called after domains are detected and initialized. 1481 */ 1482 static void rapl_detect_powerlimit(struct rapl_domain *rd) 1483 { 1484 u64 val64; 1485 int i; 1486 1487 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { 1488 if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) { 1489 if (val64) { 1490 rd->rpl[i].locked = true; 1491 pr_info("%s:%s:%s locked by BIOS\n", 1492 rd->rp->name, rd->name, pl_names[i]); 1493 } 1494 } 1495 1496 if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64)) 1497 rd->rpl[i].name = NULL; 1498 } 1499 } 1500 1501 /* Detect active and valid domains for the given CPU, caller must 1502 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled. 1503 */ 1504 static int rapl_detect_domains(struct rapl_package *rp) 1505 { 1506 struct rapl_domain *rd; 1507 int i; 1508 1509 for (i = 0; i < RAPL_DOMAIN_MAX; i++) { 1510 /* use physical package id to read counters */ 1511 if (!rapl_check_domain(i, rp)) { 1512 rp->domain_map |= 1 << i; 1513 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]); 1514 } 1515 } 1516 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX); 1517 if (!rp->nr_domains) { 1518 pr_debug("no valid rapl domains found in %s\n", rp->name); 1519 return -ENODEV; 1520 } 1521 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name); 1522 1523 rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain), 1524 GFP_KERNEL); 1525 if (!rp->domains) 1526 return -ENOMEM; 1527 1528 rapl_init_domains(rp); 1529 1530 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { 1531 rapl_get_domain_unit(rd); 1532 rapl_detect_powerlimit(rd); 1533 } 1534 1535 return 0; 1536 } 1537 1538 #ifdef CONFIG_PERF_EVENTS 1539 1540 /* 1541 * Support for RAPL PMU 1542 * 1543 * Register a PMU if any of the registered RAPL Packages have the requirement 1544 * of exposing its energy counters via Perf PMU. 1545 * 1546 * PMU Name: 1547 * power 1548 * 1549 * Events: 1550 * Name Event id RAPL Domain 1551 * energy_cores 0x01 RAPL_DOMAIN_PP0 1552 * energy_pkg 0x02 RAPL_DOMAIN_PACKAGE 1553 * energy_ram 0x03 RAPL_DOMAIN_DRAM 1554 * energy_gpu 0x04 RAPL_DOMAIN_PP1 1555 * energy_psys 0x05 RAPL_DOMAIN_PLATFORM 1556 * 1557 * Unit: 1558 * Joules 1559 * 1560 * Scale: 1561 * 2.3283064365386962890625e-10 1562 * The same RAPL domain in different RAPL Packages may have different 1563 * energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as 1564 * the fixed unit for all energy counters, and covert each hardware 1565 * counter increase to N times of PMU event counter increases. 1566 * 1567 * This is fully compatible with the current MSR RAPL PMU. This means that 1568 * userspace programs like turbostat can use the same code to handle RAPL Perf 1569 * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running 1570 * underlying on the platform. 1571 * 1572 * Note that RAPL Packages can be probed/removed dynamically, and the events 1573 * supported by each TPMI RAPL device can be different. Thus the RAPL PMU 1574 * support is done on demand, which means 1575 * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for 1576 * unsupported counters are not exposed. 