xref: /linux/drivers/power/supply/power_supply_core.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27 
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31 
32 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
33 
34 static struct device_type power_supply_dev_type;
35 
36 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
37 
38 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
39 					 struct power_supply *supply)
40 {
41 	int i;
42 
43 	if (!supply->supplied_from && !supplier->supplied_to)
44 		return false;
45 
46 	/* Support both supplied_to and supplied_from modes */
47 	if (supply->supplied_from) {
48 		if (!supplier->desc->name)
49 			return false;
50 		for (i = 0; i < supply->num_supplies; i++)
51 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
52 				return true;
53 	} else {
54 		if (!supply->desc->name)
55 			return false;
56 		for (i = 0; i < supplier->num_supplicants; i++)
57 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
58 				return true;
59 	}
60 
61 	return false;
62 }
63 
64 static int __power_supply_changed_work(struct device *dev, void *data)
65 {
66 	struct power_supply *psy = data;
67 	struct power_supply *pst = dev_get_drvdata(dev);
68 
69 	if (__power_supply_is_supplied_by(psy, pst)) {
70 		if (pst->desc->external_power_changed)
71 			pst->desc->external_power_changed(pst);
72 	}
73 
74 	return 0;
75 }
76 
77 static void power_supply_changed_work(struct work_struct *work)
78 {
79 	unsigned long flags;
80 	struct power_supply *psy = container_of(work, struct power_supply,
81 						changed_work);
82 
83 	dev_dbg(&psy->dev, "%s\n", __func__);
84 
85 	spin_lock_irqsave(&psy->changed_lock, flags);
86 	/*
87 	 * Check 'changed' here to avoid issues due to race between
88 	 * power_supply_changed() and this routine. In worst case
89 	 * power_supply_changed() can be called again just before we take above
90 	 * lock. During the first call of this routine we will mark 'changed' as
91 	 * false and it will stay false for the next call as well.
92 	 */
93 	if (likely(psy->changed)) {
94 		psy->changed = false;
95 		spin_unlock_irqrestore(&psy->changed_lock, flags);
96 		class_for_each_device(power_supply_class, NULL, psy,
97 				      __power_supply_changed_work);
98 		power_supply_update_leds(psy);
99 		blocking_notifier_call_chain(&power_supply_notifier,
100 				PSY_EVENT_PROP_CHANGED, psy);
101 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
102 		spin_lock_irqsave(&psy->changed_lock, flags);
103 	}
104 
105 	/*
106 	 * Hold the wakeup_source until all events are processed.
107 	 * power_supply_changed() might have called again and have set 'changed'
108 	 * to true.
109 	 */
110 	if (likely(!psy->changed))
111 		pm_relax(&psy->dev);
112 	spin_unlock_irqrestore(&psy->changed_lock, flags);
113 }
114 
115 void power_supply_changed(struct power_supply *psy)
116 {
117 	unsigned long flags;
118 
119 	dev_dbg(&psy->dev, "%s\n", __func__);
120 
121 	spin_lock_irqsave(&psy->changed_lock, flags);
122 	psy->changed = true;
123 	pm_stay_awake(&psy->dev);
124 	spin_unlock_irqrestore(&psy->changed_lock, flags);
125 	schedule_work(&psy->changed_work);
126 }
127 EXPORT_SYMBOL_GPL(power_supply_changed);
128 
129 /*
130  * Notify that power supply was registered after parent finished the probing.
131  *
132  * Often power supply is registered from driver's probe function. However
133  * calling power_supply_changed() directly from power_supply_register()
134  * would lead to execution of get_property() function provided by the driver
135  * too early - before the probe ends.
136  *
137  * Avoid that by waiting on parent's mutex.
138  */
139 static void power_supply_deferred_register_work(struct work_struct *work)
140 {
141 	struct power_supply *psy = container_of(work, struct power_supply,
142 						deferred_register_work.work);
143 
144 	if (psy->dev.parent) {
145 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
146 			if (psy->removing)
147 				return;
148 			msleep(10);
149 		}
150 	}
151 
152 	power_supply_changed(psy);
153 
154 	if (psy->dev.parent)
155 		mutex_unlock(&psy->dev.parent->mutex);
156 }
157 
158 #ifdef CONFIG_OF
159 static int __power_supply_populate_supplied_from(struct device *dev,
160 						 void *data)
161 {
162 	struct power_supply *psy = data;
163 	struct power_supply *epsy = dev_get_drvdata(dev);
164 	struct device_node *np;
165 	int i = 0;
166 
167 	do {
168 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
169 		if (!np)
170 			break;
171 
172 		if (np == epsy->of_node) {
173 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
174 				psy->desc->name, epsy->desc->name);
175 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
176 			psy->num_supplies++;
177 			of_node_put(np);
178 			break;
179 		}
180 		of_node_put(np);
181 	} while (np);
182 
183 	return 0;
184 }
185 
186 static int power_supply_populate_supplied_from(struct power_supply *psy)
187 {
188 	int error;
189 
190 	error = class_for_each_device(power_supply_class, NULL, psy,
191 				      __power_supply_populate_supplied_from);
192 
193 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
194 
195 	return error;
196 }
197 
198 static int  __power_supply_find_supply_from_node(struct device *dev,
199 						 void *data)
200 {
201 	struct device_node *np = data;
202 	struct power_supply *epsy = dev_get_drvdata(dev);
203 
204 	/* returning non-zero breaks out of class_for_each_device loop */
205 	if (epsy->of_node == np)
206 		return 1;
207 
208 	return 0;
209 }
210 
211 static int power_supply_find_supply_from_node(struct device_node *supply_node)
212 {
213 	int error;
214 
215 	/*
216 	 * class_for_each_device() either returns its own errors or values
217 	 * returned by __power_supply_find_supply_from_node().
218 	 *
219 	 * __power_supply_find_supply_from_node() will return 0 (no match)
220 	 * or 1 (match).
221 	 *
222 	 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
223 	 * it returned 0, or error as returned by it.
