xref: /linux/drivers/powercap/intel_rapl_common.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27 
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 #include <asm/msr.h>
32 
33 /* bitmasks for RAPL MSRs, used by primitive access functions */
34 #define ENERGY_STATUS_MASK      0xffffffff
35 
36 #define POWER_LIMIT1_MASK       0x7FFF
37 #define POWER_LIMIT1_ENABLE     BIT(15)
38 #define POWER_LIMIT1_CLAMP      BIT(16)
39 
40 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
41 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
42 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
43 #define POWER_HIGH_LOCK         BIT_ULL(63)
44 #define POWER_LOW_LOCK          BIT(31)
45 
46 #define POWER_LIMIT4_MASK		0x1FFF
47 
48 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
49 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
50 
51 #define POWER_UNIT_OFFSET	0
52 #define POWER_UNIT_MASK		0x0F
53 
54 #define ENERGY_UNIT_OFFSET	0x08
55 #define ENERGY_UNIT_MASK	0x1F00
56 
57 #define TIME_UNIT_OFFSET	0x10
58 #define TIME_UNIT_MASK		0xF0000
59 
60 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
61 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
62 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
63 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
64 
65 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
66 #define PP_POLICY_MASK         0x1F
67 
68 /*
69  * SPR has different layout for Psys Domain PowerLimit registers.
70  * There are 17 bits of PL1 and PL2 instead of 15 bits.
71  * The Enable bits and TimeWindow bits are also shifted as a result.
72  */
73 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
74 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
75 
76 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
77 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
78 
79 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
80 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
81 
82 /* bitmasks for RAPL TPMI, used by primitive access functions */
83 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
84 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
85 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
86 #define TPMI_INFO_SPEC_MASK	0x3FFFF
87 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
88 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
89 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
90 
91 /* Non HW constants */
92 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
93 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
94 
95 #define TIME_WINDOW_MAX_MSEC 40000
96 #define TIME_WINDOW_MIN_MSEC 250
97 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
98 enum unit_type {
99 	ARBITRARY_UNIT,		/* no translation */
100 	POWER_UNIT,
101 	ENERGY_UNIT,
102 	TIME_UNIT,
103 };
104 
105 /* per domain data, some are optional */
106 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
107 
108 #define	DOMAIN_STATE_INACTIVE           BIT(0)
109 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
110 
111 static const char *pl_names[NR_POWER_LIMITS] = {
112 	[POWER_LIMIT1] = "long_term",
113 	[POWER_LIMIT2] = "short_term",
114 	[POWER_LIMIT4] = "peak_power",
115 };
116 
117 enum pl_prims {
118 	PL_ENABLE,
119 	PL_CLAMP,
120 	PL_LIMIT,
121 	PL_TIME_WINDOW,
122 	PL_MAX_POWER,
123 	PL_LOCK,
124 };
125 
126 static bool is_pl_valid(struct rapl_domain *rd, int pl)
127 {
128 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
129 		return false;
130 	return rd->rpl[pl].name ? true : false;
131 }
132 
133 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
134 {
135 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
136 		if (pl == POWER_LIMIT1)
137 			return PL1_LOCK;
138 		if (pl == POWER_LIMIT2)
139 			return PL2_LOCK;
140 		if (pl == POWER_LIMIT4)
141 			return PL4_LOCK;
142 	}
143 
144 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
145 	if (pl == POWER_LIMIT4)
146 		return -EINVAL;
147 
148 	/*
149 	 * Power Limit register that supports two power limits has a different
150 	 * bit position for the Lock bit.
151 	 */
152 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
153 		return FW_HIGH_LOCK;
154 	return FW_LOCK;
155 }
156 
157 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
158 {
159 	switch (pl) {
160 	case POWER_LIMIT1:
161 		if (prim == PL_ENABLE)
162 			return PL1_ENABLE;
163 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
164 			return PL1_CLAMP;
165 		if (prim == PL_LIMIT)
166 			return POWER_LIMIT1;
167 		if (prim == PL_TIME_WINDOW)
168 			return TIME_WINDOW1;
169 		if (prim == PL_MAX_POWER)
170 			return THERMAL_SPEC_POWER;
171 		if (prim == PL_LOCK)
172 			return get_pl_lock_prim(rd, pl);
173 		return -EINVAL;
174 	case POWER_LIMIT2:
175 		if (prim == PL_ENABLE)
176 			return PL2_ENABLE;
177 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
178 			return PL2_CLAMP;
179 		if (prim == PL_LIMIT)
180 			return POWER_LIMIT2;
181 		if (prim == PL_TIME_WINDOW)
182 			return TIME_WINDOW2;
183 		if (prim == PL_MAX_POWER)
184 			return MAX_POWER;
185 		if (prim == PL_LOCK)
186 			return get_pl_lock_prim(rd, pl);
187 		return -EINVAL;
188 	case POWER_LIMIT4:
189 		if (prim == PL_LIMIT)
190 			return POWER_LIMIT4;
191 		if (prim == PL_ENABLE)
192 			return PL4_ENABLE;
193 		/* PL4 would be around two times PL2, use same prim as PL2. */
194 		if (prim == PL_MAX_POWER)
195 			return MAX_POWER;
196 		if (prim == PL_LOCK)
197 			return get_pl_lock_prim(rd, pl);
198 		return -EINVAL;
199 	default:
200 		return -EINVAL;
201 	}
202 }
203 
204 #define power_zone_to_rapl_domain(_zone) \
205 	container_of(_zone, struct rapl_domain, power_zone)
206 
207 struct rapl_defaults {
208 	u8 floor_freq_reg_addr;
209 	int (*check_unit)(struct rapl_domain *rd);
210 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
211 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
212 				    bool to_raw);
213 	unsigned int dram_domain_energy_unit;
214 	unsigned int psys_domain_energy_unit;
215 	bool spr_psys_bits;
216 };
217 static struct rapl_defaults *defaults_msr;
218 static const struct rapl_defaults defaults_tpmi;
219 
220 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
221 {
222 	return rp->priv->defaults;
223 }
224 
225 /* Sideband MBI registers */
226 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
227 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
228 
229 #define PACKAGE_PLN_INT_SAVED   BIT(0)
230 #define MAX_PRIM_NAME (32)
231 
232 /* per domain data. used to describe individual knobs such that access function
233  * can be consolidated into one instead of many inline functions.
234  */
235 struct rapl_primitive_info {
236 	const char *name;
237 	u64 mask;
238 	int shift;
239 	enum rapl_domain_reg_id id;
240 	enum unit_type unit;
241 	u32 flag;
242 };
243 
244 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
245 		.name = #p,			\
246 		.mask = m,			\
247 		.shift = s,			\
248 		.id = i,			\
249 		.unit = u,			\
250 		.flag = f			\
251 	}
252 
253 static void rapl_init_domains(struct rapl_package *rp);
254 static int rapl_read_data_raw(struct rapl_domain *rd,
255 			      enum rapl_primitives prim,
256 			      bool xlate, u64 *data,
257 			      bool atomic);
258 static int rapl_write_data_raw(struct rapl_domain *rd,
259 			       enum rapl_primitives prim,
260 			       unsigned long long value);
261 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
262 			      enum pl_prims pl_prim,
263 			      bool xlate, u64 *data);
264 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
265 			       enum pl_prims pl_prim,
266 			       unsigned long long value);
267 static u64 rapl_unit_xlate(struct rapl_domain *rd,
268 			   enum unit_type type, u64 value, int to_raw);
269 static void package_power_limit_irq_save(struct rapl_package *rp);
270 
271 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
272 
273 static const char *const rapl_domain_names[] = {
274 	"package",
275 	"core",
276 	"uncore",
277 	"dram",
278 	"psys",
279 };
280 
281 static int get_energy_counter(struct powercap_zone *power_zone,
282 			      u64 *energy_raw)
283 {
284 	struct rapl_domain *rd;
285 	u64 energy_now;
286 
287 	/* prevent CPU hotplug, make sure the RAPL domain does not go
288 	 * away while reading the counter.
289 	 */
290 	cpus_read_lock();
291 	rd = power_zone_to_rapl_domain(power_zone);
292 
293 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now, false)) {
294 		*energy_raw = energy_now;
295 		cpus_read_unlock();
296 
297 		return 0;
298 	}
299 	cpus_read_unlock();
300 
301 	return -EIO;
302 }
303 
304 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
305 {
306 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
307 
308 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
309 	return 0;
310 }
311 
312 static int release_zone(struct powercap_zone *power_zone)
313 {
314 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
315 	struct rapl_package *rp = rd->rp;
316 
317 	/* package zone is the last zone of a package, we can free
318 	 * memory here since all children has been unregistered.