1577 * 2. PMU is unregistered and registered when a new RAPL Package is probed and 1578 * supports new counters that are not supported by current PMU. 1579 * 3. PMU is unregistered when all registered RAPL Packages don't need PMU. 1580 */ 1581 1582 struct rapl_pmu { 1583 struct pmu pmu; /* Perf PMU structure */ 1584 u64 timer_ms; /* Maximum expiration time to avoid counter overflow */ 1585 unsigned long domain_map; /* Events supported by current registered PMU */ 1586 bool registered; /* Whether the PMU has been registered or not */ 1587 }; 1588 1589 static struct rapl_pmu rapl_pmu; 1590 1591 /* PMU helpers */ 1592 1593 static int get_pmu_cpu(struct rapl_package *rp) 1594 { 1595 int cpu; 1596 1597 if (!rp->has_pmu) 1598 return nr_cpu_ids; 1599 1600 /* Only TPMI & MSR RAPL are supported for now */ 1601 if (rp->priv->type != RAPL_IF_TPMI && rp->priv->type != RAPL_IF_MSR) 1602 return nr_cpu_ids; 1603 1604 /* TPMI/MSR RAPL uses any CPU in the package for PMU */ 1605 for_each_online_cpu(cpu) 1606 if (topology_physical_package_id(cpu) == rp->id) 1607 return cpu; 1608 1609 return nr_cpu_ids; 1610 } 1611 1612 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu) 1613 { 1614 if (!rp->has_pmu) 1615 return false; 1616 1617 /* Only TPMI & MSR RAPL are supported for now */ 1618 if (rp->priv->type != RAPL_IF_TPMI && rp->priv->type != RAPL_IF_MSR) 1619 return false; 1620 1621 /* TPMI/MSR RAPL uses any CPU in the package for PMU */ 1622 return topology_physical_package_id(cpu) == rp->id; 1623 } 1624 1625 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event) 1626 { 1627 struct rapl_package *rp = event->pmu_private; 1628 1629 return &rp->pmu_data; 1630 } 1631 1632 /* PMU event callbacks */ 1633 1634 static u64 event_read_counter(struct perf_event *event) 1635 { 1636 struct rapl_package *rp = event->pmu_private; 1637 u64 val; 1638 int ret; 1639 1640 /* Return 0 for unsupported events */ 1641 if (event->hw.idx < 0) 1642 return 0; 1643 1644 ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val, true); 1645 1646 /* Return 0 for failed read */ 1647 if (ret) 1648 return 0; 1649 1650 return val; 1651 } 1652 1653 static void __rapl_pmu_event_start(struct perf_event *event) 1654 { 1655 struct rapl_package_pmu_data *data = event_to_pmu_data(event); 1656 1657 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) 1658 return; 1659 1660 event->hw.state = 0; 1661 1662 list_add_tail(&event->active_entry, &data->active_list); 1663 1664 local64_set(&event->hw.prev_count, event_read_counter(event)); 1665 if (++data->n_active == 1) 1666 hrtimer_start(&data->hrtimer, data->timer_interval, 1667 HRTIMER_MODE_REL_PINNED); 1668 } 1669 1670 static void rapl_pmu_event_start(struct perf_event *event, int mode) 1671 { 1672 struct rapl_package_pmu_data *data = event_to_pmu_data(event); 1673 unsigned long flags; 1674 1675 raw_spin_lock_irqsave(&data->lock, flags); 1676 __rapl_pmu_event_start(event); 1677 raw_spin_unlock_irqrestore(&data->lock, flags); 1678 } 1679 1680 static u64 rapl_event_update(struct perf_event *event) 1681 { 1682 struct hw_perf_event *hwc = &event->hw; 1683 struct rapl_package_pmu_data *data = event_to_pmu_data(event); 1684 u64 prev_raw_count, new_raw_count; 1685 s64 delta, sdelta; 1686 1687 /* 1688 * Follow the generic code to drain hwc->prev_count. 1689 * The loop is not expected to run for multiple times. 