xref: /linux/drivers/powercap/intel_rapl_common.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
24 
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
28 
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK      0xffffffff
31 
32 #define POWER_LIMIT1_MASK       0x7FFF
33 #define POWER_LIMIT1_ENABLE     BIT(15)
34 #define POWER_LIMIT1_CLAMP      BIT(16)
35 
36 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
39 #define POWER_HIGH_LOCK         BIT_ULL(63)
40 #define POWER_LOW_LOCK          BIT(31)
41 
42 #define POWER_LIMIT4_MASK		0x1FFF
43 
44 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
45 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
46 
47 #define POWER_UNIT_OFFSET	0
48 #define POWER_UNIT_MASK		0x0F
49 
50 #define ENERGY_UNIT_OFFSET	0x08
51 #define ENERGY_UNIT_MASK	0x1F00
52 
53 #define TIME_UNIT_OFFSET	0x10
54 #define TIME_UNIT_MASK		0xF0000
55 
56 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
57 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
58 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
59 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
60 
61 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62 #define PP_POLICY_MASK         0x1F
63 
64 /*
65  * SPR has different layout for Psys Domain PowerLimit registers.
66  * There are 17 bits of PL1 and PL2 instead of 15 bits.
67  * The Enable bits and TimeWindow bits are also shifted as a result.
68  */
69 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
70 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
71 
72 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
73 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
74 
75 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
76 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
77 
78 /* bitmasks for RAPL TPMI, used by primitive access functions */
79 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
80 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
81 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
82 #define TPMI_INFO_SPEC_MASK	0x3FFFF
83 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
84 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
85 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
86 
87 /* Non HW constants */
88 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
89 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
90 
91 #define TIME_WINDOW_MAX_MSEC 40000
92 #define TIME_WINDOW_MIN_MSEC 250
93 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
94 enum unit_type {
95 	ARBITRARY_UNIT,		/* no translation */
96 	POWER_UNIT,
97 	ENERGY_UNIT,
98 	TIME_UNIT,
99 };
100 
101 /* per domain data, some are optional */
102 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
103 
104 #define	DOMAIN_STATE_INACTIVE           BIT(0)
105 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
106 
107 static const char *pl_names[NR_POWER_LIMITS] = {
108 	[POWER_LIMIT1] = "long_term",
109 	[POWER_LIMIT2] = "short_term",
110 	[POWER_LIMIT4] = "peak_power",
111 };
112 
113 enum pl_prims {
114 	PL_ENABLE,
115 	PL_CLAMP,
116 	PL_LIMIT,
117 	PL_TIME_WINDOW,
118 	PL_MAX_POWER,
119 	PL_LOCK,
120 };
121 
122 static bool is_pl_valid(struct rapl_domain *rd, int pl)
123 {
124 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
125 		return false;
126 	return rd->rpl[pl].name ? true : false;
127 }
128 
129 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
130 {
131 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
132 		if (pl == POWER_LIMIT1)
133 			return PL1_LOCK;
134 		if (pl == POWER_LIMIT2)
135 			return PL2_LOCK;
136 		if (pl == POWER_LIMIT4)
137 			return PL4_LOCK;
138 	}
139 
140 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
141 	if (pl == POWER_LIMIT4)
142 		return -EINVAL;
143 
144 	/*
145 	 * Power Limit register that supports two power limits has a different
146 	 * bit position for the Lock bit.
147 	 */
148 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
149 		return FW_HIGH_LOCK;
150 	return FW_LOCK;
151 }
152 
153 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
154 {
155 	switch (pl) {
156 	case POWER_LIMIT1:
157 		if (prim == PL_ENABLE)
158 			return PL1_ENABLE;
159 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
160 			return PL1_CLAMP;
161 		if (prim == PL_LIMIT)
162 			return POWER_LIMIT1;
163 		if (prim == PL_TIME_WINDOW)
164 			return TIME_WINDOW1;
165 		if (prim == PL_MAX_POWER)
166 			return THERMAL_SPEC_POWER;
167 		if (prim == PL_LOCK)
168 			return get_pl_lock_prim(rd, pl);
169 		return -EINVAL;
170 	case POWER_LIMIT2:
171 		if (prim == PL_ENABLE)
172 			return PL2_ENABLE;
173 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
174 			return PL2_CLAMP;
175 		if (prim == PL_LIMIT)
176 			return POWER_LIMIT2;
177 		if (prim == PL_TIME_WINDOW)
178 			return TIME_WINDOW2;
179 		if (prim == PL_MAX_POWER)
180 			return MAX_POWER;
181 		if (prim == PL_LOCK)
182 			return get_pl_lock_prim(rd, pl);
183 		return -EINVAL;
184 	case POWER_LIMIT4:
185 		if (prim == PL_LIMIT)
186 			return POWER_LIMIT4;
187 		if (prim == PL_ENABLE)
188 			return PL4_ENABLE;
189 		/* PL4 would be around two times PL2, use same prim as PL2. */
190 		if (prim == PL_MAX_POWER)
191 			return MAX_POWER;
192 		if (prim == PL_LOCK)
193 			return get_pl_lock_prim(rd, pl);
194 		return -EINVAL;
195 	default:
196 		return -EINVAL;
197 	}
198 }
199 
200 #define power_zone_to_rapl_domain(_zone) \
201 	container_of(_zone, struct rapl_domain, power_zone)
202 
203 struct rapl_defaults {
204 	u8 floor_freq_reg_addr;
205 	int (*check_unit)(struct rapl_domain *rd);
206 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
207 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
208 				    bool to_raw);
209 	unsigned int dram_domain_energy_unit;
210 	unsigned int psys_domain_energy_unit;
211 	bool spr_psys_bits;
212 };
213 static struct rapl_defaults *defaults_msr;
214 static const struct rapl_defaults defaults_tpmi;
215 
216 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
217 {
218 	return rp->priv->defaults;
219 }
220 
221 /* Sideband MBI registers */
222 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
223 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
224 
225 #define PACKAGE_PLN_INT_SAVED   BIT(0)
226 #define MAX_PRIM_NAME (32)
227 
228 /* per domain data. used to describe individual knobs such that access function
229  * can be consolidated into one instead of many inline functions.
