1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/cleanup.h> 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/of.h> 22 #include <linux/power_supply.h> 23 #include <linux/property.h> 24 #include <linux/thermal.h> 25 #include <linux/fixp-arith.h> 26 #include "power_supply.h" 27 #include "samsung-sdi-battery.h" 28 29 static const struct class power_supply_class = { 30 .name = "power_supply", 31 .dev_uevent = power_supply_uevent, 32 }; 33 34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier); 35 36 static const struct device_type power_supply_dev_type = { 37 .name = "power_supply", 38 .groups = power_supply_attr_groups, 39 }; 40 41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 42 43 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 44 struct power_supply *supply) 45 { 46 int i; 47 48 if (!supply->supplied_from && !supplier->supplied_to) 49 return false; 50 51 /* Support both supplied_to and supplied_from modes */ 52 if (supply->supplied_from) { 53 if (!supplier->desc->name) 54 return false; 55 for (i = 0; i < supply->num_supplies; i++) 56 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 57 return true; 58 } else { 59 if (!supply->desc->name) 60 return false; 61 for (i = 0; i < supplier->num_supplicants; i++) 62 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 63 return true; 64 } 65 66 return false; 67 } 68 69 static int __power_supply_changed_work(struct device *dev, void *data) 70 { 71 struct power_supply *psy = data; 72 struct power_supply *pst = dev_get_drvdata(dev); 73 74 if (__power_supply_is_supplied_by(psy, pst)) { 75 if (pst->desc->external_power_changed) 76 pst->desc->external_power_changed(pst); 77 } 78 79 return 0; 80 } 81 82 static void power_supply_changed_work(struct work_struct *work) 83 { 84 unsigned long flags; 85 struct power_supply *psy = container_of(work, struct power_supply, 86 changed_work); 87 88 dev_dbg(&psy->dev, "%s\n", __func__); 89 90 spin_lock_irqsave(&psy->changed_lock, flags); 91 /* 92 * Check 'changed' here to avoid issues due to race between 93 * power_supply_changed() and this routine. In worst case 94 * power_supply_changed() can be called again just before we take above 95 * lock. During the first call of this routine we will mark 'changed' as 96 * false and it will stay false for the next call as well. 97 */ 98 if (likely(psy->changed)) { 99 psy->changed = false; 100 spin_unlock_irqrestore(&psy->changed_lock, flags); 101 power_supply_for_each_device(psy, __power_supply_changed_work); 102 power_supply_update_leds(psy); 103 blocking_notifier_call_chain(&power_supply_notifier, 104 PSY_EVENT_PROP_CHANGED, psy); 105 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 106 spin_lock_irqsave(&psy->changed_lock, flags); 107 } 108 109 /* 110 * Hold the wakeup_source until all events are processed. 111 * power_supply_changed() might have called again and have set 'changed' 112 * to true. 113 */ 114 if (likely(!psy->changed)) 115 pm_relax(&psy->dev); 116 spin_unlock_irqrestore(&psy->changed_lock, flags); 117 } 118 119 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data)) 120 { 121 return class_for_each_device(&power_supply_class, NULL, data, fn); 122 } 123 EXPORT_SYMBOL_GPL(power_supply_for_each_device); 124 125 void power_supply_changed(struct power_supply *psy) 126 { 127 unsigned long flags; 128 129 dev_dbg(&psy->dev, "%s\n", __func__); 130 131 spin_lock_irqsave(&psy->changed_lock, flags); 132 psy->changed = true; 133 pm_stay_awake(&psy->dev); 134 spin_unlock_irqrestore(&psy->changed_lock, flags); 135 schedule_work(&psy->changed_work); 136 } 137 EXPORT_SYMBOL_GPL(power_supply_changed); 138 139 /* 140 * Notify that power supply was registered after parent finished the probing. 141 * 142 * Often power supply is registered from driver's probe function. However 143 * calling power_supply_changed() directly from power_supply_register() 144 * would lead to execution of get_property() function provided by the driver 145 * too early - before the probe ends. 146 * 147 * Avoid that by waiting on parent's mutex. 148 */ 149 static void power_supply_deferred_register_work(struct work_struct *work) 150 { 151 struct power_supply *psy = container_of(work, struct power_supply, 152 deferred_register_work.work); 153 154 if (psy->dev.parent) { 155 while (!device_trylock(psy->dev.parent)) { 156 if (psy->removing) 157 return; 158 msleep(10); 159 } 160 } 161 162 power_supply_changed(psy); 163 164 if (psy->dev.parent) 165 device_unlock(psy->dev.parent); 166 } 167 168 #ifdef CONFIG_OF 169 static int __power_supply_populate_supplied_from(struct device *dev, 170 void *data) 171 { 172 struct power_supply *psy = data; 173 struct power_supply *epsy = dev_get_drvdata(dev); 174 struct device_node *np; 175 int i = 0; 176 177 do { 178 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 179 if (!np) 180 break; 181 182 if (np == epsy->of_node) { 183 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 184 psy->desc->name, epsy->desc->name); 185 psy->supplied_from[i-1] = (char *)epsy->desc->name; 186 psy->num_supplies++; 187 of_node_put(np); 188 break; 189 } 190 of_node_put(np); 191 } while (np); 192 193 return 0; 194 } 195 196 static int power_supply_populate_supplied_from(struct power_supply *psy) 197 { 198 int error; 199 200 error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from); 201 202 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 203 204 return error; 205 } 206 207 static int __power_supply_find_supply_from_node(struct device *dev, 208 void *data) 209 { 210 struct device_node *np = data; 211 struct power_supply *epsy = dev_get_drvdata(dev); 212 213 /* returning non-zero breaks out of power_supply_for_each_device loop */ 214 if (epsy->of_node == np) 215 return 1; 216 217 return 0; 218 } 219 220 static int power_supply_find_supply_from_node(struct device_node *supply_node) 221 { 222 int error; 223 224 /* 225 * power_supply_for_each_device() either returns its own errors or values 226 * returned by __power_supply_find_supply_from_node(). 