224 	 */
225 	error = class_for_each_device(power_supply_class, NULL, supply_node,
226 				       __power_supply_find_supply_from_node);
227 
228 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
229 }
230 
231 static int power_supply_check_supplies(struct power_supply *psy)
232 {
233 	struct device_node *np;
234 	int cnt = 0;
235 
236 	/* If there is already a list honor it */
237 	if (psy->supplied_from && psy->num_supplies > 0)
238 		return 0;
239 
240 	/* No device node found, nothing to do */
241 	if (!psy->of_node)
242 		return 0;
243 
244 	do {
245 		int ret;
246 
247 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
248 		if (!np)
249 			break;
250 
251 		ret = power_supply_find_supply_from_node(np);
252 		of_node_put(np);
253 
254 		if (ret) {
255 			dev_dbg(&psy->dev, "Failed to find supply!\n");
256 			return ret;
257 		}
258 	} while (np);
259 
260 	/* Missing valid "power-supplies" entries */
261 	if (cnt == 1)
262 		return 0;
263 
264 	/* All supplies found, allocate char ** array for filling */
265 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
266 					  GFP_KERNEL);
267 	if (!psy->supplied_from)
268 		return -ENOMEM;
269 
270 	*psy->supplied_from = devm_kcalloc(&psy->dev,
271 					   cnt - 1, sizeof(**psy->supplied_from),
272 					   GFP_KERNEL);
273 	if (!*psy->supplied_from)
274 		return -ENOMEM;
275 
276 	return power_supply_populate_supplied_from(psy);
277 }
278 #else
279 static int power_supply_check_supplies(struct power_supply *psy)
280 {
281 	int nval, ret;
282 
283 	if (!psy->dev.parent)
284 		return 0;
285 
286 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
287 	if (nval <= 0)
288 		return 0;
289 
290 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
291 						sizeof(char *), GFP_KERNEL);
292 	if (!psy->supplied_from)
293 		return -ENOMEM;
294 
295 	ret = device_property_read_string_array(psy->dev.parent,
296 		"supplied-from", (const char **)psy->supplied_from, nval);
297 	if (ret < 0)
298 		return ret;
299 
300 	psy->num_supplies = nval;
301 
302 	return 0;
303 }
304 #endif
305 
306 struct psy_am_i_supplied_data {
307 	struct power_supply *psy;
308 	unsigned int count;
309 };
310 
311 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
312 {
313 	union power_supply_propval ret = {0,};
314 	struct power_supply *epsy = dev_get_drvdata(dev);
315 	struct psy_am_i_supplied_data *data = _data;
316 
317 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
318 		data->count++;
319 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
320 					&ret))
321 			return ret.intval;
322 	}
323 
324 	return 0;
325 }
326 
327 int power_supply_am_i_supplied(struct power_supply *psy)
328 {
329 	struct psy_am_i_supplied_data data = { psy, 0 };
330 	int error;
331 
332 	error = class_for_each_device(power_supply_class, NULL, &data,
333 				      __power_supply_am_i_supplied);
334 
335 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
336 
337 	if (data.count == 0)
338 		return -ENODEV;
339 
340 	return error;
341 }
342 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
343 
344 static int __power_supply_is_system_supplied(struct device *dev, void *data)
345 {
346 	union power_supply_propval ret = {0,};
347 	struct power_supply *psy = dev_get_drvdata(dev);
348 	unsigned int *count = data;
349 
350 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
351 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
352 			return 0;
353 
354 	(*count)++;
355 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
356 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
357 					&ret))
358 			return ret.intval;
359 
360 	return 0;
361 }
362 
363 int power_supply_is_system_supplied(void)
364 {
365 	int error;
366 	unsigned int count = 0;
367 
368 	error = class_for_each_device(power_supply_class, NULL, &count,
369 				      __power_supply_is_system_supplied);
370 
371 	/*
372 	 * If no system scope power class device was found at all, most probably we
373 	 * are running on a desktop system, so assume we are on mains power.
374 	 */
375 	if (count == 0)
376 		return 1;
377 
378 	return error;
379 }
380 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
381 
382 struct psy_get_supplier_prop_data {
383 	struct power_supply *psy;
384 	enum power_supply_property psp;
385 	union power_supply_propval *val;
386 };
387 
388 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
389 {
390 	struct power_supply *epsy = dev_get_drvdata(dev);
391 	struct psy_get_supplier_prop_data *data = _data;
392 
393 	if (__power_supply_is_supplied_by(epsy, data->psy))
394 		if (!power_supply_get_property(epsy, data->psp, data->val))
395 			return 1; /* Success */
396 
397 	return 0; /* Continue iterating */
398 }
399 
400 int power_supply_get_property_from_supplier(struct power_supply *psy,
401 					    enum power_supply_property psp,
402 					    union power_supply_propval *val)
403 {
404 	struct psy_get_supplier_prop_data data = {
405 		.psy = psy,
406 		.psp = psp,
407 		.val = val,
408 	};
409 	int ret;
410 
411 	/*
412 	 * This function is not intended for use with a supply with multiple
413 	 * suppliers, we simply pick the first supply to report the psp.
414 	 */
415 	ret = class_for_each_device(power_supply_class, NULL, &data,
416 				    __power_supply_get_supplier_property);
417 	if (ret < 0)
418 		return ret;
419 	if (ret == 0)
420 		return -ENODEV;
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
425 
426 int power_supply_set_battery_charged(struct power_supply *psy)
427 {
428 	if (atomic_read(&psy->use_cnt) >= 0 &&
429 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
430 			psy->desc->set_charged) {
431 		psy->desc->set_charged(psy);
432 		return 0;
433 	}
434 
435 	return -EINVAL;
436 }
437 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
438 
439 static int power_supply_match_device_by_name(struct device *dev, const void *data)
440 {
441 	const char *name = data;
442 	struct power_supply *psy = dev_get_drvdata(dev);
443 
444 	return strcmp(psy->desc->name, name) == 0;
445 }
446 
447 /**
448  * power_supply_get_by_name() - Search for a power supply and returns its ref
449  * @name: Power supply name to fetch
450  *
451  * If power supply was found, it increases reference count for the
452  * internal power supply's device. The user should power_supply_put()
453  * after usage.
454  *
455  * Return: On success returns a reference to a power supply with
456  * matching name equals to @name, a NULL otherwise.