230  */
231 struct rapl_primitive_info {
232 	const char *name;
233 	u64 mask;
234 	int shift;
235 	enum rapl_domain_reg_id id;
236 	enum unit_type unit;
237 	u32 flag;
238 };
239 
240 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
241 		.name = #p,			\
242 		.mask = m,			\
243 		.shift = s,			\
244 		.id = i,			\
245 		.unit = u,			\
246 		.flag = f			\
247 	}
248 
249 static void rapl_init_domains(struct rapl_package *rp);
250 static int rapl_read_data_raw(struct rapl_domain *rd,
251 			      enum rapl_primitives prim,
252 			      bool xlate, u64 *data);
253 static int rapl_write_data_raw(struct rapl_domain *rd,
254 			       enum rapl_primitives prim,
255 			       unsigned long long value);
256 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
257 			      enum pl_prims pl_prim,
258 			      bool xlate, u64 *data);
259 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
260 			       enum pl_prims pl_prim,
261 			       unsigned long long value);
262 static u64 rapl_unit_xlate(struct rapl_domain *rd,
263 			   enum unit_type type, u64 value, int to_raw);
264 static void package_power_limit_irq_save(struct rapl_package *rp);
265 
266 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
267 
268 static const char *const rapl_domain_names[] = {
269 	"package",
270 	"core",
271 	"uncore",
272 	"dram",
273 	"psys",
274 };
275 
276 static int get_energy_counter(struct powercap_zone *power_zone,
277 			      u64 *energy_raw)
278 {
279 	struct rapl_domain *rd;
280 	u64 energy_now;
281 
282 	/* prevent CPU hotplug, make sure the RAPL domain does not go
283 	 * away while reading the counter.
284 	 */
285 	cpus_read_lock();
286 	rd = power_zone_to_rapl_domain(power_zone);
287 
288 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
289 		*energy_raw = energy_now;
290 		cpus_read_unlock();
291 
292 		return 0;
293 	}
294 	cpus_read_unlock();
295 
296 	return -EIO;
297 }
298 
299 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
300 {
301 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
302 
303 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
304 	return 0;
305 }
306 
307 static int release_zone(struct powercap_zone *power_zone)
308 {
309 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
310 	struct rapl_package *rp = rd->rp;
311 
312 	/* package zone is the last zone of a package, we can free
313 	 * memory here since all children has been unregistered.
314 	 */
315 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
316 		kfree(rd);
317 		rp->domains = NULL;
318 	}
319 
320 	return 0;
321 
322 }
323 
324 static int find_nr_power_limit(struct rapl_domain *rd)
325 {
326 	int i, nr_pl = 0;
327 
328 	for (i = 0; i < NR_POWER_LIMITS; i++) {
329 		if (is_pl_valid(rd, i))
330 			nr_pl++;
331 	}
332 
333 	return nr_pl;
334 }
335 
336 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
337 {
338 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
339 	struct rapl_defaults *defaults = get_defaults(rd->rp);
340 	int ret;
341 
342 	cpus_read_lock();
343 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
344 	if (!ret && defaults->set_floor_freq)
345 		defaults->set_floor_freq(rd, mode);
346 	cpus_read_unlock();
347 
348 	return ret;
349 }
350 
351 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
352 {
353 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
354 	u64 val;
355 	int ret;
356 
357 	if (rd->rpl[POWER_LIMIT1].locked) {
358 		*mode = false;
359 		return 0;
360 	}
361 	cpus_read_lock();
362 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
363 	if (!ret)
364 		*mode = val;
365 	cpus_read_unlock();
366 
367 	return ret;
368 }
369 
370 /* per RAPL domain ops, in the order of rapl_domain_type */
371 static const struct powercap_zone_ops zone_ops[] = {
372 	/* RAPL_DOMAIN_PACKAGE */
373 	{
374 	 .get_energy_uj = get_energy_counter,
375 	 .get_max_energy_range_uj = get_max_energy_counter,
376 	 .release = release_zone,
377 	 .set_enable = set_domain_enable,
378 	 .get_enable = get_domain_enable,
379 	 },
380 	/* RAPL_DOMAIN_PP0 */
381 	{
382 	 .get_energy_uj = get_energy_counter,
383 	 .get_max_energy_range_uj = get_max_energy_counter,
384 	 .release = release_zone,
385 	 .set_enable = set_domain_enable,
386 	 .get_enable = get_domain_enable,
387 	 },
388 	/* RAPL_DOMAIN_PP1 */
389 	{
390 	 .get_energy_uj = get_energy_counter,
391 	 .get_max_energy_range_uj = get_max_energy_counter,
392 	 .release = release_zone,
393 	 .set_enable = set_domain_enable,
394 	 .get_enable = get_domain_enable,
395 	 },
396 	/* RAPL_DOMAIN_DRAM */
397 	{
398 	 .get_energy_uj = get_energy_counter,
399 	 .get_max_energy_range_uj = get_max_energy_counter,
400 	 .release = release_zone,
401 	 .set_enable = set_domain_enable,
402 	 .get_enable = get_domain_enable,
403 	 },
404 	/* RAPL_DOMAIN_PLATFORM */
405 	{
406 	 .get_energy_uj = get_energy_counter,
407 	 .get_max_energy_range_uj = get_max_energy_counter,
408 	 .release = release_zone,
409 	 .set_enable = set_domain_enable,
410 	 .get_enable = get_domain_enable,
411 	 },
412 };
413 
414 /*
415  * Constraint index used by powercap can be different than power limit (PL)
416  * index in that some  PLs maybe missing due to non-existent MSRs. So we
417  * need to convert here by finding the valid PLs only (name populated).