227 * 228 * __power_supply_find_supply_from_node() will return 0 (no match) 229 * or 1 (match). 230 * 231 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if 232 * it returned 0, or error as returned by it. 233 */ 234 error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node); 235 236 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 237 } 238 239 static int power_supply_check_supplies(struct power_supply *psy) 240 { 241 struct device_node *np; 242 int cnt = 0; 243 244 /* If there is already a list honor it */ 245 if (psy->supplied_from && psy->num_supplies > 0) 246 return 0; 247 248 /* No device node found, nothing to do */ 249 if (!psy->of_node) 250 return 0; 251 252 do { 253 int ret; 254 255 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 256 if (!np) 257 break; 258 259 ret = power_supply_find_supply_from_node(np); 260 of_node_put(np); 261 262 if (ret) { 263 dev_dbg(&psy->dev, "Failed to find supply!\n"); 264 return ret; 265 } 266 } while (np); 267 268 /* Missing valid "power-supplies" entries */ 269 if (cnt == 1) 270 return 0; 271 272 /* All supplies found, allocate char ** array for filling */ 273 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 274 GFP_KERNEL); 275 if (!psy->supplied_from) 276 return -ENOMEM; 277 278 *psy->supplied_from = devm_kcalloc(&psy->dev, 279 cnt - 1, sizeof(**psy->supplied_from), 280 GFP_KERNEL); 281 if (!*psy->supplied_from) 282 return -ENOMEM; 283 284 return power_supply_populate_supplied_from(psy); 285 } 286 #else 287 static int power_supply_check_supplies(struct power_supply *psy) 288 { 289 int nval, ret; 290 291 if (!psy->dev.parent) 292 return 0; 293 294 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 295 if (nval <= 0) 296 return 0; 297 298 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 299 sizeof(char *), GFP_KERNEL); 300 if (!psy->supplied_from) 301 return -ENOMEM; 302 303 ret = device_property_read_string_array(psy->dev.parent, 304 "supplied-from", (const char **)psy->supplied_from, nval); 305 if (ret < 0) 306 return ret; 307 308 psy->num_supplies = nval; 309 310 return 0; 311 } 312 #endif 313 314 struct psy_am_i_supplied_data { 315 struct power_supply *psy; 316 unsigned int count; 317 }; 318 319 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 320 { 321 union power_supply_propval ret = {0,}; 322 struct power_supply *epsy = dev_get_drvdata(dev); 323 struct psy_am_i_supplied_data *data = _data; 324 325 if (__power_supply_is_supplied_by(epsy, data->psy)) { 326 data->count++; 327 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 328 &ret)) 329 return ret.intval; 330 } 331 332 return 0; 333 } 334 335 int power_supply_am_i_supplied(struct power_supply *psy) 336 { 337 struct psy_am_i_supplied_data data = { psy, 0 }; 338 int error; 339 340 error = power_supply_for_each_device(&data, __power_supply_am_i_supplied); 341 342 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 343 344 if (data.count == 0) 345 return -ENODEV; 346 347 return error; 348 } 349 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 350 351 static int __power_supply_is_system_supplied(struct device *dev, void *data) 352 { 353 union power_supply_propval ret = {0,}; 354 struct power_supply *psy = dev_get_drvdata(dev); 355 unsigned int *count = data; 356 357 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 358 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 359 return 0; 360 361 (*count)++; 362 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 363 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 364 &ret)) 365 return ret.intval; 366 367 return 0; 368 } 369 370 int power_supply_is_system_supplied(void) 371 { 372 int error; 373 unsigned int count = 0; 374 375 error = power_supply_for_each_device(&count, __power_supply_is_system_supplied); 376 377 /* 378 * If no system scope power class device was found at all, most probably we 379 * are running on a desktop system, so assume we are on mains power. 380 */ 381 if (count == 0) 382 return 1; 383 384 return error; 385 } 386 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 387 388 struct psy_get_supplier_prop_data { 389 struct power_supply *psy; 390 enum power_supply_property psp; 391 union power_supply_propval *val; 392 }; 393 394 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 395 { 396 struct power_supply *epsy = dev_get_drvdata(dev); 397 struct psy_get_supplier_prop_data *data = _data; 398 399 if (__power_supply_is_supplied_by(epsy, data->psy)) 400 if (!power_supply_get_property(epsy, data->psp, data->val)) 401 return 1; /* Success */ 402 403 return 0; /* Continue iterating */ 404 } 405 406 int power_supply_get_property_from_supplier(struct power_supply *psy, 407 enum power_supply_property psp, 408 union power_supply_propval *val) 409 { 410 struct psy_get_supplier_prop_data data = { 411 .psy = psy, 412 .psp = psp, 413 .val = val, 414 }; 415 int ret; 416 417 /* 418 * This function is not intended for use with a supply with multiple 419 * suppliers, we simply pick the first supply to report the psp. 420 */ 421 ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property); 422 if (ret < 0) 423 return ret; 424 if (ret == 0) 425 return -ENODEV; 426 427 return 0; 428 } 429 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 430 431 int power_supply_set_battery_charged(struct power_supply *psy) 432 { 433 if (atomic_read(&psy->use_cnt) >= 0 && 434 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 435 psy->desc->set_charged) { 436 psy->desc->set_charged(psy); 437 return 0; 438 } 439 440 return -EINVAL; 441 } 442 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 443 444 static int power_supply_match_device_by_name(struct device *dev, const void *data) 445 { 446 const char *name = data; 447 struct power_supply *psy = dev_get_drvdata(dev); 448 449 return strcmp(psy->desc->name, name) == 0; 450 } 451 452 /** 453 * power_supply_get_by_name() - Search for a power supply and returns its ref 454 * @name: Power supply name to fetch 455 * 456 * If power supply was found, it increases reference count for the 457 * internal power supply's device. The user should power_supply_put() 458 * after usage. 