xref: /linux/drivers/power/supply/power_supply_core.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28 
29 static const struct class power_supply_class = {
30 	.name = "power_supply",
31 	.dev_uevent = power_supply_uevent,
32 };
33 
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35 
36 static const struct device_type power_supply_dev_type = {
37 	.name = "power_supply",
38 	.groups = power_supply_attr_groups,
39 };
40 
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
42 
43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44 					 struct power_supply *supply)
45 {
46 	int i;
47 
48 	if (!supply->supplied_from && !supplier->supplied_to)
49 		return false;
50 
51 	/* Support both supplied_to and supplied_from modes */
52 	if (supply->supplied_from) {
53 		if (!supplier->desc->name)
54 			return false;
55 		for (i = 0; i < supply->num_supplies; i++)
56 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57 				return true;
58 	} else {
59 		if (!supply->desc->name)
60 			return false;
61 		for (i = 0; i < supplier->num_supplicants; i++)
62 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63 				return true;
64 	}
65 
66 	return false;
67 }
68 
69 static int __power_supply_changed_work(struct device *dev, void *data)
70 {
71 	struct power_supply *psy = data;
72 	struct power_supply *pst = dev_get_drvdata(dev);
73 
74 	if (__power_supply_is_supplied_by(psy, pst)) {
75 		if (pst->desc->external_power_changed)
76 			pst->desc->external_power_changed(pst);
77 	}
78 
79 	return 0;
80 }
81 
82 static void power_supply_changed_work(struct work_struct *work)
83 {
84 	unsigned long flags;
85 	struct power_supply *psy = container_of(work, struct power_supply,
86 						changed_work);
87 
88 	dev_dbg(&psy->dev, "%s\n", __func__);
89 
90 	spin_lock_irqsave(&psy->changed_lock, flags);
91 	/*
92 	 * Check 'changed' here to avoid issues due to race between
93 	 * power_supply_changed() and this routine. In worst case
94 	 * power_supply_changed() can be called again just before we take above
95 	 * lock. During the first call of this routine we will mark 'changed' as
96 	 * false and it will stay false for the next call as well.
97 	 */
98 	if (likely(psy->changed)) {
99 		psy->changed = false;
100 		spin_unlock_irqrestore(&psy->changed_lock, flags);
101 		power_supply_for_each_device(psy, __power_supply_changed_work);
102 		power_supply_update_leds(psy);
103 		blocking_notifier_call_chain(&power_supply_notifier,
104 				PSY_EVENT_PROP_CHANGED, psy);
105 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
106 		spin_lock_irqsave(&psy->changed_lock, flags);
107 	}
108 
109 	/*
110 	 * Hold the wakeup_source until all events are processed.
111 	 * power_supply_changed() might have called again and have set 'changed'
112 	 * to true.
113 	 */
114 	if (likely(!psy->changed))
115 		pm_relax(&psy->dev);
116 	spin_unlock_irqrestore(&psy->changed_lock, flags);
117 }
118 
119 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
120 {
121 	return class_for_each_device(&power_supply_class, NULL, data, fn);
122 }
123 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
124 
125 void power_supply_changed(struct power_supply *psy)
126 {
127 	unsigned long flags;
128 
129 	dev_dbg(&psy->dev, "%s\n", __func__);
130 
131 	spin_lock_irqsave(&psy->changed_lock, flags);
132 	psy->changed = true;
133 	pm_stay_awake(&psy->dev);
134 	spin_unlock_irqrestore(&psy->changed_lock, flags);
135 	schedule_work(&psy->changed_work);
136 }
137 EXPORT_SYMBOL_GPL(power_supply_changed);
138 
139 /*
140  * Notify that power supply was registered after parent finished the probing.
141  *
142  * Often power supply is registered from driver's probe function. However
143  * calling power_supply_changed() directly from power_supply_register()
144  * would lead to execution of get_property() function provided by the driver
145  * too early - before the probe ends.
146  *
147  * Avoid that by waiting on parent's mutex.
148  */
149 static void power_supply_deferred_register_work(struct work_struct *work)
150 {
151 	struct power_supply *psy = container_of(work, struct power_supply,
152 						deferred_register_work.work);
153 
154 	if (psy->dev.parent) {
155 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
156 			if (psy->removing)
157 				return;
158 			msleep(10);
159 		}
160 	}
161 
162 	power_supply_changed(psy);
163 
164 	if (psy->dev.parent)
165 		mutex_unlock(&psy->dev.parent->mutex);
166 }
167 
168 #ifdef CONFIG_OF
169 static int __power_supply_populate_supplied_from(struct device *dev,
170 						 void *data)
171 {
172 	struct power_supply *psy = data;
173 	struct power_supply *epsy = dev_get_drvdata(dev);
174 	struct device_node *np;
175 	int i = 0;
176 
177 	do {
178 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
179 		if (!np)
180 			break;
181 
182 		if (np == epsy->of_node) {
183 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
184 				psy->desc->name, epsy->desc->name);
185 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
186 			psy->num_supplies++;
187 			of_node_put(np);
188 			break;
189 		}
190 		of_node_put(np);
191 	} while (np);
192 
193 	return 0;
194 }
195 
196 static int power_supply_populate_supplied_from(struct power_supply *psy)
197 {
198 	int error;
199 
200 	error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
201 
202 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
203 
204 	return error;
205 }
206 
207 static int  __power_supply_find_supply_from_node(struct device *dev,
208 						 void *data)
209 {
210 	struct device_node *np = data;
211 	struct power_supply *epsy = dev_get_drvdata(dev);
212 
213 	/* returning non-zero breaks out of power_supply_for_each_device loop */
214 	if (epsy->of_node == np)
215 		return 1;
216 
217 	return 0;
218 }
219 
220 static int power_supply_find_supply_from_node(struct device_node *supply_node)
221 {
222 	int error;
223 
224 	/*
225 	 * power_supply_for_each_device() either returns its own errors or values
226 	 * returned by __power_supply_find_supply_from_node().
227 	 *
228 	 * __power_supply_find_supply_from_node() will return 0 (no match)
229 	 * or 1 (match).
