xref: /linux/drivers/powercap/dtpm_cpu.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27 
28 struct dtpm_cpu {
29 	struct dtpm dtpm;
30 	struct freq_qos_request qos_req;
31 	int cpu;
32 };
33 
34 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
35 
36 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
37 {
38 	return container_of(dtpm, struct dtpm_cpu, dtpm);
39 }
40 
41 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
42 {
43 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
44 	struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
45 	struct em_perf_state *table;
46 	unsigned long freq;
47 	u64 power;
48 	int i, nr_cpus;
49 
50 	nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(pd->cpus));
51 
52 	rcu_read_lock();
53 	table = em_perf_state_from_pd(pd);
54 	for (i = 0; i < pd->nr_perf_states; i++) {
55 
56 		power = table[i].power * nr_cpus;
57 
58 		if (power > power_limit)
59 			break;
60 	}
61 
62 	freq = table[i - 1].frequency;
63 	power_limit = table[i - 1].power * nr_cpus;
64 	rcu_read_unlock();
65 
66 	freq_qos_update_request(&dtpm_cpu->qos_req, freq);
67 
68 	return power_limit;
69 }
70 
71 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
72 {
73 	unsigned long max, sum_util = 0;
74 	int cpu;
75 
76 	/*
77 	 * The capacity is the same for all CPUs belonging to
78 	 * the same perf domain.
79 	 */
80 	max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
81 
82 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
83 		sum_util += sched_cpu_util(cpu);
84 
85 	return (power * ((sum_util << 10) / max)) >> 10;
86 }
87 
88 static u64 get_pd_power_uw(struct dtpm *dtpm)
89 {
90 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
91 	struct em_perf_state *table;
92 	struct em_perf_domain *pd;
93 	struct cpumask *pd_mask;
94 	unsigned long freq;
95 	u64 power = 0;
96 	int i;
97 
98 	pd = em_cpu_get(dtpm_cpu->cpu);
99 
100 	pd_mask = em_span_cpus(pd);
101 
102 	freq = cpufreq_quick_get(dtpm_cpu->cpu);
103 
104 	rcu_read_lock();
105 	table = em_perf_state_from_pd(pd);
106 	for (i = 0; i < pd->nr_perf_states; i++) {
107 
108 		if (table[i].frequency < freq)
109 			continue;
110 
111 		power = scale_pd_power_uw(pd_mask, table[i].power);
112 		break;
113 	}
114 	rcu_read_unlock();
115 
116 	return power;
117 }
118 
119 static int update_pd_power_uw(struct dtpm *dtpm)
120 {
121 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
122 	struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
123 	struct em_perf_state *table;
124 	int nr_cpus;
125 
126 	nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(em->cpus));
127 
128 	rcu_read_lock();
129 	table = em_perf_state_from_pd(em);
130 
131 	dtpm->power_min = table[0].power;
132 	dtpm->power_min *= nr_cpus;
133 
134 	dtpm->power_max = table[em->nr_perf_states - 1].power;
135 	dtpm->power_max *= nr_cpus;
136 
137 	rcu_read_unlock();
138 
139 	return 0;
140 }
141 
142 static void pd_release(struct dtpm *dtpm)
143 {
144 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
145 	struct cpufreq_policy *policy;
146 
147 	if (freq_qos_request_active(&dtpm_cpu->qos_req))
148 		freq_qos_remove_request(&dtpm_cpu->qos_req);
149 
150 	policy = cpufreq_cpu_get(dtpm_cpu->cpu);
151 	if (policy) {
152 		for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
153 			per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
154 
155 		cpufreq_cpu_put(policy);
156 	}
157 
158 	kfree(dtpm_cpu);
159 }
160 
161 static struct dtpm_ops dtpm_ops = {
162 	.set_power_uw	 = set_pd_power_limit,
163 	.get_power_uw	 = get_pd_power_uw,
164 	.update_power_uw = update_pd_power_uw,
165 	.release	 = pd_release,
166 };
167 
168 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
169 {
170 	struct dtpm_cpu *dtpm_cpu;
171 
172 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
173 	if (dtpm_cpu)
174 		dtpm_update_power(&dtpm_cpu->dtpm);