459 * 460 * Return: On success returns a reference to a power supply with 461 * matching name equals to @name, a NULL otherwise. 462 */ 463 struct power_supply *power_supply_get_by_name(const char *name) 464 { 465 struct power_supply *psy = NULL; 466 struct device *dev = class_find_device(&power_supply_class, NULL, name, 467 power_supply_match_device_by_name); 468 469 if (dev) { 470 psy = dev_get_drvdata(dev); 471 atomic_inc(&psy->use_cnt); 472 } 473 474 return psy; 475 } 476 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 477 478 /** 479 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 480 * @psy: Reference to put 481 * 482 * The reference to power supply should be put before unregistering 483 * the power supply. 484 */ 485 void power_supply_put(struct power_supply *psy) 486 { 487 atomic_dec(&psy->use_cnt); 488 put_device(&psy->dev); 489 } 490 EXPORT_SYMBOL_GPL(power_supply_put); 491 492 #ifdef CONFIG_OF 493 static int power_supply_match_device_node(struct device *dev, const void *data) 494 { 495 return dev->parent && dev->parent->of_node == data; 496 } 497 498 /** 499 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 500 * @np: Pointer to device node holding phandle property 501 * @property: Name of property holding a power supply name 502 * 503 * If power supply was found, it increases reference count for the 504 * internal power supply's device. The user should power_supply_put() 505 * after usage. 506 * 507 * Return: On success returns a reference to a power supply with 508 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 509 */ 510 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 511 const char *property) 512 { 513 struct device_node *power_supply_np; 514 struct power_supply *psy = NULL; 515 struct device *dev; 516 517 power_supply_np = of_parse_phandle(np, property, 0); 518 if (!power_supply_np) 519 return ERR_PTR(-ENODEV); 520 521 dev = class_find_device(&power_supply_class, NULL, power_supply_np, 522 power_supply_match_device_node); 523 524 of_node_put(power_supply_np); 525 526 if (dev) { 527 psy = dev_get_drvdata(dev); 528 atomic_inc(&psy->use_cnt); 529 } 530 531 return psy; 532 } 533 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 534 535 static void devm_power_supply_put(struct device *dev, void *res) 536 { 537 struct power_supply **psy = res; 538 539 power_supply_put(*psy); 540 } 541 542 /** 543 * devm_power_supply_get_by_phandle() - Resource managed version of 544 * power_supply_get_by_phandle() 545 * @dev: Pointer to device holding phandle property 546 * @property: Name of property holding a power supply phandle 547 * 548 * Return: On success returns a reference to a power supply with 549 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 550 */ 551 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 552 const char *property) 553 { 554 struct power_supply **ptr, *psy; 555 556 if (!dev->of_node) 557 return ERR_PTR(-ENODEV); 558 559 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 560 if (!ptr) 561 return ERR_PTR(-ENOMEM); 562 563 psy = power_supply_get_by_phandle(dev->of_node, property); 564 if (IS_ERR_OR_NULL(psy)) { 565 devres_free(ptr); 566 } else { 567 *ptr = psy; 568 devres_add(dev, ptr); 569 } 570 return psy; 571 } 572 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 573 #endif /* CONFIG_OF */ 574 575 int power_supply_get_battery_info(struct power_supply *psy, 576 struct power_supply_battery_info **info_out) 577 { 578 struct power_supply_resistance_temp_table *resist_table; 579 struct power_supply_battery_info *info; 580 struct device_node *battery_np = NULL; 581 struct fwnode_reference_args args; 582 struct fwnode_handle *fwnode = NULL; 583 const char *value; 584 int err, len, index; 585 const __be32 *list; 586 u32 min_max[2]; 587 588 if (psy->of_node) { 589 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 590 if (!battery_np) 591 return -ENODEV; 592 593 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 594 } else if (psy->dev.parent) { 595 err = fwnode_property_get_reference_args( 596 dev_fwnode(psy->dev.parent), 597 "monitored-battery", NULL, 0, 0, &args); 598 if (err) 599 return err; 600 601 fwnode = args.fwnode; 602 } 603 604 if (!fwnode) 605 return -ENOENT; 606 607 err = fwnode_property_read_string(fwnode, "compatible", &value); 608 if (err) 609 goto out_put_node; 610 611 612 /* Try static batteries first */ 613 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 614 if (!err) 615 goto out_ret_pointer; 616 else if (err == -ENODEV) 617 /* 618 * Device does not have a static battery. 619 * Proceed to look for a simple battery. 620 */ 621 err = 0; 622 623 if (strcmp("simple-battery", value)) { 624 err = -ENODEV; 625 goto out_put_node; 626 } 627 628 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 629 if (!info) { 630 err = -ENOMEM; 631 goto out_put_node; 632 } 633 634 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 635 info->energy_full_design_uwh = -EINVAL; 636 info->charge_full_design_uah = -EINVAL; 637 info->voltage_min_design_uv = -EINVAL; 638 info->voltage_max_design_uv = -EINVAL; 639 info->precharge_current_ua = -EINVAL; 640 info->charge_term_current_ua = -EINVAL; 641 info->constant_charge_current_max_ua = -EINVAL; 642 info->constant_charge_voltage_max_uv = -EINVAL; 643 info->tricklecharge_current_ua = -EINVAL; 644 info->precharge_voltage_max_uv = -EINVAL; 645 info->charge_restart_voltage_uv = -EINVAL; 646 info->overvoltage_limit_uv = -EINVAL; 647 info->maintenance_charge = NULL; 648 info->alert_low_temp_charge_current_ua = -EINVAL; 649 info->alert_low_temp_charge_voltage_uv = -EINVAL; 650 