1690 */ 1691 prev_raw_count = local64_read(&hwc->prev_count); 1692 do { 1693 new_raw_count = event_read_counter(event); 1694 } while (!local64_try_cmpxchg(&hwc->prev_count, 1695 &prev_raw_count, new_raw_count)); 1696 1697 1698 /* 1699 * Now we have the new raw value and have updated the prev 1700 * timestamp already. We can now calculate the elapsed delta 1701 * (event-)time and add that to the generic event. 1702 */ 1703 delta = new_raw_count - prev_raw_count; 1704 1705 /* 1706 * Scale delta to smallest unit (2^-32) 1707 * users must then scale back: count * 1/(1e9*2^32) to get Joules 1708 * or use ldexp(count, -32). 1709 * Watts = Joules/Time delta 1710 */ 1711 sdelta = delta * data->scale[event->hw.flags]; 1712 1713 local64_add(sdelta, &event->count); 1714 1715 return new_raw_count; 1716 } 1717 1718 static void rapl_pmu_event_stop(struct perf_event *event, int mode) 1719 { 1720 struct rapl_package_pmu_data *data = event_to_pmu_data(event); 1721 struct hw_perf_event *hwc = &event->hw; 1722 unsigned long flags; 1723 1724 raw_spin_lock_irqsave(&data->lock, flags); 1725 1726 /* Mark event as deactivated and stopped */ 1727 if (!(hwc->state & PERF_HES_STOPPED)) { 1728 WARN_ON_ONCE(data->n_active <= 0); 1729 if (--data->n_active == 0) 1730 hrtimer_cancel(&data->hrtimer); 1731 1732 list_del(&event->active_entry); 1733 1734 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); 1735 hwc->state |= PERF_HES_STOPPED; 1736 } 1737 1738 /* Check if update of sw counter is necessary */ 1739 if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1740 /* 1741 * Drain the remaining delta count out of a event 1742 * that we are disabling: 1743 */ 1744 rapl_event_update(event); 1745 hwc->state |= PERF_HES_UPTODATE; 1746 } 1747 1748 raw_spin_unlock_irqrestore(&data->lock, flags); 1749 } 1750 1751 static int rapl_pmu_event_add(struct perf_event *event, int mode) 1752 { 1753 struct rapl_package_pmu_data *data = event_to_pmu_data(event); 1754 struct hw_perf_event *hwc = &event->hw; 1755 unsigned long flags; 1756 1757 raw_spin_lock_irqsave(&data->lock, flags); 1758 1759 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1760 1761 if (mode & PERF_EF_START) 1762 __rapl_pmu_event_start(event); 1763 1764 raw_spin_unlock_irqrestore(&data->lock, flags); 1765 1766 return 0; 1767 } 1768 1769 static void rapl_pmu_event_del(struct perf_event *event, int flags) 1770 { 1771 rapl_pmu_event_stop(event, PERF_EF_UPDATE); 1772 } 1773 1774 /* RAPL PMU event ids, same as shown in sysfs */ 1775 enum perf_rapl_events { 1776 PERF_RAPL_PP0 = 1, /* all cores */ 1777 PERF_RAPL_PKG, /* entire package */ 1778 PERF_RAPL_RAM, /* DRAM */ 1779 PERF_RAPL_PP1, /* gpu */ 1780 PERF_RAPL_PSYS, /* psys */ 1781 PERF_RAPL_MAX 1782 }; 1783 #define RAPL_EVENT_MASK GENMASK(7, 0) 1784 1785 static const int event_to_domain[PERF_RAPL_MAX] = { 1786 [PERF_RAPL_PP0] = RAPL_DOMAIN_PP0, 1787 [PERF_RAPL_PKG] = RAPL_DOMAIN_PACKAGE, 1788 [PERF_RAPL_RAM] = RAPL_DOMAIN_DRAM, 1789 [PERF_RAPL_PP1] = RAPL_DOMAIN_PP1, 1790 [PERF_RAPL_PSYS] = RAPL_DOMAIN_PLATFORM, 1791 }; 1792 1793 static int rapl_pmu_event_init(struct perf_event *event) 1794 { 1795 struct rapl_package *pos, *rp = NULL; 1796 u64 cfg = event->attr.config & RAPL_EVENT_MASK; 1797 int domain, idx; 1798 1799 /* Only look at RAPL events */ 1800 if (event->attr.type != event->pmu->type) 1801 return -ENOENT; 1802 1803 /* Check for supported events only */ 1804 if (!cfg || cfg >= PERF_RAPL_MAX) 1805 return -EINVAL; 1806 1807 if (event->cpu < 0) 1808 return -EINVAL; 