230 	 *
231 	 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
232 	 * it returned 0, or error as returned by it.
233 	 */
234 	error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
235 
236 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
237 }
238 
239 static int power_supply_check_supplies(struct power_supply *psy)
240 {
241 	struct device_node *np;
242 	int cnt = 0;
243 
244 	/* If there is already a list honor it */
245 	if (psy->supplied_from && psy->num_supplies > 0)
246 		return 0;
247 
248 	/* No device node found, nothing to do */
249 	if (!psy->of_node)
250 		return 0;
251 
252 	do {
253 		int ret;
254 
255 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
256 		if (!np)
257 			break;
258 
259 		ret = power_supply_find_supply_from_node(np);
260 		of_node_put(np);
261 
262 		if (ret) {
263 			dev_dbg(&psy->dev, "Failed to find supply!\n");
264 			return ret;
265 		}
266 	} while (np);
267 
268 	/* Missing valid "power-supplies" entries */
269 	if (cnt == 1)
270 		return 0;
271 
272 	/* All supplies found, allocate char ** array for filling */
273 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
274 					  GFP_KERNEL);
275 	if (!psy->supplied_from)
276 		return -ENOMEM;
277 
278 	*psy->supplied_from = devm_kcalloc(&psy->dev,
279 					   cnt - 1, sizeof(**psy->supplied_from),
280 					   GFP_KERNEL);
281 	if (!*psy->supplied_from)
282 		return -ENOMEM;
283 
284 	return power_supply_populate_supplied_from(psy);
285 }
286 #else
287 static int power_supply_check_supplies(struct power_supply *psy)
288 {
289 	int nval, ret;
290 
291 	if (!psy->dev.parent)
292 		return 0;
293 
294 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
295 	if (nval <= 0)
296 		return 0;
297 
298 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
299 						sizeof(char *), GFP_KERNEL);
300 	if (!psy->supplied_from)
301 		return -ENOMEM;
302 
303 	ret = device_property_read_string_array(psy->dev.parent,
304 		"supplied-from", (const char **)psy->supplied_from, nval);
305 	if (ret < 0)
306 		return ret;
307 
308 	psy->num_supplies = nval;
309 
310 	return 0;
311 }
312 #endif
313 
314 struct psy_am_i_supplied_data {
315 	struct power_supply *psy;
316 	unsigned int count;
317 };
318 
319 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
320 {
321 	union power_supply_propval ret = {0,};
322 	struct power_supply *epsy = dev_get_drvdata(dev);
323 	struct psy_am_i_supplied_data *data = _data;
324 
325 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
326 		data->count++;
327 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
328 					&ret))
329 			return ret.intval;
330 	}
331 
332 	return 0;
333 }
334 
335 int power_supply_am_i_supplied(struct power_supply *psy)
336 {
337 	struct psy_am_i_supplied_data data = { psy, 0 };
338 	int error;
339 
340 	error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
341 
342 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
343 
344 	if (data.count == 0)
345 		return -ENODEV;
346 
347 	return error;
348 }
349 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
350 
351 static int __power_supply_is_system_supplied(struct device *dev, void *data)
352 {
353 	union power_supply_propval ret = {0,};
354 	struct power_supply *psy = dev_get_drvdata(dev);
355 	unsigned int *count = data;
356 
357 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
358 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
359 			return 0;
360 
361 	(*count)++;
362 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
363 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
364 					&ret))
365 			return ret.intval;
366 
367 	return 0;
368 }
369 
370 int power_supply_is_system_supplied(void)
371 {
372 	int error;
373 	unsigned int count = 0;
374 
375 	error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
376 
377 	/*
378 	 * If no system scope power class device was found at all, most probably we
379 	 * are running on a desktop system, so assume we are on mains power.
380 	 */
381 	if (count == 0)
382 		return 1;
383 
384 	return error;
385 }
386 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
387 
388 struct psy_get_supplier_prop_data {
389 	struct power_supply *psy;
390 	enum power_supply_property psp;
391 	union power_supply_propval *val;
392 };
393 
394 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
395 {
396 	struct power_supply *epsy = dev_get_drvdata(dev);
397 	struct psy_get_supplier_prop_data *data = _data;
398 
399 	if (__power_supply_is_supplied_by(epsy, data->psy))
400 		if (!power_supply_get_property(epsy, data->psp, data->val))
401 			return 1; /* Success */
402 
403 	return 0; /* Continue iterating */
404 }
405 
406 int power_supply_get_property_from_supplier(struct power_supply *psy,
407 					    enum power_supply_property psp,
408 					    union power_supply_propval *val)
409 {
410 	struct psy_get_supplier_prop_data data = {
411 		.psy = psy,
412 		.psp = psp,
413 		.val = val,
414 	};
415 	int ret;
416 
417 	/*
418 	 * This function is not intended for use with a supply with multiple
419 	 * suppliers, we simply pick the first supply to report the psp.
420 	 */
421 	ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
422 	if (ret < 0)
423 		return ret;
424 	if (ret == 0)
425 		return -ENODEV;
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
430 
431 int power_supply_set_battery_charged(struct power_supply *psy)
432 {
433 	if (atomic_read(&psy->use_cnt) >= 0 &&
434 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
435 			psy->desc->set_charged) {
436 		psy->desc->set_charged(psy);
437 		return 0;
438 	}
439 
440 	return -EINVAL;
441 }
442 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
443 
444 static int power_supply_match_device_by_name(struct device *dev, const void *data)
445 {
446 	const char *name = data;
447 	struct power_supply *psy = dev_get_drvdata(dev);
448 
449 	return strcmp(psy->desc->name, name) == 0;
450 }
451 
452 /**
453  * power_supply_get_by_name() - Search for a power supply and returns its ref
454  * @name: Power supply name to fetch
455  *
456  * If power supply was found, it increases reference count for the
457  * internal power supply's device. The user should power_supply_put()
458  * after usage.
459  *
460  * Return: On success returns a reference to a power supply with
461  * matching name equals to @name, a NULL otherwise.