418  */
419 static int contraint_to_pl(struct rapl_domain *rd, int cid)
420 {
421 	int i, j;
422 
423 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
424 		if (is_pl_valid(rd, i) && j++ == cid) {
425 			pr_debug("%s: index %d\n", __func__, i);
426 			return i;
427 		}
428 	}
429 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
430 
431 	return -EINVAL;
432 }
433 
434 static int set_power_limit(struct powercap_zone *power_zone, int cid,
435 			   u64 power_limit)
436 {
437 	struct rapl_domain *rd;
438 	struct rapl_package *rp;
439 	int ret = 0;
440 	int id;
441 
442 	cpus_read_lock();
443 	rd = power_zone_to_rapl_domain(power_zone);
444 	id = contraint_to_pl(rd, cid);
445 	rp = rd->rp;
446 
447 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
448 	if (!ret)
449 		package_power_limit_irq_save(rp);
450 	cpus_read_unlock();
451 	return ret;
452 }
453 
454 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
455 				   u64 *data)
456 {
457 	struct rapl_domain *rd;
458 	u64 val;
459 	int ret = 0;
460 	int id;
461 
462 	cpus_read_lock();
463 	rd = power_zone_to_rapl_domain(power_zone);
464 	id = contraint_to_pl(rd, cid);
465 
466 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
467 	if (!ret)
468 		*data = val;
469 
470 	cpus_read_unlock();
471 
472 	return ret;
473 }
474 
475 static int set_time_window(struct powercap_zone *power_zone, int cid,
476 			   u64 window)
477 {
478 	struct rapl_domain *rd;
479 	int ret = 0;
480 	int id;
481 
482 	cpus_read_lock();
483 	rd = power_zone_to_rapl_domain(power_zone);
484 	id = contraint_to_pl(rd, cid);
485 
486 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
487 
488 	cpus_read_unlock();
489 	return ret;
490 }
491 
492 static int get_time_window(struct powercap_zone *power_zone, int cid,
493 			   u64 *data)
494 {
495 	struct rapl_domain *rd;
496 	u64 val;
497 	int ret = 0;
498 	int id;
499 
500 	cpus_read_lock();
501 	rd = power_zone_to_rapl_domain(power_zone);
502 	id = contraint_to_pl(rd, cid);
503 
504 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
505 	if (!ret)
506 		*data = val;
507 
508 	cpus_read_unlock();
509 
510 	return ret;
511 }
512 
513 static const char *get_constraint_name(struct powercap_zone *power_zone,
514 				       int cid)
515 {
516 	struct rapl_domain *rd;
517 	int id;
518 
519 	rd = power_zone_to_rapl_domain(power_zone);
520 	id = contraint_to_pl(rd, cid);
521 	if (id >= 0)
522 		return rd->rpl[id].name;
523 
524 	return NULL;
525 }
526 
527 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
528 {
529 	struct rapl_domain *rd;
530 	u64 val;
531 	int ret = 0;
532 	int id;
533 
534 	cpus_read_lock();
535 	rd = power_zone_to_rapl_domain(power_zone);
536 	id = contraint_to_pl(rd, cid);
537 
538 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
539 	if (!ret)
540 		*data = val;
541 
542 	/* As a generalization rule, PL4 would be around two times PL2. */
543 	if (id == POWER_LIMIT4)
544 		*data = *data * 2;
545 
546 	cpus_read_unlock();
547 
548 	return ret;
549 }
550 
551 static const struct powercap_zone_constraint_ops constraint_ops = {
552 	.set_power_limit_uw = set_power_limit,
553 	.get_power_limit_uw = get_current_power_limit,
554 	.set_time_window_us = set_time_window,
555 	.get_time_window_us = get_time_window,
556 	.get_max_power_uw = get_max_power,
557 	.get_name = get_constraint_name,
558 };
559 
560 /* Return the id used for read_raw/write_raw callback */
561 static int get_rid(struct rapl_package *rp)
562 {
563 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
564 }
565 
566 /* called after domain detection and package level data are set */
567 static void rapl_init_domains(struct rapl_package *rp)
568 {
569 	enum rapl_domain_type i;
570 	enum rapl_domain_reg_id j;
571 	struct rapl_domain *rd = rp->domains;
572 
573 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
574 		unsigned int mask = rp->domain_map & (1 << i);
575 		int t;
576 
577 		if (!mask)
578 			continue;
579 
580 		rd->rp = rp;
581 
582 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
583 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
584 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
585 				rp->id);
586 		} else {
587 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
588 				rapl_domain_names[i]);
589 		}
590 
591 		rd->id = i;
592 
593 		/* PL1 is supported by default */
594 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
595 
596 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
597 			if (rp->priv->limits[i] & BIT(t))
598 				rd->rpl[t].name = pl_names[t];
599 		}
600 
601 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
602 			rd->regs[j] = rp->priv->regs[i][j];
603 
604 		rd++;
605 	}
606 }
607 
608 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
609 			   u64 value, int to_raw)
610 {
611 	u64 units = 1;
612 	struct rapl_defaults *defaults = get_defaults(rd->rp);
613 	u64 scale = 1;
614 
615 	switch (type) {
616 	case POWER_UNIT:
617 		units = rd->power_unit;
618 		break;
619 	case ENERGY_UNIT:
620 		scale = ENERGY_UNIT_SCALE;
621 		units = rd->energy_unit;
622 		break;
623 	case TIME_UNIT:
624 		return defaults->compute_time_window(rd, value, to_raw);
625 	case ARBITRARY_UNIT:
626 	default:
627 		return value;
628 	}
629 
630 	if (to_raw)
631 		return div64_u64(value, units) * scale;
632 
633 	value *= units;
634 
635 	return div64_u64(value, scale);
636 }
637 
638 /* RAPL primitives for MSR and MMIO I/F */
639 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
640 	/* name, mask, shift, msr index, unit divisor */
641 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
642 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
643 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
644 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
645 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
646 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
647 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
648 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
649 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
650 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
651 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
652 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
653 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
654 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
655 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
656 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
657 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
658 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
659 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
660 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
661 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
662 				RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
663 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
664 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
665 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
666 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
667 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
668 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
669 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
670 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
671 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
672 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
673 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
674 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
675 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
676 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
677 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
678 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
679 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
680 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
681 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
