1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/cleanup.h> 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/of.h> 22 #include <linux/power_supply.h> 23 #include <linux/property.h> 24 #include <linux/thermal.h> 25 #include <linux/fixp-arith.h> 26 #include "power_supply.h" 27 #include "samsung-sdi-battery.h" 28 29 static const struct class power_supply_class = { 30 .name = "power_supply", 31 .dev_uevent = power_supply_uevent, 32 }; 33 34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier); 35 36 static const struct device_type power_supply_dev_type = { 37 .name = "power_supply", 38 .groups = power_supply_attr_groups, 39 }; 40 41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 42 43 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 44 struct power_supply *supply) 45 { 46 int i; 47 48 if (!supply->supplied_from && !supplier->supplied_to) 49 return false; 50 51 /* Support both supplied_to and supplied_from modes */ 52 if (supply->supplied_from) { 53 if (!supplier->desc->name) 54 return false; 55 for (i = 0; i < supply->num_supplies; i++) 56 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 57 return true; 58 } else { 59 if (!supply->desc->name) 60 return false; 61 for (i = 0; i < supplier->num_supplicants; i++) 62 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 63 return true; 64 } 65 66 return false; 67 } 68 69 static int __power_supply_changed_work(struct device *dev, void *data) 70 { 71 struct power_supply *psy = data; 72 struct power_supply *pst = dev_get_drvdata(dev); 73 74 if (__power_supply_is_supplied_by(psy, pst)) { 75 if (pst->desc->external_power_changed) 76 pst->desc->external_power_changed(pst); 77 } 78 79 return 0; 80 } 81 82 static void power_supply_changed_work(struct work_struct *work) 83 { 84 unsigned long flags; 85 struct power_supply *psy = container_of(work, struct power_supply, 86 changed_work); 87 88 dev_dbg(&psy->dev, "%s\n", __func__); 89 90 spin_lock_irqsave(&psy->changed_lock, flags); 91 /* 92 * Check 'changed' here to avoid issues due to race between 93 * power_supply_changed() and this routine. In worst case 94 * power_supply_changed() can be called again just before we take above 95 * lock. During the first call of this routine we will mark 'changed' as 96 * false and it will stay false for the next call as well. 97 */ 98 if (likely(psy->changed)) { 99 psy->changed = false; 100 spin_unlock_irqrestore(&psy->changed_lock, flags); 101 power_supply_for_each_device(psy, __power_supply_changed_work); 102 power_supply_update_leds(psy); 103 blocking_notifier_call_chain(&power_supply_notifier, 104 PSY_EVENT_PROP_CHANGED, psy); 105 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 106 spin_lock_irqsave(&psy->changed_lock, flags); 107 } 108 109 /* 110 * Hold the wakeup_source until all events are processed. 111 * power_supply_changed() might have called again and have set 'changed' 112 * to true. 113 */ 114 if (likely(!psy->changed)) 115 pm_relax(&psy->dev); 116 spin_unlock_irqrestore(&psy->changed_lock, flags); 117 } 118 119 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data)) 120 { 121 return class_for_each_device(&power_supply_class, NULL, data, fn); 122 } 123 EXPORT_SYMBOL_GPL(power_supply_for_each_device); 124 125 void power_supply_changed(struct power_supply *psy) 126 { 127 unsigned long flags; 128 129 dev_dbg(&psy->dev, "%s\n", __func__); 130 131 spin_lock_irqsave(&psy->changed_lock, flags); 132 psy->changed = true; 133 pm_stay_awake(&psy->dev); 134 spin_unlock_irqrestore(&psy->changed_lock, flags); 135 schedule_work(&psy->changed_work); 136 } 137 EXPORT_SYMBOL_GPL(power_supply_changed); 138 139 /* 140 * Notify that power supply was registered after parent finished the probing. 141 * 142 * Often power supply is registered from driver's probe function. However 143 * calling power_supply_changed() directly from power_supply_register() 144 * would lead to execution of get_property() function provided by the driver 145 * too early - before the probe ends. 146 * 147 * Avoid that by waiting on parent's mutex. 148 */ 149 static void power_supply_deferred_register_work(struct work_struct *work) 150 { 151 struct power_supply *psy = container_of(work, struct power_supply, 152 deferred_register_work.work); 153 154 if (psy->dev.parent) { 155 while (!mutex_trylock(&psy->dev.parent->mutex)) { 156 if (psy->removing) 157 return; 158 msleep(10); 159 } 160 } 161 162 power_supply_changed(psy); 163 164 if (psy->dev.parent) 165 mutex_unlock(&psy->dev.parent->mutex); 166 } 167 168 #ifdef CONFIG_OF 169 static int __power_supply_populate_supplied_from(struct device *dev, 170 void *data) 171 { 172 struct power_supply *psy = data; 173 struct power_supply *epsy = dev_get_drvdata(dev); 174 struct device_node *np; 175 int i = 0; 176 177 do { 178 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 179 if (!np) 180 break; 181 182 if (np == epsy->of_node) { 183 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 184 psy->desc->name, epsy->desc->name); 185 psy->supplied_from[i-1] = (char *)epsy->desc->name; 186 psy->num_supplies++; 187 of_node_put(np); 188 break; 189 } 190 of_node_put(np); 191 } while (np); 192 193 return 0; 194 } 195 196 static int power_supply_populate_supplied_from(struct power_supply *psy) 197 { 198 int error; 199 200 error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from); 201 202 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 203 204 return error; 205 } 206 207 static int __power_supply_find_supply_from_node(struct device *dev, 208 void *data) 209 { 210 struct device_node *np = data; 211 struct power_supply *epsy = dev_get_drvdata(dev); 212 213 /* returning non-zero breaks out of power_supply_for_each_device loop */ 214 if (epsy->of_node == np) 215 return 1; 216 217 return 0; 218 } 219 220 static int power_supply_find_supply_from_node(struct device_node *supply_node) 221 { 222 int error; 223 224 /* 225 * power_supply_for_each_device() either returns its own errors or values 226 * returned by __power_supply_find_supply_from_node(). 227 * 228 * __power_supply_find_supply_from_node() will return 0 (no match) 229 * or 1 (match). 