319 	 */
320 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
321 		kfree(rd);
322 		rp->domains = NULL;
323 	}
324 
325 	return 0;
326 
327 }
328 
329 static int find_nr_power_limit(struct rapl_domain *rd)
330 {
331 	int i, nr_pl = 0;
332 
333 	for (i = 0; i < NR_POWER_LIMITS; i++) {
334 		if (is_pl_valid(rd, i))
335 			nr_pl++;
336 	}
337 
338 	return nr_pl;
339 }
340 
341 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
342 {
343 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
344 	struct rapl_defaults *defaults = get_defaults(rd->rp);
345 	u64 val;
346 	int ret;
347 
348 	cpus_read_lock();
349 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
350 	if (ret)
351 		goto end;
352 
353 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, false, &val);
354 	if (ret)
355 		goto end;
356 
357 	if (mode != val) {
358 		pr_debug("%s cannot be %s\n", power_zone->name,
359 			 str_enabled_disabled(mode));
360 		goto end;
361 	}
362 
363 	if (defaults->set_floor_freq)
364 		defaults->set_floor_freq(rd, mode);
365 
366 end:
367 	cpus_read_unlock();
368 
369 	return ret;
370 }
371 
372 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
373 {
374 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
375 	u64 val;
376 	int ret;
377 
378 	if (rd->rpl[POWER_LIMIT1].locked) {
379 		*mode = false;
380 		return 0;
381 	}
382 	cpus_read_lock();
383 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
384 	if (!ret)
385 		*mode = val;
386 	cpus_read_unlock();
387 
388 	return ret;
389 }
390 
391 /* per RAPL domain ops, in the order of rapl_domain_type */
392 static const struct powercap_zone_ops zone_ops[] = {
393 	/* RAPL_DOMAIN_PACKAGE */
394 	{
395 	 .get_energy_uj = get_energy_counter,
396 	 .get_max_energy_range_uj = get_max_energy_counter,
397 	 .release = release_zone,
398 	 .set_enable = set_domain_enable,
399 	 .get_enable = get_domain_enable,
400 	 },
401 	/* RAPL_DOMAIN_PP0 */
402 	{
403 	 .get_energy_uj = get_energy_counter,
404 	 .get_max_energy_range_uj = get_max_energy_counter,
405 	 .release = release_zone,
406 	 .set_enable = set_domain_enable,
407 	 .get_enable = get_domain_enable,
408 	 },
409 	/* RAPL_DOMAIN_PP1 */
410 	{
411 	 .get_energy_uj = get_energy_counter,
412 	 .get_max_energy_range_uj = get_max_energy_counter,
413 	 .release = release_zone,
414 	 .set_enable = set_domain_enable,
415 	 .get_enable = get_domain_enable,
416 	 },
417 	/* RAPL_DOMAIN_DRAM */
418 	{
419 	 .get_energy_uj = get_energy_counter,
420 	 .get_max_energy_range_uj = get_max_energy_counter,
421 	 .release = release_zone,
422 	 .set_enable = set_domain_enable,
423 	 .get_enable = get_domain_enable,
424 	 },
425 	/* RAPL_DOMAIN_PLATFORM */
426 	{
427 	 .get_energy_uj = get_energy_counter,
428 	 .get_max_energy_range_uj = get_max_energy_counter,
429 	 .release = release_zone,
430 	 .set_enable = set_domain_enable,
431 	 .get_enable = get_domain_enable,
432 	 },
433 };
434 
435 /*
436  * Constraint index used by powercap can be different than power limit (PL)
437  * index in that some  PLs maybe missing due to non-existent MSRs. So we
438  * need to convert here by finding the valid PLs only (name populated).
439  */
440 static int contraint_to_pl(struct rapl_domain *rd, int cid)
441 {
442 	int i, j;
443 
444 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
445 		if (is_pl_valid(rd, i) && j++ == cid) {
446 			pr_debug("%s: index %d\n", __func__, i);
447 			return i;
448 		}
449 	}
450 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
451 
452 	return -EINVAL;
453 }
454 
455 static int set_power_limit(struct powercap_zone *power_zone, int cid,
456 			   u64 power_limit)
457 {
458 	struct rapl_domain *rd;
459 	struct rapl_package *rp;
460 	int ret = 0;
461 	int id;
462 
463 	cpus_read_lock();
464 	rd = power_zone_to_rapl_domain(power_zone);
465 	id = contraint_to_pl(rd, cid);
466 	rp = rd->rp;
467 
468 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
469 	if (!ret)
470 		package_power_limit_irq_save(rp);
471 	cpus_read_unlock();
472 	return ret;
473 }
474 
475 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
476 				   u64 *data)
477 {
478 	struct rapl_domain *rd;
479 	u64 val;
480 	int ret = 0;
481 	int id;
482 
483 	cpus_read_lock();
484 	rd = power_zone_to_rapl_domain(power_zone);
485 	id = contraint_to_pl(rd, cid);
486 
487 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
488 	if (!ret)
489 		*data = val;
490 
491 	cpus_read_unlock();
492 
493 	return ret;
494 }
495 
496 static int set_time_window(struct powercap_zone *power_zone, int cid,
497 			   u64 window)
498 {
499 	struct rapl_domain *rd;
500 	int ret = 0;
501 	int id;
502 
503 	cpus_read_lock();
504 	rd = power_zone_to_rapl_domain(power_zone);
505 	id = contraint_to_pl(rd, cid);
506 
507 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
508 
509 	cpus_read_unlock();
510 	return ret;
511 }
512 
513 static int get_time_window(struct powercap_zone *power_zone, int cid,
514 			   u64 *data)
515 {
516 	struct rapl_domain *rd;
517 	u64 val;
518 	int ret = 0;
519 	int id;
520 
521 	cpus_read_lock();
522 	rd = power_zone_to_rapl_domain(power_zone);
523 	id = contraint_to_pl(rd, cid);
524 
525 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
526 	if (!ret)
527 		*data = val;
528 
529 	cpus_read_unlock();
530 
531 	return ret;
532 }
533 
534 static const char *get_constraint_name(struct powercap_zone *power_zone,
535 				       int cid)
536 {
537 	struct rapl_domain *rd;
538 	int id;
539 
540 	rd = power_zone_to_rapl_domain(power_zone);
541 	id = contraint_to_pl(rd, cid);
542 	if (id >= 0)
543 		return rd->rpl[id].name;
544 
545 	return NULL;
546 }
547 
548 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
549 {
550 	struct rapl_domain *rd;
551 	u64 val;
552 	int ret = 0;
553 	int id;
554 
555 	cpus_read_lock();
556 	rd = power_zone_to_rapl_domain(power_zone);
557 	id = contraint_to_pl(rd, cid);
558 
559 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
560 	if (!ret)
561 		*data = val;
562 
563 	/* As a generalization rule, PL4 would be around two times PL2. */
564 	if (id == POWER_LIMIT4)
565 		*data = *data * 2;
566 
567 	cpus_read_unlock();
568 
569 	return ret;
570 }
571 
572 static const struct powercap_zone_constraint_ops constraint_ops = {
573 	.set_power_limit_uw = set_power_limit,
574 	.get_power_limit_uw = get_current_power_limit,
575 	.set_time_window_us = set_time_window,
576 	.get_time_window_us = get_time_window,
577 	.get_max_power_uw = get_max_power,
578 	.get_name = get_constraint_name,
579 };
580 
581 /* Return the id used for read_raw/write_raw callback */
582 static int get_rid(struct rapl_package *rp)
583 {
584 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
585 }
586 
587 /* called after domain detection and package level data are set */
588 static void rapl_init_domains(struct rapl_package *rp)
589 {
590 	enum rapl_domain_type i;
591 	enum rapl_domain_reg_id j;
592 	struct rapl_domain *rd = rp->domains;
593 
594 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
595 		unsigned int mask = rp->domain_map & (1 << i);
596 		int t;
597 
598 		if (!mask)
599 			continue;
600 
601 		rd->rp = rp;
602 
603 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
604 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
605 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
606 				rp->id);
607 		} else {
608 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
609 				rapl_domain_names[i]);
610 		}
611 
612 		rd->id = i;
613 
614 		/* PL1 is supported by default */
615 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
616 
617 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
618 			if (rp->priv->limits[i] & BIT(t))
619 				rd->rpl[t].name = pl_names[t];
620 		}
621 
622 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
623 			rd->regs[j] = rp->priv->regs[i][j];
624 
625 		rd++;
626 	}
627 }
628 
629 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
630 			   u64 value, int to_raw)
631 {
632 	u64 units = 1;
633 	struct rapl_defaults *defaults = get_defaults(rd->rp);
634 	u64 scale = 1;
635 
636 	switch (type) {
637 	case POWER_UNIT:
638 		units = rd->power_unit;
639 		break;
640 	case ENERGY_UNIT:
641 		scale = ENERGY_UNIT_SCALE;
642 		units = rd->energy_unit;
643 		break;
644 	case TIME_UNIT:
645 		return defaults->compute_time_window(rd, value, to_raw);
646 	case ARBITRARY_UNIT:
647 	default:
648 		return value;
649 	}
650 
651 	if (to_raw)
652 		return div64_u64(value, units) * scale;
653 
654 	value *= units;
655 
656 	return div64_u64(value, scale);
657 }
658 
659 /* RAPL primitives for MSR and MMIO I/F */
660 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
661 	/* name, mask, shift, msr index, unit divisor */
662 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
663 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
664 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
665 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
666 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
667 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
668 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
669 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
670 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
671 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
672 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
673 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
674 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
675 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
676 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