info->alert_high_temp_charge_current_ua = -EINVAL; 651 info->alert_high_temp_charge_voltage_uv = -EINVAL; 652 info->temp_ambient_alert_min = INT_MIN; 653 info->temp_ambient_alert_max = INT_MAX; 654 info->temp_alert_min = INT_MIN; 655 info->temp_alert_max = INT_MAX; 656 info->temp_min = INT_MIN; 657 info->temp_max = INT_MAX; 658 info->factory_internal_resistance_uohm = -EINVAL; 659 info->resist_table = NULL; 660 info->bti_resistance_ohm = -EINVAL; 661 info->bti_resistance_tolerance = -EINVAL; 662 663 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 664 info->ocv_table[index] = NULL; 665 info->ocv_temp[index] = -EINVAL; 666 info->ocv_table_size[index] = -EINVAL; 667 } 668 669 /* The property and field names below must correspond to elements 670 * in enum power_supply_property. For reasoning, see 671 * Documentation/power/power_supply_class.rst. 672 */ 673 674 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 675 if (!strcmp("nickel-cadmium", value)) 676 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 677 else if (!strcmp("nickel-metal-hydride", value)) 678 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 679 else if (!strcmp("lithium-ion", value)) 680 /* Imprecise lithium-ion type */ 681 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 682 else if (!strcmp("lithium-ion-polymer", value)) 683 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 684 else if (!strcmp("lithium-ion-iron-phosphate", value)) 685 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 686 else if (!strcmp("lithium-ion-manganese-oxide", value)) 687 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 688 else 689 dev_warn(&psy->dev, "%s unknown battery type\n", value); 690 } 691 692 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 693 &info->energy_full_design_uwh); 694 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 695 &info->charge_full_design_uah); 696 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 697 &info->voltage_min_design_uv); 698 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 699 &info->voltage_max_design_uv); 700 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 701 &info->tricklecharge_current_ua); 702 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 703 &info->precharge_current_ua); 704 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 705 &info->precharge_voltage_max_uv); 706 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 707 &info->charge_term_current_ua); 708 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 709 &info->charge_restart_voltage_uv); 710 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 711 &info->overvoltage_limit_uv); 712 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 713 &info->constant_charge_current_max_ua); 714 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 715 &info->constant_charge_voltage_max_uv); 716 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 717 &info->factory_internal_resistance_uohm); 718 719 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 720 min_max, ARRAY_SIZE(min_max))) { 721 info->temp_ambient_alert_min = min_max[0]; 722 info->temp_ambient_alert_max = min_max[1]; 723 } 724 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 725 min_max, ARRAY_SIZE(min_max))) { 726 info->temp_alert_min = min_max[0]; 727 info->temp_alert_max = min_max[1]; 728 } 729 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 730 min_max, ARRAY_SIZE(min_max))) { 731 info->temp_min = min_max[0]; 732 info->temp_max = min_max[1]; 733 } 734 735 /* 736 * The below code uses raw of-data parsing to parse 737 * /schemas/types.yaml#/definitions/uint32-matrix 738 * data, so for now this is only support with of. 739 */ 740 if (!battery_np) 741 goto out_ret_pointer; 742 743 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 744 if (len < 0 && len != -EINVAL) { 745 err = len; 746 goto out_put_node; 747 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 748 dev_err(&psy->dev, "Too many temperature values\n"); 749 err = -EINVAL; 750 goto out_put_node; 751 } else if (len > 0) { 752 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 753 info->ocv_temp, len); 754 } 755 756 for (index = 0; index < len; index++) { 757 struct power_supply_battery_ocv_table *table; 758 int i, tab_len, size; 759 760 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", 761 index); 762 if (!propname) { 763 power_supply_put_battery_info(psy, info); 764 err = -ENOMEM; 765 goto out_put_node; 766 } 767 list = of_get_property(battery_np, propname, &size); 768 if (!list || !size) { 769 dev_err(&psy->dev, "failed to get %s\n", propname); 770 power_supply_put_battery_info(psy, info); 771 err = -EINVAL; 772 goto out_put_node; 773 } 774 775 tab_len = size / (2 * sizeof(__be32)); 776 info->ocv_table_size[index] = tab_len; 777 778 info->ocv_table[index] = table = 779 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 780 if (!info->ocv_table[index]) { 781 power_supply_put_battery_info(psy, info); 782 err = -ENOMEM; 783 goto out_put_node; 784 } 785 786 for (i = 0; i < tab_len; i++) { 787 table[i].ocv = be32_to_cpu(*list); 788 list++; 789 table[i].capacity = be32_to_cpu(*list); 790 list++; 791 } 792 } 793 794 list = of_get_property(battery_np, "resistance-temp-table", &len); 795 if (!list || !len) 796 goto out_ret_pointer; 797 798 info->resist_table_size = len / (2 * sizeof(__be32)); 799 info->resist_table = resist_table = devm_kcalloc(&psy->dev, 800 info->resist_table_size, 801 sizeof(*resist_table), 802 GFP_KERNEL); 803 if (!info->resist_table) { 804 power_supply_put_battery_info(psy, info); 805 err = -ENOMEM; 806 goto out_put_node; 807 } 808 809 for (index = 0; index < info->resist_table_size; index++) { 810 resist_table[index].temp = be32_to_cpu(*list++); 811 resist_table[index].resistance = be32_to_cpu(*list++); 812 } 813 814 out_ret_pointer: 815 /* Finally return the whole thing */ 816 *info_out = info; 817 818 out_put_node: 819 