175 
176 	return 0;
177 }
178 
179 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
180 {
181 	struct dtpm_cpu *dtpm_cpu;
182 
183 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
184 	if (dtpm_cpu)
185 		return dtpm_update_power(&dtpm_cpu->dtpm);
186 
187 	return 0;
188 }
189 
190 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
191 {
192 	struct dtpm_cpu *dtpm_cpu;
193 	struct cpufreq_policy *policy;
194 	struct em_perf_state *table;
195 	struct em_perf_domain *pd;
196 	char name[CPUFREQ_NAME_LEN];
197 	int ret = -ENOMEM;
198 
199 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
200 	if (dtpm_cpu)
201 		return 0;
202 
203 	policy = cpufreq_cpu_get(cpu);
204 	if (!policy)
205 		return 0;
206 
207 	pd = em_cpu_get(cpu);
208 	if (!pd || em_is_artificial(pd)) {
209 		ret = -EINVAL;
210 		goto release_policy;
211 	}
212 
213 	dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
214 	if (!dtpm_cpu) {
215 		ret = -ENOMEM;
216 		goto release_policy;
217 	}
218 
219 	dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
220 	dtpm_cpu->cpu = cpu;
221 
222 	for_each_cpu(cpu, policy->related_cpus)
223 		per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
224 
225 	snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
226 
227 	ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
228 	if (ret)
229 		goto out_kfree_dtpm_cpu;
230 
231 	rcu_read_lock();
232 	table = em_perf_state_from_pd(pd);
233 	ret = freq_qos_add_request(&policy->constraints,
234 				   &dtpm_cpu->qos_req, FREQ_QOS_MAX,
235 				   table[pd->nr_perf_states - 1].frequency);
236 	rcu_read_unlock();
237 	if (ret < 0)
238 		goto out_dtpm_unregister;
239 
240 	cpufreq_cpu_put(policy);
241 	return 0;
242 
243 out_dtpm_unregister:
244 	dtpm_unregister(&dtpm_cpu->dtpm);
245 	dtpm_cpu = NULL;
246 
247 out_kfree_dtpm_cpu:
248 	for_each_cpu(cpu, policy->related_cpus)
249 		per_cpu(dtpm_per_cpu, cpu) = NULL;
250 	kfree(dtpm_cpu);
251 
252 release_policy:
253 	cpufreq_cpu_put(policy);
254 	return ret;
255 }
256 
257 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
258 {
259 	int cpu;
260 
261 	cpu = of_cpu_node_to_id(np);
262 	if (cpu < 0)
263 		return 0;
264 
265 	return __dtpm_cpu_setup(cpu, dtpm);
266 }
267 
268 static int dtpm_cpu_init(void)
269 {
270 	int ret;
271 
272 	/*
273 	 * The callbacks at CPU hotplug time are calling
274 	 * dtpm_update_power() which in turns calls update_pd_power().
275 	 *
276 	 * The function update_pd_power() uses the online mask to
277 	 * figure out the power consumption limits.
278 	 *
279 	 * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
280 	 * online mask when the cpuhp_dtpm_cpu_online function is
281 	 * called, but the CPU is still in the online mask for the
282 	 * tear down callback. So the power can not be updated when
283 	 * the CPU is unplugged.
284 	 *
285 	 * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
286 	 * above. The CPU online mask is not up to date when the CPU
287 	 * is plugged in.
288 	 *
289 	 * For this reason, we need to call the online and offline
290 	 * callbacks at different moments when the CPU online mask is
291 	 * consistent with the power numbers we want to update.
292 	 */
293 	ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
294 				NULL, cpuhp_dtpm_cpu_offline);
295 	if (ret < 0)
296 		return ret;
297 
298 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
299 				cpuhp_dtpm_cpu_online, NULL);
300 	if (ret < 0)
301 		return ret;
302 
303 	return 0;
304 }
305 
306 static void dtpm_cpu_exit(void)
307 {
308 	cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
309 	cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
310 }
311 
312 struct dtpm_subsys_ops dtpm_cpu_ops = {
313 	.name = KBUILD_MODNAME,
314 	.init = dtpm_cpu_init,
315 	.exit = dtpm_cpu_exit,
316 	.setup = dtpm_cpu_setup,
317 };
318