677 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
678 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
679 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
680 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
681 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
682 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
683 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
684 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
685 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
686 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
687 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
688 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
689 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
690 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
691 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
692 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
693 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
694 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
695 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
696 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
697 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
698 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
699 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
700 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
701 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
702 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
703 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
704 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
705 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
706 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
707 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
708 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
709 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
710 	/* non-hardware */
711 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
712 			    RAPL_PRIMITIVE_DERIVED),
713 };
714 
715 /* RAPL primitives for TPMI I/F */
716 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
717 	/* name, mask, shift, msr index, unit divisor */
718 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
719 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
720 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
721 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
722 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
723 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
724 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
725 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
726 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
727 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
728 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
729 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
730 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
731 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
732 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
733 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
734 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
735 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
736 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
737 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
738 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
739 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
740 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
741 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
742 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
743 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
744 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
745 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
746 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
747 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
748 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
749 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
750 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
751 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
752 	/* non-hardware */
753 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
754 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
755 };
756 
757 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
758 {
759 	struct rapl_primitive_info *rpi = rp->priv->rpi;
760 
761 	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
762 		return NULL;
763 
764 	return &rpi[prim];
765 }
766 
767 static int rapl_config(struct rapl_package *rp)
768 {
769 	switch (rp->priv->type) {
770 	/* MMIO I/F shares the same register layout as MSR registers */
771 	case RAPL_IF_MMIO:
772 	case RAPL_IF_MSR:
773 		rp->priv->defaults = (void *)defaults_msr;
774 		rp->priv->rpi = (void *)rpi_msr;
775 		break;
776 	case RAPL_IF_TPMI:
777 		rp->priv->defaults = (void *)&defaults_tpmi;
778 		rp->priv->rpi = (void *)rpi_tpmi;
779 		break;
780 	default:
781 		return -EINVAL;
782 	}
783 
784 	/* defaults_msr can be NULL on unsupported platforms */
785 	if (!rp->priv->defaults || !rp->priv->rpi)
786 		return -ENODEV;
787 
788 	return 0;
789 }
790 
791 static enum rapl_primitives
792 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
793 {
794 	struct rapl_defaults *defaults = get_defaults(rd->rp);
795 
796 	if (!defaults->spr_psys_bits)
797 		return prim;
798 
799 	if (rd->id != RAPL_DOMAIN_PLATFORM)
800 		return prim;
801 
802 	switch (prim) {
803 	case POWER_LIMIT1:
804 		return PSYS_POWER_LIMIT1;
805 	case POWER_LIMIT2:
806 		return PSYS_POWER_LIMIT2;
807 	case PL1_ENABLE:
808 		return PSYS_PL1_ENABLE;
809 	case PL2_ENABLE:
810 		return PSYS_PL2_ENABLE;
811 	case TIME_WINDOW1:
812 		return PSYS_TIME_WINDOW1;
813 	case TIME_WINDOW2:
814 		return PSYS_TIME_WINDOW2;
815 	default:
816 		return prim;
817 	}
818 }
819 
820 /* Read primitive data based on its related struct rapl_primitive_info.
821  * if xlate flag is set, return translated data based on data units, i.e.
822  * time, energy, and power.
823  * RAPL MSRs are non-architectual and are laid out not consistently across
824  * domains. Here we use primitive info to allow writing consolidated access
825  * functions.
826  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
827  * is pre-assigned based on RAPL unit MSRs read at init time.
828  * 63-------------------------- 31--------------------------- 0
829  * |                           xxxxx (mask)                   |
830  * |                                |<- shift ----------------|
831  * 63-------------------------- 31--------------------------- 0
832  */
833 static int rapl_read_data_raw(struct rapl_domain *rd,
834 			      enum rapl_primitives prim, bool xlate, u64 *data,
835 			      bool atomic)
836 {
837 	u64 value;
838 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
839 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
840 	struct reg_action ra;
841 
842 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
843 		return -EINVAL;
844 
845 	ra.reg = rd->regs[rpi->id];
846 	if (!ra.reg.val)
847 		return -EINVAL;
848 
849 	/* non-hardware data are collected by the polling thread */
850 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
851 		*data = rd->rdd.primitives[prim];
852 		return 0;
853 	}
854 
855 	ra.mask = rpi->mask;
856 
857 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, atomic)) {
858 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
859 		return -EIO;
860 	}
861 
862 	value = ra.value >> rpi->shift;
863 
864 	if (xlate)
865 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
866 	else
867 		*data = value;
868 
869 	return 0;
870 }
871 
872 /* Similar use of primitive info in the read counterpart */
873 static int rapl_write_data_raw(struct rapl_domain *rd,
874 			       enum rapl_primitives prim,
875 			       unsigned long long value)
876 {
877 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
878 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
879 	u64 bits;
880 	struct reg_action ra;
881 	int ret;
882 
883 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
884 		return -EINVAL;
885 
886 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
887 	bits <<= rpi->shift;
888 	bits &= rpi->mask;
889 
890 	memset(&ra, 0, sizeof(ra));
891 
892 	ra.reg = rd->regs[rpi->id];
893 	ra.mask = rpi->mask;
894 	ra.value = bits;
895 
896 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
897 
898 	return ret;
899 }
900 
901 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
902 			      enum pl_prims pl_prim, bool xlate, u64 *data)
903 {
904 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
905 
906 	if (!is_pl_valid(rd, pl))
907 		return -EINVAL;
908 
909 	return rapl_read_data_raw(rd, prim, xlate, data, false);
910 }
911 
912 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
913 			       enum pl_prims pl_prim,
914 			       unsigned long long value)
915 {
916 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
917 
918 	if (!is_pl_valid(rd, pl))
919 		return -EINVAL;
920 
921 	if (rd->rpl[pl].locked) {
922 		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
923 		return -EACCES;
924 	}
925 
926 	return rapl_write_data_raw(rd, prim, value);
927 }
928 /*
929  * Raw RAPL data stored in MSRs are in certain scales. We need to
930  * convert them into standard units based on the units reported in
931  * the RAPL unit MSRs. This is specific to CPUs as the method to
932  * calculate units differ on different CPUs.
933  * We convert the units to below format based on CPUs.
934  * i.e.
