xref: /linux/drivers/powercap/dtpm.c (revision 7bff4c26b6d2c82bebf8630f31b1cca11b1bd562)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The powercap based Dynamic Thermal Power Management framework
8  * provides to the userspace a consistent API to set the power limit
9  * on some devices.
10  *
11  * DTPM defines the functions to create a tree of constraints. Each
12  * parent node is a virtual description of the aggregation of the
13  * children. It propagates the constraints set at its level to its
14  * children and collect the children power information. The leaves of
15  * the tree are the real devices which have the ability to get their
16  * current power consumption and set their power limit.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/dtpm.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/powercap.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 
27 #define DTPM_POWER_LIMIT_FLAG 0
28 
29 static const char *constraint_name[] = {
30 	"Instantaneous",
31 };
32 
33 static DEFINE_MUTEX(dtpm_lock);
34 static struct powercap_control_type *pct;
35 static struct dtpm *root;
36 
37 static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
38 {
39 	return -ENOSYS;
40 }
41 
42 static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
43 {
44 	return -ENOSYS;
45 }
46 
47 static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
48 {
49 	struct dtpm *dtpm = to_dtpm(pcz);
50 
51 	mutex_lock(&dtpm_lock);
52 	*max_power_uw = dtpm->power_max - dtpm->power_min;
53 	mutex_unlock(&dtpm_lock);
54 
55 	return 0;
56 }
57 
58 static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
59 {
60 	struct dtpm *child;
61 	u64 power;
62 	int ret = 0;
63 
64 	if (dtpm->ops) {
65 		*power_uw = dtpm->ops->get_power_uw(dtpm);
66 		return 0;
67 	}
68 
69 	*power_uw = 0;
70 
71 	list_for_each_entry(child, &dtpm->children, sibling) {
72 		ret = __get_power_uw(child, &power);
73 		if (ret)
74 			break;
75 		*power_uw += power;
76 	}
77 
78 	return ret;
79 }
80 
81 static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
82 {
83 	struct dtpm *dtpm = to_dtpm(pcz);
84 	int ret;
85 
86 	mutex_lock(&dtpm_lock);
87 	ret = __get_power_uw(dtpm, power_uw);
88 	mutex_unlock(&dtpm_lock);
89 
90 	return ret;
91 }
92 
93 static void __dtpm_rebalance_weight(struct dtpm *dtpm)
94 {
95 	struct dtpm *child;
96 
97 	list_for_each_entry(child, &dtpm->children, sibling) {
98 
99 		pr_debug("Setting weight '%d' for '%s'\n",
100 			 child->weight, child->zone.name);
101 
102 		child->weight = DIV64_U64_ROUND_CLOSEST(
103 			child->power_max * 1024, dtpm->power_max);
104 
105 		__dtpm_rebalance_weight(child);
106 	}
107 }
108 
109 static void __dtpm_sub_power(struct dtpm *dtpm)
110 {
111 	struct dtpm *parent = dtpm->parent;
112 
113 	while (parent) {
114 		parent->power_min -= dtpm->power_min;
115 		parent->power_max -= dtpm->power_max;
116 		parent->power_limit -= dtpm->power_limit;
117 		parent = parent->parent;
118 	}
119 
120 	__dtpm_rebalance_weight(root);
121 }
122 
123 static void __dtpm_add_power(struct dtpm *dtpm)
124 {
125 	struct dtpm *parent = dtpm->parent;
126 
127 	while (parent) {
128 		parent->power_min += dtpm->power_min;
129 		parent->power_max += dtpm->power_max;
130 		parent->power_limit += dtpm->power_limit;
131 		parent = parent->parent;
132 	}
133 
134 	__dtpm_rebalance_weight(root);
135 }
136 
137 /**
138  * dtpm_update_power - Update the power on the dtpm
139  * @dtpm: a pointer to a dtpm structure to update
140  * @power_min: a u64 representing the new power_min value
141  * @power_max: a u64 representing the new power_max value
142  *
143  * Function to update the power values of the dtpm node specified in
144  * parameter. These new values will be propagated to the tree.
145  *
146  * Return: zero on success, -EINVAL if the values are inconsistent
147  */
148 int dtpm_update_power(struct dtpm *dtpm, u64 power_min, u64 power_max)
149 {
150 	int ret = 0;
151 
152 	mutex_lock(&dtpm_lock);
153 
154 	if (power_min == dtpm->power_min && power_max == dtpm->power_max)
155 		goto unlock;
156 
157 	if (power_max < power_min) {
158 		ret = -EINVAL;
159 		goto unlock;
160 	}
161 
162 	__dtpm_sub_power(dtpm);
163 
164 	dtpm->power_min = power_min;
165 	dtpm->power_max = power_max;
166 	if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
167 		dtpm->power_limit = power_max;
168 
169 	__dtpm_add_power(dtpm);
170 
171 unlock:
172 	mutex_unlock(&dtpm_lock);
173 
174 	return ret;
175 }
176 
177 /**
178  * dtpm_release_zone - Cleanup when the node is released
179  * @pcz: a pointer to a powercap_zone structure
180  *
181  * Do some housecleaning and update the weight on the tree. The
182  * release will be denied if the node has children. This function must
183  * be called by the specific release callback of the different
184  * backends.
