xref: /linux/drivers/powercap/intel_rapl_common.c (revision 570172569238c66a482ec3eb5d766cc9cf255f69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27 
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 
32 /* bitmasks for RAPL MSRs, used by primitive access functions */
33 #define ENERGY_STATUS_MASK      0xffffffff
34 
35 #define POWER_LIMIT1_MASK       0x7FFF
36 #define POWER_LIMIT1_ENABLE     BIT(15)
37 #define POWER_LIMIT1_CLAMP      BIT(16)
38 
39 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
40 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
41 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
42 #define POWER_HIGH_LOCK         BIT_ULL(63)
43 #define POWER_LOW_LOCK          BIT(31)
44 
45 #define POWER_LIMIT4_MASK		0x1FFF
46 
47 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
48 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
49 
50 #define POWER_UNIT_OFFSET	0
51 #define POWER_UNIT_MASK		0x0F
52 
53 #define ENERGY_UNIT_OFFSET	0x08
54 #define ENERGY_UNIT_MASK	0x1F00
55 
56 #define TIME_UNIT_OFFSET	0x10
57 #define TIME_UNIT_MASK		0xF0000
58 
59 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
60 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
61 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
62 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
63 
64 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
65 #define PP_POLICY_MASK         0x1F
66 
67 /*
68  * SPR has different layout for Psys Domain PowerLimit registers.
69  * There are 17 bits of PL1 and PL2 instead of 15 bits.
70  * The Enable bits and TimeWindow bits are also shifted as a result.
71  */
72 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
73 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
74 
75 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
76 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
77 
78 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
79 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
80 
81 /* bitmasks for RAPL TPMI, used by primitive access functions */
82 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
83 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
84 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
85 #define TPMI_INFO_SPEC_MASK	0x3FFFF
86 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
87 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
88 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
89 
90 /* Non HW constants */
91 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
92 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
93 
94 #define TIME_WINDOW_MAX_MSEC 40000
95 #define TIME_WINDOW_MIN_MSEC 250
96 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
97 enum unit_type {
98 	ARBITRARY_UNIT,		/* no translation */
99 	POWER_UNIT,
100 	ENERGY_UNIT,
101 	TIME_UNIT,
102 };
103 
104 /* per domain data, some are optional */
105 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
106 
107 #define	DOMAIN_STATE_INACTIVE           BIT(0)
108 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
109 
110 static const char *pl_names[NR_POWER_LIMITS] = {
111 	[POWER_LIMIT1] = "long_term",
112 	[POWER_LIMIT2] = "short_term",
113 	[POWER_LIMIT4] = "peak_power",
114 };
115 
116 enum pl_prims {
117 	PL_ENABLE,
118 	PL_CLAMP,
119 	PL_LIMIT,
120 	PL_TIME_WINDOW,
121 	PL_MAX_POWER,
122 	PL_LOCK,
123 };
124 
125 static bool is_pl_valid(struct rapl_domain *rd, int pl)
126 {
127 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
128 		return false;
129 	return rd->rpl[pl].name ? true : false;
130 }
131 
132 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
133 {
134 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
135 		if (pl == POWER_LIMIT1)
136 			return PL1_LOCK;
137 		if (pl == POWER_LIMIT2)
138 			return PL2_LOCK;
139 		if (pl == POWER_LIMIT4)
140 			return PL4_LOCK;
141 	}
142 
143 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
144 	if (pl == POWER_LIMIT4)
145 		return -EINVAL;
146 
147 	/*
148 	 * Power Limit register that supports two power limits has a different
149 	 * bit position for the Lock bit.
150 	 */
151 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
152 		return FW_HIGH_LOCK;
153 	return FW_LOCK;
154 }
155 
156 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
157 {
158 	switch (pl) {
159 	case POWER_LIMIT1:
160 		if (prim == PL_ENABLE)
161 			return PL1_ENABLE;
162 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
163 			return PL1_CLAMP;
164 		if (prim == PL_LIMIT)
165 			return POWER_LIMIT1;
166 		if (prim == PL_TIME_WINDOW)
167 			return TIME_WINDOW1;
168 		if (prim == PL_MAX_POWER)
169 			return THERMAL_SPEC_POWER;
170 		if (prim == PL_LOCK)
171 			return get_pl_lock_prim(rd, pl);
172 		return -EINVAL;
173 	case POWER_LIMIT2:
174 		if (prim == PL_ENABLE)
175 			return PL2_ENABLE;
176 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
177 			return PL2_CLAMP;
178 		if (prim == PL_LIMIT)
179 			return POWER_LIMIT2;
180 		if (prim == PL_TIME_WINDOW)
181 			return TIME_WINDOW2;
182 		if (prim == PL_MAX_POWER)
183 			return MAX_POWER;
184 		if (prim == PL_LOCK)
185 			return get_pl_lock_prim(rd, pl);
186 		return -EINVAL;
187 	case POWER_LIMIT4:
188 		if (prim == PL_LIMIT)
189 			return POWER_LIMIT4;
190 		if (prim == PL_ENABLE)
191 			return PL4_ENABLE;
192 		/* PL4 would be around two times PL2, use same prim as PL2. */
193 		if (prim == PL_MAX_POWER)
194 			return MAX_POWER;
195 		if (prim == PL_LOCK)
196 			return get_pl_lock_prim(rd, pl);
197 		return -EINVAL;
198 	default:
199 		return -EINVAL;
200 	}
201 }
202 
203 #define power_zone_to_rapl_domain(_zone) \
204 	container_of(_zone, struct rapl_domain, power_zone)
205 
206 struct rapl_defaults {
207 	u8 floor_freq_reg_addr;
208 	int (*check_unit)(struct rapl_domain *rd);
209 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
210 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
211 				    bool to_raw);
212 	unsigned int dram_domain_energy_unit;
213 	unsigned int psys_domain_energy_unit;
214 	bool spr_psys_bits;
215 };
216 static struct rapl_defaults *defaults_msr;
217 static const struct rapl_defaults defaults_tpmi;
218 
219 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
220 {
221 	return rp->priv->defaults;
222 }
223 
224 /* Sideband MBI registers */
225 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
226 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
227 
228 #define PACKAGE_PLN_INT_SAVED   BIT(0)
229 #define MAX_PRIM_NAME (32)
230 
231 /* per domain data. used to describe individual knobs such that access function
232  * can be consolidated into one instead of many inline functions.
233  */
234 struct rapl_primitive_info {
235 	const char *name;
236 	u64 mask;
237 	int shift;
238 	enum rapl_domain_reg_id id;
239 	enum unit_type unit;
240 	u32 flag;
241 };
242 
243 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
244 		.name = #p,			\
245 		.mask = m,			\
246 		.shift = s,			\
247 		.id = i,			\
248 		.unit = u,			\
249 		.flag = f			\
250 	}
251 
252 static void rapl_init_domains(struct rapl_package *rp);
253 static int rapl_read_data_raw(struct rapl_domain *rd,
254 			      enum rapl_primitives prim,
255 			      bool xlate, u64 *data);
256 static int rapl_write_data_raw(struct rapl_domain *rd,
257 			       enum rapl_primitives prim,
258 			       unsigned long long value);
259 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
260 			      enum pl_prims pl_prim,
261 			      bool xlate, u64 *data);
262 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
263 			       enum pl_prims pl_prim,
264 			       unsigned long long value);
265 static u64 rapl_unit_xlate(struct rapl_domain *rd,
266 			   enum unit_type type, u64 value, int to_raw);
267 static void package_power_limit_irq_save(struct rapl_package *rp);
268 
269 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
270 
271 static const char *const rapl_domain_names[] = {
272 	"package",
273 	"core",
274 	"uncore",
275 	"dram",
276 	"psys",
277 };
278 
279 static int get_energy_counter(struct powercap_zone *power_zone,
280 			      u64 *energy_raw)
281 {
282 	struct rapl_domain *rd;
283 	u64 energy_now;
284 
285 	/* prevent CPU hotplug, make sure the RAPL domain does not go
286 	 * away while reading the counter.