682 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
683 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
684 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
685 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
686 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
687 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
688 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
689 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
690 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
691 	/* non-hardware */
692 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
693 			    RAPL_PRIMITIVE_DERIVED),
694 };
695 
696 /* RAPL primitives for TPMI I/F */
697 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
698 	/* name, mask, shift, msr index, unit divisor */
699 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
700 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
701 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
702 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
703 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
704 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
705 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
706 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
707 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
708 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
709 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
710 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
711 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
712 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
713 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
714 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
715 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
716 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
717 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
718 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
719 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
720 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
721 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
722 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
723 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
724 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
725 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
726 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
727 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
728 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
729 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
730 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
731 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
732 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
733 	/* non-hardware */
734 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
735 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
736 };
737 
738 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
739 {
740 	struct rapl_primitive_info *rpi = rp->priv->rpi;
741 
742 	if (prim < 0 || prim > NR_RAPL_PRIMITIVES || !rpi)
743 		return NULL;
744 
745 	return &rpi[prim];
746 }
747 
748 static int rapl_config(struct rapl_package *rp)
749 {
750 	switch (rp->priv->type) {
751 	/* MMIO I/F shares the same register layout as MSR registers */
752 	case RAPL_IF_MMIO:
753 	case RAPL_IF_MSR:
754 		rp->priv->defaults = (void *)defaults_msr;
755 		rp->priv->rpi = (void *)rpi_msr;
756 		break;
757 	case RAPL_IF_TPMI:
758 		rp->priv->defaults = (void *)&defaults_tpmi;
759 		rp->priv->rpi = (void *)rpi_tpmi;
760 		break;
761 	default:
762 		return -EINVAL;
763 	}
764 	return 0;
765 }
766 
767 static enum rapl_primitives
768 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
769 {
770 	struct rapl_defaults *defaults = get_defaults(rd->rp);
771 
772 	if (!defaults->spr_psys_bits)
773 		return prim;
774 
775 	if (rd->id != RAPL_DOMAIN_PLATFORM)
776 		return prim;
777 
778 	switch (prim) {
779 	case POWER_LIMIT1:
780 		return PSYS_POWER_LIMIT1;
781 	case POWER_LIMIT2:
782 		return PSYS_POWER_LIMIT2;
783 	case PL1_ENABLE:
784 		return PSYS_PL1_ENABLE;
785 	case PL2_ENABLE:
786 		return PSYS_PL2_ENABLE;
787 	case TIME_WINDOW1:
788 		return PSYS_TIME_WINDOW1;
789 	case TIME_WINDOW2:
790 		return PSYS_TIME_WINDOW2;
791 	default:
792 		return prim;
793 	}
794 }
795 
796 /* Read primitive data based on its related struct rapl_primitive_info.
797  * if xlate flag is set, return translated data based on data units, i.e.
798  * time, energy, and power.
799  * RAPL MSRs are non-architectual and are laid out not consistently across
800  * domains. Here we use primitive info to allow writing consolidated access
801  * functions.
802  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
803  * is pre-assigned based on RAPL unit MSRs read at init time.
804  * 63-------------------------- 31--------------------------- 0
805  * |                           xxxxx (mask)                   |
806  * |                                |<- shift ----------------|
807  * 63-------------------------- 31--------------------------- 0
808  */
809 static int rapl_read_data_raw(struct rapl_domain *rd,
810 			      enum rapl_primitives prim, bool xlate, u64 *data)
811 {
812 	u64 value;
813 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
814 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
815 	struct reg_action ra;
816 
817 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
818 		return -EINVAL;
819 
820 	ra.reg = rd->regs[rpi->id];
821 	if (!ra.reg.val)
822 		return -EINVAL;
823 
824 	/* non-hardware data are collected by the polling thread */
825 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
826 		*data = rd->rdd.primitives[prim];
827 		return 0;
828 	}
829 
830 	ra.mask = rpi->mask;
831 
832 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
833 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
834 		return -EIO;
835 	}
836 
837 	value = ra.value >> rpi->shift;
838 
839 	if (xlate)
840 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
841 	else
842 		*data = value;
843 
844 	return 0;
845 }
846 
847 /* Similar use of primitive info in the read counterpart */
848 static int rapl_write_data_raw(struct rapl_domain *rd,
849 			       enum rapl_primitives prim,
850 			       unsigned long long value)
851 {
852 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
853 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
854 	u64 bits;
855 	struct reg_action ra;
856 	int ret;
857 
858 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
859 		return -EINVAL;
860 
861 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
862 	bits <<= rpi->shift;
863 	bits &= rpi->mask;
864 
865 	memset(&ra, 0, sizeof(ra));
866 
867 	ra.reg = rd->regs[rpi->id];
868 	ra.mask = rpi->mask;
869 	ra.value = bits;
870 
871 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
872 
873 	return ret;
874 }
875 
876 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
877 			      enum pl_prims pl_prim, bool xlate, u64 *data)
878 {
879 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
880 
881 	if (!is_pl_valid(rd, pl))
882 		return -EINVAL;
883 
884 	return rapl_read_data_raw(rd, prim, xlate, data);
885 }
886 
887 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
888 			       enum pl_prims pl_prim,
889 			       unsigned long long value)
890 {
891 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
892 
893 	if (!is_pl_valid(rd, pl))
894 		return -EINVAL;
895 
896 	if (rd->rpl[pl].locked) {
897 		pr_warn("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
898 		return -EACCES;
899 	}
900 
901 	return rapl_write_data_raw(rd, prim, value);
902 }
903 /*
904  * Raw RAPL data stored in MSRs are in certain scales. We need to
905  * convert them into standard units based on the units reported in
906  * the RAPL unit MSRs. This is specific to CPUs as the method to
907  * calculate units differ on different CPUs.