457  */
458 struct power_supply *power_supply_get_by_name(const char *name)
459 {
460 	struct power_supply *psy = NULL;
461 	struct device *dev = class_find_device(power_supply_class, NULL, name,
462 					power_supply_match_device_by_name);
463 
464 	if (dev) {
465 		psy = dev_get_drvdata(dev);
466 		atomic_inc(&psy->use_cnt);
467 	}
468 
469 	return psy;
470 }
471 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
472 
473 /**
474  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
475  * @psy: Reference to put
476  *
477  * The reference to power supply should be put before unregistering
478  * the power supply.
479  */
480 void power_supply_put(struct power_supply *psy)
481 {
482 	might_sleep();
483 
484 	atomic_dec(&psy->use_cnt);
485 	put_device(&psy->dev);
486 }
487 EXPORT_SYMBOL_GPL(power_supply_put);
488 
489 #ifdef CONFIG_OF
490 static int power_supply_match_device_node(struct device *dev, const void *data)
491 {
492 	return dev->parent && dev->parent->of_node == data;
493 }
494 
495 /**
496  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
497  * @np: Pointer to device node holding phandle property
498  * @property: Name of property holding a power supply name
499  *
500  * If power supply was found, it increases reference count for the
501  * internal power supply's device. The user should power_supply_put()
502  * after usage.
503  *
504  * Return: On success returns a reference to a power supply with
505  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
506  */
507 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
508 							const char *property)
509 {
510 	struct device_node *power_supply_np;
511 	struct power_supply *psy = NULL;
512 	struct device *dev;
513 
514 	power_supply_np = of_parse_phandle(np, property, 0);
515 	if (!power_supply_np)
516 		return ERR_PTR(-ENODEV);
517 
518 	dev = class_find_device(power_supply_class, NULL, power_supply_np,
519 						power_supply_match_device_node);
520 
521 	of_node_put(power_supply_np);
522 
523 	if (dev) {
524 		psy = dev_get_drvdata(dev);
525 		atomic_inc(&psy->use_cnt);
526 	}
527 
528 	return psy;
529 }
530 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
531 
532 static void devm_power_supply_put(struct device *dev, void *res)
533 {
534 	struct power_supply **psy = res;
535 
536 	power_supply_put(*psy);
537 }
538 
539 /**
540  * devm_power_supply_get_by_phandle() - Resource managed version of
541  *  power_supply_get_by_phandle()
542  * @dev: Pointer to device holding phandle property
543  * @property: Name of property holding a power supply phandle
544  *
545  * Return: On success returns a reference to a power supply with
546  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
547  */
548 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
549 						      const char *property)
550 {
551 	struct power_supply **ptr, *psy;
552 
553 	if (!dev->of_node)
554 		return ERR_PTR(-ENODEV);
555 
556 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
557 	if (!ptr)
558 		return ERR_PTR(-ENOMEM);
559 
560 	psy = power_supply_get_by_phandle(dev->of_node, property);
561 	if (IS_ERR_OR_NULL(psy)) {
562 		devres_free(ptr);
563 	} else {
564 		*ptr = psy;
565 		devres_add(dev, ptr);
566 	}
567 	return psy;
568 }
569 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
570 #endif /* CONFIG_OF */
571 
572 int power_supply_get_battery_info(struct power_supply *psy,
573 				  struct power_supply_battery_info **info_out)
574 {
575 	struct power_supply_resistance_temp_table *resist_table;
576 	struct power_supply_battery_info *info;
577 	struct device_node *battery_np = NULL;
578 	struct fwnode_reference_args args;
579 	struct fwnode_handle *fwnode = NULL;
580 	const char *value;
581 	int err, len, index;
582 	const __be32 *list;
583 	u32 min_max[2];
584 
585 	if (psy->of_node) {
586 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
587 		if (!battery_np)
588 			return -ENODEV;
589 
590 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
591 	} else if (psy->dev.parent) {
592 		err = fwnode_property_get_reference_args(
593 					dev_fwnode(psy->dev.parent),
594 					"monitored-battery", NULL, 0, 0, &args);
595 		if (err)
596 			return err;
597 
598 		fwnode = args.fwnode;
599 	}
600 
601 	if (!fwnode)
602 		return -ENOENT;
603 
604 	err = fwnode_property_read_string(fwnode, "compatible", &value);
605 	if (err)
606 		goto out_put_node;
607 
608 
609 	/* Try static batteries first */
610 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
611 	if (!err)
612 		goto out_ret_pointer;
613 	else if (err == -ENODEV)
614 		/*
615 		 * Device does not have a static battery.
616 		 * Proceed to look for a simple battery.
617 		 */
618 		err = 0;
619 
620 	if (strcmp("simple-battery", value)) {
621 		err = -ENODEV;
622 		goto out_put_node;
623 	}
624 
625 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
626 	if (!info) {
627 		err = -ENOMEM;
628 		goto out_put_node;
629 	}
630 
631 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
632 	info->energy_full_design_uwh         = -EINVAL;
633 	info->charge_full_design_uah         = -EINVAL;
634 	info->voltage_min_design_uv          = -EINVAL;
635 	info->voltage_max_design_uv          = -EINVAL;
636 	info->precharge_current_ua           = -EINVAL;
637 	info->charge_term_current_ua         = -EINVAL;
638 	info->constant_charge_current_max_ua = -EINVAL;
639 	info->constant_charge_voltage_max_uv = -EINVAL;
640 	info->tricklecharge_current_ua       = -EINVAL;
641 	info->precharge_voltage_max_uv       = -EINVAL;
642 	info->charge_restart_voltage_uv      = -EINVAL;
643 	info->overvoltage_limit_uv           = -EINVAL;
644 	info->maintenance_charge             = NULL;
645 	info->alert_low_temp_charge_current_ua = -EINVAL;
646 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
647 	info->alert_high_temp_charge_current_ua = -EINVAL;
648 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
649 	info->temp_ambient_alert_min         = INT_MIN;
650 	info->temp_ambient_alert_max         = INT_MAX;
651 	info->temp_alert_min                 = INT_MIN;
652 	info->temp_alert_max                 = INT_MAX;
653 	info->temp_min                       = INT_MIN;
654 	info->temp_max                       = INT_MAX;
655 	info->factory_internal_resistance_uohm  = -EINVAL;
656 	info->resist_table                   = NULL;
657 	info->bti_resistance_ohm             = -EINVAL;
658 	info->bti_resistance_tolerance       = -EINVAL;
659 
660 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
661 		info->ocv_table[index]       = NULL;
662 		info->ocv_temp[index]        = -EINVAL;
663 		info->ocv_table_size[index]  = -EINVAL;
664 	}
665 
666 	/* The property and field names below must correspond to elements
667 	 * in enum power_supply_property. For reasoning, see
668 	 * Documentation/power/power_supply_class.rst.