935  * energy unit: picoJoules  : Represented in picoJoules by default
936  * power unit : microWatts  : Represented in milliWatts by default
937  * time unit  : microseconds: Represented in seconds by default
938  */
939 static int rapl_check_unit_core(struct rapl_domain *rd)
940 {
941 	struct reg_action ra;
942 	u32 value;
943 
944 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
945 	ra.mask = ~0;
946 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) {
947 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
948 			ra.reg.val, rd->rp->name, rd->name);
949 		return -ENODEV;
950 	}
951 
952 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
953 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
954 
955 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
956 	rd->power_unit = 1000000 / (1 << value);
957 
958 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
959 	rd->time_unit = 1000000 / (1 << value);
960 
961 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
962 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
963 
964 	return 0;
965 }
966 
967 static int rapl_check_unit_atom(struct rapl_domain *rd)
968 {
969 	struct reg_action ra;
970 	u32 value;
971 
972 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
973 	ra.mask = ~0;
974 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) {
975 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
976 			ra.reg.val, rd->rp->name, rd->name);
977 		return -ENODEV;
978 	}
979 
980 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
981 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
982 
983 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
984 	rd->power_unit = (1 << value) * 1000;
985 
986 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
987 	rd->time_unit = 1000000 / (1 << value);
988 
989 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
990 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
991 
992 	return 0;
993 }
994 
995 static void power_limit_irq_save_cpu(void *info)
996 {
997 	u32 l, h = 0;
998 	struct rapl_package *rp = (struct rapl_package *)info;
999 
1000 	/* save the state of PLN irq mask bit before disabling it */
1001 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1002 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
1003 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
1004 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
1005 	}
1006 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1007 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1008 }
1009 
1010 /* REVISIT:
1011  * When package power limit is set artificially low by RAPL, LVT
1012  * thermal interrupt for package power limit should be ignored
1013  * since we are not really exceeding the real limit. The intention
1014  * is to avoid excessive interrupts while we are trying to save power.
1015  * A useful feature might be routing the package_power_limit interrupt
1016  * to userspace via eventfd. once we have a usecase, this is simple
1017  * to do by adding an atomic notifier.
1018  */
1019 
1020 static void package_power_limit_irq_save(struct rapl_package *rp)
1021 {
1022 	if (rp->lead_cpu < 0)
1023 		return;
1024 
1025 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1026 		return;
1027 
1028 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1029 }
1030 
1031 /*
1032  * Restore per package power limit interrupt enable state. Called from cpu
1033  * hotplug code on package removal.
1034  */
1035 static void package_power_limit_irq_restore(struct rapl_package *rp)
1036 {
1037 	u32 l, h;
1038 
1039 	if (rp->lead_cpu < 0)
1040 		return;
1041 
1042 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1043 		return;
1044 
1045 	/* irq enable state not saved, nothing to restore */
1046 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1047 		return;
1048 
1049 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1050 
1051 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1052 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1053 	else
1054 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1055 
1056 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1057 }
1058 
1059 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1060 {
1061 	int i;
1062 
1063 	/* always enable clamp such that p-state can go below OS requested
1064 	 * range. power capping priority over guranteed frequency.
1065 	 */
1066 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1067 
1068 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1069 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1070 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1071 	}
1072 }
1073 
1074 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1075 {
1076 	static u32 power_ctrl_orig_val;
1077 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1078 	u32 mdata;
1079 
1080 	if (!defaults->floor_freq_reg_addr) {
1081 		pr_err("Invalid floor frequency config register\n");
1082 		return;
1083 	}
1084 
1085 	if (!power_ctrl_orig_val)
1086 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1087 			      defaults->floor_freq_reg_addr,
1088 			      &power_ctrl_orig_val);
1089 	mdata = power_ctrl_orig_val;
1090 	if (enable) {
1091 		mdata &= ~(0x7f << 8);
1092 		mdata |= 1 << 8;
1093 	}
1094 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1095 		       defaults->floor_freq_reg_addr, mdata);
1096 }
1097 
1098 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1099 					 bool to_raw)
1100 {
1101 	u64 f, y;		/* fraction and exp. used for time unit */
1102 
1103 	/*
1104 	 * Special processing based on 2^Y*(1+F/4), refer
1105 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1106 	 */
1107 	if (!to_raw) {
1108 		f = (value & 0x60) >> 5;
1109 		y = value & 0x1f;
1110 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1111 	} else {
1112 		if (value < rd->time_unit)
1113 			return 0;
1114 
1115 		do_div(value, rd->time_unit);
1116 		y = ilog2(value);
1117 
1118 		/*
1119 		 * The target hardware field is 7 bits wide, so return all ones
1120 		 * if the exponent is too large.
1121 		 */
1122 		if (y > 0x1f)
1123 			return 0x7f;
1124 
1125 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1126 		value = (y & 0x1f) | ((f & 0x3) << 5);
1127 	}
1128 	return value;
1129 }
1130 
1131 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1132 					 bool to_raw)
1133 {
1134 	/*
1135 	 * Atom time unit encoding is straight forward val * time_unit,
1136 	 * where time_unit is default to 1 sec. Never 0.
1137 	 */
1138 	if (!to_raw)
1139 		return (value) ? value * rd->time_unit : rd->time_unit;
1140 
1141 	value = div64_u64(value, rd->time_unit);
1142 
1143 	return value;
1144 }
1145 
1146 /* TPMI Unit register has different layout */
1147 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1148 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1149 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1150 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1151 #define TPMI_TIME_UNIT_OFFSET	0x0C
1152 #define TPMI_TIME_UNIT_MASK	0xF000
1153 
1154 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1155 {
1156 	struct reg_action ra;
1157 	u32 value;
1158 
1159 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1160 	ra.mask = ~0;
1161 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra, false)) {
1162 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1163 			ra.reg.val, rd->rp->name, rd->name);
1164 		return -ENODEV;
1165 	}
1166 
1167 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1168 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1169 
1170 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1171 	rd->power_unit = 1000000 / (1 << value);
1172 
1173 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1174 	rd->time_unit = 1000000 / (1 << value);
1175 
1176 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1177 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1178 
1179 	return 0;
1180 }
1181 
1182 static const struct rapl_defaults defaults_tpmi = {
1183 	.check_unit = rapl_check_unit_tpmi,
1184 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1185 	.set_floor_freq = set_floor_freq_default,
1186 	.compute_time_window = rapl_compute_time_window_core,
1187 };
1188 
1189 static const struct rapl_defaults rapl_defaults_core = {
1190 	.floor_freq_reg_addr = 0,
1191 	.check_unit = rapl_check_unit_core,
1192 	.set_floor_freq = set_floor_freq_default,
1193 	.compute_time_window = rapl_compute_time_window_core,
1194 };
1195 
1196 static const struct rapl_defaults rapl_defaults_hsw_server = {
1197 	.check_unit = rapl_check_unit_core,
1198 	.set_floor_freq = set_floor_freq_default,
1199 	.compute_time_window = rapl_compute_time_window_core,
1200 	.dram_domain_energy_unit = 15300,
1201 };
1202 
1203 static const struct rapl_defaults rapl_defaults_spr_server = {
1204 	.check_unit = rapl_check_unit_core,
1205 	.set_floor_freq = set_floor_freq_default,
1206 	.compute_time_window = rapl_compute_time_window_core,
1207 	.psys_domain_energy_unit = 1000000000,
1208 	.spr_psys_bits = true,
1209 };
1210 
1211 static const struct rapl_defaults rapl_defaults_byt = {
1212 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1213 	.check_unit = rapl_check_unit_atom,
1214 	.set_floor_freq = set_floor_freq_atom,
1215 	.compute_time_window = rapl_compute_time_window_atom,
1216 };
1217 
1218 static const struct rapl_defaults rapl_defaults_tng = {
1219 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1220 	.check_unit = rapl_check_unit_atom,
1221 	.set_floor_freq = set_floor_freq_atom,
1222 	.compute_time_window = rapl_compute_time_window_atom,
1223 };
1224 
1225 static const struct rapl_defaults rapl_defaults_ann = {
1226 	.floor_freq_reg_addr = 0,
1227 	.check_unit = rapl_check_unit_atom,
1228 	.set_floor_freq = NULL,
1229 	.compute_time_window = rapl_compute_time_window_atom,
1230 };
1231 
1232 static const struct rapl_defaults rapl_defaults_cht = {
1233 	.floor_freq_reg_addr = 0,
1234 	.check_unit = rapl_check_unit_atom,
1235 	.set_floor_freq = NULL,
1236 	.compute_time_window = rapl_compute_time_window_atom,
1237 };
1238 
1239 static const struct rapl_defaults rapl_defaults_amd = {
1240 	.check_unit = rapl_check_unit_core,
1241 };
1242 
1243 static const struct x86_cpu_id rapl_ids[] __initconst = {
1244 	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1245 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1246 
1247 	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1248 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1249 
1250 	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1251 	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1252 	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1253 	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1254 
1255 	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1256 	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1257 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1258 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1259 