287 	 */
288 	cpus_read_lock();
289 	rd = power_zone_to_rapl_domain(power_zone);
290 
291 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
292 		*energy_raw = energy_now;
293 		cpus_read_unlock();
294 
295 		return 0;
296 	}
297 	cpus_read_unlock();
298 
299 	return -EIO;
300 }
301 
302 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
303 {
304 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
305 
306 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
307 	return 0;
308 }
309 
310 static int release_zone(struct powercap_zone *power_zone)
311 {
312 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
313 	struct rapl_package *rp = rd->rp;
314 
315 	/* package zone is the last zone of a package, we can free
316 	 * memory here since all children has been unregistered.
317 	 */
318 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
319 		kfree(rd);
320 		rp->domains = NULL;
321 	}
322 
323 	return 0;
324 
325 }
326 
327 static int find_nr_power_limit(struct rapl_domain *rd)
328 {
329 	int i, nr_pl = 0;
330 
331 	for (i = 0; i < NR_POWER_LIMITS; i++) {
332 		if (is_pl_valid(rd, i))
333 			nr_pl++;
334 	}
335 
336 	return nr_pl;
337 }
338 
339 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
340 {
341 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
342 	struct rapl_defaults *defaults = get_defaults(rd->rp);
343 	int ret;
344 
345 	cpus_read_lock();
346 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
347 	if (!ret && defaults->set_floor_freq)
348 		defaults->set_floor_freq(rd, mode);
349 	cpus_read_unlock();
350 
351 	return ret;
352 }
353 
354 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
355 {
356 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
357 	u64 val;
358 	int ret;
359 
360 	if (rd->rpl[POWER_LIMIT1].locked) {
361 		*mode = false;
362 		return 0;
363 	}
364 	cpus_read_lock();
365 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
366 	if (!ret)
367 		*mode = val;
368 	cpus_read_unlock();
369 
370 	return ret;
371 }
372 
373 /* per RAPL domain ops, in the order of rapl_domain_type */
374 static const struct powercap_zone_ops zone_ops[] = {
375 	/* RAPL_DOMAIN_PACKAGE */
376 	{
377 	 .get_energy_uj = get_energy_counter,
378 	 .get_max_energy_range_uj = get_max_energy_counter,
379 	 .release = release_zone,
380 	 .set_enable = set_domain_enable,
381 	 .get_enable = get_domain_enable,
382 	 },
383 	/* RAPL_DOMAIN_PP0 */
384 	{
385 	 .get_energy_uj = get_energy_counter,
386 	 .get_max_energy_range_uj = get_max_energy_counter,
387 	 .release = release_zone,
388 	 .set_enable = set_domain_enable,
389 	 .get_enable = get_domain_enable,
390 	 },
391 	/* RAPL_DOMAIN_PP1 */
392 	{
393 	 .get_energy_uj = get_energy_counter,
394 	 .get_max_energy_range_uj = get_max_energy_counter,
395 	 .release = release_zone,
396 	 .set_enable = set_domain_enable,
397 	 .get_enable = get_domain_enable,
398 	 },
399 	/* RAPL_DOMAIN_DRAM */
400 	{
401 	 .get_energy_uj = get_energy_counter,
402 	 .get_max_energy_range_uj = get_max_energy_counter,
403 	 .release = release_zone,
404 	 .set_enable = set_domain_enable,
405 	 .get_enable = get_domain_enable,
406 	 },
407 	/* RAPL_DOMAIN_PLATFORM */
408 	{
409 	 .get_energy_uj = get_energy_counter,
410 	 .get_max_energy_range_uj = get_max_energy_counter,
411 	 .release = release_zone,
412 	 .set_enable = set_domain_enable,
413 	 .get_enable = get_domain_enable,
414 	 },
415 };
416 
417 /*
418  * Constraint index used by powercap can be different than power limit (PL)
419  * index in that some  PLs maybe missing due to non-existent MSRs. So we
420  * need to convert here by finding the valid PLs only (name populated).
421  */
422 static int contraint_to_pl(struct rapl_domain *rd, int cid)
423 {
424 	int i, j;
425 
426 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
427 		if (is_pl_valid(rd, i) && j++ == cid) {
428 			pr_debug("%s: index %d\n", __func__, i);
429 			return i;
430 		}
431 	}
432 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
433 
434 	return -EINVAL;
435 }
436 
437 static int set_power_limit(struct powercap_zone *power_zone, int cid,
438 			   u64 power_limit)
439 {
440 	struct rapl_domain *rd;
441 	struct rapl_package *rp;
442 	int ret = 0;
443 	int id;
444 
445 	cpus_read_lock();
446 	rd = power_zone_to_rapl_domain(power_zone);
447 	id = contraint_to_pl(rd, cid);
448 	rp = rd->rp;
449 
450 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
451 	if (!ret)
452 		package_power_limit_irq_save(rp);
453 	cpus_read_unlock();
454 	return ret;
455 }
456 
457 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
458 				   u64 *data)
459 {
460 	struct rapl_domain *rd;
461 	u64 val;
462 	int ret = 0;
463 	int id;
464 
465 	cpus_read_lock();
466 	rd = power_zone_to_rapl_domain(power_zone);
467 	id = contraint_to_pl(rd, cid);
468 
469 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
470 	if (!ret)
471 		*data = val;
472 
473 	cpus_read_unlock();
474 
475 	return ret;
476 }
477 
478 static int set_time_window(struct powercap_zone *power_zone, int cid,
479 			   u64 window)
480 {
481 	struct rapl_domain *rd;
482 	int ret = 0;
483 	int id;
484 
485 	cpus_read_lock();
486 	rd = power_zone_to_rapl_domain(power_zone);
487 	id = contraint_to_pl(rd, cid);
488 
489 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
490 
491 	cpus_read_unlock();
492 	return ret;
493 }
494 
495 static int get_time_window(struct powercap_zone *power_zone, int cid,
496 			   u64 *data)
497 {
498 	struct rapl_domain *rd;
499 	u64 val;
500 	int ret = 0;
501 	int id;
502 
503 	cpus_read_lock();
504 	rd = power_zone_to_rapl_domain(power_zone);
505 	id = contraint_to_pl(rd, cid);
506 
507 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
508 	if (!ret)
509 		*data = val;
510 
511 	cpus_read_unlock();
512 
513 	return ret;
514 }
515 
516 static const char *get_constraint_name(struct powercap_zone *power_zone,
517 				       int cid)
518 {
519 	struct rapl_domain *rd;
520 	int id;
521 
522 	rd = power_zone_to_rapl_domain(power_zone);
523 	id = contraint_to_pl(rd, cid);
524 	if (id >= 0)
525 		return rd->rpl[id].name;
526 
527 	return NULL;
528 }
529 
530 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
531 {
532 	struct rapl_domain *rd;
533 	u64 val;
534 	int ret = 0;
535 	int id;
536 
537 	cpus_read_lock();
538 	rd = power_zone_to_rapl_domain(power_zone);
539 	id = contraint_to_pl(rd, cid);
540 
541 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
542 	if (!ret)
543 		*data = val;
544 
545 	/* As a generalization rule, PL4 would be around two times PL2. */
546 	if (id == POWER_LIMIT4)
547 		*data = *data * 2;
548 
549 	cpus_read_unlock();
550 
551 	return ret;
552 }
553 
554 static const struct powercap_zone_constraint_ops constraint_ops = {
555 	.set_power_limit_uw = set_power_limit,
556 	.get_power_limit_uw = get_current_power_limit,
557 	.set_time_window_us = set_time_window,
558 	.get_time_window_us = get_time_window,
559 	.get_max_power_uw = get_max_power,
560 	.get_name = get_constraint_name,
561 };
562 
563 /* Return the id used for read_raw/write_raw callback */
564 static int get_rid(struct rapl_package *rp)
565 {
566 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
567 }
568 
569 /* called after domain detection and package level data are set */
570 static void rapl_init_domains(struct rapl_package *rp)
571 {
572 	enum rapl_domain_type i;
573 	enum rapl_domain_reg_id j;
574 	struct rapl_domain *rd = rp->domains;
575 
576 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
577 		unsigned int mask = rp->domain_map & (1 << i);
578 		int t;
579 
580 		if (!mask)
581 			continue;
582 
583 		rd->rp = rp;
584 
585 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
586 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
587 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
588 				rp->id);
589 		} else {
590 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
591 				rapl_domain_names[i]);
592 		}
593 
594 		rd->id = i;
595 
596 		/* PL1 is supported by default */
597 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
598 
599 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
600 			if (rp->priv->limits[i] & BIT(t))
601 				rd->rpl[t].name = pl_names[t];
602 		}
603 
604 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
605 			rd->regs[j] = rp->priv->regs[i][j];
606 
607 		rd++;
608 	}
609 }
610 
611 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
612 			   u64 value, int to_raw)
613 {
614 	u64 units = 1;
615 	struct rapl_defaults *defaults = get_defaults(rd->rp);
616 	u64 scale = 1;
617 
618 	switch (type) {
619 	case POWER_UNIT:
620 		units = rd->power_unit;
621 		break;
622 	case ENERGY_UNIT:
623 		scale = ENERGY_UNIT_SCALE;
624 		units = rd->energy_unit;
625 		break;
626 	case TIME_UNIT:
627 		return defaults->compute_time_window(rd, value, to_raw);
628 	case ARBITRARY_UNIT:
629 	default:
630 		return value;
631 	}
632 
633 	if (to_raw)
634 		return div64_u64(value, units) * scale;
635 
636 	value *= units;
637 
638 	return div64_u64(value, scale);
639 }
640 
641 /* RAPL primitives for MSR and MMIO I/F */
642 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
643 	/* name, mask, shift, msr index, unit divisor */
644 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
645 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
646 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
647 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
648 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
649 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
650 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
651 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
652 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
653 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