fwnode_handle_put(fwnode); 820 of_node_put(battery_np); 821 return err; 822 } 823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 824 825 void power_supply_put_battery_info(struct power_supply *psy, 826 struct power_supply_battery_info *info) 827 { 828 int i; 829 830 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 831 if (info->ocv_table[i]) 832 devm_kfree(&psy->dev, info->ocv_table[i]); 833 } 834 835 if (info->resist_table) 836 devm_kfree(&psy->dev, info->resist_table); 837 838 devm_kfree(&psy->dev, info); 839 } 840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 841 842 const enum power_supply_property power_supply_battery_info_properties[] = { 843 POWER_SUPPLY_PROP_TECHNOLOGY, 844 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 845 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 846 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 847 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 848 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 849 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 851 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 853 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 854 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 855 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 856 POWER_SUPPLY_PROP_TEMP_MIN, 857 POWER_SUPPLY_PROP_TEMP_MAX, 858 }; 859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 860 861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 863 864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 865 enum power_supply_property psp) 866 { 867 if (!info) 868 return false; 869 870 switch (psp) { 871 case POWER_SUPPLY_PROP_TECHNOLOGY: 872 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 873 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 874 return info->energy_full_design_uwh >= 0; 875 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 876 return info->charge_full_design_uah >= 0; 877 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 878 return info->voltage_min_design_uv >= 0; 879 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 880 return info->voltage_max_design_uv >= 0; 881 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 882 return info->precharge_current_ua >= 0; 883 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 884 return info->charge_term_current_ua >= 0; 885 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 886 return info->constant_charge_current_max_ua >= 0; 887 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 888 return info->constant_charge_voltage_max_uv >= 0; 889 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 890 return info->temp_ambient_alert_min > INT_MIN; 891 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 892 return info->temp_ambient_alert_max < INT_MAX; 893 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 894 return info->temp_alert_min > INT_MIN; 895 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 896 return info->temp_alert_max < INT_MAX; 897 case POWER_SUPPLY_PROP_TEMP_MIN: 898 return info->temp_min > INT_MIN; 899 case POWER_SUPPLY_PROP_TEMP_MAX: 900 return info->temp_max < INT_MAX; 901 default: 902 return false; 903 } 904 } 905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 906 907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 908 enum power_supply_property psp, 909 union power_supply_propval *val) 910 { 911 if (!info) 912 return -EINVAL; 913 914 if (!power_supply_battery_info_has_prop(info, psp)) 915 return -EINVAL; 916 917 switch (psp) { 918 case POWER_SUPPLY_PROP_TECHNOLOGY: 919 val->intval = info->technology; 920 return 0; 921 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 922 val->intval = info->energy_full_design_uwh; 923 return 0; 924 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 925 val->intval = info->charge_full_design_uah; 926 return 0; 927 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 928 val->intval = info->voltage_min_design_uv; 929 return 0; 930 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 931 val->intval = info->voltage_max_design_uv; 932 return 0; 933 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 934 val->intval = info->precharge_current_ua; 935 return 0; 936 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 937 val->intval = info->charge_term_current_ua; 938 return 0; 939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 940 val->intval = info->constant_charge_current_max_ua; 941 return 0; 942 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 943 val->intval = info->constant_charge_voltage_max_uv; 944 return 0; 945 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 946 val->intval = info->temp_ambient_alert_min; 947 return 0; 948 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 949 val->intval = info->temp_ambient_alert_max; 950 return 0; 951 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 952 val->intval = info->temp_alert_min; 953 return 0; 954 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 955 val->intval = info->temp_alert_max; 956 return 0; 957 case POWER_SUPPLY_PROP_TEMP_MIN: 958 val->intval = info->temp_min; 959 return 0; 960 case POWER_SUPPLY_PROP_TEMP_MAX: 961 val->intval = info->temp_max; 962 return 0; 963 default: 964 return -EINVAL; 965 } 966 } 967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 968 969 /** 970 * power_supply_temp2resist_simple() - find the battery internal resistance 971 * percent from temperature 972 * @table: Pointer to battery resistance temperature table 973 * @table_len: The table length 974 * @temp: Current temperature 975 * 976 * This helper function is used to look up battery internal resistance percent 977 * according to current temperature value from the resistance temperature table, 978 * and the table must be ordered descending. Then the actual battery internal 979 * resistance = the ideal battery internal resistance * percent / 100. 