462  */
463 struct power_supply *power_supply_get_by_name(const char *name)
464 {
465 	struct power_supply *psy = NULL;
466 	struct device *dev = class_find_device(&power_supply_class, NULL, name,
467 					       power_supply_match_device_by_name);
468 
469 	if (dev) {
470 		psy = dev_get_drvdata(dev);
471 		atomic_inc(&psy->use_cnt);
472 	}
473 
474 	return psy;
475 }
476 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
477 
478 /**
479  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
480  * @psy: Reference to put
481  *
482  * The reference to power supply should be put before unregistering
483  * the power supply.
484  */
485 void power_supply_put(struct power_supply *psy)
486 {
487 	might_sleep();
488 
489 	atomic_dec(&psy->use_cnt);
490 	put_device(&psy->dev);
491 }
492 EXPORT_SYMBOL_GPL(power_supply_put);
493 
494 #ifdef CONFIG_OF
495 static int power_supply_match_device_node(struct device *dev, const void *data)
496 {
497 	return dev->parent && dev->parent->of_node == data;
498 }
499 
500 /**
501  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
502  * @np: Pointer to device node holding phandle property
503  * @property: Name of property holding a power supply name
504  *
505  * If power supply was found, it increases reference count for the
506  * internal power supply's device. The user should power_supply_put()
507  * after usage.
508  *
509  * Return: On success returns a reference to a power supply with
510  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
511  */
512 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
513 							const char *property)
514 {
515 	struct device_node *power_supply_np;
516 	struct power_supply *psy = NULL;
517 	struct device *dev;
518 
519 	power_supply_np = of_parse_phandle(np, property, 0);
520 	if (!power_supply_np)
521 		return ERR_PTR(-ENODEV);
522 
523 	dev = class_find_device(&power_supply_class, NULL, power_supply_np,
524 				power_supply_match_device_node);
525 
526 	of_node_put(power_supply_np);
527 
528 	if (dev) {
529 		psy = dev_get_drvdata(dev);
530 		atomic_inc(&psy->use_cnt);
531 	}
532 
533 	return psy;
534 }
535 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
536 
537 static void devm_power_supply_put(struct device *dev, void *res)
538 {
539 	struct power_supply **psy = res;
540 
541 	power_supply_put(*psy);
542 }
543 
544 /**
545  * devm_power_supply_get_by_phandle() - Resource managed version of
546  *  power_supply_get_by_phandle()
547  * @dev: Pointer to device holding phandle property
548  * @property: Name of property holding a power supply phandle
549  *
550  * Return: On success returns a reference to a power supply with
551  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
552  */
553 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
554 						      const char *property)
555 {
556 	struct power_supply **ptr, *psy;
557 
558 	if (!dev->of_node)
559 		return ERR_PTR(-ENODEV);
560 
561 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
562 	if (!ptr)
563 		return ERR_PTR(-ENOMEM);
564 
565 	psy = power_supply_get_by_phandle(dev->of_node, property);
566 	if (IS_ERR_OR_NULL(psy)) {
567 		devres_free(ptr);
568 	} else {
569 		*ptr = psy;
570 		devres_add(dev, ptr);
571 	}
572 	return psy;
573 }
574 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
575 #endif /* CONFIG_OF */
576 
577 int power_supply_get_battery_info(struct power_supply *psy,
578 				  struct power_supply_battery_info **info_out)
579 {
580 	struct power_supply_resistance_temp_table *resist_table;
581 	struct power_supply_battery_info *info;
582 	struct device_node *battery_np = NULL;
583 	struct fwnode_reference_args args;
584 	struct fwnode_handle *fwnode = NULL;
585 	const char *value;
586 	int err, len, index;
587 	const __be32 *list;
588 	u32 min_max[2];
589 
590 	if (psy->of_node) {
591 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
592 		if (!battery_np)
593 			return -ENODEV;
594 
595 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
596 	} else if (psy->dev.parent) {
597 		err = fwnode_property_get_reference_args(
598 					dev_fwnode(psy->dev.parent),
599 					"monitored-battery", NULL, 0, 0, &args);
600 		if (err)
601 			return err;
602 
603 		fwnode = args.fwnode;
604 	}
605 
606 	if (!fwnode)
607 		return -ENOENT;
608 
609 	err = fwnode_property_read_string(fwnode, "compatible", &value);
610 	if (err)
611 		goto out_put_node;
612 
613 
614 	/* Try static batteries first */
615 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
616 	if (!err)
617 		goto out_ret_pointer;
618 	else if (err == -ENODEV)
619 		/*
620 		 * Device does not have a static battery.
621 		 * Proceed to look for a simple battery.
622 		 */
623 		err = 0;
624 
625 	if (strcmp("simple-battery", value)) {
626 		err = -ENODEV;
627 		goto out_put_node;
628 	}
629 
630 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
631 	if (!info) {
632 		err = -ENOMEM;
633 		goto out_put_node;
634 	}
635 
636 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
637 	info->energy_full_design_uwh         = -EINVAL;
638 	info->charge_full_design_uah         = -EINVAL;
639 	info->voltage_min_design_uv          = -EINVAL;
640 	info->voltage_max_design_uv          = -EINVAL;
641 	info->precharge_current_ua           = -EINVAL;
642 	info->charge_term_current_ua         = -EINVAL;
643 	info->constant_charge_current_max_ua = -EINVAL;
644 	info->constant_charge_voltage_max_uv = -EINVAL;
645 	info->tricklecharge_current_ua       = -EINVAL;
646 	info->precharge_voltage_max_uv       = -EINVAL;
647 	info->charge_restart_voltage_uv      = -EINVAL;
648 	info->overvoltage_limit_uv           = -EINVAL;
649 	info->maintenance_charge             = NULL;
650 	info->alert_low_temp_charge_current_ua = -EINVAL;
651 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
652 	info->alert_high_temp_charge_current_ua = -EINVAL;
653 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
654 	info->temp_ambient_alert_min         = INT_MIN;
655 	info->temp_ambient_alert_max         = INT_MAX;
656 	info->temp_alert_min                 = INT_MIN;
657 	info->temp_alert_max                 = INT_MAX;
658 	info->temp_min                       = INT_MIN;
659 	info->temp_max                       = INT_MAX;
660 	info->factory_internal_resistance_uohm  = -EINVAL;
661 	info->resist_table                   = NULL;
662 	info->bti_resistance_ohm             = -EINVAL;
663 	info->bti_resistance_tolerance       = -EINVAL;
664 
665 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
666 		info->ocv_table[index]       = NULL;
667 		info->ocv_temp[index]        = -EINVAL;
668 		info->ocv_table_size[index]  = -EINVAL;
669 	}
670 
671 	/* The property and field names below must correspond to elements
672 	 * in enum power_supply_property. For reasoning, see
673 	 * Documentation/power/power_supply_class.rst.