1260 	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1261 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1262 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1263 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1264 	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1265 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1266 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1267 	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1268 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1269 	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1270 	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1271 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1272 	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1273 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1274 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1275 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1276 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1277 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1278 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1279 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1280 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1281 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1282 	X86_MATCH_VFM(INTEL_BARTLETTLAKE,	&rapl_defaults_core),
1283 	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1284 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1285 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1286 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1287 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1288 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&rapl_defaults_core),
1289 	X86_MATCH_VFM(INTEL_WILDCATLAKE_L,	&rapl_defaults_core),
1290 	X86_MATCH_VFM(INTEL_NOVALAKE,		&rapl_defaults_core),
1291 	X86_MATCH_VFM(INTEL_NOVALAKE_L,		&rapl_defaults_core),
1292 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1293 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1294 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1295 	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1296 
1297 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1298 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1299 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1300 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID2,&rapl_defaults_ann),
1301 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1302 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1303 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1304 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1305 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1306 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1307 
1308 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1309 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1310 
1311 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1312 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1313 	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1314 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1315 	{}
1316 };
1317 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1318 
1319 /* Read once for all raw primitive data for domains */
1320 static void rapl_update_domain_data(struct rapl_package *rp)
1321 {
1322 	int dmn, prim;
1323 	u64 val;
1324 
1325 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1326 		pr_debug("update %s domain %s data\n", rp->name,
1327 			 rp->domains[dmn].name);
1328 		/* exclude non-raw primitives */
1329 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1330 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1331 
1332 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1333 						rpi->unit, &val, false))
1334 				rp->domains[dmn].rdd.primitives[prim] = val;
1335 		}
1336 	}
1337 
1338 }
1339 
1340 static int rapl_package_register_powercap(struct rapl_package *rp)
1341 {
1342 	struct rapl_domain *rd;
1343 	struct powercap_zone *power_zone = NULL;
1344 	int nr_pl, ret;
1345 
1346 	/* Update the domain data of the new package */
1347 	rapl_update_domain_data(rp);
1348 
1349 	/* first we register package domain as the parent zone */
1350 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1351 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1352 			nr_pl = find_nr_power_limit(rd);
1353 			pr_debug("register package domain %s\n", rp->name);
1354 			power_zone = powercap_register_zone(&rd->power_zone,
1355 					    rp->priv->control_type, rp->name,
1356 					    NULL, &zone_ops[rd->id], nr_pl,
1357 					    &constraint_ops);
1358 			if (IS_ERR(power_zone)) {
1359 				pr_debug("failed to register power zone %s\n",
1360 					 rp->name);
1361 				return PTR_ERR(power_zone);
1362 			}
1363 			/* track parent zone in per package/socket data */
1364 			rp->power_zone = power_zone;
1365 			/* done, only one package domain per socket */
1366 			break;
1367 		}
1368 	}
1369 	if (!power_zone) {
1370 		pr_err("no package domain found, unknown topology!\n");
1371 		return -ENODEV;
1372 	}
1373 	/* now register domains as children of the socket/package */
1374 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1375 		struct powercap_zone *parent = rp->power_zone;
1376 
1377 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1378 			continue;
1379 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1380 			parent = NULL;
1381 		/* number of power limits per domain varies */
1382 		nr_pl = find_nr_power_limit(rd);
1383 		power_zone = powercap_register_zone(&rd->power_zone,
1384 						    rp->priv->control_type,
1385 						    rd->name, parent,
1386 						    &zone_ops[rd->id], nr_pl,
1387 						    &constraint_ops);
1388 
1389 		if (IS_ERR(power_zone)) {
1390 			pr_debug("failed to register power_zone, %s:%s\n",
1391 				 rp->name, rd->name);
1392 			ret = PTR_ERR(power_zone);
1393 			goto err_cleanup;
1394 		}
1395 	}
1396 	return 0;
1397 
1398 err_cleanup:
1399 	/*
1400 	 * Clean up previously initialized domains within the package if we
1401 	 * failed after the first domain setup.
1402 	 */
1403 	while (--rd >= rp->domains) {
1404 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1405 		powercap_unregister_zone(rp->priv->control_type,
1406 					 &rd->power_zone);
1407 	}
1408 
1409 	return ret;
1410 }
1411 
1412 static int rapl_check_domain(int domain, struct rapl_package *rp)
1413 {
1414 	struct reg_action ra;
1415 
1416 	switch (domain) {
1417 	case RAPL_DOMAIN_PACKAGE:
1418 	case RAPL_DOMAIN_PP0:
1419 	case RAPL_DOMAIN_PP1:
1420 	case RAPL_DOMAIN_DRAM:
1421 	case RAPL_DOMAIN_PLATFORM:
1422 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1423 		break;
1424 	default:
1425 		pr_err("invalid domain id %d\n", domain);
1426 		return -EINVAL;
1427 	}
1428 	/* make sure domain counters are available and contains non-zero
1429 	 * values, otherwise skip it.
1430 	 */
1431 
1432 	ra.mask = ENERGY_STATUS_MASK;
1433 	if (rp->priv->read_raw(get_rid(rp), &ra, false) || !ra.value)
1434 		return -ENODEV;
1435 
1436 	return 0;
1437 }
1438 
1439 /*
1440  * Get per domain energy/power/time unit.
1441  * RAPL Interfaces without per domain unit register will use the package
1442  * scope unit register to set per domain units.
1443  */
1444 static int rapl_get_domain_unit(struct rapl_domain *rd)
1445 {
1446 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1447 	int ret;
1448 
1449 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1450 		if (!rd->rp->priv->reg_unit.val) {
1451 			pr_err("No valid Unit register found\n");
1452 			return -ENODEV;
1453 		}
1454 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1455 	}
1456 
1457 	if (!defaults->check_unit) {
1458 		pr_err("missing .check_unit() callback\n");
1459 		return -ENODEV;
1460 	}
1461 
1462 	ret = defaults->check_unit(rd);
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1467 		rd->energy_unit = defaults->dram_domain_energy_unit;
1468 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1469 		rd->energy_unit = defaults->psys_domain_energy_unit;
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Check if power limits are available. Two cases when they are not available:
1475  * 1. Locked by BIOS, in this case we still provide read-only access so that
1476  *    users can see what limit is set by the BIOS.
1477  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1478  *    exist at all. In this case, we do not show the constraints in powercap.
1479  *
1480  * Called after domains are detected and initialized.
1481  */
1482 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1483 {
1484 	u64 val64;
1485 	int i;
1486 
1487 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1488 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1489 			if (val64) {
1490 				rd->rpl[i].locked = true;
1491 				pr_info("%s:%s:%s locked by BIOS\n",
1492 					rd->rp->name, rd->name, pl_names[i]);
1493 			}
1494 		}
1495 
1496 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1497 			rd->rpl[i].name = NULL;
1498 	}
1499 }
1500 
1501 /* Detect active and valid domains for the given CPU, caller must
1502  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1503  */
1504 static int rapl_detect_domains(struct rapl_package *rp)
1505 {
1506 	struct rapl_domain *rd;
1507 	int i;
1508 
1509 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1510 		/* use physical package id to read counters */
1511 		if (!rapl_check_domain(i, rp)) {
1512 			rp->domain_map |= 1 << i;
1513 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1514 		}
1515 	}
1516 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1517 	if (!rp->nr_domains) {
1518 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1519 		return -ENODEV;
1520 	}
1521 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1522 
1523 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1524 			      GFP_KERNEL);
1525 	if (!rp->domains)
1526 		return -ENOMEM;
1527 
1528 	rapl_init_domains(rp);
1529 
1530 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1531 		rapl_get_domain_unit(rd);
1532 		rapl_detect_powerlimit(rd);
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 #ifdef CONFIG_PERF_EVENTS
1539 
1540 /*
1541  * Support for RAPL PMU
1542  *
1543  * Register a PMU if any of the registered RAPL Packages have the requirement
1544  * of exposing its energy counters via Perf PMU.
1545  *
1546  * PMU Name:
1547  *	power
1548  *
1549  * Events:
1550  *	Name		Event id	RAPL Domain
1551  *	energy_cores	0x01		RAPL_DOMAIN_PP0
1552  *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1553  *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1554  *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1555  *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1556  *
1557  * Unit:
1558  *	Joules
1559  *
1560  * Scale:
1561  *	2.3283064365386962890625e-10
1562  *	The same RAPL domain in different RAPL Packages may have different
1563  *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1564  *	the fixed unit for all energy counters, and covert each hardware
1565  *	counter increase to N times of PMU event counter increases.