655 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
656 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
657 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
658 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
659 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
660 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
661 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
662 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
663 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
664 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
665 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
666 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
667 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
668 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
669 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
670 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
671 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
672 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
673 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
674 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
675 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
676 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
677 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
678 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
679 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
680 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
681 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
682 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
683 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
684 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
685 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
686 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
687 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
688 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
689 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
690 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
691 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
692 	/* non-hardware */
693 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
694 			    RAPL_PRIMITIVE_DERIVED),
695 };
696 
697 /* RAPL primitives for TPMI I/F */
698 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
699 	/* name, mask, shift, msr index, unit divisor */
700 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
701 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
702 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
703 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
704 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
705 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
706 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
707 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
708 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
709 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
710 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
711 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
712 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
713 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
714 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
715 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
716 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
717 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
718 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
719 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
720 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
721 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
722 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
723 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
724 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
725 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
726 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
727 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
728 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
729 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
730 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
731 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
732 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
733 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
734 	/* non-hardware */
735 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
736 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
737 };
738 
739 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
740 {
741 	struct rapl_primitive_info *rpi = rp->priv->rpi;
742 
743 	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
744 		return NULL;
745 
746 	return &rpi[prim];
747 }
748 
749 static int rapl_config(struct rapl_package *rp)
750 {
751 	switch (rp->priv->type) {
752 	/* MMIO I/F shares the same register layout as MSR registers */
753 	case RAPL_IF_MMIO:
754 	case RAPL_IF_MSR:
755 		rp->priv->defaults = (void *)defaults_msr;
756 		rp->priv->rpi = (void *)rpi_msr;
757 		break;
758 	case RAPL_IF_TPMI:
759 		rp->priv->defaults = (void *)&defaults_tpmi;
760 		rp->priv->rpi = (void *)rpi_tpmi;
761 		break;
762 	default:
763 		return -EINVAL;
764 	}
765 
766 	/* defaults_msr can be NULL on unsupported platforms */
767 	if (!rp->priv->defaults || !rp->priv->rpi)
768 		return -ENODEV;
769 
770 	return 0;
771 }
772 
773 static enum rapl_primitives
774 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
775 {
776 	struct rapl_defaults *defaults = get_defaults(rd->rp);
777 
778 	if (!defaults->spr_psys_bits)
779 		return prim;
780 
781 	if (rd->id != RAPL_DOMAIN_PLATFORM)
782 		return prim;
783 
784 	switch (prim) {
785 	case POWER_LIMIT1:
786 		return PSYS_POWER_LIMIT1;
787 	case POWER_LIMIT2:
788 		return PSYS_POWER_LIMIT2;
789 	case PL1_ENABLE:
790 		return PSYS_PL1_ENABLE;
791 	case PL2_ENABLE:
792 		return PSYS_PL2_ENABLE;
793 	case TIME_WINDOW1:
794 		return PSYS_TIME_WINDOW1;
795 	case TIME_WINDOW2:
796 		return PSYS_TIME_WINDOW2;
797 	default:
798 		return prim;
799 	}
800 }
801 
802 /* Read primitive data based on its related struct rapl_primitive_info.
803  * if xlate flag is set, return translated data based on data units, i.e.
804  * time, energy, and power.
805  * RAPL MSRs are non-architectual and are laid out not consistently across
806  * domains. Here we use primitive info to allow writing consolidated access
807  * functions.
808  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
809  * is pre-assigned based on RAPL unit MSRs read at init time.
810  * 63-------------------------- 31--------------------------- 0
811  * |                           xxxxx (mask)                   |
812  * |                                |<- shift ----------------|
813  * 63-------------------------- 31--------------------------- 0
814  */
815 static int rapl_read_data_raw(struct rapl_domain *rd,
816 			      enum rapl_primitives prim, bool xlate, u64 *data)
817 {
818 	u64 value;
819 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
820 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
821 	struct reg_action ra;
822 
823 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
824 		return -EINVAL;
825 
826 	ra.reg = rd->regs[rpi->id];
827 	if (!ra.reg.val)
828 		return -EINVAL;
829 
830 	/* non-hardware data are collected by the polling thread */
831 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
832 		*data = rd->rdd.primitives[prim];
833 		return 0;
834 	}
835 
836 	ra.mask = rpi->mask;
837 
838 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
839 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
840 		return -EIO;
841 	}
842 
843 	value = ra.value >> rpi->shift;
844 
845 	if (xlate)
846 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
847 	else
848 		*data = value;
849 
850 	return 0;
851 }
852 
853 /* Similar use of primitive info in the read counterpart */
854 static int rapl_write_data_raw(struct rapl_domain *rd,
855 			       enum rapl_primitives prim,
856 			       unsigned long long value)
857 {
858 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
859 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
860 	u64 bits;
861 	struct reg_action ra;
862 	int ret;
863 
864 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
865 		return -EINVAL;
866 
867 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
868 	bits <<= rpi->shift;
869 	bits &= rpi->mask;
870 
871 	memset(&ra, 0, sizeof(ra));
872 
873 	ra.reg = rd->regs[rpi->id];
874 	ra.mask = rpi->mask;
875 	ra.value = bits;
876 
877 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
878 
879 	return ret;
880 }
881 
882 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
883 			      enum pl_prims pl_prim, bool xlate, u64 *data)
884 {
885 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
886 
887 	if (!is_pl_valid(rd, pl))
888 		return -EINVAL;
889 
890 	return rapl_read_data_raw(rd, prim, xlate, data);
891 }
892 
893 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
894 			       enum pl_prims pl_prim,
895 			       unsigned long long value)
896 {
897 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
898 
899 	if (!is_pl_valid(rd, pl))
900 		return -EINVAL;
901 
902 	if (rd->rpl[pl].locked) {
903 		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
904 		return -EACCES;
905 	}
906 
907 	return rapl_write_data_raw(rd, prim, value);
908 }
909 /*
910  * Raw RAPL data stored in MSRs are in certain scales. We need to
911  * convert them into standard units based on the units reported in
912  * the RAPL unit MSRs. This is specific to CPUs as the method to
913  * calculate units differ on different CPUs.
914  * We convert the units to below format based on CPUs.
915  * i.e.