1809 1810 /* Find out which Package the event belongs to */ 1811 list_for_each_entry(pos, &rapl_packages, plist) { 1812 if (is_rp_pmu_cpu(pos, event->cpu)) { 1813 rp = pos; 1814 break; 1815 } 1816 } 1817 if (!rp) 1818 return -ENODEV; 1819 1820 /* Find out which RAPL Domain the event belongs to */ 1821 domain = event_to_domain[cfg]; 1822 1823 event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG; 1824 event->pmu_private = rp; /* Which package */ 1825 event->hw.flags = domain; /* Which domain */ 1826 1827 event->hw.idx = -1; 1828 /* Find out the index in rp->domains[] to get domain pointer */ 1829 for (idx = 0; idx < rp->nr_domains; idx++) { 1830 if (rp->domains[idx].id == domain) { 1831 event->hw.idx = idx; 1832 break; 1833 } 1834 } 1835 1836 return 0; 1837 } 1838 1839 static void rapl_pmu_event_read(struct perf_event *event) 1840 { 1841 rapl_event_update(event); 1842 } 1843 1844 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer) 1845 { 1846 struct rapl_package_pmu_data *data = 1847 container_of(hrtimer, struct rapl_package_pmu_data, hrtimer); 1848 struct perf_event *event; 1849 unsigned long flags; 1850 1851 if (!data->n_active) 1852 return HRTIMER_NORESTART; 1853 1854 raw_spin_lock_irqsave(&data->lock, flags); 1855 1856 list_for_each_entry(event, &data->active_list, active_entry) 1857 rapl_event_update(event); 1858 1859 raw_spin_unlock_irqrestore(&data->lock, flags); 1860 1861 hrtimer_forward_now(hrtimer, data->timer_interval); 1862 1863 return HRTIMER_RESTART; 1864 } 1865 1866 /* PMU sysfs attributes */ 1867 1868 /* 1869 * There are no default events, but we need to create "events" group (with 1870 * empty attrs) before updating it with detected events. 1871 */ 1872 static struct attribute *attrs_empty[] = { 1873 NULL, 1874 }; 1875 1876 static struct attribute_group pmu_events_group = { 1877 .name = "events", 1878 .attrs = attrs_empty, 1879 }; 1880 1881 static ssize_t cpumask_show(struct device *dev, 1882 struct device_attribute *attr, char *buf) 1883 { 1884 struct rapl_package *rp; 1885 cpumask_var_t cpu_mask; 1886 int cpu; 1887 int ret; 1888 1889 if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1890 return -ENOMEM; 1891 1892 cpus_read_lock(); 1893 1894 cpumask_clear(cpu_mask); 1895 1896 /* Choose a cpu for each RAPL Package */ 1897 list_for_each_entry(rp, &rapl_packages, plist) { 1898 cpu = get_pmu_cpu(rp); 1899 if (cpu < nr_cpu_ids) 1900 cpumask_set_cpu(cpu, cpu_mask); 1901 } 1902 cpus_read_unlock(); 1903 1904 ret = cpumap_print_to_pagebuf(true, buf, cpu_mask); 1905 1906 free_cpumask_var(cpu_mask); 1907 1908 return ret; 1909 } 1910 1911 static DEVICE_ATTR_RO(cpumask); 1912 1913 static struct attribute *pmu_cpumask_attrs[] = { 1914 &dev_attr_cpumask.attr, 1915 NULL 1916 }; 1917 1918 static struct attribute_group pmu_cpumask_group = { 1919 .attrs = pmu_cpumask_attrs, 1920 }; 1921 1922 PMU_FORMAT_ATTR(event, "config:0-7"); 1923 static struct attribute *pmu_format_attr[] = { 1924 &format_attr_event.attr, 1925 NULL 1926 }; 1927 1928 static struct attribute_group pmu_format_group = { 1929 .name = "format", 1930 .attrs = pmu_format_attr, 1931 }; 1932 1933 static const struct attribute_group *pmu_attr_groups[] = { 1934 &pmu_events_group, 1935 &pmu_cpumask_group, 1936 &pmu_format_group, 1937 NULL 1938 }; 1939 1940 #define RAPL_EVENT_ATTR_STR(_name, v, str) \ 