674 	 */
675 
676 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
677 		if (!strcmp("nickel-cadmium", value))
678 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
679 		else if (!strcmp("nickel-metal-hydride", value))
680 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
681 		else if (!strcmp("lithium-ion", value))
682 			/* Imprecise lithium-ion type */
683 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
684 		else if (!strcmp("lithium-ion-polymer", value))
685 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
686 		else if (!strcmp("lithium-ion-iron-phosphate", value))
687 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
688 		else if (!strcmp("lithium-ion-manganese-oxide", value))
689 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
690 		else
691 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
692 	}
693 
694 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
695 			     &info->energy_full_design_uwh);
696 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
697 			     &info->charge_full_design_uah);
698 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
699 			     &info->voltage_min_design_uv);
700 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
701 			     &info->voltage_max_design_uv);
702 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
703 			     &info->tricklecharge_current_ua);
704 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
705 			     &info->precharge_current_ua);
706 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
707 			     &info->precharge_voltage_max_uv);
708 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
709 			     &info->charge_term_current_ua);
710 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
711 			     &info->charge_restart_voltage_uv);
712 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
713 			     &info->overvoltage_limit_uv);
714 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
715 			     &info->constant_charge_current_max_ua);
716 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
717 			     &info->constant_charge_voltage_max_uv);
718 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
719 			     &info->factory_internal_resistance_uohm);
720 
721 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
722 					    min_max, ARRAY_SIZE(min_max))) {
723 		info->temp_ambient_alert_min = min_max[0];
724 		info->temp_ambient_alert_max = min_max[1];
725 	}
726 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
727 					    min_max, ARRAY_SIZE(min_max))) {
728 		info->temp_alert_min = min_max[0];
729 		info->temp_alert_max = min_max[1];
730 	}
731 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
732 					    min_max, ARRAY_SIZE(min_max))) {
733 		info->temp_min = min_max[0];
734 		info->temp_max = min_max[1];
735 	}
736 
737 	/*
738 	 * The below code uses raw of-data parsing to parse
739 	 * /schemas/types.yaml#/definitions/uint32-matrix
740 	 * data, so for now this is only support with of.
741 	 */
742 	if (!battery_np)
743 		goto out_ret_pointer;
744 
745 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
746 	if (len < 0 && len != -EINVAL) {
747 		err = len;
748 		goto out_put_node;
749 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
750 		dev_err(&psy->dev, "Too many temperature values\n");
751 		err = -EINVAL;
752 		goto out_put_node;
753 	} else if (len > 0) {
754 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
755 					   info->ocv_temp, len);
756 	}
757 
758 	for (index = 0; index < len; index++) {
759 		struct power_supply_battery_ocv_table *table;
760 		int i, tab_len, size;
761 
762 		char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
763 							 index);
764 		if (!propname) {
765 			power_supply_put_battery_info(psy, info);
766 			err = -ENOMEM;
767 			goto out_put_node;
768 		}
769 		list = of_get_property(battery_np, propname, &size);
770 		if (!list || !size) {
771 			dev_err(&psy->dev, "failed to get %s\n", propname);
772 			power_supply_put_battery_info(psy, info);
773 			err = -EINVAL;
774 			goto out_put_node;
775 		}
776 
777 		tab_len = size / (2 * sizeof(__be32));
778 		info->ocv_table_size[index] = tab_len;
779 
780 		table = info->ocv_table[index] =
781 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
782 		if (!info->ocv_table[index]) {
783 			power_supply_put_battery_info(psy, info);
784 			err = -ENOMEM;
785 			goto out_put_node;
786 		}
787 
788 		for (i = 0; i < tab_len; i++) {
789 			table[i].ocv = be32_to_cpu(*list);
790 			list++;
791 			table[i].capacity = be32_to_cpu(*list);
792 			list++;
793 		}
794 	}
795 
796 	list = of_get_property(battery_np, "resistance-temp-table", &len);
797 	if (!list || !len)
798 		goto out_ret_pointer;
799 
800 	info->resist_table_size = len / (2 * sizeof(__be32));
801 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
802 							 info->resist_table_size,
803 							 sizeof(*resist_table),
804 							 GFP_KERNEL);
805 	if (!info->resist_table) {
806 		power_supply_put_battery_info(psy, info);
807 		err = -ENOMEM;
808 		goto out_put_node;
809 	}
810 
811 	for (index = 0; index < info->resist_table_size; index++) {
812 		resist_table[index].temp = be32_to_cpu(*list++);
813 		resist_table[index].resistance = be32_to_cpu(*list++);
814 	}
815 
816 out_ret_pointer:
817 	/* Finally return the whole thing */
818 	*info_out = info;
819 
820 out_put_node:
821 	fwnode_handle_put(fwnode);
822 	of_node_put(battery_np);
823 	return err;
824 }
825 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
826 
827 void power_supply_put_battery_info(struct power_supply *psy,
828 				   struct power_supply_battery_info *info)
829 {
830 	int i;
831 
832 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
833 		if (info->ocv_table[i])
834 			devm_kfree(&psy->dev, info->ocv_table[i]);
835 	}
836 
837 	if (info->resist_table)
838 		devm_kfree(&psy->dev, info->resist_table);
839 
840 	devm_kfree(&psy->dev, info);
841 }
842 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
843 
844 const enum power_supply_property power_supply_battery_info_properties[] = {
845 	POWER_SUPPLY_PROP_TECHNOLOGY,
846 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
847 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
848 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
849 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
850 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
851 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
852 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
853 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
854 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
855 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
856 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
857 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
858 	POWER_SUPPLY_PROP_TEMP_MIN,
859 	POWER_SUPPLY_PROP_TEMP_MAX,
860 };
861 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