669 	 */
670 
671 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
672 		if (!strcmp("nickel-cadmium", value))
673 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
674 		else if (!strcmp("nickel-metal-hydride", value))
675 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
676 		else if (!strcmp("lithium-ion", value))
677 			/* Imprecise lithium-ion type */
678 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
679 		else if (!strcmp("lithium-ion-polymer", value))
680 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
681 		else if (!strcmp("lithium-ion-iron-phosphate", value))
682 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
683 		else if (!strcmp("lithium-ion-manganese-oxide", value))
684 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
685 		else
686 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
687 	}
688 
689 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
690 			     &info->energy_full_design_uwh);
691 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
692 			     &info->charge_full_design_uah);
693 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
694 			     &info->voltage_min_design_uv);
695 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
696 			     &info->voltage_max_design_uv);
697 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
698 			     &info->tricklecharge_current_ua);
699 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
700 			     &info->precharge_current_ua);
701 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
702 			     &info->precharge_voltage_max_uv);
703 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
704 			     &info->charge_term_current_ua);
705 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
706 			     &info->charge_restart_voltage_uv);
707 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
708 			     &info->overvoltage_limit_uv);
709 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
710 			     &info->constant_charge_current_max_ua);
711 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
712 			     &info->constant_charge_voltage_max_uv);
713 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
714 			     &info->factory_internal_resistance_uohm);
715 
716 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
717 					    min_max, ARRAY_SIZE(min_max))) {
718 		info->temp_ambient_alert_min = min_max[0];
719 		info->temp_ambient_alert_max = min_max[1];
720 	}
721 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
722 					    min_max, ARRAY_SIZE(min_max))) {
723 		info->temp_alert_min = min_max[0];
724 		info->temp_alert_max = min_max[1];
725 	}
726 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
727 					    min_max, ARRAY_SIZE(min_max))) {
728 		info->temp_min = min_max[0];
729 		info->temp_max = min_max[1];
730 	}
731 
732 	/*
733 	 * The below code uses raw of-data parsing to parse
734 	 * /schemas/types.yaml#/definitions/uint32-matrix
735 	 * data, so for now this is only support with of.
736 	 */
737 	if (!battery_np)
738 		goto out_ret_pointer;
739 
740 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
741 	if (len < 0 && len != -EINVAL) {
742 		err = len;
743 		goto out_put_node;
744 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
745 		dev_err(&psy->dev, "Too many temperature values\n");
746 		err = -EINVAL;
747 		goto out_put_node;
748 	} else if (len > 0) {
749 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
750 					   info->ocv_temp, len);
751 	}
752 
753 	for (index = 0; index < len; index++) {
754 		struct power_supply_battery_ocv_table *table;
755 		char *propname;
756 		int i, tab_len, size;
757 
758 		propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
759 		if (!propname) {
760 			power_supply_put_battery_info(psy, info);
761 			err = -ENOMEM;
762 			goto out_put_node;
763 		}
764 		list = of_get_property(battery_np, propname, &size);
765 		if (!list || !size) {
766 			dev_err(&psy->dev, "failed to get %s\n", propname);
767 			kfree(propname);
768 			power_supply_put_battery_info(psy, info);
769 			err = -EINVAL;
770 			goto out_put_node;
771 		}
772 
773 		kfree(propname);
774 		tab_len = size / (2 * sizeof(__be32));
775 		info->ocv_table_size[index] = tab_len;
776 
777 		table = info->ocv_table[index] =
778 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
779 		if (!info->ocv_table[index]) {
780 			power_supply_put_battery_info(psy, info);
781 			err = -ENOMEM;
782 			goto out_put_node;
783 		}
784 
785 		for (i = 0; i < tab_len; i++) {
786 			table[i].ocv = be32_to_cpu(*list);
787 			list++;
788 			table[i].capacity = be32_to_cpu(*list);
789 			list++;
790 		}
791 	}
792 
793 	list = of_get_property(battery_np, "resistance-temp-table", &len);
794 	if (!list || !len)
795 		goto out_ret_pointer;
796 
797 	info->resist_table_size = len / (2 * sizeof(__be32));
798 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
799 							 info->resist_table_size,
800 							 sizeof(*resist_table),
801 							 GFP_KERNEL);
802 	if (!info->resist_table) {
803 		power_supply_put_battery_info(psy, info);
804 		err = -ENOMEM;
805 		goto out_put_node;
806 	}
807 
808 	for (index = 0; index < info->resist_table_size; index++) {
809 		resist_table[index].temp = be32_to_cpu(*list++);
810 		resist_table[index].resistance = be32_to_cpu(*list++);
811 	}
812 
813 out_ret_pointer:
814 	/* Finally return the whole thing */
815 	*info_out = info;
816 
817 out_put_node:
818 	fwnode_handle_put(fwnode);
819 	of_node_put(battery_np);
820 	return err;
821 }
822 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
823 
824 void power_supply_put_battery_info(struct power_supply *psy,
825 				   struct power_supply_battery_info *info)
826 {
827 	int i;
828 
829 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
830 		if (info->ocv_table[i])
831 			devm_kfree(&psy->dev, info->ocv_table[i]);
832 	}
833 
834 	if (info->resist_table)
835 		devm_kfree(&psy->dev, info->resist_table);
836 
837 	devm_kfree(&psy->dev, info);
838 }
839 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
840 
841 const enum power_supply_property power_supply_battery_info_properties[] = {
842 	POWER_SUPPLY_PROP_TECHNOLOGY,
843 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
844 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
845 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
846 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
847 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
848 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
849 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
850 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
851 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
852 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
853 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
854 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
855 	POWER_SUPPLY_PROP_TEMP_MIN,
856 	POWER_SUPPLY_PROP_TEMP_MAX,
857 };