916  * energy unit: picoJoules  : Represented in picoJoules by default
917  * power unit : microWatts  : Represented in milliWatts by default
918  * time unit  : microseconds: Represented in seconds by default
919  */
920 static int rapl_check_unit_core(struct rapl_domain *rd)
921 {
922 	struct reg_action ra;
923 	u32 value;
924 
925 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
926 	ra.mask = ~0;
927 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
928 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
929 			ra.reg.val, rd->rp->name, rd->name);
930 		return -ENODEV;
931 	}
932 
933 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
934 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
935 
936 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
937 	rd->power_unit = 1000000 / (1 << value);
938 
939 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
940 	rd->time_unit = 1000000 / (1 << value);
941 
942 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
943 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
944 
945 	return 0;
946 }
947 
948 static int rapl_check_unit_atom(struct rapl_domain *rd)
949 {
950 	struct reg_action ra;
951 	u32 value;
952 
953 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
954 	ra.mask = ~0;
955 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
956 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
957 			ra.reg.val, rd->rp->name, rd->name);
958 		return -ENODEV;
959 	}
960 
961 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
962 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
963 
964 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
965 	rd->power_unit = (1 << value) * 1000;
966 
967 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
968 	rd->time_unit = 1000000 / (1 << value);
969 
970 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
971 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
972 
973 	return 0;
974 }
975 
976 static void power_limit_irq_save_cpu(void *info)
977 {
978 	u32 l, h = 0;
979 	struct rapl_package *rp = (struct rapl_package *)info;
980 
981 	/* save the state of PLN irq mask bit before disabling it */
982 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
983 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
984 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
985 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
986 	}
987 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
988 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
989 }
990 
991 /* REVISIT:
992  * When package power limit is set artificially low by RAPL, LVT
993  * thermal interrupt for package power limit should be ignored
994  * since we are not really exceeding the real limit. The intention
995  * is to avoid excessive interrupts while we are trying to save power.
996  * A useful feature might be routing the package_power_limit interrupt
997  * to userspace via eventfd. once we have a usecase, this is simple
998  * to do by adding an atomic notifier.
999  */
1000 
1001 static void package_power_limit_irq_save(struct rapl_package *rp)
1002 {
1003 	if (rp->lead_cpu < 0)
1004 		return;
1005 
1006 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1007 		return;
1008 
1009 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1010 }
1011 
1012 /*
1013  * Restore per package power limit interrupt enable state. Called from cpu
1014  * hotplug code on package removal.
1015  */
1016 static void package_power_limit_irq_restore(struct rapl_package *rp)
1017 {
1018 	u32 l, h;
1019 
1020 	if (rp->lead_cpu < 0)
1021 		return;
1022 
1023 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024 		return;
1025 
1026 	/* irq enable state not saved, nothing to restore */
1027 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1028 		return;
1029 
1030 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1031 
1032 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1033 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1034 	else
1035 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1036 
1037 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1038 }
1039 
1040 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1041 {
1042 	int i;
1043 
1044 	/* always enable clamp such that p-state can go below OS requested
1045 	 * range. power capping priority over guranteed frequency.
1046 	 */
1047 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1048 
1049 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1050 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1051 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1052 	}
1053 }
1054 
1055 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1056 {
1057 	static u32 power_ctrl_orig_val;
1058 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1059 	u32 mdata;
1060 
1061 	if (!defaults->floor_freq_reg_addr) {
1062 		pr_err("Invalid floor frequency config register\n");
1063 		return;
1064 	}
1065 
1066 	if (!power_ctrl_orig_val)
1067 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1068 			      defaults->floor_freq_reg_addr,
1069 			      &power_ctrl_orig_val);
1070 	mdata = power_ctrl_orig_val;
1071 	if (enable) {
1072 		mdata &= ~(0x7f << 8);
1073 		mdata |= 1 << 8;
1074 	}
1075 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1076 		       defaults->floor_freq_reg_addr, mdata);
1077 }
1078 
1079 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1080 					 bool to_raw)
1081 {
1082 	u64 f, y;		/* fraction and exp. used for time unit */
1083 
1084 	/*
1085 	 * Special processing based on 2^Y*(1+F/4), refer
1086 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1087 	 */
1088 	if (!to_raw) {
1089 		f = (value & 0x60) >> 5;
1090 		y = value & 0x1f;
1091 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1092 	} else {
1093 		if (value < rd->time_unit)
1094 			return 0;
1095 
1096 		do_div(value, rd->time_unit);
1097 		y = ilog2(value);
1098 
1099 		/*
1100 		 * The target hardware field is 7 bits wide, so return all ones
1101 		 * if the exponent is too large.
1102 		 */
1103 		if (y > 0x1f)
1104 			return 0x7f;
1105 
1106 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1107 		value = (y & 0x1f) | ((f & 0x3) << 5);
1108 	}
1109 	return value;
1110 }
1111 
1112 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1113 					 bool to_raw)
1114 {
1115 	/*
1116 	 * Atom time unit encoding is straight forward val * time_unit,
1117 	 * where time_unit is default to 1 sec. Never 0.
1118 	 */
1119 	if (!to_raw)
1120 		return (value) ? value * rd->time_unit : rd->time_unit;
1121 
1122 	value = div64_u64(value, rd->time_unit);
1123 
1124 	return value;
1125 }
1126 
1127 /* TPMI Unit register has different layout */
1128 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1129 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1130 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1131 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1132 #define TPMI_TIME_UNIT_OFFSET	0x0C
1133 #define TPMI_TIME_UNIT_MASK	0xF000
1134 
1135 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1136 {
1137 	struct reg_action ra;
1138 	u32 value;
1139 
1140 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1141 	ra.mask = ~0;
1142 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1143 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1144 			ra.reg.val, rd->rp->name, rd->name);
1145 		return -ENODEV;
1146 	}
1147 
1148 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1149 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1150 
1151 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1152 	rd->power_unit = 1000000 / (1 << value);
1153 
1154 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1155 	rd->time_unit = 1000000 / (1 << value);
1156 
1157 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1158 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1159 
1160 	return 0;
1161 }
1162 
1163 static const struct rapl_defaults defaults_tpmi = {
1164 	.check_unit = rapl_check_unit_tpmi,
1165 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1166 	.set_floor_freq = set_floor_freq_default,
1167 	.compute_time_window = rapl_compute_time_window_core,
1168 };
1169 
1170 static const struct rapl_defaults rapl_defaults_core = {
1171 	.floor_freq_reg_addr = 0,
1172 	.check_unit = rapl_check_unit_core,
1173 	.set_floor_freq = set_floor_freq_default,
1174 	.compute_time_window = rapl_compute_time_window_core,
1175 };
1176 
1177 static const struct rapl_defaults rapl_defaults_hsw_server = {
1178 	.check_unit = rapl_check_unit_core,
1179 	.set_floor_freq = set_floor_freq_default,
1180 	.compute_time_window = rapl_compute_time_window_core,
1181 	.dram_domain_energy_unit = 15300,
1182 };
1183 
1184 static const struct rapl_defaults rapl_defaults_spr_server = {
1185 	.check_unit = rapl_check_unit_core,
1186 	.set_floor_freq = set_floor_freq_default,
1187 	.compute_time_window = rapl_compute_time_window_core,
1188 	.psys_domain_energy_unit = 1000000000,
1189 	.spr_psys_bits = true,
1190 };
1191 
1192 static const struct rapl_defaults rapl_defaults_byt = {
1193 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1194 	.check_unit = rapl_check_unit_atom,
1195 	.set_floor_freq = set_floor_freq_atom,
1196 	.compute_time_window = rapl_compute_time_window_atom,
1197 };
1198 
1199 static const struct rapl_defaults rapl_defaults_tng = {
1200 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1201 	.check_unit = rapl_check_unit_atom,
1202 	.set_floor_freq = set_floor_freq_atom,
1203 	.compute_time_window = rapl_compute_time_window_atom,
1204 };
1205 
1206 static const struct rapl_defaults rapl_defaults_ann = {
1207 	.floor_freq_reg_addr = 0,
1208 	.check_unit = rapl_check_unit_atom,
1209 	.set_floor_freq = NULL,
1210 	.compute_time_window = rapl_compute_time_window_atom,
1211 };
1212 
1213 static const struct rapl_defaults rapl_defaults_cht = {
1214 	.floor_freq_reg_addr = 0,
1215 	.check_unit = rapl_check_unit_atom,
1216 	.set_floor_freq = NULL,
1217 	.compute_time_window = rapl_compute_time_window_atom,
1218 };
1219 
1220 static const struct rapl_defaults rapl_defaults_amd = {
1221 	.check_unit = rapl_check_unit_core,
1222 };
1223 
1224 static const struct x86_cpu_id rapl_ids[] __initconst = {
1225 	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1226 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1227 
1228 	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1229 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1230 
1231 	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1232 	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1233 	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1234 	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1235 
1236 	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1237 	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1238 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1239 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1240 