230 * 231 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if 232 * it returned 0, or error as returned by it. 233 */ 234 error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node); 235 236 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 237 } 238 239 static int power_supply_check_supplies(struct power_supply *psy) 240 { 241 struct device_node *np; 242 int cnt = 0; 243 244 /* If there is already a list honor it */ 245 if (psy->supplied_from && psy->num_supplies > 0) 246 return 0; 247 248 /* No device node found, nothing to do */ 249 if (!psy->of_node) 250 return 0; 251 252 do { 253 int ret; 254 255 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 256 if (!np) 257 break; 258 259 ret = power_supply_find_supply_from_node(np); 260 of_node_put(np); 261 262 if (ret) { 263 dev_dbg(&psy->dev, "Failed to find supply!\n"); 264 return ret; 265 } 266 } while (np); 267 268 /* Missing valid "power-supplies" entries */ 269 if (cnt == 1) 270 return 0; 271 272 /* All supplies found, allocate char ** array for filling */ 273 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 274 GFP_KERNEL); 275 if (!psy->supplied_from) 276 return -ENOMEM; 277 278 *psy->supplied_from = devm_kcalloc(&psy->dev, 279 cnt - 1, sizeof(**psy->supplied_from), 280 GFP_KERNEL); 281 if (!*psy->supplied_from) 282 return -ENOMEM; 283 284 return power_supply_populate_supplied_from(psy); 285 } 286 #else 287 static int power_supply_check_supplies(struct power_supply *psy) 288 { 289 int nval, ret; 290 291 if (!psy->dev.parent) 292 return 0; 293 294 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 295 if (nval <= 0) 296 return 0; 297 298 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 299 sizeof(char *), GFP_KERNEL); 300 if (!psy->supplied_from) 301 return -ENOMEM; 302 303 ret = device_property_read_string_array(psy->dev.parent, 304 "supplied-from", (const char **)psy->supplied_from, nval); 305 if (ret < 0) 306 return ret; 307 308 psy->num_supplies = nval; 309 310 return 0; 311 } 312 #endif 313 314 struct psy_am_i_supplied_data { 315 struct power_supply *psy; 316 unsigned int count; 317 }; 318 319 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 320 { 321 union power_supply_propval ret = {0,}; 322 struct power_supply *epsy = dev_get_drvdata(dev); 323 struct psy_am_i_supplied_data *data = _data; 324 325 if (__power_supply_is_supplied_by(epsy, data->psy)) { 326 data->count++; 327 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 328 &ret)) 329 return ret.intval; 330 } 331 332 return 0; 333 } 334 335 int power_supply_am_i_supplied(struct power_supply *psy) 336 { 337 struct psy_am_i_supplied_data data = { psy, 0 }; 338 int error; 339 340 error = power_supply_for_each_device(&data, __power_supply_am_i_supplied); 341 342 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 343 344 if (data.count == 0) 345 return -ENODEV; 346 347 return error; 348 } 349 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 350 351 static int __power_supply_is_system_supplied(struct device *dev, void *data) 352 { 353 union power_supply_propval ret = {0,}; 354 struct power_supply *psy = dev_get_drvdata(dev); 355 unsigned int *count = data; 356 357 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 358 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 359 return 0; 360 361 (*count)++; 362 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 363 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 364 &ret)) 365 return ret.intval; 366 367 return 0; 368 } 369 370 int power_supply_is_system_supplied(void) 371 { 372 int error; 373 unsigned int count = 0; 374 375 error = power_supply_for_each_device(&count, __power_supply_is_system_supplied); 376 377 /* 378 * If no system scope power class device was found at all, most probably we 379 * are running on a desktop system, so assume we are on mains power. 380 */ 381 if (count == 0) 382 return 1; 383 384 return error; 385 } 386 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 387 388 struct psy_get_supplier_prop_data { 389 struct power_supply *psy; 390 enum power_supply_property psp; 391 union power_supply_propval *val; 392 }; 393 394 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 395 { 396 struct power_supply *epsy = dev_get_drvdata(dev); 397 struct psy_get_supplier_prop_data *data = _data; 398 399 if (__power_supply_is_supplied_by(epsy, data->psy)) 400 if (!power_supply_get_property(epsy, data->psp, data->val)) 401 return 1; /* Success */ 402 403 return 0; /* Continue iterating */ 404 } 405 406 int power_supply_get_property_from_supplier(struct power_supply *psy, 407 enum power_supply_property psp, 408 union power_supply_propval *val) 409 { 410 struct psy_get_supplier_prop_data data = { 411 .psy = psy, 412 .psp = psp, 413 .val = val, 414 }; 415 int ret; 416 417 /* 418 * This function is not intended for use with a supply with multiple 419 * suppliers, we simply pick the first supply to report the psp. 420 */ 421 ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property); 422 if (ret < 0) 423 return ret; 424 if (ret == 0) 425 return -ENODEV; 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 430 431 int power_supply_set_battery_charged(struct power_supply *psy) 432 { 433 if (atomic_read(&psy->use_cnt) >= 0 && 434 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 435 psy->desc->set_charged) { 436 psy->desc->set_charged(psy); 437 return 0; 438 } 439 440 return -EINVAL; 441 } 442 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 443 444 static int power_supply_match_device_by_name(struct device *dev, const void *data) 445 { 446 const char *name = data; 447 struct power_supply *psy = dev_get_drvdata(dev); 448 449 return strcmp(psy->desc->name, name) == 0; 450 } 451 452 /** 453 * power_supply_get_by_name() - Search for a power supply and returns its ref 454 * @name: Power supply name to fetch 455 * 456 * If power supply was found, it increases reference count for the 457 * internal power supply's device. The user should power_supply_put() 458 * after usage. 459 * 460 * Return: On success returns a reference to a power supply with 461 * matching name equals to @name, a NULL otherwise. 