858 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
859 
860 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
861 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
862 
863 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
864 					enum power_supply_property psp)
865 {
866 	if (!info)
867 		return false;
868 
869 	switch (psp) {
870 	case POWER_SUPPLY_PROP_TECHNOLOGY:
871 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
872 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
873 		return info->energy_full_design_uwh >= 0;
874 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
875 		return info->charge_full_design_uah >= 0;
876 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
877 		return info->voltage_min_design_uv >= 0;
878 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
879 		return info->voltage_max_design_uv >= 0;
880 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
881 		return info->precharge_current_ua >= 0;
882 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
883 		return info->charge_term_current_ua >= 0;
884 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
885 		return info->constant_charge_current_max_ua >= 0;
886 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
887 		return info->constant_charge_voltage_max_uv >= 0;
888 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
889 		return info->temp_ambient_alert_min > INT_MIN;
890 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
891 		return info->temp_ambient_alert_max < INT_MAX;
892 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
893 		return info->temp_alert_min > INT_MIN;
894 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
895 		return info->temp_alert_max < INT_MAX;
896 	case POWER_SUPPLY_PROP_TEMP_MIN:
897 		return info->temp_min > INT_MIN;
898 	case POWER_SUPPLY_PROP_TEMP_MAX:
899 		return info->temp_max < INT_MAX;
900 	default:
901 		return false;
902 	}
903 }
904 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
905 
906 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
907 				       enum power_supply_property psp,
908 				       union power_supply_propval *val)
909 {
910 	if (!info)
911 		return -EINVAL;
912 
913 	if (!power_supply_battery_info_has_prop(info, psp))
914 		return -EINVAL;
915 
916 	switch (psp) {
917 	case POWER_SUPPLY_PROP_TECHNOLOGY:
918 		val->intval = info->technology;
919 		return 0;
920 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
921 		val->intval = info->energy_full_design_uwh;
922 		return 0;
923 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
924 		val->intval = info->charge_full_design_uah;
925 		return 0;
926 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
927 		val->intval = info->voltage_min_design_uv;
928 		return 0;
929 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
930 		val->intval = info->voltage_max_design_uv;
931 		return 0;
932 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
933 		val->intval = info->precharge_current_ua;
934 		return 0;
935 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
936 		val->intval = info->charge_term_current_ua;
937 		return 0;
938 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
939 		val->intval = info->constant_charge_current_max_ua;
940 		return 0;
941 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
942 		val->intval = info->constant_charge_voltage_max_uv;
943 		return 0;
944 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
945 		val->intval = info->temp_ambient_alert_min;
946 		return 0;
947 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
948 		val->intval = info->temp_ambient_alert_max;
949 		return 0;
950 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
951 		val->intval = info->temp_alert_min;
952 		return 0;
953 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
954 		val->intval = info->temp_alert_max;
955 		return 0;
956 	case POWER_SUPPLY_PROP_TEMP_MIN:
957 		val->intval = info->temp_min;
958 		return 0;
959 	case POWER_SUPPLY_PROP_TEMP_MAX:
960 		val->intval = info->temp_max;
961 		return 0;
962 	default:
963 		return -EINVAL;
964 	}
965 }
966 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
967 
968 /**
969  * power_supply_temp2resist_simple() - find the battery internal resistance
970  * percent from temperature
971  * @table: Pointer to battery resistance temperature table
972  * @table_len: The table length
973  * @temp: Current temperature
974  *
975  * This helper function is used to look up battery internal resistance percent
976  * according to current temperature value from the resistance temperature table,
977  * and the table must be ordered descending. Then the actual battery internal
978  * resistance = the ideal battery internal resistance * percent / 100.
979  *
980  * Return: the battery internal resistance percent
981  */
982 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
983 				    int table_len, int temp)
984 {
985 	int i, high, low;
986 
987 	for (i = 0; i < table_len; i++)
988 		if (temp > table[i].temp)
989 			break;
990 
991 	/* The library function will deal with high == low */
992 	if (i == 0)
993 		high = low = i;
994 	else if (i == table_len)
995 		high = low = i - 1;
996 	else
997 		high = (low = i) - 1;
998 
999 	return fixp_linear_interpolate(table[low].temp,
1000 				       table[low].resistance,
1001 				       table[high].temp,
1002 				       table[high].resistance,
1003 				       temp);
1004 }
1005 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1006 
1007 /**
1008  * power_supply_vbat2ri() - find the battery internal resistance
1009  * from the battery voltage
1010  * @info: The battery information container
1011  * @vbat_uv: The battery voltage in microvolt
1012  * @charging: If we are charging (true) or not (false)
1013  *
1014  * This helper function is used to look up battery internal resistance
1015  * according to current battery voltage. Depending on whether the battery
1016  * is currently charging or not, different resistance will be returned.
1017  *
1018  * Returns the internal resistance in microohm or negative error code.
1019  */
1020 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1021 			 int vbat_uv, bool charging)
1022 {
1023 	struct power_supply_vbat_ri_table *vbat2ri;
1024 	int table_len;
1025 	int i, high, low;
1026 
1027 	/*
1028 	 * If we are charging, and the battery supplies a separate table
1029 	 * for this state, we use that in order to compensate for the
1030 	 * charging voltage. Otherwise we use the main table.
1031 	 */
1032 	if (charging && info->vbat2ri_charging) {
1033 		vbat2ri = info->vbat2ri_charging;
1034 		table_len = info->vbat2ri_charging_size;
1035 	} else {
1036 		vbat2ri = info->vbat2ri_discharging;
1037 		table_len = info->vbat2ri_discharging_size;
1038 	}
1039 
1040 	/*
1041 	 * If no tables are specified, or if we are above the highest voltage in
1042 	 * the voltage table, just return the factory specified internal resistance.