862 
863 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
864 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
865 
866 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
867 					enum power_supply_property psp)
868 {
869 	if (!info)
870 		return false;
871 
872 	switch (psp) {
873 	case POWER_SUPPLY_PROP_TECHNOLOGY:
874 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
875 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
876 		return info->energy_full_design_uwh >= 0;
877 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
878 		return info->charge_full_design_uah >= 0;
879 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
880 		return info->voltage_min_design_uv >= 0;
881 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
882 		return info->voltage_max_design_uv >= 0;
883 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
884 		return info->precharge_current_ua >= 0;
885 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
886 		return info->charge_term_current_ua >= 0;
887 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
888 		return info->constant_charge_current_max_ua >= 0;
889 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
890 		return info->constant_charge_voltage_max_uv >= 0;
891 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
892 		return info->temp_ambient_alert_min > INT_MIN;
893 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
894 		return info->temp_ambient_alert_max < INT_MAX;
895 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
896 		return info->temp_alert_min > INT_MIN;
897 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
898 		return info->temp_alert_max < INT_MAX;
899 	case POWER_SUPPLY_PROP_TEMP_MIN:
900 		return info->temp_min > INT_MIN;
901 	case POWER_SUPPLY_PROP_TEMP_MAX:
902 		return info->temp_max < INT_MAX;
903 	default:
904 		return false;
905 	}
906 }
907 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
908 
909 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
910 				       enum power_supply_property psp,
911 				       union power_supply_propval *val)
912 {
913 	if (!info)
914 		return -EINVAL;
915 
916 	if (!power_supply_battery_info_has_prop(info, psp))
917 		return -EINVAL;
918 
919 	switch (psp) {
920 	case POWER_SUPPLY_PROP_TECHNOLOGY:
921 		val->intval = info->technology;
922 		return 0;
923 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
924 		val->intval = info->energy_full_design_uwh;
925 		return 0;
926 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
927 		val->intval = info->charge_full_design_uah;
928 		return 0;
929 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
930 		val->intval = info->voltage_min_design_uv;
931 		return 0;
932 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
933 		val->intval = info->voltage_max_design_uv;
934 		return 0;
935 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
936 		val->intval = info->precharge_current_ua;
937 		return 0;
938 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
939 		val->intval = info->charge_term_current_ua;
940 		return 0;
941 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
942 		val->intval = info->constant_charge_current_max_ua;
943 		return 0;
944 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
945 		val->intval = info->constant_charge_voltage_max_uv;
946 		return 0;
947 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
948 		val->intval = info->temp_ambient_alert_min;
949 		return 0;
950 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
951 		val->intval = info->temp_ambient_alert_max;
952 		return 0;
953 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
954 		val->intval = info->temp_alert_min;
955 		return 0;
956 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
957 		val->intval = info->temp_alert_max;
958 		return 0;
959 	case POWER_SUPPLY_PROP_TEMP_MIN:
960 		val->intval = info->temp_min;
961 		return 0;
962 	case POWER_SUPPLY_PROP_TEMP_MAX:
963 		val->intval = info->temp_max;
964 		return 0;
965 	default:
966 		return -EINVAL;
967 	}
968 }
969 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
970 
971 /**
972  * power_supply_temp2resist_simple() - find the battery internal resistance
973  * percent from temperature
974  * @table: Pointer to battery resistance temperature table
975  * @table_len: The table length
976  * @temp: Current temperature
977  *
978  * This helper function is used to look up battery internal resistance percent
979  * according to current temperature value from the resistance temperature table,
980  * and the table must be ordered descending. Then the actual battery internal
981  * resistance = the ideal battery internal resistance * percent / 100.
982  *
983  * Return: the battery internal resistance percent
984  */
985 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
986 				    int table_len, int temp)
987 {
988 	int i, high, low;
989 
990 	for (i = 0; i < table_len; i++)
991 		if (temp > table[i].temp)
992 			break;
993 
994 	/* The library function will deal with high == low */
995 	if (i == 0)
996 		high = low = i;
997 	else if (i == table_len)
998 		high = low = i - 1;
999 	else
1000 		high = (low = i) - 1;
1001 
1002 	return fixp_linear_interpolate(table[low].temp,
1003 				       table[low].resistance,
1004 				       table[high].temp,
1005 				       table[high].resistance,
1006 				       temp);
1007 }
1008 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1009 
1010 /**
1011  * power_supply_vbat2ri() - find the battery internal resistance
1012  * from the battery voltage
1013  * @info: The battery information container
1014  * @vbat_uv: The battery voltage in microvolt
1015  * @charging: If we are charging (true) or not (false)
1016  *
1017  * This helper function is used to look up battery internal resistance
1018  * according to current battery voltage. Depending on whether the battery
1019  * is currently charging or not, different resistance will be returned.
1020  *
1021  * Returns the internal resistance in microohm or negative error code.
1022  */
1023 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1024 			 int vbat_uv, bool charging)
1025 {
1026 	const struct power_supply_vbat_ri_table *vbat2ri;
1027 	int table_len;
1028 	int i, high, low;
1029 
1030 	/*
1031 	 * If we are charging, and the battery supplies a separate table
1032 	 * for this state, we use that in order to compensate for the
1033 	 * charging voltage. Otherwise we use the main table.
1034 	 */
1035 	if (charging && info->vbat2ri_charging) {
1036 		vbat2ri = info->vbat2ri_charging;
1037 		table_len = info->vbat2ri_charging_size;
1038 	} else {
1039 		vbat2ri = info->vbat2ri_discharging;
1040 		table_len = info->vbat2ri_discharging_size;
1041 	}
1042 
1043 	/*
1044 	 * If no tables are specified, or if we are above the highest voltage in
1045 	 * the voltage table, just return the factory specified internal resistance.