980 * 981 * Return: the battery internal resistance percent 982 */ 983 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 984 int table_len, int temp) 985 { 986 int i, high, low; 987 988 for (i = 0; i < table_len; i++) 989 if (temp > table[i].temp) 990 break; 991 992 /* The library function will deal with high == low */ 993 if (i == 0) 994 high = low = i; 995 else if (i == table_len) 996 high = low = i - 1; 997 else 998 high = (low = i) - 1; 999 1000 return fixp_linear_interpolate(table[low].temp, 1001 table[low].resistance, 1002 table[high].temp, 1003 table[high].resistance, 1004 temp); 1005 } 1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1007 1008 /** 1009 * power_supply_vbat2ri() - find the battery internal resistance 1010 * from the battery voltage 1011 * @info: The battery information container 1012 * @vbat_uv: The battery voltage in microvolt 1013 * @charging: If we are charging (true) or not (false) 1014 * 1015 * This helper function is used to look up battery internal resistance 1016 * according to current battery voltage. Depending on whether the battery 1017 * is currently charging or not, different resistance will be returned. 1018 * 1019 * Returns the internal resistance in microohm or negative error code. 1020 */ 1021 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1022 int vbat_uv, bool charging) 1023 { 1024 const struct power_supply_vbat_ri_table *vbat2ri; 1025 int table_len; 1026 int i, high, low; 1027 1028 /* 1029 * If we are charging, and the battery supplies a separate table 1030 * for this state, we use that in order to compensate for the 1031 * charging voltage. Otherwise we use the main table. 1032 */ 1033 if (charging && info->vbat2ri_charging) { 1034 vbat2ri = info->vbat2ri_charging; 1035 table_len = info->vbat2ri_charging_size; 1036 } else { 1037 vbat2ri = info->vbat2ri_discharging; 1038 table_len = info->vbat2ri_discharging_size; 1039 } 1040 1041 /* 1042 * If no tables are specified, or if we are above the highest voltage in 1043 * the voltage table, just return the factory specified internal resistance. 1044 */ 1045 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1046 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1047 return info->factory_internal_resistance_charging_uohm; 1048 else 1049 return info->factory_internal_resistance_uohm; 1050 } 1051 1052 /* Break loop at table_len - 1 because that is the highest index */ 1053 for (i = 0; i < table_len - 1; i++) 1054 if (vbat_uv > vbat2ri[i].vbat_uv) 1055 break; 1056 1057 /* The library function will deal with high == low */ 1058 if ((i == 0) || (i == (table_len - 1))) 1059 high = i; 1060 else 1061 high = i - 1; 1062 low = i; 1063 1064 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1065 vbat2ri[low].ri_uohm, 1066 vbat2ri[high].vbat_uv, 1067 vbat2ri[high].ri_uohm, 1068 vbat_uv); 1069 } 1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1071 1072 const struct power_supply_maintenance_charge_table * 1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1074 int index) 1075 { 1076 if (index >= info->maintenance_charge_size) 1077 return NULL; 1078 return &info->maintenance_charge[index]; 1079 } 1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1081 1082 /** 1083 * power_supply_ocv2cap_simple() - find the battery capacity 1084 * @table: Pointer to battery OCV lookup table 1085 * @table_len: OCV table length 1086 * @ocv: Current OCV value 1087 * 1088 * This helper function is used to look up battery capacity according to 1089 * current OCV value from one OCV table, and the OCV table must be ordered 1090 * descending. 1091 * 1092 * Return: the battery capacity. 1093 */ 1094 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 1095 int table_len, int ocv) 1096 { 1097 int i, high, low; 1098 1099 for (i = 0; i < table_len; i++) 1100 if (ocv > table[i].ocv) 1101 break; 1102 1103 /* The library function will deal with high == low */ 1104 if (i == 0) 1105 high = low = i; 1106 else if (i == table_len) 1107 high = low = i - 1; 1108 else 1109 high = (low = i) - 1; 1110 1111 return fixp_linear_interpolate(table[low].ocv, 1112 table[low].capacity, 1113 table[high].ocv, 1114 table[high].capacity, 1115 ocv); 1116 } 1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1118 1119 const struct power_supply_battery_ocv_table * 1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1121 int temp, int *table_len) 1122 { 1123 int best_temp_diff = INT_MAX, temp_diff; 1124 u8 i, best_index = 0; 1125 1126 if (!info->ocv_table[0]) 1127 return NULL; 1128 1129 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1130 /* Out of capacity tables */ 1131 if (!info->ocv_table[i]) 1132 break; 1133 1134 temp_diff = abs(info->ocv_temp[i] - temp); 1135 1136 if (temp_diff < best_temp_diff) { 1137 best_temp_diff = temp_diff; 1138 best_index = i; 1139 } 1140 } 1141 1142 *table_len = info->ocv_table_size[best_index]; 1143 return info->ocv_table[best_index]; 1144 } 1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1146 1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1148 int ocv, int temp) 1149 { 1150 const struct power_supply_battery_ocv_table *table; 1151 int table_len; 1152 1153 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1154 if (!table) 1155 return -EINVAL; 1156 1157 return power_supply_ocv2cap_simple(table, table_len, ocv); 1158 } 1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1160 1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1162 int resistance) 1163 { 1164 int low, high; 1165 1166 /* Nothing like this can be checked */ 1167 if (info->bti_resistance_ohm <= 0) 1168 return false; 1169 1170 /* This will be extremely strict and unlikely to work */ 1171 if (info->bti_resistance_tolerance <= 0) 1172 return (info->bti_resistance_ohm == resistance); 1173 1174 low = info->bti_resistance_ohm - 1175 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1176 high = info->bti_resistance_ohm + 1177 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1178 