1043 	 */
1044 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1045 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1046 			return info->factory_internal_resistance_charging_uohm;
1047 		else
1048 			return info->factory_internal_resistance_uohm;
1049 	}
1050 
1051 	/* Break loop at table_len - 1 because that is the highest index */
1052 	for (i = 0; i < table_len - 1; i++)
1053 		if (vbat_uv > vbat2ri[i].vbat_uv)
1054 			break;
1055 
1056 	/* The library function will deal with high == low */
1057 	if ((i == 0) || (i == (table_len - 1)))
1058 		high = i;
1059 	else
1060 		high = i - 1;
1061 	low = i;
1062 
1063 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1064 				       vbat2ri[low].ri_uohm,
1065 				       vbat2ri[high].vbat_uv,
1066 				       vbat2ri[high].ri_uohm,
1067 				       vbat_uv);
1068 }
1069 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1070 
1071 struct power_supply_maintenance_charge_table *
1072 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1073 					      int index)
1074 {
1075 	if (index >= info->maintenance_charge_size)
1076 		return NULL;
1077 	return &info->maintenance_charge[index];
1078 }
1079 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1080 
1081 /**
1082  * power_supply_ocv2cap_simple() - find the battery capacity
1083  * @table: Pointer to battery OCV lookup table
1084  * @table_len: OCV table length
1085  * @ocv: Current OCV value
1086  *
1087  * This helper function is used to look up battery capacity according to
1088  * current OCV value from one OCV table, and the OCV table must be ordered
1089  * descending.
1090  *
1091  * Return: the battery capacity.
1092  */
1093 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1094 				int table_len, int ocv)
1095 {
1096 	int i, high, low;
1097 
1098 	for (i = 0; i < table_len; i++)
1099 		if (ocv > table[i].ocv)
1100 			break;
1101 
1102 	/* The library function will deal with high == low */
1103 	if (i == 0)
1104 		high = low = i;
1105 	else if (i == table_len)
1106 		high = low = i - 1;
1107 	else
1108 		high = (low = i) - 1;
1109 
1110 	return fixp_linear_interpolate(table[low].ocv,
1111 				       table[low].capacity,
1112 				       table[high].ocv,
1113 				       table[high].capacity,
1114 				       ocv);
1115 }
1116 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1117 
1118 struct power_supply_battery_ocv_table *
1119 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1120 				int temp, int *table_len)
1121 {
1122 	int best_temp_diff = INT_MAX, temp_diff;
1123 	u8 i, best_index = 0;
1124 
1125 	if (!info->ocv_table[0])
1126 		return NULL;
1127 
1128 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1129 		/* Out of capacity tables */
1130 		if (!info->ocv_table[i])
1131 			break;
1132 
1133 		temp_diff = abs(info->ocv_temp[i] - temp);
1134 
1135 		if (temp_diff < best_temp_diff) {
1136 			best_temp_diff = temp_diff;
1137 			best_index = i;
1138 		}
1139 	}
1140 
1141 	*table_len = info->ocv_table_size[best_index];
1142 	return info->ocv_table[best_index];
1143 }
1144 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1145 
1146 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1147 				 int ocv, int temp)
1148 {
1149 	struct power_supply_battery_ocv_table *table;
1150 	int table_len;
1151 
1152 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1153 	if (!table)
1154 		return -EINVAL;
1155 
1156 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1157 }
1158 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1159 
1160 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1161 				       int resistance)
1162 {
1163 	int low, high;
1164 
1165 	/* Nothing like this can be checked */
1166 	if (info->bti_resistance_ohm <= 0)
1167 		return false;
1168 
1169 	/* This will be extremely strict and unlikely to work */
1170 	if (info->bti_resistance_tolerance <= 0)
1171 		return (info->bti_resistance_ohm == resistance);
1172 
1173 	low = info->bti_resistance_ohm -
1174 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1175 	high = info->bti_resistance_ohm +
1176 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1177 
1178 	return ((resistance >= low) && (resistance <= high));
1179 }
1180 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1181 
1182 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1183 			     enum power_supply_property psp)
1184 {
1185 	bool found = false;
1186 	int i;
1187 
1188 	for (i = 0; i < psy_desc->num_properties; i++) {
1189 		if (psy_desc->properties[i] == psp) {
1190 			found = true;
1191 			break;
1192 		}
1193 	}
1194 
1195 	return found;
1196 }
1197 
1198 int power_supply_get_property(struct power_supply *psy,
1199 			    enum power_supply_property psp,
1200 			    union power_supply_propval *val)
1201 {
1202 	if (atomic_read(&psy->use_cnt) <= 0) {
1203 		if (!psy->initialized)
1204 			return -EAGAIN;
1205 		return -ENODEV;
1206 	}
1207 
1208 	if (psy_has_property(psy->desc, psp))
1209 		return psy->desc->get_property(psy, psp, val);
1210 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1211 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1212 	else
1213 		return -EINVAL;
1214 }
1215 EXPORT_SYMBOL_GPL(power_supply_get_property);
1216 
1217 int power_supply_set_property(struct power_supply *psy,
1218 			    enum power_supply_property psp,
1219 			    const union power_supply_propval *val)
1220 {
1221 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1222 		return -ENODEV;
1223 
1224 	return psy->desc->set_property(psy, psp, val);
1225 }
1226 EXPORT_SYMBOL_GPL(power_supply_set_property);
1227 
1228 int power_supply_property_is_writeable(struct power_supply *psy,
1229 					enum power_supply_property psp)
1230 {
1231 	if (atomic_read(&psy->use_cnt) <= 0 ||
1232 			!psy->desc->property_is_writeable)
1233 		return -ENODEV;
1234 
1235 	return psy->desc->property_is_writeable(psy, psp);
1236 }
1237 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1238 
1239 void power_supply_external_power_changed(struct power_supply *psy)
1240 {
1241 	if (atomic_read(&psy->use_cnt) <= 0 ||
1242 			!psy->desc->external_power_changed)
1243 		return;
1244 
1245 	psy->desc->external_power_changed(psy);
1246 }
1247 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1248 
1249 int power_supply_powers(struct power_supply *psy, struct device *dev)
1250 {
1251 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1252 }
1253 EXPORT_SYMBOL_GPL(power_supply_powers);
1254 
1255 static void power_supply_dev_release(struct device *dev)
1256 {
1257 	struct power_supply *psy = to_power_supply(dev);