462 */ 463 struct power_supply *power_supply_get_by_name(const char *name) 464 { 465 struct power_supply *psy = NULL; 466 struct device *dev = class_find_device(&power_supply_class, NULL, name, 467 power_supply_match_device_by_name); 468 469 if (dev) { 470 psy = dev_get_drvdata(dev); 471 atomic_inc(&psy->use_cnt); 472 } 473 474 return psy; 475 } 476 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 477 478 /** 479 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 480 * @psy: Reference to put 481 * 482 * The reference to power supply should be put before unregistering 483 * the power supply. 484 */ 485 void power_supply_put(struct power_supply *psy) 486 { 487 might_sleep(); 488 489 atomic_dec(&psy->use_cnt); 490 put_device(&psy->dev); 491 } 492 EXPORT_SYMBOL_GPL(power_supply_put); 493 494 #ifdef CONFIG_OF 495 static int power_supply_match_device_node(struct device *dev, const void *data) 496 { 497 return dev->parent && dev->parent->of_node == data; 498 } 499 500 /** 501 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 502 * @np: Pointer to device node holding phandle property 503 * @property: Name of property holding a power supply name 504 * 505 * If power supply was found, it increases reference count for the 506 * internal power supply's device. The user should power_supply_put() 507 * after usage. 508 * 509 * Return: On success returns a reference to a power supply with 510 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 511 */ 512 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 513 const char *property) 514 { 515 struct device_node *power_supply_np; 516 struct power_supply *psy = NULL; 517 struct device *dev; 518 519 power_supply_np = of_parse_phandle(np, property, 0); 520 if (!power_supply_np) 521 return ERR_PTR(-ENODEV); 522 523 dev = class_find_device(&power_supply_class, NULL, power_supply_np, 524 power_supply_match_device_node); 525 526 of_node_put(power_supply_np); 527 528 if (dev) { 529 psy = dev_get_drvdata(dev); 530 atomic_inc(&psy->use_cnt); 531 } 532 533 return psy; 534 } 535 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 536 537 static void devm_power_supply_put(struct device *dev, void *res) 538 { 539 struct power_supply **psy = res; 540 541 power_supply_put(*psy); 542 } 543 544 /** 545 * devm_power_supply_get_by_phandle() - Resource managed version of 546 * power_supply_get_by_phandle() 547 * @dev: Pointer to device holding phandle property 548 * @property: Name of property holding a power supply phandle 549 * 550 * Return: On success returns a reference to a power supply with 551 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 552 */ 553 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 554 const char *property) 555 { 556 struct power_supply **ptr, *psy; 557 558 if (!dev->of_node) 559 return ERR_PTR(-ENODEV); 560 561 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 562 if (!ptr) 563 return ERR_PTR(-ENOMEM); 564 565 psy = power_supply_get_by_phandle(dev->of_node, property); 566 if (IS_ERR_OR_NULL(psy)) { 567 devres_free(ptr); 568 } else { 569 *ptr = psy; 570 devres_add(dev, ptr); 571 } 572 return psy; 573 } 574 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 575 #endif /* CONFIG_OF */ 576 577 int power_supply_get_battery_info(struct power_supply *psy, 578 struct power_supply_battery_info **info_out) 579 { 580 struct power_supply_resistance_temp_table *resist_table; 581 struct power_supply_battery_info *info; 582 struct device_node *battery_np = NULL; 583 struct fwnode_reference_args args; 584 struct fwnode_handle *fwnode = NULL; 585 const char *value; 586 int err, len, index; 587 const __be32 *list; 588 u32 min_max[2]; 589 590 if (psy->of_node) { 591 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 592 if (!battery_np) 593 return -ENODEV; 594 595 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 596 } else if (psy->dev.parent) { 597 err = fwnode_property_get_reference_args( 598 dev_fwnode(psy->dev.parent), 599 "monitored-battery", NULL, 0, 0, &args); 600 if (err) 601 return err; 602 603 fwnode = args.fwnode; 604 } 605 606 if (!fwnode) 607 return -ENOENT; 608 609 err = fwnode_property_read_string(fwnode, "compatible", &value); 610 if (err) 611 goto out_put_node; 612 613 614 /* Try static batteries first */ 615 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 616 if (!err) 617 goto out_ret_pointer; 618 else if (err == -ENODEV) 619 /* 620 * Device does not have a static battery. 621 * Proceed to look for a simple battery. 622 */ 623 err = 0; 624 625 if (strcmp("simple-battery", value)) { 626 err = -ENODEV; 627 goto out_put_node; 628 } 629 630 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 631 if (!info) { 632 err = -ENOMEM; 633 goto out_put_node; 634 } 635 636 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 637 info->energy_full_design_uwh = -EINVAL; 638 info->charge_full_design_uah = -EINVAL; 639 info->voltage_min_design_uv = -EINVAL; 640 info->voltage_max_design_uv = -EINVAL; 641 info->precharge_current_ua = -EINVAL; 642 info->charge_term_current_ua = -EINVAL; 643 info->constant_charge_current_max_ua = -EINVAL; 644 info->constant_charge_voltage_max_uv = -EINVAL; 645 info->tricklecharge_current_ua = -EINVAL; 646 info->precharge_voltage_max_uv = -EINVAL; 647 info->charge_restart_voltage_uv = -EINVAL; 648 info->overvoltage_limit_uv = -EINVAL; 649 info->maintenance_charge = NULL; 650 info->alert_low_temp_charge_current_ua = -EINVAL; 651 info->alert_low_temp_charge_voltage_uv = -EINVAL; 652 info->alert_high_temp_charge_current_ua = -EINVAL; 653 info->alert_high_temp_charge_voltage_uv = -EINVAL; 654 info->temp_ambient_alert_min = INT_MIN; 655 info->temp_ambient_alert_max = INT_MAX; 656 info->temp_alert_min = INT_MIN; 657 info->temp_alert_max = INT_MAX; 658 info->temp_min = INT_MIN; 659 info->temp_max = INT_MAX; 660 info->factory_internal_resistance_uohm = -EINVAL; 661 info->resist_table = NULL; 662 info->bti_resistance_ohm = -EINVAL; 663 info->bti_resistance_tolerance = -EINVAL; 664 665 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 666 info->ocv_table[index] = NULL; 667 info->ocv_temp[index] = -EINVAL; 668 info->ocv_table_size[index] = -EINVAL; 669 } 670 671 /* The property and field names below must correspond to elements 672 * in enum power_supply_property. For reasoning, see 673 * Documentation/power/power_supply_class.rst. 674 */ 675 676 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 