1179 return ((resistance >= low) && (resistance <= high)); 1180 } 1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1182 1183 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1184 enum power_supply_property psp) 1185 { 1186 bool found = false; 1187 int i; 1188 1189 for (i = 0; i < psy_desc->num_properties; i++) { 1190 if (psy_desc->properties[i] == psp) { 1191 found = true; 1192 break; 1193 } 1194 } 1195 1196 return found; 1197 } 1198 1199 int power_supply_get_property(struct power_supply *psy, 1200 enum power_supply_property psp, 1201 union power_supply_propval *val) 1202 { 1203 if (atomic_read(&psy->use_cnt) <= 0) { 1204 if (!psy->initialized) 1205 return -EAGAIN; 1206 return -ENODEV; 1207 } 1208 1209 if (psy_has_property(psy->desc, psp)) 1210 return psy->desc->get_property(psy, psp, val); 1211 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1212 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1213 else 1214 return -EINVAL; 1215 } 1216 EXPORT_SYMBOL_GPL(power_supply_get_property); 1217 1218 int power_supply_set_property(struct power_supply *psy, 1219 enum power_supply_property psp, 1220 const union power_supply_propval *val) 1221 { 1222 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1223 return -ENODEV; 1224 1225 return psy->desc->set_property(psy, psp, val); 1226 } 1227 EXPORT_SYMBOL_GPL(power_supply_set_property); 1228 1229 int power_supply_property_is_writeable(struct power_supply *psy, 1230 enum power_supply_property psp) 1231 { 1232 return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp); 1233 } 1234 1235 void power_supply_external_power_changed(struct power_supply *psy) 1236 { 1237 if (atomic_read(&psy->use_cnt) <= 0 || 1238 !psy->desc->external_power_changed) 1239 return; 1240 1241 psy->desc->external_power_changed(psy); 1242 } 1243 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1244 1245 int power_supply_powers(struct power_supply *psy, struct device *dev) 1246 { 1247 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1248 } 1249 EXPORT_SYMBOL_GPL(power_supply_powers); 1250 1251 static void power_supply_dev_release(struct device *dev) 1252 { 1253 struct power_supply *psy = to_power_supply(dev); 1254 1255 dev_dbg(dev, "%s\n", __func__); 1256 kfree(psy); 1257 } 1258 1259 int power_supply_reg_notifier(struct notifier_block *nb) 1260 { 1261 return blocking_notifier_chain_register(&power_supply_notifier, nb); 1262 } 1263 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1264 1265 void power_supply_unreg_notifier(struct notifier_block *nb) 1266 { 1267 blocking_notifier_chain_unregister(&power_supply_notifier, nb); 1268 } 1269 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1270 1271 #ifdef CONFIG_THERMAL 1272 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1273 int *temp) 1274 { 1275 struct power_supply *psy; 1276 union power_supply_propval val; 1277 int ret; 1278 1279 WARN_ON(tzd == NULL); 1280 psy = thermal_zone_device_priv(tzd); 1281 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1282 if (ret) 1283 return ret; 1284 1285 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1286 *temp = val.intval * 100; 1287 1288 return ret; 1289 } 1290 1291 static const struct thermal_zone_device_ops psy_tzd_ops = { 1292 .get_temp = power_supply_read_temp, 1293 }; 1294 1295 static int psy_register_thermal(struct power_supply *psy) 1296 { 1297 int ret; 1298 1299 if (psy->desc->no_thermal) 1300 return 0; 1301 1302 /* Register battery zone device psy reports temperature */ 1303 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1304 /* Prefer our hwmon device and avoid duplicates */ 1305 struct thermal_zone_params tzp = { 1306 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1307 }; 1308 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1309 psy, &psy_tzd_ops, &tzp); 1310 if (IS_ERR(psy->tzd)) 1311 return PTR_ERR(psy->tzd); 1312 ret = thermal_zone_device_enable(psy->tzd); 1313 if (ret) 1314 thermal_zone_device_unregister(psy->tzd); 1315 return ret; 1316 } 1317 1318 return 0; 1319 } 1320 1321 static void psy_unregister_thermal(struct power_supply *psy) 1322 { 1323 if (IS_ERR_OR_NULL(psy->tzd)) 1324 return; 1325 thermal_zone_device_unregister(psy->tzd); 1326 } 1327 1328 #else 1329 static int psy_register_thermal(struct power_supply *psy) 1330 { 1331 return 0; 1332 } 1333 1334 static void psy_unregister_thermal(struct power_supply *psy) 1335 { 1336 } 1337 #endif 1338 1339 static struct power_supply *__must_check 1340 __power_supply_register(struct device *parent, 1341 const struct power_supply_desc *desc, 1342 const struct power_supply_config *cfg) 1343 { 1344 struct device *dev; 1345 struct power_supply *psy; 1346 int rc; 1347 1348 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1349 return ERR_PTR(-EINVAL); 1350 1351 if (!parent) 1352 pr_warn("%s: Expected proper parent device for '%s'\n", 1353 __func__, desc->name); 1354 1355 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1356 if (!psy) 1357 return ERR_PTR(-ENOMEM); 1358 1359 dev = &psy->dev; 1360 1361 device_initialize(dev); 1362 1363 dev->class = &power_supply_class; 1364 dev->type = &power_supply_dev_type; 1365 dev->parent = parent; 1366 dev->release = power_supply_dev_release; 1367 dev_set_drvdata(dev, psy); 1368 psy->desc = desc; 1369 if (cfg) { 1370 dev->groups = cfg->attr_grp; 1371 psy->drv_data = cfg->drv_data; 1372 psy->of_node = 1373 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1374 dev->of_node = psy->of_node; 1375 psy->supplied_to = cfg->supplied_to; 1376 psy->num_supplicants = cfg->num_supplicants; 1377 } 1378 1379 rc = dev_set_name(dev, "%s", desc->name); 1380 if (rc) 1381 goto dev_set_name_failed; 1382 1383 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1384 INIT_DELAYED_WORK(&psy->deferred_register_work, 1385 power_supply_deferred_register_work); 1386 1387 rc = power_supply_check_supplies(psy); 1388 if (rc) { 1389 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1390 goto check_supplies_failed; 1391 } 1392 1393 /* 1394 * Expose constant battery info, if it is available. While there are 1395 * some chargers accessing constant battery data, we only want to 1396 * expose battery data to userspace for battery devices. 