1258 
1259 	dev_dbg(dev, "%s\n", __func__);
1260 	kfree(psy);
1261 }
1262 
1263 int power_supply_reg_notifier(struct notifier_block *nb)
1264 {
1265 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1266 }
1267 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1268 
1269 void power_supply_unreg_notifier(struct notifier_block *nb)
1270 {
1271 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1272 }
1273 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1274 
1275 #ifdef CONFIG_THERMAL
1276 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1277 		int *temp)
1278 {
1279 	struct power_supply *psy;
1280 	union power_supply_propval val;
1281 	int ret;
1282 
1283 	WARN_ON(tzd == NULL);
1284 	psy = thermal_zone_device_priv(tzd);
1285 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1286 	if (ret)
1287 		return ret;
1288 
1289 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1290 	*temp = val.intval * 100;
1291 
1292 	return ret;
1293 }
1294 
1295 static struct thermal_zone_device_ops psy_tzd_ops = {
1296 	.get_temp = power_supply_read_temp,
1297 };
1298 
1299 static int psy_register_thermal(struct power_supply *psy)
1300 {
1301 	int ret;
1302 
1303 	if (psy->desc->no_thermal)
1304 		return 0;
1305 
1306 	/* Register battery zone device psy reports temperature */
1307 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1308 		/* Prefer our hwmon device and avoid duplicates */
1309 		struct thermal_zone_params tzp = {
1310 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1311 		};
1312 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1313 				psy, &psy_tzd_ops, &tzp);
1314 		if (IS_ERR(psy->tzd))
1315 			return PTR_ERR(psy->tzd);
1316 		ret = thermal_zone_device_enable(psy->tzd);
1317 		if (ret)
1318 			thermal_zone_device_unregister(psy->tzd);
1319 		return ret;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void psy_unregister_thermal(struct power_supply *psy)
1326 {
1327 	if (IS_ERR_OR_NULL(psy->tzd))
1328 		return;
1329 	thermal_zone_device_unregister(psy->tzd);
1330 }
1331 
1332 #else
1333 static int psy_register_thermal(struct power_supply *psy)
1334 {
1335 	return 0;
1336 }
1337 
1338 static void psy_unregister_thermal(struct power_supply *psy)
1339 {
1340 }
1341 #endif
1342 
1343 static struct power_supply *__must_check
1344 __power_supply_register(struct device *parent,
1345 				   const struct power_supply_desc *desc,
1346 				   const struct power_supply_config *cfg,
1347 				   bool ws)
1348 {
1349 	struct device *dev;
1350 	struct power_supply *psy;
1351 	int rc;
1352 
1353 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1354 		return ERR_PTR(-EINVAL);
1355 
1356 	if (!parent)
1357 		pr_warn("%s: Expected proper parent device for '%s'\n",
1358 			__func__, desc->name);
1359 
1360 	if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1361 	    (!desc->usb_types || !desc->num_usb_types))
1362 		return ERR_PTR(-EINVAL);
1363 
1364 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1365 	if (!psy)
1366 		return ERR_PTR(-ENOMEM);
1367 
1368 	dev = &psy->dev;
1369 
1370 	device_initialize(dev);
1371 
1372 	dev->class = power_supply_class;
1373 	dev->type = &power_supply_dev_type;
1374 	dev->parent = parent;
1375 	dev->release = power_supply_dev_release;
1376 	dev_set_drvdata(dev, psy);
1377 	psy->desc = desc;
1378 	if (cfg) {
1379 		dev->groups = cfg->attr_grp;
1380 		psy->drv_data = cfg->drv_data;
1381 		psy->of_node =
1382 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1383 		dev->of_node = psy->of_node;
1384 		psy->supplied_to = cfg->supplied_to;
1385 		psy->num_supplicants = cfg->num_supplicants;
1386 	}
1387 
1388 	rc = dev_set_name(dev, "%s", desc->name);
1389 	if (rc)
1390 		goto dev_set_name_failed;
1391 
1392 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1393 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1394 			  power_supply_deferred_register_work);
1395 
1396 	rc = power_supply_check_supplies(psy);
1397 	if (rc) {
1398 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1399 		goto check_supplies_failed;
1400 	}
1401 
1402 	/*
1403 	 * Expose constant battery info, if it is available. While there are
1404 	 * some chargers accessing constant battery data, we only want to
1405 	 * expose battery data to userspace for battery devices.
1406 	 */
1407 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1408 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1409 		if (rc && rc != -ENODEV && rc != -ENOENT)
1410 			goto check_supplies_failed;
1411 	}
1412 
1413 	spin_lock_init(&psy->changed_lock);
1414 	rc = device_add(dev);
1415 	if (rc)
1416 		goto device_add_failed;
1417 
1418 	rc = device_init_wakeup(dev, ws);
1419 	if (rc)
1420 		goto wakeup_init_failed;
1421 
1422 	rc = psy_register_thermal(psy);
1423 	if (rc)
1424 		goto register_thermal_failed;
1425 
1426 	rc = power_supply_create_triggers(psy);
1427 	if (rc)
1428 		goto create_triggers_failed;
1429 
1430 	rc = power_supply_add_hwmon_sysfs(psy);
1431 	if (rc)
1432 		goto add_hwmon_sysfs_failed;
1433 
1434 	/*
1435 	 * Update use_cnt after any uevents (most notably from device_add()).
1436 	 * We are here still during driver's probe but
1437 	 * the power_supply_uevent() calls back driver's get_property
1438 	 * method so:
1439 	 * 1. Driver did not assigned the returned struct power_supply,
1440 	 * 2. Driver could not finish initialization (anything in its probe
1441 	 *    after calling power_supply_register()).
1442 	 */
1443 	atomic_inc(&psy->use_cnt);
1444 	psy->initialized = true;
1445 
1446 	queue_delayed_work(system_power_efficient_wq,
1447 			   &psy->deferred_register_work,
1448 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1449 
1450 	return psy;
1451 
1452 add_hwmon_sysfs_failed:
1453 	power_supply_remove_triggers(psy);
1454 create_triggers_failed:
1455 	psy_unregister_thermal(psy);
1456 register_thermal_failed:
1457 wakeup_init_failed:
1458 	device_del(dev);
1459 device_add_failed:
1460 check_supplies_failed:
1461 dev_set_name_failed:
1462 	put_device(dev);
1463 	return ERR_PTR(rc);
1464 }
1465 
1466 /**
1467  * power_supply_register() - Register new power supply
1468  * @parent:	Device to be a parent of power supply's device, usually
1469  *		the device which probe function calls this
1470  * @desc:	Description of power supply, must be valid through whole
1471  *		lifetime of this power supply
1472  * @cfg:	Run-time specific configuration accessed during registering,
1473  *		may be NULL
1474  *
1475  * Return: A pointer to newly allocated power_supply on success
1476  * or ERR_PTR otherwise.