1046 	 */
1047 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1048 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1049 			return info->factory_internal_resistance_charging_uohm;
1050 		else
1051 			return info->factory_internal_resistance_uohm;
1052 	}
1053 
1054 	/* Break loop at table_len - 1 because that is the highest index */
1055 	for (i = 0; i < table_len - 1; i++)
1056 		if (vbat_uv > vbat2ri[i].vbat_uv)
1057 			break;
1058 
1059 	/* The library function will deal with high == low */
1060 	if ((i == 0) || (i == (table_len - 1)))
1061 		high = i;
1062 	else
1063 		high = i - 1;
1064 	low = i;
1065 
1066 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1067 				       vbat2ri[low].ri_uohm,
1068 				       vbat2ri[high].vbat_uv,
1069 				       vbat2ri[high].ri_uohm,
1070 				       vbat_uv);
1071 }
1072 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1073 
1074 const struct power_supply_maintenance_charge_table *
1075 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1076 					      int index)
1077 {
1078 	if (index >= info->maintenance_charge_size)
1079 		return NULL;
1080 	return &info->maintenance_charge[index];
1081 }
1082 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1083 
1084 /**
1085  * power_supply_ocv2cap_simple() - find the battery capacity
1086  * @table: Pointer to battery OCV lookup table
1087  * @table_len: OCV table length
1088  * @ocv: Current OCV value
1089  *
1090  * This helper function is used to look up battery capacity according to
1091  * current OCV value from one OCV table, and the OCV table must be ordered
1092  * descending.
1093  *
1094  * Return: the battery capacity.
1095  */
1096 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1097 				int table_len, int ocv)
1098 {
1099 	int i, high, low;
1100 
1101 	for (i = 0; i < table_len; i++)
1102 		if (ocv > table[i].ocv)
1103 			break;
1104 
1105 	/* The library function will deal with high == low */
1106 	if (i == 0)
1107 		high = low = i;
1108 	else if (i == table_len)
1109 		high = low = i - 1;
1110 	else
1111 		high = (low = i) - 1;
1112 
1113 	return fixp_linear_interpolate(table[low].ocv,
1114 				       table[low].capacity,
1115 				       table[high].ocv,
1116 				       table[high].capacity,
1117 				       ocv);
1118 }
1119 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1120 
1121 struct power_supply_battery_ocv_table *
1122 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1123 				int temp, int *table_len)
1124 {
1125 	int best_temp_diff = INT_MAX, temp_diff;
1126 	u8 i, best_index = 0;
1127 
1128 	if (!info->ocv_table[0])
1129 		return NULL;
1130 
1131 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1132 		/* Out of capacity tables */
1133 		if (!info->ocv_table[i])
1134 			break;
1135 
1136 		temp_diff = abs(info->ocv_temp[i] - temp);
1137 
1138 		if (temp_diff < best_temp_diff) {
1139 			best_temp_diff = temp_diff;
1140 			best_index = i;
1141 		}
1142 	}
1143 
1144 	*table_len = info->ocv_table_size[best_index];
1145 	return info->ocv_table[best_index];
1146 }
1147 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1148 
1149 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1150 				 int ocv, int temp)
1151 {
1152 	struct power_supply_battery_ocv_table *table;
1153 	int table_len;
1154 
1155 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1156 	if (!table)
1157 		return -EINVAL;
1158 
1159 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1160 }
1161 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1162 
1163 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1164 				       int resistance)
1165 {
1166 	int low, high;
1167 
1168 	/* Nothing like this can be checked */
1169 	if (info->bti_resistance_ohm <= 0)
1170 		return false;
1171 
1172 	/* This will be extremely strict and unlikely to work */
1173 	if (info->bti_resistance_tolerance <= 0)
1174 		return (info->bti_resistance_ohm == resistance);
1175 
1176 	low = info->bti_resistance_ohm -
1177 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1178 	high = info->bti_resistance_ohm +
1179 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1180 
1181 	return ((resistance >= low) && (resistance <= high));
1182 }
1183 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1184 
1185 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1186 			     enum power_supply_property psp)
1187 {
1188 	bool found = false;
1189 	int i;
1190 
1191 	for (i = 0; i < psy_desc->num_properties; i++) {
1192 		if (psy_desc->properties[i] == psp) {
1193 			found = true;
1194 			break;
1195 		}
1196 	}
1197 
1198 	return found;
1199 }
1200 
1201 int power_supply_get_property(struct power_supply *psy,
1202 			    enum power_supply_property psp,
1203 			    union power_supply_propval *val)
1204 {
1205 	if (atomic_read(&psy->use_cnt) <= 0) {
1206 		if (!psy->initialized)
1207 			return -EAGAIN;
1208 		return -ENODEV;
1209 	}
1210 
1211 	if (psy_has_property(psy->desc, psp))
1212 		return psy->desc->get_property(psy, psp, val);
1213 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1214 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1215 	else
1216 		return -EINVAL;
1217 }
1218 EXPORT_SYMBOL_GPL(power_supply_get_property);
1219 
1220 int power_supply_set_property(struct power_supply *psy,
1221 			    enum power_supply_property psp,
1222 			    const union power_supply_propval *val)
1223 {
1224 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1225 		return -ENODEV;
1226 
1227 	return psy->desc->set_property(psy, psp, val);
1228 }
1229 EXPORT_SYMBOL_GPL(power_supply_set_property);
1230 
1231 int power_supply_property_is_writeable(struct power_supply *psy,
1232 					enum power_supply_property psp)
1233 {
1234 	return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp);
1235 }
1236 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1237 
1238 void power_supply_external_power_changed(struct power_supply *psy)
1239 {
1240 	if (atomic_read(&psy->use_cnt) <= 0 ||
1241 			!psy->desc->external_power_changed)
1242 		return;
1243 
1244 	psy->desc->external_power_changed(psy);
1245 }
1246 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1247 
1248 int power_supply_powers(struct power_supply *psy, struct device *dev)
1249 {
1250 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1251 }
1252 EXPORT_SYMBOL_GPL(power_supply_powers);
1253 
1254 static void power_supply_dev_release(struct device *dev)
1255 {
1256 	struct power_supply *psy = to_power_supply(dev);