677 if (!strcmp("nickel-cadmium", value)) 678 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 679 else if (!strcmp("nickel-metal-hydride", value)) 680 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 681 else if (!strcmp("lithium-ion", value)) 682 /* Imprecise lithium-ion type */ 683 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 684 else if (!strcmp("lithium-ion-polymer", value)) 685 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 686 else if (!strcmp("lithium-ion-iron-phosphate", value)) 687 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 688 else if (!strcmp("lithium-ion-manganese-oxide", value)) 689 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 690 else 691 dev_warn(&psy->dev, "%s unknown battery type\n", value); 692 } 693 694 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 695 &info->energy_full_design_uwh); 696 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 697 &info->charge_full_design_uah); 698 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 699 &info->voltage_min_design_uv); 700 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 701 &info->voltage_max_design_uv); 702 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 703 &info->tricklecharge_current_ua); 704 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 705 &info->precharge_current_ua); 706 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 707 &info->precharge_voltage_max_uv); 708 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 709 &info->charge_term_current_ua); 710 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 711 &info->charge_restart_voltage_uv); 712 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 713 &info->overvoltage_limit_uv); 714 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 715 &info->constant_charge_current_max_ua); 716 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 717 &info->constant_charge_voltage_max_uv); 718 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 719 &info->factory_internal_resistance_uohm); 720 721 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 722 min_max, ARRAY_SIZE(min_max))) { 723 info->temp_ambient_alert_min = min_max[0]; 724 info->temp_ambient_alert_max = min_max[1]; 725 } 726 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 727 min_max, ARRAY_SIZE(min_max))) { 728 info->temp_alert_min = min_max[0]; 729 info->temp_alert_max = min_max[1]; 730 } 731 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 732 min_max, ARRAY_SIZE(min_max))) { 733 info->temp_min = min_max[0]; 734 info->temp_max = min_max[1]; 735 } 736 737 /* 738 * The below code uses raw of-data parsing to parse 739 * /schemas/types.yaml#/definitions/uint32-matrix 740 * data, so for now this is only support with of. 741 */ 742 if (!battery_np) 743 goto out_ret_pointer; 744 745 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 746 if (len < 0 && len != -EINVAL) { 747 err = len; 748 goto out_put_node; 749 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 750 dev_err(&psy->dev, "Too many temperature values\n"); 751 err = -EINVAL; 752 goto out_put_node; 753 } else if (len > 0) { 754 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 755 info->ocv_temp, len); 756 } 757 758 for (index = 0; index < len; index++) { 759 struct power_supply_battery_ocv_table *table; 760 int i, tab_len, size; 761 762 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", 763 index); 764 if (!propname) { 765 power_supply_put_battery_info(psy, info); 766 err = -ENOMEM; 767 goto out_put_node; 768 } 769 list = of_get_property(battery_np, propname, &size); 770 if (!list || !size) { 771 dev_err(&psy->dev, "failed to get %s\n", propname); 772 power_supply_put_battery_info(psy, info); 773 err = -EINVAL; 774 goto out_put_node; 775 } 776 777 tab_len = size / (2 * sizeof(__be32)); 778 info->ocv_table_size[index] = tab_len; 779 780 table = info->ocv_table[index] = 781 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 782 if (!info->ocv_table[index]) { 783 power_supply_put_battery_info(psy, info); 784 err = -ENOMEM; 785 goto out_put_node; 786 } 787 788 for (i = 0; i < tab_len; i++) { 789 table[i].ocv = be32_to_cpu(*list); 790 list++; 791 table[i].capacity = be32_to_cpu(*list); 792 list++; 793 } 794 } 795 796 list = of_get_property(battery_np, "resistance-temp-table", &len); 797 if (!list || !len) 798 goto out_ret_pointer; 799 800 info->resist_table_size = len / (2 * sizeof(__be32)); 801 resist_table = info->resist_table = devm_kcalloc(&psy->dev, 802 info->resist_table_size, 803 sizeof(*resist_table), 804 GFP_KERNEL); 805 if (!info->resist_table) { 806 power_supply_put_battery_info(psy, info); 807 err = -ENOMEM; 808 goto out_put_node; 809 } 810 811 for (index = 0; index < info->resist_table_size; index++) { 812 resist_table[index].temp = be32_to_cpu(*list++); 813 resist_table[index].resistance = be32_to_cpu(*list++); 814 } 815 816 out_ret_pointer: 817 /* Finally return the whole thing */ 818 *info_out = info; 819 820 out_put_node: 821 fwnode_handle_put(fwnode); 822 of_node_put(battery_np); 823 return err; 824 } 825 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 826 827 void power_supply_put_battery_info(struct power_supply *psy, 828 struct power_supply_battery_info *info) 829 { 830 int i; 831 832 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 833 if (info->ocv_table[i]) 834 devm_kfree(&psy->dev, info->ocv_table[i]); 835 } 836 837 if (info->resist_table) 838 devm_kfree(&psy->dev, info->resist_table); 839 840 devm_kfree(&psy->dev, info); 841 } 842 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 843 844 const enum power_supply_property power_supply_battery_info_properties[] = { 845 POWER_SUPPLY_PROP_TECHNOLOGY, 846 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 847 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 848 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 849 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 850 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 851 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 852 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 853 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 854 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 