1941 static struct perf_pmu_events_attr event_attr_##v = { \ 1942 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1943 .event_str = str, \ 1944 } 1945 1946 RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01"); 1947 RAPL_EVENT_ATTR_STR(energy-pkg, rapl_pkg, "event=0x02"); 1948 RAPL_EVENT_ATTR_STR(energy-ram, rapl_ram, "event=0x03"); 1949 RAPL_EVENT_ATTR_STR(energy-gpu, rapl_gpu, "event=0x04"); 1950 RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05"); 1951 1952 RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_unit_cores, "Joules"); 1953 RAPL_EVENT_ATTR_STR(energy-pkg.unit, rapl_unit_pkg, "Joules"); 1954 RAPL_EVENT_ATTR_STR(energy-ram.unit, rapl_unit_ram, "Joules"); 1955 RAPL_EVENT_ATTR_STR(energy-gpu.unit, rapl_unit_gpu, "Joules"); 1956 RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_unit_psys, "Joules"); 1957 1958 RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_scale_cores, "2.3283064365386962890625e-10"); 1959 RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_scale_pkg, "2.3283064365386962890625e-10"); 1960 RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_scale_ram, "2.3283064365386962890625e-10"); 1961 RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_scale_gpu, "2.3283064365386962890625e-10"); 1962 RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_scale_psys, "2.3283064365386962890625e-10"); 1963 1964 #define RAPL_EVENT_GROUP(_name, domain) \ 1965 static struct attribute *pmu_attr_##_name[] = { \ 1966 &event_attr_rapl_##_name.attr.attr, \ 1967 &event_attr_rapl_unit_##_name.attr.attr, \ 1968 &event_attr_rapl_scale_##_name.attr.attr, \ 1969 NULL \ 1970 }; \ 1971 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event) \ 1972 { \ 1973 return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0; \ 1974 } \ 1975 static struct attribute_group pmu_group_##_name = { \ 1976 .name = "events", \ 1977 .attrs = pmu_attr_##_name, \ 1978 .is_visible = is_visible_##_name, \ 1979 } 1980 1981 RAPL_EVENT_GROUP(cores, RAPL_DOMAIN_PP0); 1982 RAPL_EVENT_GROUP(pkg, RAPL_DOMAIN_PACKAGE); 1983 RAPL_EVENT_GROUP(ram, RAPL_DOMAIN_DRAM); 1984 RAPL_EVENT_GROUP(gpu, RAPL_DOMAIN_PP1); 1985 RAPL_EVENT_GROUP(psys, RAPL_DOMAIN_PLATFORM); 1986 1987 static const struct attribute_group *pmu_attr_update[] = { 1988 &pmu_group_cores, 1989 &pmu_group_pkg, 1990 &pmu_group_ram, 1991 &pmu_group_gpu, 1992 &pmu_group_psys, 1993 NULL 1994 }; 1995 1996 static int rapl_pmu_update(struct rapl_package *rp) 1997 { 1998 int ret = 0; 1999 2000 /* Return if PMU already covers all events supported by current RAPL Package */ 2001 if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map))) 2002 goto end; 2003 2004 /* Unregister previous registered PMU */ 2005 if (rapl_pmu.registered) 2006 perf_pmu_unregister(&rapl_pmu.pmu); 2007 2008 rapl_pmu.registered = false; 2009 rapl_pmu.domain_map |= rp->domain_map; 2010 2011 memset(&rapl_pmu.pmu, 0, sizeof(struct pmu)); 2012 rapl_pmu.pmu.attr_groups = pmu_attr_groups; 2013 rapl_pmu.pmu.attr_update = pmu_attr_update; 2014 rapl_pmu.pmu.task_ctx_nr = perf_invalid_context; 2015 rapl_pmu.pmu.event_init = rapl_pmu_event_init; 2016 rapl_pmu.pmu.add = rapl_pmu_event_add; 2017 rapl_pmu.pmu.del = rapl_pmu_event_del; 2018 rapl_pmu.pmu.start = rapl_pmu_event_start; 2019 rapl_pmu.pmu.stop = rapl_pmu_event_stop; 2020 