1477  * Use power_supply_unregister() on returned power_supply pointer to release
1478  * resources.
1479  */
1480 struct power_supply *__must_check power_supply_register(struct device *parent,
1481 		const struct power_supply_desc *desc,
1482 		const struct power_supply_config *cfg)
1483 {
1484 	return __power_supply_register(parent, desc, cfg, true);
1485 }
1486 EXPORT_SYMBOL_GPL(power_supply_register);
1487 
1488 /**
1489  * power_supply_register_no_ws() - Register new non-waking-source power supply
1490  * @parent:	Device to be a parent of power supply's device, usually
1491  *		the device which probe function calls this
1492  * @desc:	Description of power supply, must be valid through whole
1493  *		lifetime of this power supply
1494  * @cfg:	Run-time specific configuration accessed during registering,
1495  *		may be NULL
1496  *
1497  * Return: A pointer to newly allocated power_supply on success
1498  * or ERR_PTR otherwise.
1499  * Use power_supply_unregister() on returned power_supply pointer to release
1500  * resources.
1501  */
1502 struct power_supply *__must_check
1503 power_supply_register_no_ws(struct device *parent,
1504 		const struct power_supply_desc *desc,
1505 		const struct power_supply_config *cfg)
1506 {
1507 	return __power_supply_register(parent, desc, cfg, false);
1508 }
1509 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1510 
1511 static void devm_power_supply_release(struct device *dev, void *res)
1512 {
1513 	struct power_supply **psy = res;
1514 
1515 	power_supply_unregister(*psy);
1516 }
1517 
1518 /**
1519  * devm_power_supply_register() - Register managed power supply
1520  * @parent:	Device to be a parent of power supply's device, usually
1521  *		the device which probe function calls this
1522  * @desc:	Description of power supply, must be valid through whole
1523  *		lifetime of this power supply
1524  * @cfg:	Run-time specific configuration accessed during registering,
1525  *		may be NULL
1526  *
1527  * Return: A pointer to newly allocated power_supply on success
1528  * or ERR_PTR otherwise.
1529  * The returned power_supply pointer will be automatically unregistered
1530  * on driver detach.
1531  */
1532 struct power_supply *__must_check
1533 devm_power_supply_register(struct device *parent,
1534 		const struct power_supply_desc *desc,
1535 		const struct power_supply_config *cfg)
1536 {
1537 	struct power_supply **ptr, *psy;
1538 
1539 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1540 
1541 	if (!ptr)
1542 		return ERR_PTR(-ENOMEM);
1543 	psy = __power_supply_register(parent, desc, cfg, true);
1544 	if (IS_ERR(psy)) {
1545 		devres_free(ptr);
1546 	} else {
1547 		*ptr = psy;
1548 		devres_add(parent, ptr);
1549 	}
1550 	return psy;
1551 }
1552 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1553 
1554 /**
1555  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1556  * @parent:	Device to be a parent of power supply's device, usually
1557  *		the device which probe function calls this
1558  * @desc:	Description of power supply, must be valid through whole
1559  *		lifetime of this power supply
1560  * @cfg:	Run-time specific configuration accessed during registering,
1561  *		may be NULL
1562  *
1563  * Return: A pointer to newly allocated power_supply on success
1564  * or ERR_PTR otherwise.
1565  * The returned power_supply pointer will be automatically unregistered
1566  * on driver detach.
1567  */
1568 struct power_supply *__must_check
1569 devm_power_supply_register_no_ws(struct device *parent,
1570 		const struct power_supply_desc *desc,
1571 		const struct power_supply_config *cfg)
1572 {
1573 	struct power_supply **ptr, *psy;
1574 
1575 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1576 
1577 	if (!ptr)
1578 		return ERR_PTR(-ENOMEM);
1579 	psy = __power_supply_register(parent, desc, cfg, false);
1580 	if (IS_ERR(psy)) {
1581 		devres_free(ptr);
1582 	} else {
1583 		*ptr = psy;
1584 		devres_add(parent, ptr);
1585 	}
1586 	return psy;
1587 }
1588 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1589 
1590 /**
1591  * power_supply_unregister() - Remove this power supply from system
1592  * @psy:	Pointer to power supply to unregister
1593  *
1594  * Remove this power supply from the system. The resources of power supply
1595  * will be freed here or on last power_supply_put() call.
1596  */
1597 void power_supply_unregister(struct power_supply *psy)
1598 {
1599 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1600 	psy->removing = true;
1601 	cancel_work_sync(&psy->changed_work);
1602 	cancel_delayed_work_sync(&psy->deferred_register_work);
1603 	sysfs_remove_link(&psy->dev.kobj, "powers");
1604 	power_supply_remove_hwmon_sysfs(psy);
1605 	power_supply_remove_triggers(psy);
1606 	psy_unregister_thermal(psy);
1607 	device_init_wakeup(&psy->dev, false);
1608 	device_unregister(&psy->dev);
1609 }
1610 EXPORT_SYMBOL_GPL(power_supply_unregister);
1611 
1612 void *power_supply_get_drvdata(struct power_supply *psy)
1613 {
1614 	return psy->drv_data;
1615 }
1616 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1617 
1618 static int __init power_supply_class_init(void)
1619 {
1620 	power_supply_class = class_create("power_supply");
1621 
1622 	if (IS_ERR(power_supply_class))
1623 		return PTR_ERR(power_supply_class);
1624 
1625 	power_supply_class->dev_uevent = power_supply_uevent;
1626 	power_supply_init_attrs(&power_supply_dev_type);
1627 
1628 	return 0;
1629 }
1630 
1631 static void __exit power_supply_class_exit(void)
1632 {
1633 	class_destroy(power_supply_class);
1634 }
1635 
1636 subsys_initcall(power_supply_class_init);
1637 module_exit(power_supply_class_exit);
1638 
1639 MODULE_DESCRIPTION("Universal power supply monitor class");
1640 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1641 MODULE_AUTHOR("Szabolcs Gyurko");
1642 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1643