185  *
186  * Return: 0 on success, -EBUSY if there are children
187  */
188 int dtpm_release_zone(struct powercap_zone *pcz)
189 {
190 	struct dtpm *dtpm = to_dtpm(pcz);
191 	struct dtpm *parent = dtpm->parent;
192 
193 	mutex_lock(&dtpm_lock);
194 
195 	if (!list_empty(&dtpm->children)) {
196 		mutex_unlock(&dtpm_lock);
197 		return -EBUSY;
198 	}
199 
200 	if (parent)
201 		list_del(&dtpm->sibling);
202 
203 	__dtpm_sub_power(dtpm);
204 
205 	mutex_unlock(&dtpm_lock);
206 
207 	if (dtpm->ops)
208 		dtpm->ops->release(dtpm);
209 
210 	if (root == dtpm)
211 		root = NULL;
212 
213 	kfree(dtpm);
214 
215 	return 0;
216 }
217 
218 static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit)
219 {
220 	*power_limit = dtpm->power_limit;
221 	return 0;
222 }
223 
224 static int get_power_limit_uw(struct powercap_zone *pcz,
225 			      int cid, u64 *power_limit)
226 {
227 	struct dtpm *dtpm = to_dtpm(pcz);
228 	int ret;
229 
230 	mutex_lock(&dtpm_lock);
231 	ret = __get_power_limit_uw(dtpm, cid, power_limit);
232 	mutex_unlock(&dtpm_lock);
233 
234 	return ret;
235 }
236 
237 /*
238  * Set the power limit on the nodes, the power limit is distributed
239  * given the weight of the children.
240  *
241  * The dtpm node lock must be held when calling this function.
242  */
243 static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
244 {
245 	struct dtpm *child;
246 	int ret = 0;
247 	u64 power;
248 
249 	/*
250 	 * A max power limitation means we remove the power limit,
251 	 * otherwise we set a constraint and flag the dtpm node.
252 	 */
253 	if (power_limit == dtpm->power_max) {
254 		clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
255 	} else {
256 		set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
257 	}
258 
259 	pr_debug("Setting power limit for '%s': %llu uW\n",
260 		 dtpm->zone.name, power_limit);
261 
262 	/*
263 	 * Only leaves of the dtpm tree has ops to get/set the power
264 	 */
265 	if (dtpm->ops) {
266 		dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
267 	} else {
268 		dtpm->power_limit = 0;
269 
270 		list_for_each_entry(child, &dtpm->children, sibling) {
271 
272 			/*
273 			 * Integer division rounding will inevitably
274 			 * lead to a different min or max value when
275 			 * set several times. In order to restore the
276 			 * initial value, we force the child's min or
277 			 * max power every time if the constraint is
278 			 * at the boundaries.
279 			 */
280 			if (power_limit == dtpm->power_max) {
281 				power = child->power_max;
282 			} else if (power_limit == dtpm->power_min) {
283 				power = child->power_min;
284 			} else {
285 				power = DIV_ROUND_CLOSEST_ULL(
286 					power_limit * child->weight, 1024);
287 			}
288 
289 			pr_debug("Setting power limit for '%s': %llu uW\n",
290 				 child->zone.name, power);
291 
292 			ret = __set_power_limit_uw(child, cid, power);
293 			if (!ret)
294 				ret = __get_power_limit_uw(child, cid, &power);
295 
296 			if (ret)
297 				break;
298 
299 			dtpm->power_limit += power;
300 		}
301 	}
302 
303 	return ret;
304 }
305 
306 static int set_power_limit_uw(struct powercap_zone *pcz,
307 			      int cid, u64 power_limit)
308 {
309 	struct dtpm *dtpm = to_dtpm(pcz);
310 	int ret;
311 
312 	mutex_lock(&dtpm_lock);
313 
314 	/*
315 	 * Don't allow values outside of the power range previously
316 	 * set when initializing the power numbers.