1257 
1258 	dev_dbg(dev, "%s\n", __func__);
1259 	kfree(psy);
1260 }
1261 
1262 int power_supply_reg_notifier(struct notifier_block *nb)
1263 {
1264 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1265 }
1266 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1267 
1268 void power_supply_unreg_notifier(struct notifier_block *nb)
1269 {
1270 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1271 }
1272 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1273 
1274 #ifdef CONFIG_THERMAL
1275 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1276 		int *temp)
1277 {
1278 	struct power_supply *psy;
1279 	union power_supply_propval val;
1280 	int ret;
1281 
1282 	WARN_ON(tzd == NULL);
1283 	psy = thermal_zone_device_priv(tzd);
1284 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1285 	if (ret)
1286 		return ret;
1287 
1288 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1289 	*temp = val.intval * 100;
1290 
1291 	return ret;
1292 }
1293 
1294 static const struct thermal_zone_device_ops psy_tzd_ops = {
1295 	.get_temp = power_supply_read_temp,
1296 };
1297 
1298 static int psy_register_thermal(struct power_supply *psy)
1299 {
1300 	int ret;
1301 
1302 	if (psy->desc->no_thermal)
1303 		return 0;
1304 
1305 	/* Register battery zone device psy reports temperature */
1306 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1307 		/* Prefer our hwmon device and avoid duplicates */
1308 		struct thermal_zone_params tzp = {
1309 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1310 		};
1311 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1312 				psy, &psy_tzd_ops, &tzp);
1313 		if (IS_ERR(psy->tzd))
1314 			return PTR_ERR(psy->tzd);
1315 		ret = thermal_zone_device_enable(psy->tzd);
1316 		if (ret)
1317 			thermal_zone_device_unregister(psy->tzd);
1318 		return ret;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static void psy_unregister_thermal(struct power_supply *psy)
1325 {
1326 	if (IS_ERR_OR_NULL(psy->tzd))
1327 		return;
1328 	thermal_zone_device_unregister(psy->tzd);
1329 }
1330 
1331 #else
1332 static int psy_register_thermal(struct power_supply *psy)
1333 {
1334 	return 0;
1335 }
1336 
1337 static void psy_unregister_thermal(struct power_supply *psy)
1338 {
1339 }
1340 #endif
1341 
1342 static struct power_supply *__must_check
1343 __power_supply_register(struct device *parent,
1344 				   const struct power_supply_desc *desc,
1345 				   const struct power_supply_config *cfg,
1346 				   bool ws)
1347 {
1348 	struct device *dev;
1349 	struct power_supply *psy;
1350 	int rc;
1351 
1352 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1353 		return ERR_PTR(-EINVAL);
1354 
1355 	if (!parent)
1356 		pr_warn("%s: Expected proper parent device for '%s'\n",
1357 			__func__, desc->name);
1358 
1359 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1360 	if (!psy)
1361 		return ERR_PTR(-ENOMEM);
1362 
1363 	dev = &psy->dev;
1364 
1365 	device_initialize(dev);
1366 
1367 	dev->class = &power_supply_class;
1368 	dev->type = &power_supply_dev_type;
1369 	dev->parent = parent;
1370 	dev->release = power_supply_dev_release;
1371 	dev_set_drvdata(dev, psy);
1372 	psy->desc = desc;
1373 	if (cfg) {
1374 		dev->groups = cfg->attr_grp;
1375 		psy->drv_data = cfg->drv_data;
1376 		psy->of_node =
1377 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1378 		dev->of_node = psy->of_node;
1379 		psy->supplied_to = cfg->supplied_to;
1380 		psy->num_supplicants = cfg->num_supplicants;
1381 	}
1382 
1383 	rc = dev_set_name(dev, "%s", desc->name);
1384 	if (rc)
1385 		goto dev_set_name_failed;
1386 
1387 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1388 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1389 			  power_supply_deferred_register_work);
1390 
1391 	rc = power_supply_check_supplies(psy);
1392 	if (rc) {
1393 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1394 		goto check_supplies_failed;
1395 	}
1396 
1397 	/*
1398 	 * Expose constant battery info, if it is available. While there are
1399 	 * some chargers accessing constant battery data, we only want to
1400 	 * expose battery data to userspace for battery devices.
1401 	 */
1402 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1403 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1404 		if (rc && rc != -ENODEV && rc != -ENOENT)
1405 			goto check_supplies_failed;
1406 	}
1407 
1408 	spin_lock_init(&psy->changed_lock);
1409 	rc = device_add(dev);
1410 	if (rc)
1411 		goto device_add_failed;
1412 
1413 	rc = device_init_wakeup(dev, ws);
1414 	if (rc)
1415 		goto wakeup_init_failed;
1416 
1417 	rc = psy_register_thermal(psy);
1418 	if (rc)
1419 		goto register_thermal_failed;
1420 
1421 	rc = power_supply_create_triggers(psy);
1422 	if (rc)
1423 		goto create_triggers_failed;
1424 
1425 	rc = power_supply_add_hwmon_sysfs(psy);
1426 	if (rc)
1427 		goto add_hwmon_sysfs_failed;
1428 
1429 	/*
1430 	 * Update use_cnt after any uevents (most notably from device_add()).
1431 	 * We are here still during driver's probe but
1432 	 * the power_supply_uevent() calls back driver's get_property
1433 	 * method so:
1434 	 * 1. Driver did not assigned the returned struct power_supply,
1435 	 * 2. Driver could not finish initialization (anything in its probe
1436 	 *    after calling power_supply_register()).
1437 	 */
1438 	atomic_inc(&psy->use_cnt);
1439 	psy->initialized = true;
1440 
1441 	queue_delayed_work(system_power_efficient_wq,
1442 			   &psy->deferred_register_work,
1443 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1444 
1445 	return psy;
1446 
1447 add_hwmon_sysfs_failed:
1448 	power_supply_remove_triggers(psy);
1449 create_triggers_failed:
1450 	psy_unregister_thermal(psy);
1451 register_thermal_failed:
1452 wakeup_init_failed:
1453 	device_del(dev);
1454 device_add_failed:
1455 check_supplies_failed:
1456 dev_set_name_failed:
1457 	put_device(dev);
1458 	return ERR_PTR(rc);
1459 }
1460 
1461 /**
1462  * power_supply_register() - Register new power supply
1463  * @parent:	Device to be a parent of power supply's device, usually
1464  *		the device which probe function calls this
1465  * @desc:	Description of power supply, must be valid through whole
1466  *		lifetime of this power supply
1467  * @cfg:	Run-time specific configuration accessed during registering,
1468  *		may be NULL
1469  *
1470  * Return: A pointer to newly allocated power_supply on success
1471  * or ERR_PTR otherwise.