1566  *
1567  * This is fully compatible with the current MSR RAPL PMU. This means that
1568  * userspace programs like turbostat can use the same code to handle RAPL Perf
1569  * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1570  * underlying on the platform.
1571  *
1572  * Note that RAPL Packages can be probed/removed dynamically, and the events
1573  * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1574  * support is done on demand, which means
1575  * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1576  *    unsupported counters are not exposed.
1577  * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1578  *    supports new counters that are not supported by current PMU.
1579  * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1580  */
1581 
1582 struct rapl_pmu {
1583 	struct pmu pmu;			/* Perf PMU structure */
1584 	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1585 	unsigned long domain_map;	/* Events supported by current registered PMU */
1586 	bool registered;		/* Whether the PMU has been registered or not */
1587 };
1588 
1589 static struct rapl_pmu rapl_pmu;
1590 
1591 /* PMU helpers */
1592 
1593 static int get_pmu_cpu(struct rapl_package *rp)
1594 {
1595 	int cpu;
1596 
1597 	if (!rp->has_pmu)
1598 		return nr_cpu_ids;
1599 
1600 	/* Only TPMI & MSR RAPL are supported for now */
1601 	if (rp->priv->type != RAPL_IF_TPMI && rp->priv->type != RAPL_IF_MSR)
1602 		return nr_cpu_ids;
1603 
1604 	/* TPMI/MSR RAPL uses any CPU in the package for PMU */
1605 	for_each_online_cpu(cpu)
1606 		if (topology_physical_package_id(cpu) == rp->id)
1607 			return cpu;
1608 
1609 	return nr_cpu_ids;
1610 }
1611 
1612 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1613 {
1614 	if (!rp->has_pmu)
1615 		return false;
1616 
1617 	/* Only TPMI & MSR RAPL are supported for now */
1618 	if (rp->priv->type != RAPL_IF_TPMI && rp->priv->type != RAPL_IF_MSR)
1619 		return false;
1620 
1621 	/* TPMI/MSR RAPL uses any CPU in the package for PMU */
1622 	return topology_physical_package_id(cpu) == rp->id;
1623 }
1624 
1625 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1626 {
1627 	struct rapl_package *rp = event->pmu_private;
1628 
1629 	return &rp->pmu_data;
1630 }
1631 
1632 /* PMU event callbacks */
1633 
1634 static u64 event_read_counter(struct perf_event *event)
1635 {
1636 	struct rapl_package *rp = event->pmu_private;
1637 	u64 val;
1638 	int ret;
1639 
1640 	/* Return 0 for unsupported events */
1641 	if (event->hw.idx < 0)
1642 		return 0;
1643 
1644 	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val, true);
1645 
1646 	/* Return 0 for failed read */
1647 	if (ret)
1648 		return 0;
1649 
1650 	return val;
1651 }
1652 
1653 static void __rapl_pmu_event_start(struct perf_event *event)
1654 {
1655 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1656 
1657 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1658 		return;
1659 
1660 	event->hw.state = 0;
1661 
1662 	list_add_tail(&event->active_entry, &data->active_list);
1663 
1664 	local64_set(&event->hw.prev_count, event_read_counter(event));
1665 	if (++data->n_active == 1)
1666 		hrtimer_start(&data->hrtimer, data->timer_interval,
1667 			      HRTIMER_MODE_REL_PINNED);
1668 }
1669 
1670 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1671 {
1672 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1673 	unsigned long flags;
1674 
1675 	raw_spin_lock_irqsave(&data->lock, flags);
1676 	__rapl_pmu_event_start(event);
1677 	raw_spin_unlock_irqrestore(&data->lock, flags);
1678 }
1679 
1680 static u64 rapl_event_update(struct perf_event *event)
1681 {
1682 	struct hw_perf_event *hwc = &event->hw;
1683 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1684 	u64 prev_raw_count, new_raw_count;
1685 	s64 delta, sdelta;
1686 
1687 	/*
1688 	 * Follow the generic code to drain hwc->prev_count.
1689 	 * The loop is not expected to run for multiple times.
1690 	 */
1691 	prev_raw_count = local64_read(&hwc->prev_count);
1692 	do {
1693 		new_raw_count = event_read_counter(event);
1694 	} while (!local64_try_cmpxchg(&hwc->prev_count,
1695 		&prev_raw_count, new_raw_count));
1696 
1697 
1698 	/*
1699 	 * Now we have the new raw value and have updated the prev
1700 	 * timestamp already. We can now calculate the elapsed delta
1701 	 * (event-)time and add that to the generic event.
1702 	 */
1703 	delta = new_raw_count - prev_raw_count;
1704 
1705 	/*
1706 	 * Scale delta to smallest unit (2^-32)
1707 	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1708 	 * or use ldexp(count, -32).
1709 	 * Watts = Joules/Time delta
1710 	 */
1711 	sdelta = delta * data->scale[event->hw.flags];
1712 
1713 	local64_add(sdelta, &event->count);
1714 
1715 	return new_raw_count;
1716 }
1717 
1718 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1719 {
1720 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1721 	struct hw_perf_event *hwc = &event->hw;
1722 	unsigned long flags;
1723 
1724 	raw_spin_lock_irqsave(&data->lock, flags);
1725 
1726 	/* Mark event as deactivated and stopped */
1727 	if (!(hwc->state & PERF_HES_STOPPED)) {
1728 		WARN_ON_ONCE(data->n_active <= 0);
1729 		if (--data->n_active == 0)
1730 			hrtimer_cancel(&data->hrtimer);
1731 
1732 		list_del(&event->active_entry);
1733 
1734 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1735 		hwc->state |= PERF_HES_STOPPED;
1736 	}
1737 
1738 	/* Check if update of sw counter is necessary */
1739 	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1740 		/*
1741 		 * Drain the remaining delta count out of a event
1742 		 * that we are disabling:
1743 		 */
1744 		rapl_event_update(event);
1745 		hwc->state |= PERF_HES_UPTODATE;
1746 	}
1747 
1748 	raw_spin_unlock_irqrestore(&data->lock, flags);
1749 }
1750 
1751 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1752 {
1753 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1754 	struct hw_perf_event *hwc = &event->hw;
1755 	unsigned long flags;
1756 
1757 	raw_spin_lock_irqsave(&data->lock, flags);
1758 
1759 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1760 
1761 	if (mode & PERF_EF_START)
1762 		__rapl_pmu_event_start(event);
1763 
1764 	raw_spin_unlock_irqrestore(&data->lock, flags);
1765 
1766 	return 0;
1767 }
1768 
1769 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1770 {
1771 	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1772 }
1773 
1774 /* RAPL PMU event ids, same as shown in sysfs */
1775 enum perf_rapl_events {
1776 	PERF_RAPL_PP0 = 1,	/* all cores */
1777 	PERF_RAPL_PKG,		/* entire package */
1778 	PERF_RAPL_RAM,		/* DRAM */
1779 	PERF_RAPL_PP1,		/* gpu */
1780 	PERF_RAPL_PSYS,		/* psys */
1781 	PERF_RAPL_MAX
1782 };
1783 #define RAPL_EVENT_MASK GENMASK(7, 0)
1784 
1785 static const int event_to_domain[PERF_RAPL_MAX] = {
1786 	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1787 	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1788 	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1789 	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1790 	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1791 };
1792 
1793 static int rapl_pmu_event_init(struct perf_event *event)
1794 {
1795 	struct rapl_package *pos, *rp = NULL;
1796 	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1797 	int domain, idx;
1798 
1799 	/* Only look at RAPL events */
1800 	if (event->attr.type != event->pmu->type)
1801 		return -ENOENT;
1802 
1803 	/* Check for supported events only */
1804 	if (!cfg || cfg >= PERF_RAPL_MAX)
1805 		return -EINVAL;
1806 
1807 	if (event->cpu < 0)
1808 		return -EINVAL;
1809 
1810 	/* Find out which Package the event belongs to */
1811 	list_for_each_entry(pos, &rapl_packages, plist) {
1812 		if (is_rp_pmu_cpu(pos, event->cpu)) {
1813 			rp = pos;
1814 			break;
1815 		}
1816 	}
1817 	if (!rp)
1818 		return -ENODEV;
1819 
1820 	/* Find out which RAPL Domain the event belongs to */
1821 	domain = event_to_domain[cfg];
1822 
1823 	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1824 	event->pmu_private = rp;	/* Which package */
1825 	event->hw.flags = domain;	/* Which domain */
1826 
1827 	event->hw.idx = -1;
1828 	/* Find out the index in rp->domains[] to get domain pointer */
1829 	for (idx = 0; idx < rp->nr_domains; idx++) {
1830 		if (rp->domains[idx].id == domain) {
1831 			event->hw.idx = idx;
1832 			break;
1833 		}
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static void rapl_pmu_event_read(struct perf_event *event)
1840 {
1841 	rapl_event_update(event);
1842 }
1843 
1844 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1845 {
1846 	struct rapl_package_pmu_data *data =
1847 		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1848 	struct perf_event *event;
1849 	unsigned long flags;
1850 
1851 	if (!data->n_active)
1852 		return HRTIMER_NORESTART;
1853 
1854 	raw_spin_lock_irqsave(&data->lock, flags);
1855 
1856 	list_for_each_entry(event, &data->active_list, active_entry)
1857 		rapl_event_update(event);
1858 
1859 	raw_spin_unlock_irqrestore(&data->lock, flags);
1860 
1861 	hrtimer_forward_now(hrtimer, data->timer_interval);
1862 
1863 	return HRTIMER_RESTART;
1864 }
1865 
1866 /* PMU sysfs attributes */
1867 
1868 /*
1869  * There are no default events, but we need to create "events" group (with
1870  * empty attrs) before updating it with detected events.