908  * We convert the units to below format based on CPUs.
909  * i.e.
910  * energy unit: picoJoules  : Represented in picoJoules by default
911  * power unit : microWatts  : Represented in milliWatts by default
912  * time unit  : microseconds: Represented in seconds by default
913  */
914 static int rapl_check_unit_core(struct rapl_domain *rd)
915 {
916 	struct reg_action ra;
917 	u32 value;
918 
919 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
920 	ra.mask = ~0;
921 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
922 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
923 			ra.reg.val, rd->rp->name, rd->name);
924 		return -ENODEV;
925 	}
926 
927 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
928 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
929 
930 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
931 	rd->power_unit = 1000000 / (1 << value);
932 
933 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
934 	rd->time_unit = 1000000 / (1 << value);
935 
936 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
937 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
938 
939 	return 0;
940 }
941 
942 static int rapl_check_unit_atom(struct rapl_domain *rd)
943 {
944 	struct reg_action ra;
945 	u32 value;
946 
947 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
948 	ra.mask = ~0;
949 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
950 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
951 			ra.reg.val, rd->rp->name, rd->name);
952 		return -ENODEV;
953 	}
954 
955 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
956 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
957 
958 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
959 	rd->power_unit = (1 << value) * 1000;
960 
961 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
962 	rd->time_unit = 1000000 / (1 << value);
963 
964 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
965 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
966 
967 	return 0;
968 }
969 
970 static void power_limit_irq_save_cpu(void *info)
971 {
972 	u32 l, h = 0;
973 	struct rapl_package *rp = (struct rapl_package *)info;
974 
975 	/* save the state of PLN irq mask bit before disabling it */
976 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
977 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
978 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
979 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
980 	}
981 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
982 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
983 }
984 
985 /* REVISIT:
986  * When package power limit is set artificially low by RAPL, LVT
987  * thermal interrupt for package power limit should be ignored
988  * since we are not really exceeding the real limit. The intention
989  * is to avoid excessive interrupts while we are trying to save power.
990  * A useful feature might be routing the package_power_limit interrupt
991  * to userspace via eventfd. once we have a usecase, this is simple
992  * to do by adding an atomic notifier.
993  */
994 
995 static void package_power_limit_irq_save(struct rapl_package *rp)
996 {
997 	if (rp->lead_cpu < 0)
998 		return;
999 
1000 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1001 		return;
1002 
1003 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1004 }
1005 
1006 /*
1007  * Restore per package power limit interrupt enable state. Called from cpu
1008  * hotplug code on package removal.
1009  */
1010 static void package_power_limit_irq_restore(struct rapl_package *rp)
1011 {
1012 	u32 l, h;
1013 
1014 	if (rp->lead_cpu < 0)
1015 		return;
1016 
1017 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1018 		return;
1019 
1020 	/* irq enable state not saved, nothing to restore */
1021 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1022 		return;
1023 
1024 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1025 
1026 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1027 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1028 	else
1029 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1030 
1031 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1032 }
1033 
1034 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1035 {
1036 	int i;
1037 
1038 	/* always enable clamp such that p-state can go below OS requested
1039 	 * range. power capping priority over guranteed frequency.
1040 	 */
1041 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1042 
1043 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1044 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1045 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1046 	}
1047 }
1048 
1049 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1050 {
1051 	static u32 power_ctrl_orig_val;
1052 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1053 	u32 mdata;
1054 
1055 	if (!defaults->floor_freq_reg_addr) {
1056 		pr_err("Invalid floor frequency config register\n");
1057 		return;
1058 	}
1059 
1060 	if (!power_ctrl_orig_val)
1061 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1062 			      defaults->floor_freq_reg_addr,
1063 			      &power_ctrl_orig_val);
1064 	mdata = power_ctrl_orig_val;
1065 	if (enable) {
1066 		mdata &= ~(0x7f << 8);
1067 		mdata |= 1 << 8;
1068 	}
1069 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1070 		       defaults->floor_freq_reg_addr, mdata);
1071 }
1072 
1073 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1074 					 bool to_raw)
1075 {
1076 	u64 f, y;		/* fraction and exp. used for time unit */
1077 
1078 	/*
1079 	 * Special processing based on 2^Y*(1+F/4), refer
1080 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1081 	 */
1082 	if (!to_raw) {
1083 		f = (value & 0x60) >> 5;
1084 		y = value & 0x1f;
1085 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1086 	} else {
1087 		if (value < rd->time_unit)
1088 			return 0;
1089 
1090 		do_div(value, rd->time_unit);
1091 		y = ilog2(value);
1092 
1093 		/*
1094 		 * The target hardware field is 7 bits wide, so return all ones
1095 		 * if the exponent is too large.
1096 		 */
1097 		if (y > 0x1f)
1098 			return 0x7f;
1099 
1100 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1101 		value = (y & 0x1f) | ((f & 0x3) << 5);
1102 	}
1103 	return value;
1104 }
1105 
1106 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1107 					 bool to_raw)
1108 {
1109 	/*
1110 	 * Atom time unit encoding is straight forward val * time_unit,
1111 	 * where time_unit is default to 1 sec. Never 0.