1472  * Use power_supply_unregister() on returned power_supply pointer to release
1473  * resources.
1474  */
1475 struct power_supply *__must_check power_supply_register(struct device *parent,
1476 		const struct power_supply_desc *desc,
1477 		const struct power_supply_config *cfg)
1478 {
1479 	return __power_supply_register(parent, desc, cfg, true);
1480 }
1481 EXPORT_SYMBOL_GPL(power_supply_register);
1482 
1483 /**
1484  * power_supply_register_no_ws() - Register new non-waking-source power supply
1485  * @parent:	Device to be a parent of power supply's device, usually
1486  *		the device which probe function calls this
1487  * @desc:	Description of power supply, must be valid through whole
1488  *		lifetime of this power supply
1489  * @cfg:	Run-time specific configuration accessed during registering,
1490  *		may be NULL
1491  *
1492  * Return: A pointer to newly allocated power_supply on success
1493  * or ERR_PTR otherwise.
1494  * Use power_supply_unregister() on returned power_supply pointer to release
1495  * resources.
1496  */
1497 struct power_supply *__must_check
1498 power_supply_register_no_ws(struct device *parent,
1499 		const struct power_supply_desc *desc,
1500 		const struct power_supply_config *cfg)
1501 {
1502 	return __power_supply_register(parent, desc, cfg, false);
1503 }
1504 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1505 
1506 static void devm_power_supply_release(struct device *dev, void *res)
1507 {
1508 	struct power_supply **psy = res;
1509 
1510 	power_supply_unregister(*psy);
1511 }
1512 
1513 /**
1514  * devm_power_supply_register() - Register managed power supply
1515  * @parent:	Device to be a parent of power supply's device, usually
1516  *		the device which probe function calls this
1517  * @desc:	Description of power supply, must be valid through whole
1518  *		lifetime of this power supply
1519  * @cfg:	Run-time specific configuration accessed during registering,
1520  *		may be NULL
1521  *
1522  * Return: A pointer to newly allocated power_supply on success
1523  * or ERR_PTR otherwise.
1524  * The returned power_supply pointer will be automatically unregistered
1525  * on driver detach.
1526  */
1527 struct power_supply *__must_check
1528 devm_power_supply_register(struct device *parent,
1529 		const struct power_supply_desc *desc,
1530 		const struct power_supply_config *cfg)
1531 {
1532 	struct power_supply **ptr, *psy;
1533 
1534 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1535 
1536 	if (!ptr)
1537 		return ERR_PTR(-ENOMEM);
1538 	psy = __power_supply_register(parent, desc, cfg, true);
1539 	if (IS_ERR(psy)) {
1540 		devres_free(ptr);
1541 	} else {
1542 		*ptr = psy;
1543 		devres_add(parent, ptr);
1544 	}
1545 	return psy;
1546 }
1547 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1548 
1549 /**
1550  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1551  * @parent:	Device to be a parent of power supply's device, usually
1552  *		the device which probe function calls this
1553  * @desc:	Description of power supply, must be valid through whole
1554  *		lifetime of this power supply
1555  * @cfg:	Run-time specific configuration accessed during registering,
1556  *		may be NULL
1557  *
1558  * Return: A pointer to newly allocated power_supply on success
1559  * or ERR_PTR otherwise.
1560  * The returned power_supply pointer will be automatically unregistered
1561  * on driver detach.
1562  */
1563 struct power_supply *__must_check
1564 devm_power_supply_register_no_ws(struct device *parent,
1565 		const struct power_supply_desc *desc,
1566 		const struct power_supply_config *cfg)
1567 {
1568 	struct power_supply **ptr, *psy;
1569 
1570 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1571 
1572 	if (!ptr)
1573 		return ERR_PTR(-ENOMEM);
1574 	psy = __power_supply_register(parent, desc, cfg, false);
1575 	if (IS_ERR(psy)) {
1576 		devres_free(ptr);
1577 	} else {
1578 		*ptr = psy;
1579 		devres_add(parent, ptr);
1580 	}
1581 	return psy;
1582 }
1583 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1584 
1585 /**
1586  * power_supply_unregister() - Remove this power supply from system
1587  * @psy:	Pointer to power supply to unregister
1588  *
1589  * Remove this power supply from the system. The resources of power supply
1590  * will be freed here or on last power_supply_put() call.
1591  */
1592 void power_supply_unregister(struct power_supply *psy)
1593 {
1594 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1595 	psy->removing = true;
1596 	cancel_work_sync(&psy->changed_work);
1597 	cancel_delayed_work_sync(&psy->deferred_register_work);
1598 	sysfs_remove_link(&psy->dev.kobj, "powers");
1599 	power_supply_remove_hwmon_sysfs(psy);
1600 	power_supply_remove_triggers(psy);
1601 	psy_unregister_thermal(psy);
1602 	device_init_wakeup(&psy->dev, false);
1603 	device_unregister(&psy->dev);
1604 }
1605 EXPORT_SYMBOL_GPL(power_supply_unregister);
1606 
1607 void *power_supply_get_drvdata(struct power_supply *psy)
1608 {
1609 	return psy->drv_data;
1610 }
1611 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1612 
1613 static int __init power_supply_class_init(void)
1614 {
1615 	power_supply_init_attrs();
1616 	return class_register(&power_supply_class);
1617 }
1618 
1619 static void __exit power_supply_class_exit(void)
1620 {
1621 	class_unregister(&power_supply_class);
1622 }
1623 
1624 subsys_initcall(power_supply_class_init);
1625 module_exit(power_supply_class_exit);
1626 
1627 MODULE_DESCRIPTION("Universal power supply monitor class");
1628 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1629 MODULE_AUTHOR("Szabolcs Gyurko");
1630 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1631