1871  */
1872 static struct attribute *attrs_empty[] = {
1873 	NULL,
1874 };
1875 
1876 static struct attribute_group pmu_events_group = {
1877 	.name = "events",
1878 	.attrs = attrs_empty,
1879 };
1880 
1881 static ssize_t cpumask_show(struct device *dev,
1882 			    struct device_attribute *attr, char *buf)
1883 {
1884 	struct rapl_package *rp;
1885 	cpumask_var_t cpu_mask;
1886 	int cpu;
1887 	int ret;
1888 
1889 	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1890 		return -ENOMEM;
1891 
1892 	cpus_read_lock();
1893 
1894 	cpumask_clear(cpu_mask);
1895 
1896 	/* Choose a cpu for each RAPL Package */
1897 	list_for_each_entry(rp, &rapl_packages, plist) {
1898 		cpu = get_pmu_cpu(rp);
1899 		if (cpu < nr_cpu_ids)
1900 			cpumask_set_cpu(cpu, cpu_mask);
1901 	}
1902 	cpus_read_unlock();
1903 
1904 	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1905 
1906 	free_cpumask_var(cpu_mask);
1907 
1908 	return ret;
1909 }
1910 
1911 static DEVICE_ATTR_RO(cpumask);
1912 
1913 static struct attribute *pmu_cpumask_attrs[] = {
1914 	&dev_attr_cpumask.attr,
1915 	NULL
1916 };
1917 
1918 static struct attribute_group pmu_cpumask_group = {
1919 	.attrs = pmu_cpumask_attrs,
1920 };
1921 
1922 PMU_FORMAT_ATTR(event, "config:0-7");
1923 static struct attribute *pmu_format_attr[] = {
1924 	&format_attr_event.attr,
1925 	NULL
1926 };
1927 
1928 static struct attribute_group pmu_format_group = {
1929 	.name = "format",
1930 	.attrs = pmu_format_attr,
1931 };
1932 
1933 static const struct attribute_group *pmu_attr_groups[] = {
1934 	&pmu_events_group,
1935 	&pmu_cpumask_group,
1936 	&pmu_format_group,
1937 	NULL
1938 };
1939 
1940 #define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1941 static struct perf_pmu_events_attr event_attr_##v = {				\
1942 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1943 	.event_str	= str,							\
1944 }
1945 
1946 RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1947 RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1948 RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1949 RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1950 RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1951 
1952 RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1953 RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1954 RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1955 RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1956 RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1957 
1958 RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1959 RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1960 RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1961 RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1962 RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1963 
1964 #define RAPL_EVENT_GROUP(_name, domain)			\
1965 static struct attribute *pmu_attr_##_name[] = {		\
1966 	&event_attr_rapl_##_name.attr.attr,		\
1967 	&event_attr_rapl_unit_##_name.attr.attr,	\
1968 	&event_attr_rapl_scale_##_name.attr.attr,	\
1969 	NULL						\
1970 };							\
1971 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1972 {											\
1973 	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1974 }							\
1975 static struct attribute_group pmu_group_##_name = {	\
1976 	.name  = "events",				\
1977 	.attrs = pmu_attr_##_name,			\
1978 	.is_visible = is_visible_##_name,		\
1979 }
1980 
1981 RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1982 RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1983 RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1984 RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1985 RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1986 
1987 static const struct attribute_group *pmu_attr_update[] = {
1988 	&pmu_group_cores,
1989 	&pmu_group_pkg,
1990 	&pmu_group_ram,
1991 	&pmu_group_gpu,
1992 	&pmu_group_psys,
1993 	NULL
1994 };
1995 
1996 static int rapl_pmu_update(struct rapl_package *rp)
1997 {
1998 	int ret = 0;
1999 
2000 	/* Return if PMU already covers all events supported by current RAPL Package */
2001 	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
2002 		goto end;
2003 
2004 	/* Unregister previous registered PMU */
2005 	if (rapl_pmu.registered)
2006 		perf_pmu_unregister(&rapl_pmu.pmu);
2007 
2008 	rapl_pmu.registered = false;
2009 	rapl_pmu.domain_map |= rp->domain_map;
2010 
2011 	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
2012 	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
2013 	rapl_pmu.pmu.attr_update = pmu_attr_update;
2014 	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
2015 	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
2016 	rapl_pmu.pmu.add = rapl_pmu_event_add;
2017 	rapl_pmu.pmu.del = rapl_pmu_event_del;
2018 	rapl_pmu.pmu.start = rapl_pmu_event_start;
2019 	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
2020 	rapl_pmu.pmu.read = rapl_pmu_event_read;
2021 	rapl_pmu.pmu.module = THIS_MODULE;
2022 	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
2023 	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2024 	if (ret) {
2025 		pr_info("Failed to register PMU\n");
2026 		return ret;
2027 	}
2028 
2029 	rapl_pmu.registered = true;
2030 end:
2031 	rp->has_pmu = true;
2032 	return ret;
2033 }
2034 
2035 int rapl_package_add_pmu(struct rapl_package *rp)
2036 {
2037 	struct rapl_package_pmu_data *data = &rp->pmu_data;
2038 	int idx;
2039 
2040 	if (rp->has_pmu)
2041 		return -EEXIST;
2042 
2043 	guard(cpus_read_lock)();
2044 
2045 	for (idx = 0; idx < rp->nr_domains; idx++) {
2046 		struct rapl_domain *rd = &rp->domains[idx];
2047 		int domain = rd->id;
2048 		u64 val;
2049 
2050 		if (!test_bit(domain, &rp->domain_map))
2051 			continue;
2052 
2053 		/*
2054 		 * The RAPL PMU granularity is 2^-32 Joules
2055 		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2056 		 */
2057 		val = rd->energy_unit * (1ULL << 32);
2058 		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2059 		data->scale[domain] = val;
2060 
2061 		if (!rapl_pmu.timer_ms) {
2062 			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2063 
2064 			/*
2065 			 * Calculate the timer rate:
2066 			 * Use reference of 200W for scaling the timeout to avoid counter
2067 			 * overflows.