rapl_pmu.pmu.read = rapl_pmu_event_read; 2021 rapl_pmu.pmu.module = THIS_MODULE; 2022 rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT; 2023 ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1); 2024 if (ret) { 2025 pr_info("Failed to register PMU\n"); 2026 return ret; 2027 } 2028 2029 rapl_pmu.registered = true; 2030 end: 2031 rp->has_pmu = true; 2032 return ret; 2033 } 2034 2035 int rapl_package_add_pmu(struct rapl_package *rp) 2036 { 2037 struct rapl_package_pmu_data *data = &rp->pmu_data; 2038 int idx; 2039 2040 if (rp->has_pmu) 2041 return -EEXIST; 2042 2043 guard(cpus_read_lock)(); 2044 2045 for (idx = 0; idx < rp->nr_domains; idx++) { 2046 struct rapl_domain *rd = &rp->domains[idx]; 2047 int domain = rd->id; 2048 u64 val; 2049 2050 if (!test_bit(domain, &rp->domain_map)) 2051 continue; 2052 2053 /* 2054 * The RAPL PMU granularity is 2^-32 Joules 2055 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase 2056 */ 2057 val = rd->energy_unit * (1ULL << 32); 2058 do_div(val, ENERGY_UNIT_SCALE * 1000000); 2059 data->scale[domain] = val; 2060 2061 if (!rapl_pmu.timer_ms) { 2062 struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER); 2063 2064 /* 2065 * Calculate the timer rate: 2066 * Use reference of 200W for scaling the timeout to avoid counter 2067 * overflows. 2068 * 2069 * max_count = rpi->mask >> rpi->shift + 1 2070 * max_energy_pj = max_count * rd->energy_unit 2071 * max_time_sec = (max_energy_pj / 1000000000) / 200w 2072 * 2073 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2 2074 */ 2075 val = (rpi->mask >> rpi->shift) + 1; 2076 val *= rd->energy_unit; 2077 do_div(val, 1000000 * 200 * 2); 2078 rapl_pmu.timer_ms = val; 2079 2080 pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms); 2081 } 2082 2083 pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]); 2084 } 2085 2086 /* Initialize per package PMU data */ 2087 raw_spin_lock_init(&data->lock); 2088 INIT_LIST_HEAD(&data->active_list); 2089 data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms); 2090 hrtimer_setup(&data->hrtimer, rapl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2091 2092 return rapl_pmu_update(rp); 2093 } 2094 EXPORT_SYMBOL_GPL(rapl_package_add_pmu); 2095 2096 void rapl_package_remove_pmu(struct rapl_package *rp) 2097 { 2098 struct rapl_package *pos; 2099 2100 if (!rp->has_pmu) 2101 return; 2102 2103 guard(cpus_read_lock)(); 2104 2105 list_for_each_entry(pos, &rapl_packages, plist) { 2106 /* PMU is still needed */ 2107 if (pos->has_pmu && pos != rp) 2108 return; 2109 } 2110 2111 perf_pmu_unregister(&rapl_pmu.pmu); 2112 memset(&rapl_pmu, 0, sizeof(struct rapl_pmu)); 2113 } 2114 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu); 2115 #endif 2116 2117 /* called from CPU hotplug notifier, hotplug lock held */ 2118 void rapl_remove_package_cpuslocked(struct rapl_package *rp) 2119 { 2120 struct rapl_domain *rd, *rd_package = NULL; 2121 2122 package_power_limit_irq_restore(rp); 2123 2124 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { 2125 int i; 2126 2127 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { 2128 rapl_write_pl_data(rd, i, PL_ENABLE, 0); 2129 rapl_write_pl_data(rd, i, PL_CLAMP, 0); 2130 } 2131 2132 if (rd->id == RAPL_DOMAIN_PACKAGE) { 2133 rd_package = rd; 2134 continue; 2135 } 2136 pr_debug("remove package, undo power limit