1112 	 */
1113 	if (!to_raw)
1114 		return (value) ? value * rd->time_unit : rd->time_unit;
1115 
1116 	value = div64_u64(value, rd->time_unit);
1117 
1118 	return value;
1119 }
1120 
1121 /* TPMI Unit register has different layout */
1122 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1123 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1124 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1125 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1126 #define TPMI_TIME_UNIT_OFFSET	0x0C
1127 #define TPMI_TIME_UNIT_MASK	0xF000
1128 
1129 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1130 {
1131 	struct reg_action ra;
1132 	u32 value;
1133 
1134 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1135 	ra.mask = ~0;
1136 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1137 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1138 			ra.reg.val, rd->rp->name, rd->name);
1139 		return -ENODEV;
1140 	}
1141 
1142 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1143 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1144 
1145 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1146 	rd->power_unit = 1000000 / (1 << value);
1147 
1148 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1149 	rd->time_unit = 1000000 / (1 << value);
1150 
1151 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1152 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1153 
1154 	return 0;
1155 }
1156 
1157 static const struct rapl_defaults defaults_tpmi = {
1158 	.check_unit = rapl_check_unit_tpmi,
1159 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1160 	.set_floor_freq = set_floor_freq_default,
1161 	.compute_time_window = rapl_compute_time_window_core,
1162 };
1163 
1164 static const struct rapl_defaults rapl_defaults_core = {
1165 	.floor_freq_reg_addr = 0,
1166 	.check_unit = rapl_check_unit_core,
1167 	.set_floor_freq = set_floor_freq_default,
1168 	.compute_time_window = rapl_compute_time_window_core,
1169 };
1170 
1171 static const struct rapl_defaults rapl_defaults_hsw_server = {
1172 	.check_unit = rapl_check_unit_core,
1173 	.set_floor_freq = set_floor_freq_default,
1174 	.compute_time_window = rapl_compute_time_window_core,
1175 	.dram_domain_energy_unit = 15300,
1176 };
1177 
1178 static const struct rapl_defaults rapl_defaults_spr_server = {
1179 	.check_unit = rapl_check_unit_core,
1180 	.set_floor_freq = set_floor_freq_default,
1181 	.compute_time_window = rapl_compute_time_window_core,
1182 	.psys_domain_energy_unit = 1000000000,
1183 	.spr_psys_bits = true,
1184 };
1185 
1186 static const struct rapl_defaults rapl_defaults_byt = {
1187 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1188 	.check_unit = rapl_check_unit_atom,
1189 	.set_floor_freq = set_floor_freq_atom,
1190 	.compute_time_window = rapl_compute_time_window_atom,
1191 };
1192 
1193 static const struct rapl_defaults rapl_defaults_tng = {
1194 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1195 	.check_unit = rapl_check_unit_atom,
1196 	.set_floor_freq = set_floor_freq_atom,
1197 	.compute_time_window = rapl_compute_time_window_atom,
1198 };
1199 
1200 static const struct rapl_defaults rapl_defaults_ann = {
1201 	.floor_freq_reg_addr = 0,
1202 	.check_unit = rapl_check_unit_atom,
1203 	.set_floor_freq = NULL,
1204 	.compute_time_window = rapl_compute_time_window_atom,
1205 };
1206 
1207 static const struct rapl_defaults rapl_defaults_cht = {
1208 	.floor_freq_reg_addr = 0,
1209 	.check_unit = rapl_check_unit_atom,
1210 	.set_floor_freq = NULL,
1211 	.compute_time_window = rapl_compute_time_window_atom,
1212 };
1213 
1214 static const struct rapl_defaults rapl_defaults_amd = {
1215 	.check_unit = rapl_check_unit_core,
1216 };
1217 
1218 static const struct x86_cpu_id rapl_ids[] __initconst = {
1219 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1220 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1221 
1222 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1223 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1224 
1225 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1226 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1227 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1228 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1229 
1230 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1231 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1232 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1233 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1234 
1235 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1236 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1237 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1238 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1239 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1240 	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1241 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1242 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1243 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1244 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1245 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1246 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1247 	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1248 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1249 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1250 	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1251 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1252 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1253 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N,		&rapl_defaults_core),
1254 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		&rapl_defaults_core),
1255 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        &rapl_defaults_core),
1256 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	&rapl_defaults_core),
1257 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE,		&rapl_defaults_core),
1258 	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	&rapl_defaults_core),
1259 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1260 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1261 	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1262 
1263 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1264 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1265 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1266 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1267 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1268 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1269 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1270 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1271 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1272 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1273 
1274 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1275 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1276 
1277 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1278 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1279 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1280 	{}
1281 };
1282 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1283 
1284 /* Read once for all raw primitive data for domains */
1285 static void rapl_update_domain_data(struct rapl_package *rp)
1286 {
1287 	int dmn, prim;
1288 	u64 val;
1289 
1290 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1291 		pr_debug("update %s domain %s data\n", rp->name,
1292 			 rp->domains[dmn].name);
1293 		/* exclude non-raw primitives */
1294 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1295 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1296 
1297 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1298 						rpi->unit, &val))
1299 				rp->domains[dmn].rdd.primitives[prim] = val;
1300 		}
1301 	}
1302 
1303 }
1304 
1305 static int rapl_package_register_powercap(struct rapl_package *rp)
1306 {
1307 	struct rapl_domain *rd;
1308 	struct powercap_zone *power_zone = NULL;
1309 	int nr_pl, ret;
1310 
1311 	/* Update the domain data of the new package */
1312 	rapl_update_domain_data(rp);
1313 
1314 	/* first we register package domain as the parent zone */
1315 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1316 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1317 			nr_pl = find_nr_power_limit(rd);
1318 			pr_debug("register package domain %s\n", rp->name);
1319 			power_zone = powercap_register_zone(&rd->power_zone,
1320 					    rp->priv->control_type, rp->name,
1321 					    NULL, &zone_ops[rd->id], nr_pl,
1322 					    &constraint_ops);
1323 			if (IS_ERR(power_zone)) {
1324 				pr_debug("failed to register power zone %s\n",
1325 					 rp->name);
1326 				return PTR_ERR(power_zone);
1327 			}
1328 			/* track parent zone in per package/socket data */
1329 			rp->power_zone = power_zone;
1330 			/* done, only one package domain per socket */
1331 			break;
1332 		}
1333 	}
1334 	if (!power_zone) {
1335 		pr_err("no package domain found, unknown topology!\n");
1336 		return -ENODEV;
1337 	}
1338 	/* now register domains as children of the socket/package */
1339 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1340 		struct powercap_zone *parent = rp->power_zone;
1341 
1342 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1343 			continue;
1344 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1345 			parent = NULL;
1346 		/* number of power limits per domain varies */
1347 		nr_pl = find_nr_power_limit(rd);
1348 		power_zone = powercap_register_zone(&rd->power_zone,
1349 						    rp->priv->control_type,
1350 						    rd->name, parent,
1351 						    &zone_ops[rd->id], nr_pl,
1352 						    &constraint_ops);
1353 
1354 		if (IS_ERR(power_zone)) {
1355 			pr_debug("failed to register power_zone, %s:%s\n",
1356 				 rp->name, rd->name);
1357 			ret = PTR_ERR(power_zone);
1358 			goto err_cleanup;
1359 		}
1360 	}
1361 	return 0;
1362 
1363 err_cleanup:
1364 	/*
1365 	 * Clean up previously initialized domains within the package if we
1366 	 * failed after the first domain setup.