855 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 856 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 857 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 858 POWER_SUPPLY_PROP_TEMP_MIN, 859 POWER_SUPPLY_PROP_TEMP_MAX, 860 }; 861 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 862 863 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 864 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 865 866 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 867 enum power_supply_property psp) 868 { 869 if (!info) 870 return false; 871 872 switch (psp) { 873 case POWER_SUPPLY_PROP_TECHNOLOGY: 874 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 875 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 876 return info->energy_full_design_uwh >= 0; 877 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 878 return info->charge_full_design_uah >= 0; 879 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 880 return info->voltage_min_design_uv >= 0; 881 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 882 return info->voltage_max_design_uv >= 0; 883 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 884 return info->precharge_current_ua >= 0; 885 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 886 return info->charge_term_current_ua >= 0; 887 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 888 return info->constant_charge_current_max_ua >= 0; 889 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 890 return info->constant_charge_voltage_max_uv >= 0; 891 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 892 return info->temp_ambient_alert_min > INT_MIN; 893 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 894 return info->temp_ambient_alert_max < INT_MAX; 895 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 896 return info->temp_alert_min > INT_MIN; 897 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 898 return info->temp_alert_max < INT_MAX; 899 case POWER_SUPPLY_PROP_TEMP_MIN: 900 return info->temp_min > INT_MIN; 901 case POWER_SUPPLY_PROP_TEMP_MAX: 902 return info->temp_max < INT_MAX; 903 default: 904 return false; 905 } 906 } 907 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 908 909 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 910 enum power_supply_property psp, 911 union power_supply_propval *val) 912 { 913 if (!info) 914 return -EINVAL; 915 916 if (!power_supply_battery_info_has_prop(info, psp)) 917 return -EINVAL; 918 919 switch (psp) { 920 case POWER_SUPPLY_PROP_TECHNOLOGY: 921 val->intval = info->technology; 922 return 0; 923 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 924 val->intval = info->energy_full_design_uwh; 925 return 0; 926 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 927 val->intval = info->charge_full_design_uah; 928 return 0; 929 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 930 val->intval = info->voltage_min_design_uv; 931 return 0; 932 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 933 val->intval = info->voltage_max_design_uv; 934 return 0; 935 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 936 val->intval = info->precharge_current_ua; 937 return 0; 938 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 939 val->intval = info->charge_term_current_ua; 940 return 0; 941 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 942 val->intval = info->constant_charge_current_max_ua; 943 return 0; 944 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 945 val->intval = info->constant_charge_voltage_max_uv; 946 return 0; 947 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 948 val->intval = info->temp_ambient_alert_min; 949 return 0; 950 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 951 val->intval = info->temp_ambient_alert_max; 952 return 0; 953 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 954 val->intval = info->temp_alert_min; 955 return 0; 956 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 957 val->intval = info->temp_alert_max; 958 return 0; 959 case POWER_SUPPLY_PROP_TEMP_MIN: 960 val->intval = info->temp_min; 961 return 0; 962 case POWER_SUPPLY_PROP_TEMP_MAX: 963 val->intval = info->temp_max; 964 return 0; 965 default: 966 return -EINVAL; 967 } 968 } 969 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 970 971 /** 972 * power_supply_temp2resist_simple() - find the battery internal resistance 973 * percent from temperature 974 * @table: Pointer to battery resistance temperature table 975 * @table_len: The table length 976 * @temp: Current temperature 977 * 978 * This helper function is used to look up battery internal resistance percent 979 * according to current temperature value from the resistance temperature table, 980 * and the table must be ordered descending. Then the actual battery internal 981 * resistance = the ideal battery internal resistance * percent / 100. 982 * 983 * Return: the battery internal resistance percent 984 */ 985 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 986 int table_len, int temp) 987 { 988 int i, high, low; 989 990 for (i = 0; i < table_len; i++) 991 if (temp > table[i].temp) 992 break; 993 994 /* The library function will deal with high == low */ 995 if (i == 0) 996 high = low = i; 997 else if (i == table_len) 998 high = low = i - 1; 999 else 1000 high = (low = i) - 1; 1001 1002 return fixp_linear_interpolate(table[low].temp, 1003 table[low].resistance, 1004 table[high].temp, 1005 table[high].resistance, 1006 temp); 1007 } 1008 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1009 1010 /** 1011 * power_supply_vbat2ri() - find the battery internal resistance 1012 * from the battery voltage 1013 * @info: The battery information container 1014 * @vbat_uv: The battery voltage in microvolt 1015 * @charging: If we are charging (true) or not (false) 1016 * 1017 * This helper function is used to look up battery internal resistance 1018 * according to current battery voltage. Depending on whether the battery 1019 * is currently charging or not, different resistance will be returned. 