1241 	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1242 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1243 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1244 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1245 	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1246 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1247 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1248 	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1249 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1250 	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1251 	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1252 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1253 	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1254 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1255 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1256 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1257 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1258 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1259 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1260 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1261 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1262 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1263 	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1264 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1265 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1266 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1267 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1268 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1269 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1270 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1271 	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1272 
1273 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1274 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1275 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1276 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1277 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1278 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1279 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1280 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1281 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1282 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1283 
1284 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1285 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1286 
1287 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1288 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1289 	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1290 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1291 	{}
1292 };
1293 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1294 
1295 /* Read once for all raw primitive data for domains */
1296 static void rapl_update_domain_data(struct rapl_package *rp)
1297 {
1298 	int dmn, prim;
1299 	u64 val;
1300 
1301 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1302 		pr_debug("update %s domain %s data\n", rp->name,
1303 			 rp->domains[dmn].name);
1304 		/* exclude non-raw primitives */
1305 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1306 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1307 
1308 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1309 						rpi->unit, &val))
1310 				rp->domains[dmn].rdd.primitives[prim] = val;
1311 		}
1312 	}
1313 
1314 }
1315 
1316 static int rapl_package_register_powercap(struct rapl_package *rp)
1317 {
1318 	struct rapl_domain *rd;
1319 	struct powercap_zone *power_zone = NULL;
1320 	int nr_pl, ret;
1321 
1322 	/* Update the domain data of the new package */
1323 	rapl_update_domain_data(rp);
1324 
1325 	/* first we register package domain as the parent zone */
1326 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1327 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1328 			nr_pl = find_nr_power_limit(rd);
1329 			pr_debug("register package domain %s\n", rp->name);
1330 			power_zone = powercap_register_zone(&rd->power_zone,
1331 					    rp->priv->control_type, rp->name,
1332 					    NULL, &zone_ops[rd->id], nr_pl,
1333 					    &constraint_ops);
1334 			if (IS_ERR(power_zone)) {
1335 				pr_debug("failed to register power zone %s\n",
1336 					 rp->name);
1337 				return PTR_ERR(power_zone);
1338 			}
1339 			/* track parent zone in per package/socket data */
1340 			rp->power_zone = power_zone;
1341 			/* done, only one package domain per socket */
1342 			break;
1343 		}
1344 	}
1345 	if (!power_zone) {
1346 		pr_err("no package domain found, unknown topology!\n");
1347 		return -ENODEV;
1348 	}
1349 	/* now register domains as children of the socket/package */
1350 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1351 		struct powercap_zone *parent = rp->power_zone;
1352 
1353 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1354 			continue;
1355 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1356 			parent = NULL;
1357 		/* number of power limits per domain varies */
1358 		nr_pl = find_nr_power_limit(rd);
1359 		power_zone = powercap_register_zone(&rd->power_zone,
1360 						    rp->priv->control_type,
1361 						    rd->name, parent,
1362 						    &zone_ops[rd->id], nr_pl,
1363 						    &constraint_ops);
1364 
1365 		if (IS_ERR(power_zone)) {
1366 			pr_debug("failed to register power_zone, %s:%s\n",
1367 				 rp->name, rd->name);
1368 			ret = PTR_ERR(power_zone);
1369 			goto err_cleanup;
1370 		}
1371 	}
1372 	return 0;
1373 
1374 err_cleanup:
1375 	/*
1376 	 * Clean up previously initialized domains within the package if we
1377 	 * failed after the first domain setup.
1378 	 */
1379 	while (--rd >= rp->domains) {
1380 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1381 		powercap_unregister_zone(rp->priv->control_type,
1382 					 &rd->power_zone);
1383 	}
1384 
1385 	return ret;
1386 }
1387 
1388 static int rapl_check_domain(int domain, struct rapl_package *rp)
1389 {
1390 	struct reg_action ra;
1391 
1392 	switch (domain) {
1393 	case RAPL_DOMAIN_PACKAGE:
1394 	case RAPL_DOMAIN_PP0:
1395 	case RAPL_DOMAIN_PP1:
1396 	case RAPL_DOMAIN_DRAM:
1397 	case RAPL_DOMAIN_PLATFORM:
1398 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1399 		break;
1400 	default:
1401 		pr_err("invalid domain id %d\n", domain);
1402 		return -EINVAL;
1403 	}
1404 	/* make sure domain counters are available and contains non-zero
1405 	 * values, otherwise skip it.
1406 	 */
1407 
1408 	ra.mask = ENERGY_STATUS_MASK;
1409 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1410 		return -ENODEV;
1411 
1412 	return 0;
1413 }
1414 
1415 /*
1416  * Get per domain energy/power/time unit.
1417  * RAPL Interfaces without per domain unit register will use the package
1418  * scope unit register to set per domain units.
1419  */
1420 static int rapl_get_domain_unit(struct rapl_domain *rd)
1421 {
1422 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1423 	int ret;
1424 
1425 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1426 		if (!rd->rp->priv->reg_unit.val) {
1427 			pr_err("No valid Unit register found\n");
1428 			return -ENODEV;
1429 		}
1430 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1431 	}
1432 
1433 	if (!defaults->check_unit) {
1434 		pr_err("missing .check_unit() callback\n");
1435 		return -ENODEV;
1436 	}
1437 
1438 	ret = defaults->check_unit(rd);
1439 	if (ret)
1440 		return ret;
1441 
1442 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1443 		rd->energy_unit = defaults->dram_domain_energy_unit;
1444 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1445 		rd->energy_unit = defaults->psys_domain_energy_unit;
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Check if power limits are available. Two cases when they are not available:
1451  * 1. Locked by BIOS, in this case we still provide read-only access so that
1452  *    users can see what limit is set by the BIOS.
1453  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1454  *    exist at all. In this case, we do not show the constraints in powercap.
1455  *
1456  * Called after domains are detected and initialized.
1457  */
1458 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1459 {
1460 	u64 val64;
1461 	int i;
1462 
1463 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1464 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1465 			if (val64) {
1466 				rd->rpl[i].locked = true;
1467 				pr_info("%s:%s:%s locked by BIOS\n",
1468 					rd->rp->name, rd->name, pl_names[i]);
1469 			}
1470 		}
1471 
1472 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1473 			rd->rpl[i].name = NULL;
1474 	}
1475 }
1476 
1477 /* Detect active and valid domains for the given CPU, caller must
1478  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1479  */
1480 static int rapl_detect_domains(struct rapl_package *rp)
1481 {
1482 	struct rapl_domain *rd;
1483 	int i;
1484 
1485 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1486 		/* use physical package id to read counters */
1487 		if (!rapl_check_domain(i, rp)) {
1488 			rp->domain_map |= 1 << i;
1489 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1490 		}
1491 	}
1492 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1493 	if (!rp->nr_domains) {
1494 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1495 		return -ENODEV;
1496 	}
1497 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1498 
1499 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1500 			      GFP_KERNEL);
1501 	if (!rp->domains)
1502 		return -ENOMEM;
1503 
1504 	rapl_init_domains(rp);
1505 
1506 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1507 		rapl_get_domain_unit(rd);
1508 		rapl_detect_powerlimit(rd);
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 #ifdef CONFIG_PERF_EVENTS
1515 
1516 /*
1517  * Support for RAPL PMU
1518  *
1519  * Register a PMU if any of the registered RAPL Packages have the requirement
1520  * of exposing its energy counters via Perf PMU.
1521  *
1522  * PMU Name:
1523  *	power
1524  *
1525  * Events:
1526  *	Name		Event id	RAPL Domain
1527  *	energy_cores	0x01		RAPL_DOMAIN_PP0
1528  *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1529  *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1530  *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1531  *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1532  *
1533  * Unit:
1534  *	Joules
1535  *
1536  * Scale:
1537  *	2.3283064365386962890625e-10
1538  *	The same RAPL domain in different RAPL Packages may have different
1539  *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1540  *	the fixed unit for all energy counters, and covert each hardware
1541  *	counter increase to N times of PMU event counter increases.
1542  *
1543  * This is fully compatible with the current MSR RAPL PMU. This means that
1544  * userspace programs like turbostat can use the same code to handle RAPL Perf
1545  * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1546  * underlying on the platform.