1367 	 */
1368 	while (--rd >= rp->domains) {
1369 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1370 		powercap_unregister_zone(rp->priv->control_type,
1371 					 &rd->power_zone);
1372 	}
1373 
1374 	return ret;
1375 }
1376 
1377 static int rapl_check_domain(int domain, struct rapl_package *rp)
1378 {
1379 	struct reg_action ra;
1380 
1381 	switch (domain) {
1382 	case RAPL_DOMAIN_PACKAGE:
1383 	case RAPL_DOMAIN_PP0:
1384 	case RAPL_DOMAIN_PP1:
1385 	case RAPL_DOMAIN_DRAM:
1386 	case RAPL_DOMAIN_PLATFORM:
1387 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1388 		break;
1389 	default:
1390 		pr_err("invalid domain id %d\n", domain);
1391 		return -EINVAL;
1392 	}
1393 	/* make sure domain counters are available and contains non-zero
1394 	 * values, otherwise skip it.
1395 	 */
1396 
1397 	ra.mask = ENERGY_STATUS_MASK;
1398 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1399 		return -ENODEV;
1400 
1401 	return 0;
1402 }
1403 
1404 /*
1405  * Get per domain energy/power/time unit.
1406  * RAPL Interfaces without per domain unit register will use the package
1407  * scope unit register to set per domain units.
1408  */
1409 static int rapl_get_domain_unit(struct rapl_domain *rd)
1410 {
1411 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1412 	int ret;
1413 
1414 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1415 		if (!rd->rp->priv->reg_unit.val) {
1416 			pr_err("No valid Unit register found\n");
1417 			return -ENODEV;
1418 		}
1419 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1420 	}
1421 
1422 	if (!defaults->check_unit) {
1423 		pr_err("missing .check_unit() callback\n");
1424 		return -ENODEV;
1425 	}
1426 
1427 	ret = defaults->check_unit(rd);
1428 	if (ret)
1429 		return ret;
1430 
1431 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1432 		rd->energy_unit = defaults->dram_domain_energy_unit;
1433 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1434 		rd->energy_unit = defaults->psys_domain_energy_unit;
1435 	return 0;
1436 }
1437 
1438 /*
1439  * Check if power limits are available. Two cases when they are not available:
1440  * 1. Locked by BIOS, in this case we still provide read-only access so that
1441  *    users can see what limit is set by the BIOS.
1442  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1443  *    exist at all. In this case, we do not show the constraints in powercap.
1444  *
1445  * Called after domains are detected and initialized.
1446  */
1447 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1448 {
1449 	u64 val64;
1450 	int i;
1451 
1452 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1453 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1454 			if (val64) {
1455 				rd->rpl[i].locked = true;
1456 				pr_info("%s:%s:%s locked by BIOS\n",
1457 					rd->rp->name, rd->name, pl_names[i]);
1458 			}
1459 		}
1460 
1461 		if (rapl_read_pl_data(rd, i, PL_ENABLE, false, &val64))
1462 			rd->rpl[i].name = NULL;
1463 	}
1464 }
1465 
1466 /* Detect active and valid domains for the given CPU, caller must
1467  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1468  */
1469 static int rapl_detect_domains(struct rapl_package *rp)
1470 {
1471 	struct rapl_domain *rd;
1472 	int i;
1473 
1474 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1475 		/* use physical package id to read counters */
1476 		if (!rapl_check_domain(i, rp)) {
1477 			rp->domain_map |= 1 << i;
1478 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1479 		}
1480 	}
1481 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1482 	if (!rp->nr_domains) {
1483 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1484 		return -ENODEV;
1485 	}
1486 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1487 
1488 	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1489 			      GFP_KERNEL);
1490 	if (!rp->domains)
1491 		return -ENOMEM;
1492 
1493 	rapl_init_domains(rp);
1494 
1495 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1496 		rapl_get_domain_unit(rd);
1497 		rapl_detect_powerlimit(rd);
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /* called from CPU hotplug notifier, hotplug lock held */
1504 void rapl_remove_package(struct rapl_package *rp)
1505 {
1506 	struct rapl_domain *rd, *rd_package = NULL;
1507 
1508 	package_power_limit_irq_restore(rp);
1509 
1510 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1511 		int i;
1512 
1513 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1514 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
1515 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
1516 		}
1517 
1518 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1519 			rd_package = rd;
1520 			continue;
1521 		}
1522 		pr_debug("remove package, undo power limit on %s: %s\n",
1523 			 rp->name, rd->name);
1524 		powercap_unregister_zone(rp->priv->control_type,
1525 					 &rd->power_zone);
1526 	}