1020 * 1021 * Returns the internal resistance in microohm or negative error code. 1022 */ 1023 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1024 int vbat_uv, bool charging) 1025 { 1026 const struct power_supply_vbat_ri_table *vbat2ri; 1027 int table_len; 1028 int i, high, low; 1029 1030 /* 1031 * If we are charging, and the battery supplies a separate table 1032 * for this state, we use that in order to compensate for the 1033 * charging voltage. Otherwise we use the main table. 1034 */ 1035 if (charging && info->vbat2ri_charging) { 1036 vbat2ri = info->vbat2ri_charging; 1037 table_len = info->vbat2ri_charging_size; 1038 } else { 1039 vbat2ri = info->vbat2ri_discharging; 1040 table_len = info->vbat2ri_discharging_size; 1041 } 1042 1043 /* 1044 * If no tables are specified, or if we are above the highest voltage in 1045 * the voltage table, just return the factory specified internal resistance. 1046 */ 1047 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1048 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1049 return info->factory_internal_resistance_charging_uohm; 1050 else 1051 return info->factory_internal_resistance_uohm; 1052 } 1053 1054 /* Break loop at table_len - 1 because that is the highest index */ 1055 for (i = 0; i < table_len - 1; i++) 1056 if (vbat_uv > vbat2ri[i].vbat_uv) 1057 break; 1058 1059 /* The library function will deal with high == low */ 1060 if ((i == 0) || (i == (table_len - 1))) 1061 high = i; 1062 else 1063 high = i - 1; 1064 low = i; 1065 1066 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1067 vbat2ri[low].ri_uohm, 1068 vbat2ri[high].vbat_uv, 1069 vbat2ri[high].ri_uohm, 1070 vbat_uv); 1071 } 1072 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1073 1074 const struct power_supply_maintenance_charge_table * 1075 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1076 int index) 1077 { 1078 if (index >= info->maintenance_charge_size) 1079 return NULL; 1080 return &info->maintenance_charge[index]; 1081 } 1082 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1083 1084 /** 1085 * power_supply_ocv2cap_simple() - find the battery capacity 1086 * @table: Pointer to battery OCV lookup table 1087 * @table_len: OCV table length 1088 * @ocv: Current OCV value 1089 * 1090 * This helper function is used to look up battery capacity according to 1091 * current OCV value from one OCV table, and the OCV table must be ordered 1092 * descending. 1093 * 1094 * Return: the battery capacity. 1095 */ 1096 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 1097 int table_len, int ocv) 1098 { 1099 int i, high, low; 1100 1101 for (i = 0; i < table_len; i++) 1102 if (ocv > table[i].ocv) 1103 break; 1104 1105 /* The library function will deal with high == low */ 1106 if (i == 0) 1107 high = low = i; 1108 else if (i == table_len) 1109 high = low = i - 1; 1110 else 1111 high = (low = i) - 1; 1112 1113 return fixp_linear_interpolate(table[low].ocv, 1114 table[low].capacity, 1115 table[high].ocv, 1116 table[high].capacity, 1117 ocv); 1118 } 1119 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1120 1121 struct power_supply_battery_ocv_table * 1122 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1123 int temp, int *table_len) 1124 { 1125 int best_temp_diff = INT_MAX, temp_diff; 1126 u8 i, best_index = 0; 1127 1128 if (!info->ocv_table[0]) 1129 return NULL; 1130 1131 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1132 /* Out of capacity tables */ 1133 if (!info->ocv_table[i]) 1134 break; 1135 1136 temp_diff = abs(info->ocv_temp[i] - temp); 1137 1138 if (temp_diff < best_temp_diff) { 1139 best_temp_diff = temp_diff; 1140 best_index = i; 1141 } 1142 } 1143 1144 *table_len = info->ocv_table_size[best_index]; 1145 return info->ocv_table[best_index]; 1146 } 1147 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1148 1149 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1150 int ocv, int temp) 1151 { 1152 struct power_supply_battery_ocv_table *table; 1153 int table_len; 1154 1155 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1156 if (!table) 1157 return -EINVAL; 1158 1159 return power_supply_ocv2cap_simple(table, table_len, ocv); 1160 } 1161 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1162 1163 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1164 int resistance) 1165 { 1166 int low, high; 1167 1168 /* Nothing like this can be checked */ 1169 if (info->bti_resistance_ohm <= 0) 1170 return false; 1171 1172 /* This will be extremely strict and unlikely to work */ 1173 if (info->bti_resistance_tolerance <= 0) 1174 return (info->bti_resistance_ohm == resistance); 1175 1176 low = info->bti_resistance_ohm - 1177 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1178 high = info->bti_resistance_ohm + 1179 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1180 1181 return ((resistance >= low) && (resistance <= high)); 1182 } 1183 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1184 1185 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1186 enum power_supply_property psp) 1187 { 1188 bool found = false; 1189 int i; 1190 1191 for (i = 0; i < psy_desc->num_properties; i++) { 1192 if (psy_desc->properties[i] == psp) { 1193 found = true; 1194 break; 1195 } 1196 } 1197 1198 return found; 1199 } 1200 1201 int power_supply_get_property(struct power_supply *psy, 1202 enum power_supply_property psp, 1203 union power_supply_propval *val) 1204 { 1205 if (atomic_read(&psy->use_cnt) <= 0) { 1206 if (!psy->initialized) 1207 return -EAGAIN; 1208 return -ENODEV; 1209 } 1210 1211 if (psy_has_property(psy->desc, psp)) 1212 return psy->desc->get_property(psy, psp, val); 1213 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1214 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1215 else 1216 return -EINVAL; 1217 } 1218 EXPORT_SYMBOL_GPL(power_supply_get_property); 1219 1220 int power_supply_set_property(struct power_supply *psy, 1221 enum power_supply_property psp, 1222 const union power_supply_propval *val) 1223 { 1224 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1225 return -ENODEV; 1226 1227 return psy->desc->set_property(psy, psp, val); 1228 } 1229 EXPORT_SYMBOL_GPL(power_supply_set_property); 1230 1231 int power_supply_property_is_writeable(struct power_supply *psy, 1232 enum power_supply_property psp) 1233 { 1234 return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp); 1235 } 1236 