1547  *
1548  * Note that RAPL Packages can be probed/removed dynamically, and the events
1549  * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1550  * support is done on demand, which means
1551  * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1552  *    unsupported counters are not exposed.
1553  * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1554  *    supports new counters that are not supported by current PMU.
1555  * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1556  */
1557 
1558 struct rapl_pmu {
1559 	struct pmu pmu;			/* Perf PMU structure */
1560 	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1561 	unsigned long domain_map;	/* Events supported by current registered PMU */
1562 	bool registered;		/* Whether the PMU has been registered or not */
1563 };
1564 
1565 static struct rapl_pmu rapl_pmu;
1566 
1567 /* PMU helpers */
1568 
1569 static int get_pmu_cpu(struct rapl_package *rp)
1570 {
1571 	int cpu;
1572 
1573 	if (!rp->has_pmu)
1574 		return nr_cpu_ids;
1575 
1576 	/* Only TPMI RAPL is supported for now */
1577 	if (rp->priv->type != RAPL_IF_TPMI)
1578 		return nr_cpu_ids;
1579 
1580 	/* TPMI RAPL uses any CPU in the package for PMU */
1581 	for_each_online_cpu(cpu)
1582 		if (topology_physical_package_id(cpu) == rp->id)
1583 			return cpu;
1584 
1585 	return nr_cpu_ids;
1586 }
1587 
1588 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1589 {
1590 	if (!rp->has_pmu)
1591 		return false;
1592 
1593 	/* Only TPMI RAPL is supported for now */
1594 	if (rp->priv->type != RAPL_IF_TPMI)
1595 		return false;
1596 
1597 	/* TPMI RAPL uses any CPU in the package for PMU */
1598 	return topology_physical_package_id(cpu) == rp->id;
1599 }
1600 
1601 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1602 {
1603 	struct rapl_package *rp = event->pmu_private;
1604 
1605 	return &rp->pmu_data;
1606 }
1607 
1608 /* PMU event callbacks */
1609 
1610 static u64 event_read_counter(struct perf_event *event)
1611 {
1612 	struct rapl_package *rp = event->pmu_private;
1613 	u64 val;
1614 	int ret;
1615 
1616 	/* Return 0 for unsupported events */
1617 	if (event->hw.idx < 0)
1618 		return 0;
1619 
1620 	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1621 
1622 	/* Return 0 for failed read */
1623 	if (ret)
1624 		return 0;
1625 
1626 	return val;
1627 }
1628 
1629 static void __rapl_pmu_event_start(struct perf_event *event)
1630 {
1631 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1632 
1633 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1634 		return;
1635 
1636 	event->hw.state = 0;
1637 
1638 	list_add_tail(&event->active_entry, &data->active_list);
1639 
1640 	local64_set(&event->hw.prev_count, event_read_counter(event));
1641 	if (++data->n_active == 1)
1642 		hrtimer_start(&data->hrtimer, data->timer_interval,
1643 			      HRTIMER_MODE_REL_PINNED);
1644 }
1645 
1646 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1647 {
1648 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1649 	unsigned long flags;
1650 
1651 	raw_spin_lock_irqsave(&data->lock, flags);
1652 	__rapl_pmu_event_start(event);
1653 	raw_spin_unlock_irqrestore(&data->lock, flags);
1654 }
1655 
1656 static u64 rapl_event_update(struct perf_event *event)
1657 {
1658 	struct hw_perf_event *hwc = &event->hw;
1659 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1660 	u64 prev_raw_count, new_raw_count;
1661 	s64 delta, sdelta;
1662 
1663 	/*
1664 	 * Follow the generic code to drain hwc->prev_count.
1665 	 * The loop is not expected to run for multiple times.
1666 	 */
1667 	prev_raw_count = local64_read(&hwc->prev_count);
1668 	do {
1669 		new_raw_count = event_read_counter(event);
1670 	} while (!local64_try_cmpxchg(&hwc->prev_count,
1671 		&prev_raw_count, new_raw_count));
1672 
1673 
1674 	/*
1675 	 * Now we have the new raw value and have updated the prev
1676 	 * timestamp already. We can now calculate the elapsed delta
1677 	 * (event-)time and add that to the generic event.
1678 	 */
1679 	delta = new_raw_count - prev_raw_count;
1680 
1681 	/*
1682 	 * Scale delta to smallest unit (2^-32)
1683 	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1684 	 * or use ldexp(count, -32).
1685 	 * Watts = Joules/Time delta
1686 	 */
1687 	sdelta = delta * data->scale[event->hw.flags];
1688 
1689 	local64_add(sdelta, &event->count);
1690 
1691 	return new_raw_count;
1692 }
1693 
1694 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1695 {
1696 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1697 	struct hw_perf_event *hwc = &event->hw;
1698 	unsigned long flags;
1699 
1700 	raw_spin_lock_irqsave(&data->lock, flags);
1701 
1702 	/* Mark event as deactivated and stopped */
1703 	if (!(hwc->state & PERF_HES_STOPPED)) {
1704 		WARN_ON_ONCE(data->n_active <= 0);
1705 		if (--data->n_active == 0)
1706 			hrtimer_cancel(&data->hrtimer);
1707 
1708 		list_del(&event->active_entry);
1709 
1710 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1711 		hwc->state |= PERF_HES_STOPPED;
1712 	}
1713 
1714 	/* Check if update of sw counter is necessary */
1715 	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1716 		/*
1717 		 * Drain the remaining delta count out of a event
1718 		 * that we are disabling:
1719 		 */
1720 		rapl_event_update(event);
1721 		hwc->state |= PERF_HES_UPTODATE;
1722 	}
1723 
1724 	raw_spin_unlock_irqrestore(&data->lock, flags);
1725 }
1726 
1727 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1728 {
1729 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1730 	struct hw_perf_event *hwc = &event->hw;
1731 	unsigned long flags;
1732 
1733 	raw_spin_lock_irqsave(&data->lock, flags);
1734 
1735 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1736 
1737 	if (mode & PERF_EF_START)
1738 		__rapl_pmu_event_start(event);
1739 
1740 	raw_spin_unlock_irqrestore(&data->lock, flags);
1741 
1742 	return 0;
1743 }
1744 
1745 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1746 {
1747 	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1748 }
1749 
1750 /* RAPL PMU event ids, same as shown in sysfs */
1751 enum perf_rapl_events {
1752 	PERF_RAPL_PP0 = 1,	/* all cores */
1753 	PERF_RAPL_PKG,		/* entire package */
1754 	PERF_RAPL_RAM,		/* DRAM */
1755 	PERF_RAPL_PP1,		/* gpu */
1756 	PERF_RAPL_PSYS,		/* psys */
1757 	PERF_RAPL_MAX
1758 };
1759 #define RAPL_EVENT_MASK GENMASK(7, 0)
1760 
1761 static const int event_to_domain[PERF_RAPL_MAX] = {
1762 	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1763 	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1764 	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1765 	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1766 	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1767 };
1768 
1769 static int rapl_pmu_event_init(struct perf_event *event)
1770 {
1771 	struct rapl_package *pos, *rp = NULL;
1772 	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1773 	int domain, idx;
1774 
1775 	/* Only look at RAPL events */
1776 	if (event->attr.type != event->pmu->type)
1777 		return -ENOENT;
1778 
1779 	/* Check for supported events only */
1780 	if (!cfg || cfg >= PERF_RAPL_MAX)
1781 		return -EINVAL;
1782 
1783 	if (event->cpu < 0)
1784 		return -EINVAL;
1785 
1786 	/* Find out which Package the event belongs to */
1787 	list_for_each_entry(pos, &rapl_packages, plist) {
1788 		if (is_rp_pmu_cpu(pos, event->cpu)) {
1789 			rp = pos;
1790 			break;
1791 		}
1792 	}
1793 	if (!rp)
1794 		return -ENODEV;
1795 
1796 	/* Find out which RAPL Domain the event belongs to */
1797 	domain = event_to_domain[cfg];
1798 
1799 	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1800 	event->pmu_private = rp;	/* Which package */
1801 	event->hw.flags = domain;	/* Which domain */
1802 
1803 	event->hw.idx = -1;
1804 	/* Find out the index in rp->domains[] to get domain pointer */
1805 	for (idx = 0; idx < rp->nr_domains; idx++) {
1806 		if (rp->domains[idx].id == domain) {
1807 			event->hw.idx = idx;
1808 			break;
1809 		}
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static void rapl_pmu_event_read(struct perf_event *event)
1816 {
1817 	rapl_event_update(event);
1818 }
1819 
1820 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1821 {
1822 	struct rapl_package_pmu_data *data =
1823 		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1824 	struct perf_event *event;
1825 	unsigned long flags;
1826 
1827 	if (!data->n_active)
1828 		return HRTIMER_NORESTART;
1829 
1830 	raw_spin_lock_irqsave(&data->lock, flags);
1831 
1832 	list_for_each_entry(event, &data->active_list, active_entry)
1833 		rapl_event_update(event);
1834 
1835 	raw_spin_unlock_irqrestore(&data->lock, flags);
1836 
1837 	hrtimer_forward_now(hrtimer, data->timer_interval);
1838 
1839 	return HRTIMER_RESTART;
1840 }
1841 
1842 /* PMU sysfs attributes */
1843 
1844 /*
1845  * There are no default events, but we need to create "events" group (with
1846  * empty attrs) before updating it with detected events.