on %s: %s\n", 2137 rp->name, rd->name); 2138 powercap_unregister_zone(rp->priv->control_type, 2139 &rd->power_zone); 2140 } 2141 /* do parent zone last */ 2142 powercap_unregister_zone(rp->priv->control_type, 2143 &rd_package->power_zone); 2144 list_del(&rp->plist); 2145 kfree(rp); 2146 } 2147 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked); 2148 2149 void rapl_remove_package(struct rapl_package *rp) 2150 { 2151 guard(cpus_read_lock)(); 2152 rapl_remove_package_cpuslocked(rp); 2153 } 2154 EXPORT_SYMBOL_GPL(rapl_remove_package); 2155 2156 /* 2157 * RAPL Package energy counter scope: 2158 * 1. AMD/HYGON platforms use per-PKG package energy counter 2159 * 2. For Intel platforms 2160 * 2.1 CLX-AP platform has per-DIE package energy counter 2161 * 2.2 Other platforms that uses MSR RAPL are single die systems so the 2162 * package energy counter can be considered as per-PKG/per-DIE, 2163 * here it is considered as per-DIE. 2164 * 2.3 New platforms that use TPMI RAPL doesn't care about the 2165 * scope because they are not MSR/CPU based. 2166 */ 2167 #define rapl_msrs_are_pkg_scope() \ 2168 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || \ 2169 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 2170 2171 /* caller to ensure CPU hotplug lock is held */ 2172 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv, 2173 bool id_is_cpu) 2174 { 2175 struct rapl_package *rp; 2176 int uid; 2177 2178 if (id_is_cpu) { 2179 uid = rapl_msrs_are_pkg_scope() ? 2180 topology_physical_package_id(id) : topology_logical_die_id(id); 2181 if (uid < 0) { 2182 pr_err("topology_logical_(package/die)_id() returned a negative value"); 2183 return NULL; 2184 } 2185 } 2186 else 2187 uid = id; 2188 2189 list_for_each_entry(rp, &rapl_packages, plist) { 2190 if (rp->id == uid 2191 && rp->priv->control_type == priv->control_type) 2192 return rp; 2193 } 2194 2195 return NULL; 2196 } 2197 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked); 2198 2199 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu) 2200 { 2201 guard(cpus_read_lock)(); 2202 return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu); 2203 } 2204 EXPORT_SYMBOL_GPL(rapl_find_package_domain); 2205 2206 /* called from CPU hotplug notifier, hotplug lock held */ 2207 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu) 2208 { 2209 struct rapl_package *rp; 2210 int ret; 2211 2212 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL); 2213 if (!rp) 2214 return ERR_PTR(-ENOMEM); 2215 2216 if (id_is_cpu) { 2217 rp->id = rapl_msrs_are_pkg_scope() ? 2218 topology_physical_package_id(id) : topology_logical_die_id(id); 2219 if ((int)(rp->id) < 0) { 2220 pr_err("topology_logical_(package/die)_id() returned a negative value"); 2221 return ERR_PTR(-EINVAL); 2222 } 2223 rp->lead_cpu = id; 2224 if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1) 2225 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d", 2226 topology_physical_package_id(id), topology_die_id(id)); 2227 else 2228 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", 2229 topology_physical_package_id(id)); 2230 } else { 2231 rp->id = id; 2232 rp->lead_cpu = -1; 2233 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id); 2234 } 2235 2236 rp->priv = priv; 2237 ret = rapl_config(rp); 2238 if (ret) 2239 goto err_free_package; 2240 2241 /* check if the package contains valid domains */ 2242 if (rapl_detect_domains(rp)) { 2243 ret = -ENODEV; 2244 goto err_free_package; 2245 } 2246 ret = rapl_package_register_powercap(rp); 2247 if (!ret) { 2248 INIT_LIST_HEAD(&rp->plist); 2249 list_add(&rp->plist, &rapl_packages); 2250 return rp; 2251 } 2252 2253 err_free_package: 2254 kfree(rp->domains); 2255 kfree(rp); 2256 return ERR_PTR(ret); 2257 } 2258 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked); 2259 2260 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu) 2261 { 2262 guard(cpus_read_lock)(); 2263 return rapl_add_package_cpuslocked(id, priv, id_is_cpu); 2264 } 2265 EXPORT_SYMBOL_GPL(rapl_add_package); 2266 2267 static void power_limit_state_save(void) 2268 { 2269 struct rapl_package *rp; 2270 struct rapl_domain *rd; 2271 int ret, i; 2272 2273 cpus_read_lock(); 2274 list_for_each_entry(rp, &rapl_packages, plist) { 2275 if (!rp->power_zone) 2276 continue; 2277 rd = power_zone_to_rapl_domain(rp->power_zone); 2278 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { 2279 ret = rapl_read_pl_data(rd, i, PL_LIMIT, true, 2280 &rd->rpl[i].last_power_limit); 2281 if (ret) 2282 rd->rpl[i].last_power_limit = 0; 2283 } 2284 } 2285 cpus_read_unlock(); 2286 } 2287 2288 static void power_limit_state_restore(void) 2289 { 2290 struct rapl_package *rp; 2291 struct rapl_domain *rd; 2292 int i; 2293 2294 cpus_read_lock(); 2295 list_for_each_entry(rp, &rapl_packages, plist) { 2296 if (!rp->power_zone) 2297 continue; 2298 rd = power_zone_to_rapl_domain(rp->power_zone); 2299 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) 2300 if (rd->rpl[i].last_power_limit) 2301 rapl_write_pl_data(rd, i, PL_LIMIT, 2302 rd->rpl[i].last_power_limit); 2303 } 2304 cpus_read_unlock(); 2305 } 2306 2307 static int rapl_pm_callback(struct notifier_block *nb, 2308 unsigned long mode, void *_unused) 2309 { 2310 switch (mode) { 2311 case PM_SUSPEND_PREPARE: 2312 power_limit_state_save(); 2313 break; 2314 case PM_POST_SUSPEND: 2315 power_limit_state_restore(); 2316 break; 2317 } 2318 return NOTIFY_OK; 2319 } 2320 2321 static struct notifier_block rapl_pm_notifier = { 2322 .notifier_call = rapl_pm_callback, 2323 }; 2324 2325 static struct platform_device *rapl_msr_platdev; 2326 2327 static int __init rapl_init(void) 2328 { 2329 const struct x86_cpu_id *id; 2330 int ret; 2331 2332 id = x86_match_cpu(rapl_ids); 2333 if (id) { 2334 defaults_msr = (struct rapl_defaults *)id->driver_data; 2335 2336 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0); 2337 if (!rapl_msr_platdev) 2338 return -ENOMEM; 2339 2340 ret = platform_device_add(rapl_msr_platdev); 2341 if (ret) { 2342 platform_device_put(rapl_msr_platdev); 2343 return ret; 2344 } 2345 } 2346 2347 ret = register_pm_notifier(&rapl_pm_notifier); 2348 if (ret && rapl_msr_platdev) { 2349 platform_device_del(rapl_msr_platdev); 2350 platform_device_put(rapl_msr_platdev); 2351 } 2352 2353 return ret; 2354 } 2355 2356 static void __exit rapl_exit(void) 2357 { 2358 platform_device_unregister(rapl_msr_platdev); 2359 unregister_pm_notifier(&rapl_pm_notifier); 2360 } 2361 2362 fs_initcall(rapl_init); 2363 module_exit(rapl_exit); 2364 2365 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code"); 2366 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>"); 2367 MODULE_LICENSE("GPL v2"); 2368