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); 1237 1238 void power_supply_external_power_changed(struct power_supply *psy) 1239 { 1240 if (atomic_read(&psy->use_cnt) <= 0 || 1241 !psy->desc->external_power_changed) 1242 return; 1243 1244 psy->desc->external_power_changed(psy); 1245 } 1246 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1247 1248 int power_supply_powers(struct power_supply *psy, struct device *dev) 1249 { 1250 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1251 } 1252 EXPORT_SYMBOL_GPL(power_supply_powers); 1253 1254 static void power_supply_dev_release(struct device *dev) 1255 { 1256 struct power_supply *psy = to_power_supply(dev); 1257 1258 dev_dbg(dev, "%s\n", __func__); 1259 kfree(psy); 1260 } 1261 1262 int power_supply_reg_notifier(struct notifier_block *nb) 1263 { 1264 return blocking_notifier_chain_register(&power_supply_notifier, nb); 1265 } 1266 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1267 1268 void power_supply_unreg_notifier(struct notifier_block *nb) 1269 { 1270 blocking_notifier_chain_unregister(&power_supply_notifier, nb); 1271 } 1272 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1273 1274 #ifdef CONFIG_THERMAL 1275 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1276 int *temp) 1277 { 1278 struct power_supply *psy; 1279 union power_supply_propval val; 1280 int ret; 1281 1282 WARN_ON(tzd == NULL); 1283 psy = thermal_zone_device_priv(tzd); 1284 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1285 if (ret) 1286 return ret; 1287 1288 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1289 *temp = val.intval * 100; 1290 1291 return ret; 1292 } 1293 1294 static const struct thermal_zone_device_ops psy_tzd_ops = { 1295 .get_temp = power_supply_read_temp, 1296 }; 1297 1298 static int psy_register_thermal(struct power_supply *psy) 1299 { 1300 int ret; 1301 1302 if (psy->desc->no_thermal) 1303 return 0; 1304 1305 /* Register battery zone device psy reports temperature */ 1306 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1307 /* Prefer our hwmon device and avoid duplicates */ 1308 struct thermal_zone_params tzp = { 1309 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1310 }; 1311 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1312 psy, &psy_tzd_ops, &tzp); 1313 if (IS_ERR(psy->tzd)) 1314 return PTR_ERR(psy->tzd); 1315 ret = thermal_zone_device_enable(psy->tzd); 1316 if (ret) 1317 thermal_zone_device_unregister(psy->tzd); 1318 return ret; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static void psy_unregister_thermal(struct power_supply *psy) 1325 { 1326 if (IS_ERR_OR_NULL(psy->tzd)) 1327 return; 1328 thermal_zone_device_unregister(psy->tzd); 1329 } 1330 1331 #else 1332 static int psy_register_thermal(struct power_supply *psy) 1333 { 1334 return 0; 1335 } 1336 1337 static void psy_unregister_thermal(struct power_supply *psy) 1338 { 1339 } 1340 #endif 1341 1342 static struct power_supply *__must_check 1343 __power_supply_register(struct device *parent, 1344 const struct power_supply_desc *desc, 1345 const struct power_supply_config *cfg, 1346 bool ws) 1347 { 1348 struct device *dev; 1349 struct power_supply *psy; 1350 int rc; 1351 1352 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1353 return ERR_PTR(-EINVAL); 1354 1355 if (!parent) 1356 pr_warn("%s: Expected proper parent device for '%s'\n", 1357 __func__, desc->name); 1358 1359 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1360 if (!psy) 1361 return ERR_PTR(-ENOMEM); 1362 1363 dev = &psy->dev; 1364 1365 device_initialize(dev); 1366 1367 dev->class = &power_supply_class; 1368 dev->type = &power_supply_dev_type; 1369 dev->parent = parent; 1370 dev->release = power_supply_dev_release; 1371 dev_set_drvdata(dev, psy); 1372 psy->desc = desc; 1373 if (cfg) { 1374 dev->groups = cfg->attr_grp; 1375 psy->drv_data = cfg->drv_data; 1376 psy->of_node = 1377 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1378 dev->of_node = psy->of_node; 1379 psy->supplied_to = cfg->supplied_to; 1380 psy->num_supplicants = cfg->num_supplicants; 1381 } 1382 1383 rc = dev_set_name(dev, "%s", desc->name); 1384 if (rc) 1385 goto dev_set_name_failed; 1386 1387 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1388 INIT_DELAYED_WORK(&psy->deferred_register_work, 1389 power_supply_deferred_register_work); 1390 1391 rc = power_supply_check_supplies(psy); 1392 if (rc) { 1393 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1394 goto check_supplies_failed; 1395 } 1396 1397 /* 1398 * Expose constant battery info, if it is available. While there are 1399 * some chargers accessing constant battery data, we only want to 1400 * expose battery data to userspace for battery devices. 1401 */ 1402 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1403 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1404 if (rc && rc != -ENODEV && rc != -ENOENT) 1405 goto check_supplies_failed; 1406 } 1407 1408 spin_lock_init(&psy->changed_lock); 1409 rc = device_add(dev); 1410 if (rc) 1411 goto device_add_failed; 1412 1413 rc = device_init_wakeup(dev, ws); 1414 if (rc) 1415 goto wakeup_init_failed; 1416 1417 rc = psy_register_thermal(psy); 1418 if (rc) 1419 goto register_thermal_failed; 1420 1421 rc = power_supply_create_triggers(psy); 1422 if (rc) 1423 goto create_triggers_failed; 1424 1425 rc = power_supply_add_hwmon_sysfs(psy); 1426 if (rc) 1427 goto add_hwmon_sysfs_failed; 1428 1429 /* 1430 * Update use_cnt after any uevents (most notably from device_add()). 1431 * We are here still during driver's probe but 1432 * the power_supply_uevent() calls back driver's get_property 1433 * method so: 1434 * 1. Driver did not assigned the returned struct power_supply, 1435 * 2. Driver could not finish initialization (anything in its probe 1436 * after calling power_supply_register()). 