1397 */ 1398 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1399 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1400 if (rc && rc != -ENODEV && rc != -ENOENT) 1401 goto check_supplies_failed; 1402 } 1403 1404 spin_lock_init(&psy->changed_lock); 1405 rc = device_add(dev); 1406 if (rc) 1407 goto device_add_failed; 1408 1409 rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true); 1410 if (rc) 1411 goto wakeup_init_failed; 1412 1413 rc = psy_register_thermal(psy); 1414 if (rc) 1415 goto register_thermal_failed; 1416 1417 rc = power_supply_create_triggers(psy); 1418 if (rc) 1419 goto create_triggers_failed; 1420 1421 rc = power_supply_add_hwmon_sysfs(psy); 1422 if (rc) 1423 goto add_hwmon_sysfs_failed; 1424 1425 /* 1426 * Update use_cnt after any uevents (most notably from device_add()). 1427 * We are here still during driver's probe but 1428 * the power_supply_uevent() calls back driver's get_property 1429 * method so: 1430 * 1. Driver did not assigned the returned struct power_supply, 1431 * 2. Driver could not finish initialization (anything in its probe 1432 * after calling power_supply_register()). 1433 */ 1434 atomic_inc(&psy->use_cnt); 1435 psy->initialized = true; 1436 1437 queue_delayed_work(system_power_efficient_wq, 1438 &psy->deferred_register_work, 1439 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1440 1441 return psy; 1442 1443 add_hwmon_sysfs_failed: 1444 power_supply_remove_triggers(psy); 1445 create_triggers_failed: 1446 psy_unregister_thermal(psy); 1447 register_thermal_failed: 1448 wakeup_init_failed: 1449 device_del(dev); 1450 device_add_failed: 1451 check_supplies_failed: 1452 dev_set_name_failed: 1453 put_device(dev); 1454 return ERR_PTR(rc); 1455 } 1456 1457 /** 1458 * power_supply_register() - Register new power supply 1459 * @parent: Device to be a parent of power supply's device, usually 1460 * the device which probe function calls this 1461 * @desc: Description of power supply, must be valid through whole 1462 * lifetime of this power supply 1463 * @cfg: Run-time specific configuration accessed during registering, 1464 * may be NULL 1465 * 1466 * Return: A pointer to newly allocated power_supply on success 1467 * or ERR_PTR otherwise. 1468 * Use power_supply_unregister() on returned power_supply pointer to release 1469 * resources. 1470 */ 1471 struct power_supply *__must_check power_supply_register(struct device *parent, 1472 const struct power_supply_desc *desc, 1473 const struct power_supply_config *cfg) 1474 { 1475 return __power_supply_register(parent, desc, cfg); 1476 } 1477 EXPORT_SYMBOL_GPL(power_supply_register); 1478 1479 static void devm_power_supply_release(struct device *dev, void *res) 1480 { 1481 struct power_supply **psy = res; 1482 1483 power_supply_unregister(*psy); 1484 } 1485 1486 /** 1487 * devm_power_supply_register() - Register managed power supply 1488 * @parent: Device to be a parent of power supply's device, usually 1489 * the device which probe function calls this 1490 * @desc: Description of power supply, must be valid through whole 1491 * lifetime of this power supply 1492 * @cfg: Run-time specific configuration accessed during registering, 1493 * may be NULL 1494 * 1495 * Return: A pointer to newly allocated power_supply on success 1496 * or ERR_PTR otherwise. 1497 * The returned power_supply pointer will be automatically unregistered 1498 * on driver detach. 1499 */ 1500 struct power_supply *__must_check 1501 devm_power_supply_register(struct device *parent, 1502 const struct power_supply_desc *desc, 1503 const struct power_supply_config *cfg) 1504 { 1505 struct power_supply **ptr, *psy; 1506 1507 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1508 1509 if (!ptr) 1510 return ERR_PTR(-ENOMEM); 1511 psy = __power_supply_register(parent, desc, cfg); 1512 if (IS_ERR(psy)) { 1513 devres_free(ptr); 1514 } else { 1515 *ptr = psy; 1516 devres_add(parent, ptr); 1517 } 1518 return psy; 1519 } 1520 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1521 1522 /** 1523 * power_supply_unregister() - Remove this power supply from system 1524 * @psy: Pointer to power supply to unregister 1525 * 1526 * Remove this power supply from the system. The resources of power supply 1527 * will be freed here or on last power_supply_put() call. 1528 */ 1529 void power_supply_unregister(struct power_supply *psy) 1530 { 1531 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1532 psy->removing = true; 1533 cancel_work_sync(&psy->changed_work); 1534 cancel_delayed_work_sync(&psy->deferred_register_work); 1535 sysfs_remove_link(&psy->dev.kobj, "powers"); 1536 power_supply_remove_hwmon_sysfs(psy); 1537 power_supply_remove_triggers(psy); 1538 psy_unregister_thermal(psy); 1539 device_init_wakeup(&psy->dev, false); 1540 device_unregister(&psy->dev); 1541 } 1542 EXPORT_SYMBOL_GPL(power_supply_unregister); 1543 1544 void *power_supply_get_drvdata(struct power_supply *psy) 1545 { 1546 return psy->drv_data; 1547 } 1548 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1549 1550 static int __init power_supply_class_init(void) 1551 { 1552 power_supply_init_attrs(); 1553 return class_register(&power_supply_class); 1554 } 1555 1556 static void __exit power_supply_class_exit(void) 1557 { 1558 class_unregister(&power_supply_class); 1559 } 1560 1561 subsys_initcall(power_supply_class_init); 1562 module_exit(power_supply_class_exit); 1563 1564 MODULE_DESCRIPTION("Universal power supply monitor class"); 1565 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>"); 1566 MODULE_AUTHOR("Szabolcs Gyurko"); 1567 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>"); 1568