317 	 */
318 	power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
319 
320 	ret = __set_power_limit_uw(dtpm, cid, power_limit);
321 
322 	pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
323 		 dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
324 
325 	mutex_unlock(&dtpm_lock);
326 
327 	return ret;
328 }
329 
330 static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
331 {
332 	return constraint_name[cid];
333 }
334 
335 static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
336 {
337 	struct dtpm *dtpm = to_dtpm(pcz);
338 
339 	mutex_lock(&dtpm_lock);
340 	*max_power = dtpm->power_max;
341 	mutex_unlock(&dtpm_lock);
342 
343 	return 0;
344 }
345 
346 static struct powercap_zone_constraint_ops constraint_ops = {
347 	.set_power_limit_uw = set_power_limit_uw,
348 	.get_power_limit_uw = get_power_limit_uw,
349 	.set_time_window_us = set_time_window_us,
350 	.get_time_window_us = get_time_window_us,
351 	.get_max_power_uw = get_max_power_uw,
352 	.get_name = get_constraint_name,
353 };
354 
355 static struct powercap_zone_ops zone_ops = {
356 	.get_max_power_range_uw = get_max_power_range_uw,
357 	.get_power_uw = get_power_uw,
358 	.release = dtpm_release_zone,
359 };
360 
361 /**
362  * dtpm_alloc - Allocate and initialize a dtpm struct
363  * @name: a string specifying the name of the node
364  *
365  * Return: a struct dtpm pointer, NULL in case of error
366  */
367 struct dtpm *dtpm_alloc(struct dtpm_ops *ops)
368 {
369 	struct dtpm *dtpm;
370 
371 	dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL);
372 	if (dtpm) {
373 		INIT_LIST_HEAD(&dtpm->children);
374 		INIT_LIST_HEAD(&dtpm->sibling);
375 		dtpm->weight = 1024;
376 		dtpm->ops = ops;
377 	}
378 
379 	return dtpm;
380 }
381 
382 /**
383  * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
384  * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
385  *
386  * Call the underlying powercap unregister function. That will call
387  * the release callback of the powercap zone.
388  */
389 void dtpm_unregister(struct dtpm *dtpm)
390 {
391 	powercap_unregister_zone(pct, &dtpm->zone);
392 
393 	pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name);
394 }
395 
396 /**
397  * dtpm_register - Register a dtpm node in the hierarchy tree
398  * @name: a string specifying the name of the node
399  * @dtpm: a pointer to a dtpm structure corresponding to the new node
400  * @parent: a pointer to a dtpm structure corresponding to the parent node
401  *
402  * Create a dtpm node in the tree. If no parent is specified, the node
403  * is the root node of the hierarchy. If the root node already exists,
404  * then the registration will fail. The powercap controller must be
405  * initialized before calling this function.
406  *
407  * The dtpm structure must be initialized with the power numbers
408  * before calling this function.
409  *
410  * Return: zero on success, a negative value in case of error:
411  *  -EAGAIN: the function is called before the framework is initialized.
412  *  -EBUSY: the root node is already inserted
413  *  -EINVAL: * there is no root node yet and @parent is specified
414  *           * no all ops are defined
415  *           * parent have ops which are reserved for leaves
416  *   Other negative values are reported back from the powercap framework
417  */
418 int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
419 {
420 	struct powercap_zone *pcz;
421 
422 	if (!pct)
423 		return -EAGAIN;
424 
425 	if (root && !parent)
426 		return -EBUSY;
427 
428 	if (!root && parent)
429 		return -EINVAL;
430 
431 	if (parent && parent->ops)
432 		return -EINVAL;
433 
434 	if (!dtpm)
435 		return -EINVAL;
436 
437 	if (dtpm->ops && !(dtpm->ops->set_power_uw &&
438 			   dtpm->ops->get_power_uw &&
439 			   dtpm->ops->release))
440 		return -EINVAL;
441 
442 	pcz = powercap_register_zone(&dtpm->zone, pct, name,
443 				     parent ? &parent->zone : NULL,
444 				     &zone_ops, MAX_DTPM_CONSTRAINTS,
445 				     &constraint_ops);
446 	if (IS_ERR(pcz))
447 		return PTR_ERR(pcz);
448 
449 	mutex_lock(&dtpm_lock);
450 
451 	if (parent) {
452 		list_add_tail(&dtpm->sibling, &parent->children);
453 		dtpm->parent = parent;
454 	} else {
455 		root = dtpm;
456 	}
457 
458 	__dtpm_add_power(dtpm);
459 
460 	pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n",
461 		dtpm->zone.name, dtpm->power_min, dtpm->power_max);
462 
463 	mutex_unlock(&dtpm_lock);
464 
465 	return 0;
466 }
467 
468 static int __init dtpm_init(void)
469 {
470 	struct dtpm_descr **dtpm_descr;
471 
472 	pct = powercap_register_control_type(NULL, "dtpm", NULL);
473 	if (IS_ERR(pct)) {
474 		pr_err("Failed to register control type\n");
475 		return PTR_ERR(pct);
476 	}
477 
478 	for_each_dtpm_table(dtpm_descr)
479 		(*dtpm_descr)->init(*dtpm_descr);
480 
481 	return 0;
482 }
483 late_initcall(dtpm_init);
484