1437 */ 1438 atomic_inc(&psy->use_cnt); 1439 psy->initialized = true; 1440 1441 queue_delayed_work(system_power_efficient_wq, 1442 &psy->deferred_register_work, 1443 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1444 1445 return psy; 1446 1447 add_hwmon_sysfs_failed: 1448 power_supply_remove_triggers(psy); 1449 create_triggers_failed: 1450 psy_unregister_thermal(psy); 1451 register_thermal_failed: 1452 wakeup_init_failed: 1453 device_del(dev); 1454 device_add_failed: 1455 check_supplies_failed: 1456 dev_set_name_failed: 1457 put_device(dev); 1458 return ERR_PTR(rc); 1459 } 1460 1461 /** 1462 * power_supply_register() - Register new power supply 1463 * @parent: Device to be a parent of power supply's device, usually 1464 * the device which probe function calls this 1465 * @desc: Description of power supply, must be valid through whole 1466 * lifetime of this power supply 1467 * @cfg: Run-time specific configuration accessed during registering, 1468 * may be NULL 1469 * 1470 * Return: A pointer to newly allocated power_supply on success 1471 * or ERR_PTR otherwise. 1472 * Use power_supply_unregister() on returned power_supply pointer to release 1473 * resources. 1474 */ 1475 struct power_supply *__must_check power_supply_register(struct device *parent, 1476 const struct power_supply_desc *desc, 1477 const struct power_supply_config *cfg) 1478 { 1479 return __power_supply_register(parent, desc, cfg, true); 1480 } 1481 EXPORT_SYMBOL_GPL(power_supply_register); 1482 1483 /** 1484 * power_supply_register_no_ws() - Register new non-waking-source power supply 1485 * @parent: Device to be a parent of power supply's device, usually 1486 * the device which probe function calls this 1487 * @desc: Description of power supply, must be valid through whole 1488 * lifetime of this power supply 1489 * @cfg: Run-time specific configuration accessed during registering, 1490 * may be NULL 1491 * 1492 * Return: A pointer to newly allocated power_supply on success 1493 * or ERR_PTR otherwise. 1494 * Use power_supply_unregister() on returned power_supply pointer to release 1495 * resources. 1496 */ 1497 struct power_supply *__must_check 1498 power_supply_register_no_ws(struct device *parent, 1499 const struct power_supply_desc *desc, 1500 const struct power_supply_config *cfg) 1501 { 1502 return __power_supply_register(parent, desc, cfg, false); 1503 } 1504 EXPORT_SYMBOL_GPL(power_supply_register_no_ws); 1505 1506 static void devm_power_supply_release(struct device *dev, void *res) 1507 { 1508 struct power_supply **psy = res; 1509 1510 power_supply_unregister(*psy); 1511 } 1512 1513 /** 1514 * devm_power_supply_register() - Register managed power supply 1515 * @parent: Device to be a parent of power supply's device, usually 1516 * the device which probe function calls this 1517 * @desc: Description of power supply, must be valid through whole 1518 * lifetime of this power supply 1519 * @cfg: Run-time specific configuration accessed during registering, 1520 * may be NULL 1521 * 1522 * Return: A pointer to newly allocated power_supply on success 1523 * or ERR_PTR otherwise. 1524 * The returned power_supply pointer will be automatically unregistered 1525 * on driver detach. 1526 */ 1527 struct power_supply *__must_check 1528 devm_power_supply_register(struct device *parent, 1529 const struct power_supply_desc *desc, 1530 const struct power_supply_config *cfg) 1531 { 1532 struct power_supply **ptr, *psy; 1533 1534 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1535 1536 if (!ptr) 1537 return ERR_PTR(-ENOMEM); 1538 psy = __power_supply_register(parent, desc, cfg, true); 1539 if (IS_ERR(psy)) { 1540 devres_free(ptr); 1541 } else { 1542 *ptr = psy; 1543 devres_add(parent, ptr); 1544 } 1545 return psy; 1546 } 1547 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1548 1549 /** 1550 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply 1551 * @parent: Device to be a parent of power supply's device, usually 1552 * the device which probe function calls this 1553 * @desc: Description of power supply, must be valid through whole 1554 * lifetime of this power supply 1555 * @cfg: Run-time specific configuration accessed during registering, 1556 * may be NULL 1557 * 1558 * Return: A pointer to newly allocated power_supply on success 1559 * or ERR_PTR otherwise. 1560 * The returned power_supply pointer will be automatically unregistered 1561 * on driver detach. 1562 */ 1563 struct power_supply *__must_check 1564 devm_power_supply_register_no_ws(struct device *parent, 1565 const struct power_supply_desc *desc, 1566 const struct power_supply_config *cfg) 1567 { 1568 struct power_supply **ptr, *psy; 1569 1570 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1571 1572 if (!ptr) 1573 return ERR_PTR(-ENOMEM); 1574 psy = __power_supply_register(parent, desc, cfg, false); 1575 if (IS_ERR(psy)) { 1576 devres_free(ptr); 1577 } else { 1578 *ptr = psy; 1579 devres_add(parent, ptr); 1580 } 1581 return psy; 1582 } 1583 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); 1584 1585 /** 1586 * power_supply_unregister() - Remove this power supply from system 1587 * @psy: Pointer to power supply to unregister 1588 * 1589 * Remove this power supply from the system. The resources of power supply 1590 * will be freed here or on last power_supply_put() call. 1591 */ 1592 void power_supply_unregister(struct power_supply *psy) 1593 { 1594 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1595 psy->removing = true; 1596 cancel_work_sync(&psy->changed_work); 1597 cancel_delayed_work_sync(&psy->deferred_register_work); 1598 sysfs_remove_link(&psy->dev.kobj, "powers"); 1599 power_supply_remove_hwmon_sysfs(psy); 1600 power_supply_remove_triggers(psy); 1601 psy_unregister_thermal(psy); 1602 device_init_wakeup(&psy->dev, false); 1603 device_unregister(&psy->dev); 1604 } 1605 EXPORT_SYMBOL_GPL(power_supply_unregister); 1606 1607 void *power_supply_get_drvdata(struct power_supply *psy) 1608 { 1609 return psy->drv_data; 1610 } 1611 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1612 1613 static int __init power_supply_class_init(void) 1614 { 1615 power_supply_init_attrs(); 1616 return class_register(&power_supply_class); 1617 } 1618 1619 static void __exit power_supply_class_exit(void) 1620 { 1621 class_unregister(&power_supply_class); 1622 } 1623 1624 subsys_initcall(power_supply_class_init); 1625 module_exit(power_supply_class_exit); 1626 1627 MODULE_DESCRIPTION("Universal power supply monitor class"); 1628 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>"); 1629 MODULE_AUTHOR("Szabolcs Gyurko"); 1630 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>"); 1631