1847  */
1848 static struct attribute *attrs_empty[] = {
1849 	NULL,
1850 };
1851 
1852 static struct attribute_group pmu_events_group = {
1853 	.name = "events",
1854 	.attrs = attrs_empty,
1855 };
1856 
1857 static ssize_t cpumask_show(struct device *dev,
1858 			    struct device_attribute *attr, char *buf)
1859 {
1860 	struct rapl_package *rp;
1861 	cpumask_var_t cpu_mask;
1862 	int cpu;
1863 	int ret;
1864 
1865 	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1866 		return -ENOMEM;
1867 
1868 	cpus_read_lock();
1869 
1870 	cpumask_clear(cpu_mask);
1871 
1872 	/* Choose a cpu for each RAPL Package */
1873 	list_for_each_entry(rp, &rapl_packages, plist) {
1874 		cpu = get_pmu_cpu(rp);
1875 		if (cpu < nr_cpu_ids)
1876 			cpumask_set_cpu(cpu, cpu_mask);
1877 	}
1878 	cpus_read_unlock();
1879 
1880 	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1881 
1882 	free_cpumask_var(cpu_mask);
1883 
1884 	return ret;
1885 }
1886 
1887 static DEVICE_ATTR_RO(cpumask);
1888 
1889 static struct attribute *pmu_cpumask_attrs[] = {
1890 	&dev_attr_cpumask.attr,
1891 	NULL
1892 };
1893 
1894 static struct attribute_group pmu_cpumask_group = {
1895 	.attrs = pmu_cpumask_attrs,
1896 };
1897 
1898 PMU_FORMAT_ATTR(event, "config:0-7");
1899 static struct attribute *pmu_format_attr[] = {
1900 	&format_attr_event.attr,
1901 	NULL
1902 };
1903 
1904 static struct attribute_group pmu_format_group = {
1905 	.name = "format",
1906 	.attrs = pmu_format_attr,
1907 };
1908 
1909 static const struct attribute_group *pmu_attr_groups[] = {
1910 	&pmu_events_group,
1911 	&pmu_cpumask_group,
1912 	&pmu_format_group,
1913 	NULL
1914 };
1915 
1916 #define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1917 static struct perf_pmu_events_attr event_attr_##v = {				\
1918 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1919 	.event_str	= str,							\
1920 }
1921 
1922 RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1923 RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1924 RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1925 RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1926 RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1927 
1928 RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1929 RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1930 RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1931 RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1932 RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1933 
1934 RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1935 RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1936 RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1937 RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1938 RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1939 
1940 #define RAPL_EVENT_GROUP(_name, domain)			\
1941 static struct attribute *pmu_attr_##_name[] = {		\
1942 	&event_attr_rapl_##_name.attr.attr,		\
1943 	&event_attr_rapl_unit_##_name.attr.attr,	\
1944 	&event_attr_rapl_scale_##_name.attr.attr,	\
1945 	NULL						\
1946 };							\
1947 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1948 {											\
1949 	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1950 }							\
1951 static struct attribute_group pmu_group_##_name = {	\
1952 	.name  = "events",				\
1953 	.attrs = pmu_attr_##_name,			\
1954 	.is_visible = is_visible_##_name,		\
1955 }
1956 
1957 RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1958 RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1959 RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1960 RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1961 RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1962 
1963 static const struct attribute_group *pmu_attr_update[] = {
1964 	&pmu_group_cores,
1965 	&pmu_group_pkg,
1966 	&pmu_group_ram,
1967 	&pmu_group_gpu,
1968 	&pmu_group_psys,
1969 	NULL
1970 };
1971 
1972 static int rapl_pmu_update(struct rapl_package *rp)
1973 {
1974 	int ret = 0;
1975 
1976 	/* Return if PMU already covers all events supported by current RAPL Package */
1977 	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1978 		goto end;
1979 
1980 	/* Unregister previous registered PMU */
1981 	if (rapl_pmu.registered)
1982 		perf_pmu_unregister(&rapl_pmu.pmu);
1983 
1984 	rapl_pmu.registered = false;
1985 	rapl_pmu.domain_map |= rp->domain_map;
1986 
1987 	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
1988 	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
1989 	rapl_pmu.pmu.attr_update = pmu_attr_update;
1990 	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
1991 	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
1992 	rapl_pmu.pmu.add = rapl_pmu_event_add;
1993 	rapl_pmu.pmu.del = rapl_pmu_event_del;
1994 	rapl_pmu.pmu.start = rapl_pmu_event_start;
1995 	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
1996 	rapl_pmu.pmu.read = rapl_pmu_event_read;
1997 	rapl_pmu.pmu.module = THIS_MODULE;
1998 	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
1999 	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2000 	if (ret) {
2001 		pr_info("Failed to register PMU\n");
2002 		return ret;
2003 	}
2004 
2005 	rapl_pmu.registered = true;
2006 end:
2007 	rp->has_pmu = true;
2008 	return ret;
2009 }
2010 
2011 int rapl_package_add_pmu(struct rapl_package *rp)
2012 {
2013 	struct rapl_package_pmu_data *data = &rp->pmu_data;
2014 	int idx;
2015 
2016 	if (rp->has_pmu)
2017 		return -EEXIST;
2018 
2019 	guard(cpus_read_lock)();
2020 
2021 	for (idx = 0; idx < rp->nr_domains; idx++) {
2022 		struct rapl_domain *rd = &rp->domains[idx];
2023 		int domain = rd->id;
2024 		u64 val;
2025 
2026 		if (!test_bit(domain, &rp->domain_map))
2027 			continue;
2028 
2029 		/*
2030 		 * The RAPL PMU granularity is 2^-32 Joules
2031 		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2032 		 */
2033 		val = rd->energy_unit * (1ULL << 32);
2034 		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2035 		data->scale[domain] = val;
2036 
2037 		if (!rapl_pmu.timer_ms) {
2038 			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2039 
2040 			/*
2041 			 * Calculate the timer rate:
2042 			 * Use reference of 200W for scaling the timeout to avoid counter
2043 			 * overflows.