2068 			 *
2069 			 * max_count = rpi->mask >> rpi->shift + 1
2070 			 * max_energy_pj = max_count * rd->energy_unit
2071 			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2072 			 *
2073 			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2074 			 */
2075 			val = (rpi->mask >> rpi->shift) + 1;
2076 			val *= rd->energy_unit;
2077 			do_div(val, 1000000 * 200 * 2);
2078 			rapl_pmu.timer_ms = val;
2079 
2080 			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2081 		}
2082 
2083 		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2084 	}
2085 
2086 	/* Initialize per package PMU data */
2087 	raw_spin_lock_init(&data->lock);
2088 	INIT_LIST_HEAD(&data->active_list);
2089 	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2090 	hrtimer_setup(&data->hrtimer, rapl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2091 
2092 	return rapl_pmu_update(rp);
2093 }
2094 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2095 
2096 void rapl_package_remove_pmu(struct rapl_package *rp)
2097 {
2098 	struct rapl_package *pos;
2099 
2100 	if (!rp->has_pmu)
2101 		return;
2102 
2103 	guard(cpus_read_lock)();
2104 
2105 	list_for_each_entry(pos, &rapl_packages, plist) {
2106 		/* PMU is still needed */
2107 		if (pos->has_pmu && pos != rp)
2108 			return;
2109 	}
2110 
2111 	perf_pmu_unregister(&rapl_pmu.pmu);
2112 	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2113 }
2114 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2115 #endif
2116 
2117 /* called from CPU hotplug notifier, hotplug lock held */
2118 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2119 {
2120 	struct rapl_domain *rd, *rd_package = NULL;
2121 
2122 	package_power_limit_irq_restore(rp);
2123 
2124 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2125 		int i;
2126 
2127 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2128 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2129 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2130 		}
2131 
2132 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2133 			rd_package = rd;
2134 			continue;
2135 		}
2136 		pr_debug("remove package, undo power limit on %s: %s\n",
2137 			 rp->name, rd->name);
2138 		powercap_unregister_zone(rp->priv->control_type,
2139 					 &rd->power_zone);
2140 	}
2141 	/* do parent zone last */
2142 	powercap_unregister_zone(rp->priv->control_type,
2143 				 &rd_package->power_zone);
2144 	list_del(&rp->plist);
2145 	kfree(rp);
2146 }
2147 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2148 
2149 void rapl_remove_package(struct rapl_package *rp)
2150 {
2151 	guard(cpus_read_lock)();
2152 	rapl_remove_package_cpuslocked(rp);
2153 }
2154 EXPORT_SYMBOL_GPL(rapl_remove_package);
2155 
2156 /*
2157  * RAPL Package energy counter scope:
2158  * 1. AMD/HYGON platforms use per-PKG package energy counter
2159  * 2. For Intel platforms
2160  *	2.1 CLX-AP platform has per-DIE package energy counter
2161  *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2162  *          package energy counter can be considered as per-PKG/per-DIE,
2163  *          here it is considered as per-DIE.
2164  *	2.3 New platforms that use TPMI RAPL doesn't care about the
2165  *	    scope because they are not MSR/CPU based.
2166  */
2167 #define rapl_msrs_are_pkg_scope()				\
2168 	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2169 	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2170 
2171 /* caller to ensure CPU hotplug lock is held */
2172 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2173 							 bool id_is_cpu)
2174 {
2175 	struct rapl_package *rp;
2176 	int uid;
2177 
2178 	if (id_is_cpu) {
2179 		uid = rapl_msrs_are_pkg_scope() ?
2180 		      topology_physical_package_id(id) : topology_logical_die_id(id);
2181 		if (uid < 0) {
2182 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2183 			return NULL;
2184 		}
2185 	}
2186 	else
2187 		uid = id;
2188 
2189 	list_for_each_entry(rp, &rapl_packages, plist) {
2190 		if (rp->id == uid
2191 		    && rp->priv->control_type == priv->control_type)
2192 			return rp;
2193 	}
2194 
2195 	return NULL;
2196 }
2197 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2198 
2199 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2200 {
2201 	guard(cpus_read_lock)();
2202 	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2203 }
2204 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2205 
2206 /* called from CPU hotplug notifier, hotplug lock held */
2207 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2208 {
2209 	struct rapl_package *rp;
2210 	int ret;
2211 
2212 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2213 	if (!rp)
2214 		return ERR_PTR(-ENOMEM);
2215 
2216 	if (id_is_cpu) {
2217 		rp->id = rapl_msrs_are_pkg_scope() ?
2218 			 topology_physical_package_id(id) : topology_logical_die_id(id);
2219 		if ((int)(rp->id) < 0) {
2220 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2221 			return ERR_PTR(-EINVAL);
2222 		}
2223 		rp->lead_cpu = id;
2224 		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2225 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2226 				 topology_physical_package_id(id), topology_die_id(id));
2227 		else
2228 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2229 				 topology_physical_package_id(id));
2230 	} else {
2231 		rp->id = id;
2232 		rp->lead_cpu = -1;
2233 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2234 	}
2235 
2236 	rp->priv = priv;
2237 	ret = rapl_config(rp);
2238 	if (ret)
2239 		goto err_free_package;
2240 
2241 	/* check if the package contains valid domains */
2242 	if (rapl_detect_domains(rp)) {
2243 		ret = -ENODEV;
2244 		goto err_free_package;
2245 	}
2246 	ret = rapl_package_register_powercap(rp);
2247 	if (!ret) {
2248 		INIT_LIST_HEAD(&rp->plist);
2249 		list_add(&rp->plist, &rapl_packages);
2250 		return rp;
2251 	}
2252 
2253 err_free_package:
2254 	kfree(rp->domains);
2255 	kfree(rp);
2256 	return ERR_PTR(ret);
2257 }
2258 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2259 
2260 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2261 {
2262 	guard(cpus_read_lock)();
2263 	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2264 }
2265 EXPORT_SYMBOL_GPL(rapl_add_package);
2266 
2267 static void power_limit_state_save(void)
2268 {
2269 	struct rapl_package *rp;
2270 	struct rapl_domain *rd;
2271 	int ret, i;
2272 
2273 	cpus_read_lock();
2274 	list_for_each_entry(rp, &rapl_packages, plist) {
2275 		if (!rp->power_zone)
2276 			continue;
2277 		rd = power_zone_to_rapl_domain(rp->power_zone);
2278 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2279 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2280 						 &rd->rpl[i].last_power_limit);
2281 			if (ret)
2282 				rd->rpl[i].last_power_limit = 0;
2283 		}
2284 	}
2285 	cpus_read_unlock();
2286 }
2287 
2288 static void power_limit_state_restore(void)
2289 {
2290 	struct rapl_package *rp;
2291 	struct rapl_domain *rd;
2292 	int i;
2293 
2294 	cpus_read_lock();
2295 	list_for_each_entry(rp, &rapl_packages, plist) {
2296 		if (!rp->power_zone)
2297 			continue;
2298 		rd = power_zone_to_rapl_domain(rp->power_zone);
2299 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2300 			if (rd->rpl[i].last_power_limit)
2301 				rapl_write_pl_data(rd, i, PL_LIMIT,
2302 					       rd->rpl[i].last_power_limit);
2303 	}
2304 	cpus_read_unlock();
2305 }
2306 
2307 static int rapl_pm_callback(struct notifier_block *nb,
2308 			    unsigned long mode, void *_unused)
2309 {
2310 	switch (mode) {
2311 	case PM_SUSPEND_PREPARE:
2312 		power_limit_state_save();
2313 		break;
2314 	case PM_POST_SUSPEND:
2315 		power_limit_state_restore();
2316 		break;
2317 	}
2318 	return NOTIFY_OK;
2319 }
2320 
2321 static struct notifier_block rapl_pm_notifier = {
2322 	.notifier_call = rapl_pm_callback,
2323 };
2324 
2325 static struct platform_device *rapl_msr_platdev;
2326 
2327 static int __init rapl_init(void)
2328 {
2329 	const struct x86_cpu_id *id;
2330 	int ret;
2331 
2332 	id = x86_match_cpu(rapl_ids);
2333 	if (id) {
2334 		defaults_msr = (struct rapl_defaults *)id->driver_data;
2335 
2336 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2337 		if (!rapl_msr_platdev)
2338 			return -ENOMEM;
2339 
2340 		ret = platform_device_add(rapl_msr_platdev);
2341 		if (ret) {
2342 			platform_device_put(rapl_msr_platdev);
2343 			return ret;
2344 		}
2345 	}
2346 
2347 	ret = register_pm_notifier(&rapl_pm_notifier);
2348 	if (ret && rapl_msr_platdev) {
2349 		platform_device_del(rapl_msr_platdev);
2350 		platform_device_put(rapl_msr_platdev);
2351 	}
2352 
2353 	return ret;
2354 }
2355 
2356 static void __exit rapl_exit(void)
2357 {
2358 	platform_device_unregister(rapl_msr_platdev);
2359 	unregister_pm_notifier(&rapl_pm_notifier);
2360 }
2361 
2362 fs_initcall(rapl_init);
2363 module_exit(rapl_exit);
2364 
2365 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2366 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2367 MODULE_LICENSE("GPL v2");
2368