1527 	/* do parent zone last */
1528 	powercap_unregister_zone(rp->priv->control_type,
1529 				 &rd_package->power_zone);
1530 	list_del(&rp->plist);
1531 	kfree(rp);
1532 }
1533 EXPORT_SYMBOL_GPL(rapl_remove_package);
1534 
1535 /* caller to ensure CPU hotplug lock is held */
1536 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1537 {
1538 	struct rapl_package *rp;
1539 	int uid;
1540 
1541 	if (id_is_cpu)
1542 		uid = topology_logical_die_id(id);
1543 	else
1544 		uid = id;
1545 
1546 	list_for_each_entry(rp, &rapl_packages, plist) {
1547 		if (rp->id == uid
1548 		    && rp->priv->control_type == priv->control_type)
1549 			return rp;
1550 	}
1551 
1552 	return NULL;
1553 }
1554 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1555 
1556 /* called from CPU hotplug notifier, hotplug lock held */
1557 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1558 {
1559 	struct rapl_package *rp;
1560 	int ret;
1561 
1562 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1563 	if (!rp)
1564 		return ERR_PTR(-ENOMEM);
1565 
1566 	if (id_is_cpu) {
1567 		rp->id = topology_logical_die_id(id);
1568 		rp->lead_cpu = id;
1569 		if (topology_max_die_per_package() > 1)
1570 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
1571 				 topology_physical_package_id(id), topology_die_id(id));
1572 		else
1573 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1574 				 topology_physical_package_id(id));
1575 	} else {
1576 		rp->id = id;
1577 		rp->lead_cpu = -1;
1578 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
1579 	}
1580 
1581 	rp->priv = priv;
1582 	ret = rapl_config(rp);
1583 	if (ret)
1584 		goto err_free_package;
1585 
1586 	/* check if the package contains valid domains */
1587 	if (rapl_detect_domains(rp)) {
1588 		ret = -ENODEV;
1589 		goto err_free_package;
1590 	}
1591 	ret = rapl_package_register_powercap(rp);
1592 	if (!ret) {
1593 		INIT_LIST_HEAD(&rp->plist);
1594 		list_add(&rp->plist, &rapl_packages);
1595 		return rp;
1596 	}
1597 
1598 err_free_package:
1599 	kfree(rp->domains);
1600 	kfree(rp);
1601 	return ERR_PTR(ret);
1602 }
1603 EXPORT_SYMBOL_GPL(rapl_add_package);
1604 
1605 static void power_limit_state_save(void)
1606 {
1607 	struct rapl_package *rp;
1608 	struct rapl_domain *rd;
1609 	int ret, i;
1610 
1611 	cpus_read_lock();
1612 	list_for_each_entry(rp, &rapl_packages, plist) {
1613 		if (!rp->power_zone)
1614 			continue;
1615 		rd = power_zone_to_rapl_domain(rp->power_zone);
1616 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1617 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
1618 						 &rd->rpl[i].last_power_limit);
1619 			if (ret)
1620 				rd->rpl[i].last_power_limit = 0;
1621 		}
1622 	}
1623 	cpus_read_unlock();
1624 }
1625 
1626 static void power_limit_state_restore(void)
1627 {
1628 	struct rapl_package *rp;
1629 	struct rapl_domain *rd;
1630 	int i;
1631 
1632 	cpus_read_lock();
1633 	list_for_each_entry(rp, &rapl_packages, plist) {
1634 		if (!rp->power_zone)
1635 			continue;
1636 		rd = power_zone_to_rapl_domain(rp->power_zone);
1637 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
1638 			if (rd->rpl[i].last_power_limit)
1639 				rapl_write_pl_data(rd, i, PL_LIMIT,
1640 					       rd->rpl[i].last_power_limit);
1641 	}
1642 	cpus_read_unlock();
1643 }
1644 
1645 static int rapl_pm_callback(struct notifier_block *nb,
1646 			    unsigned long mode, void *_unused)
1647 {
1648 	switch (mode) {
1649 	case PM_SUSPEND_PREPARE:
1650 		power_limit_state_save();
1651 		break;
1652 	case PM_POST_SUSPEND:
1653 		power_limit_state_restore();
1654 		break;
1655 	}
1656 	return NOTIFY_OK;
1657 }
1658 
1659 static struct notifier_block rapl_pm_notifier = {
1660 	.notifier_call = rapl_pm_callback,
1661 };
1662 
1663 static struct platform_device *rapl_msr_platdev;
1664 
1665 static int __init rapl_init(void)
1666 {
1667 	const struct x86_cpu_id *id;
1668 	int ret;
1669 
1670 	id = x86_match_cpu(rapl_ids);
1671 	if (id) {
1672 		defaults_msr = (struct rapl_defaults *)id->driver_data;
1673 
1674 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1675 		if (!rapl_msr_platdev)
1676 			return -ENOMEM;
1677 
1678 		ret = platform_device_add(rapl_msr_platdev);
1679 		if (ret) {
1680 			platform_device_put(rapl_msr_platdev);
1681 			return ret;
1682 		}
1683 	}
1684 
1685 	ret = register_pm_notifier(&rapl_pm_notifier);
1686 	if (ret && rapl_msr_platdev) {
1687 		platform_device_del(rapl_msr_platdev);
1688 		platform_device_put(rapl_msr_platdev);
1689 	}
1690 
1691 	return ret;
1692 }
1693 
1694 static void __exit rapl_exit(void)
1695 {
1696 	platform_device_unregister(rapl_msr_platdev);
1697 	unregister_pm_notifier(&rapl_pm_notifier);
1698 }
1699 
1700 fs_initcall(rapl_init);
1701 module_exit(rapl_exit);
1702 
1703 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1704 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1705 MODULE_LICENSE("GPL v2");
1706