2044 			 *
2045 			 * max_count = rpi->mask >> rpi->shift + 1
2046 			 * max_energy_pj = max_count * rd->energy_unit
2047 			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2048 			 *
2049 			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2050 			 */
2051 			val = (rpi->mask >> rpi->shift) + 1;
2052 			val *= rd->energy_unit;
2053 			do_div(val, 1000000 * 200 * 2);
2054 			rapl_pmu.timer_ms = val;
2055 
2056 			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2057 		}
2058 
2059 		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2060 	}
2061 
2062 	/* Initialize per package PMU data */
2063 	raw_spin_lock_init(&data->lock);
2064 	INIT_LIST_HEAD(&data->active_list);
2065 	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2066 	hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2067 	data->hrtimer.function = rapl_hrtimer_handle;
2068 
2069 	return rapl_pmu_update(rp);
2070 }
2071 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2072 
2073 void rapl_package_remove_pmu(struct rapl_package *rp)
2074 {
2075 	struct rapl_package *pos;
2076 
2077 	if (!rp->has_pmu)
2078 		return;
2079 
2080 	guard(cpus_read_lock)();
2081 
2082 	list_for_each_entry(pos, &rapl_packages, plist) {
2083 		/* PMU is still needed */
2084 		if (pos->has_pmu && pos != rp)
2085 			return;
2086 	}
2087 
2088 	perf_pmu_unregister(&rapl_pmu.pmu);
2089 	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2090 }
2091 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2092 #endif
2093 
2094 /* called from CPU hotplug notifier, hotplug lock held */
2095 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2096 {
2097 	struct rapl_domain *rd, *rd_package = NULL;
2098 
2099 	package_power_limit_irq_restore(rp);
2100 
2101 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2102 		int i;
2103 
2104 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2105 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2106 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2107 		}
2108 
2109 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2110 			rd_package = rd;
2111 			continue;
2112 		}
2113 		pr_debug("remove package, undo power limit on %s: %s\n",
2114 			 rp->name, rd->name);
2115 		powercap_unregister_zone(rp->priv->control_type,
2116 					 &rd->power_zone);
2117 	}
2118 	/* do parent zone last */
2119 	powercap_unregister_zone(rp->priv->control_type,
2120 				 &rd_package->power_zone);
2121 	list_del(&rp->plist);
2122 	kfree(rp);
2123 }
2124 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2125 
2126 void rapl_remove_package(struct rapl_package *rp)
2127 {
2128 	guard(cpus_read_lock)();
2129 	rapl_remove_package_cpuslocked(rp);
2130 }
2131 EXPORT_SYMBOL_GPL(rapl_remove_package);
2132 
2133 /*
2134  * RAPL Package energy counter scope:
2135  * 1. AMD/HYGON platforms use per-PKG package energy counter
2136  * 2. For Intel platforms
2137  *	2.1 CLX-AP platform has per-DIE package energy counter
2138  *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2139  *          package energy counter can be considered as per-PKG/per-DIE,
2140  *          here it is considered as per-DIE.
2141  *	2.3 New platforms that use TPMI RAPL doesn't care about the
2142  *	    scope because they are not MSR/CPU based.
2143  */
2144 #define rapl_msrs_are_pkg_scope()				\
2145 	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2146 	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2147 
2148 /* caller to ensure CPU hotplug lock is held */
2149 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2150 							 bool id_is_cpu)
2151 {
2152 	struct rapl_package *rp;
2153 	int uid;
2154 
2155 	if (id_is_cpu) {
2156 		uid = rapl_msrs_are_pkg_scope() ?
2157 		      topology_physical_package_id(id) : topology_logical_die_id(id);
2158 		if (uid < 0) {
2159 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2160 			return NULL;
2161 		}
2162 	}
2163 	else
2164 		uid = id;
2165 
2166 	list_for_each_entry(rp, &rapl_packages, plist) {
2167 		if (rp->id == uid
2168 		    && rp->priv->control_type == priv->control_type)
2169 			return rp;
2170 	}
2171 
2172 	return NULL;
2173 }
2174 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2175 
2176 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2177 {
2178 	guard(cpus_read_lock)();
2179 	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2180 }
2181 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2182 
2183 /* called from CPU hotplug notifier, hotplug lock held */
2184 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2185 {
2186 	struct rapl_package *rp;
2187 	int ret;
2188 
2189 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2190 	if (!rp)
2191 		return ERR_PTR(-ENOMEM);
2192 
2193 	if (id_is_cpu) {
2194 		rp->id = rapl_msrs_are_pkg_scope() ?
2195 			 topology_physical_package_id(id) : topology_logical_die_id(id);
2196 		if ((int)(rp->id) < 0) {
2197 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2198 			return ERR_PTR(-EINVAL);
2199 		}
2200 		rp->lead_cpu = id;
2201 		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2202 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2203 				 topology_physical_package_id(id), topology_die_id(id));
2204 		else
2205 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2206 				 topology_physical_package_id(id));
2207 	} else {
2208 		rp->id = id;
2209 		rp->lead_cpu = -1;
2210 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2211 	}
2212 
2213 	rp->priv = priv;
2214 	ret = rapl_config(rp);
2215 	if (ret)
2216 		goto err_free_package;
2217 
2218 	/* check if the package contains valid domains */
2219 	if (rapl_detect_domains(rp)) {
2220 		ret = -ENODEV;
2221 		goto err_free_package;
2222 	}
2223 	ret = rapl_package_register_powercap(rp);
2224 	if (!ret) {
2225 		INIT_LIST_HEAD(&rp->plist);
2226 		list_add(&rp->plist, &rapl_packages);
2227 		return rp;
2228 	}
2229 
2230 err_free_package:
2231 	kfree(rp->domains);
2232 	kfree(rp);
2233 	return ERR_PTR(ret);
2234 }
2235 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2236 
2237 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2238 {
2239 	guard(cpus_read_lock)();
2240 	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2241 }
2242 EXPORT_SYMBOL_GPL(rapl_add_package);
2243 
2244 static void power_limit_state_save(void)
2245 {
2246 	struct rapl_package *rp;
2247 	struct rapl_domain *rd;
2248 	int ret, i;
2249 
2250 	cpus_read_lock();
2251 	list_for_each_entry(rp, &rapl_packages, plist) {
2252 		if (!rp->power_zone)
2253 			continue;
2254 		rd = power_zone_to_rapl_domain(rp->power_zone);
2255 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2256 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2257 						 &rd->rpl[i].last_power_limit);
2258 			if (ret)
2259 				rd->rpl[i].last_power_limit = 0;
2260 		}
2261 	}
2262 	cpus_read_unlock();
2263 }
2264 
2265 static void power_limit_state_restore(void)
2266 {
2267 	struct rapl_package *rp;
2268 	struct rapl_domain *rd;
2269 	int i;
2270 
2271 	cpus_read_lock();
2272 	list_for_each_entry(rp, &rapl_packages, plist) {
2273 		if (!rp->power_zone)
2274 			continue;
2275 		rd = power_zone_to_rapl_domain(rp->power_zone);
2276 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2277 			if (rd->rpl[i].last_power_limit)
2278 				rapl_write_pl_data(rd, i, PL_LIMIT,
2279 					       rd->rpl[i].last_power_limit);
2280 	}
2281 	cpus_read_unlock();
2282 }
2283 
2284 static int rapl_pm_callback(struct notifier_block *nb,
2285 			    unsigned long mode, void *_unused)
2286 {
2287 	switch (mode) {
2288 	case PM_SUSPEND_PREPARE:
2289 		power_limit_state_save();
2290 		break;
2291 	case PM_POST_SUSPEND:
2292 		power_limit_state_restore();
2293 		break;
2294 	}
2295 	return NOTIFY_OK;
2296 }
2297 
2298 static struct notifier_block rapl_pm_notifier = {
2299 	.notifier_call = rapl_pm_callback,
2300 };
2301 
2302 static struct platform_device *rapl_msr_platdev;
2303 
2304 static int __init rapl_init(void)
2305 {
2306 	const struct x86_cpu_id *id;
2307 	int ret;
2308 
2309 	id = x86_match_cpu(rapl_ids);
2310 	if (id) {
2311 		defaults_msr = (struct rapl_defaults *)id->driver_data;
2312 
2313 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2314 		if (!rapl_msr_platdev)
2315 			return -ENOMEM;
2316 
2317 		ret = platform_device_add(rapl_msr_platdev);
2318 		if (ret) {
2319 			platform_device_put(rapl_msr_platdev);
2320 			return ret;
2321 		}
2322 	}
2323 
2324 	ret = register_pm_notifier(&rapl_pm_notifier);
2325 	if (ret && rapl_msr_platdev) {
2326 		platform_device_del(rapl_msr_platdev);
2327 		platform_device_put(rapl_msr_platdev);
2328 	}
2329 
2330 	return ret;
2331 }
2332 
2333 static void __exit rapl_exit(void)
2334 {
2335 	platform_device_unregister(rapl_msr_platdev);
2336 	unregister_pm_notifier(&rapl_pm_notifier);
2337 }
2338 
2339 fs_initcall(rapl_init);
2340 module_exit(rapl_exit);
2341 
2342 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2343 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2344 MODULE_LICENSE("GPL v2");
2345