xref: /linux/drivers/power/supply/power_supply_core.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/cleanup.h>
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/power_supply.h>
23 #include <linux/property.h>
24 #include <linux/thermal.h>
25 #include <linux/fixp-arith.h>
26 #include "power_supply.h"
27 #include "samsung-sdi-battery.h"
28 
29 static const struct class power_supply_class = {
30 	.name = "power_supply",
31 	.dev_uevent = power_supply_uevent,
32 };
33 
34 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
35 
36 static const struct device_type power_supply_dev_type = {
37 	.name = "power_supply",
38 	.groups = power_supply_attr_groups,
39 };
40 
41 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
42 
43 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
44 					 struct power_supply *supply)
45 {
46 	int i;
47 
48 	if (!supply->supplied_from && !supplier->supplied_to)
49 		return false;
50 
51 	/* Support both supplied_to and supplied_from modes */
52 	if (supply->supplied_from) {
53 		if (!supplier->desc->name)
54 			return false;
55 		for (i = 0; i < supply->num_supplies; i++)
56 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
57 				return true;
58 	} else {
59 		if (!supply->desc->name)
60 			return false;
61 		for (i = 0; i < supplier->num_supplicants; i++)
62 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
63 				return true;
64 	}
65 
66 	return false;
67 }
68 
69 static int __power_supply_changed_work(struct device *dev, void *data)
70 {
71 	struct power_supply *psy = data;
72 	struct power_supply *pst = dev_get_drvdata(dev);
73 
74 	if (__power_supply_is_supplied_by(psy, pst)) {
75 		if (pst->desc->external_power_changed)
76 			pst->desc->external_power_changed(pst);
77 	}
78 
79 	return 0;
80 }
81 
82 static void power_supply_changed_work(struct work_struct *work)
83 {
84 	unsigned long flags;
85 	struct power_supply *psy = container_of(work, struct power_supply,
86 						changed_work);
87 
88 	dev_dbg(&psy->dev, "%s\n", __func__);
89 
90 	spin_lock_irqsave(&psy->changed_lock, flags);
91 	/*
92 	 * Check 'changed' here to avoid issues due to race between
93 	 * power_supply_changed() and this routine. In worst case
94 	 * power_supply_changed() can be called again just before we take above
95 	 * lock. During the first call of this routine we will mark 'changed' as
96 	 * false and it will stay false for the next call as well.
97 	 */
98 	if (likely(psy->changed)) {
99 		psy->changed = false;
100 		spin_unlock_irqrestore(&psy->changed_lock, flags);
101 		power_supply_for_each_device(psy, __power_supply_changed_work);
102 		power_supply_update_leds(psy);
103 		blocking_notifier_call_chain(&power_supply_notifier,
104 				PSY_EVENT_PROP_CHANGED, psy);
105 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
106 		spin_lock_irqsave(&psy->changed_lock, flags);
107 	}
108 
109 	/*
110 	 * Hold the wakeup_source until all events are processed.
111 	 * power_supply_changed() might have called again and have set 'changed'
112 	 * to true.
113 	 */
114 	if (likely(!psy->changed))
115 		pm_relax(&psy->dev);
116 	spin_unlock_irqrestore(&psy->changed_lock, flags);
117 }
118 
119 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
120 {
121 	return class_for_each_device(&power_supply_class, NULL, data, fn);
122 }
123 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
124 
125 void power_supply_changed(struct power_supply *psy)
126 {
127 	unsigned long flags;
128 
129 	dev_dbg(&psy->dev, "%s\n", __func__);
130 
131 	spin_lock_irqsave(&psy->changed_lock, flags);
132 	psy->changed = true;
133 	pm_stay_awake(&psy->dev);
134 	spin_unlock_irqrestore(&psy->changed_lock, flags);
135 	schedule_work(&psy->changed_work);
136 }
137 EXPORT_SYMBOL_GPL(power_supply_changed);
138 
139 /*
140  * Notify that power supply was registered after parent finished the probing.
141  *
142  * Often power supply is registered from driver's probe function. However
143  * calling power_supply_changed() directly from power_supply_register()
144  * would lead to execution of get_property() function provided by the driver
145  * too early - before the probe ends.
146  *
147  * Avoid that by waiting on parent's mutex.
148  */
149 static void power_supply_deferred_register_work(struct work_struct *work)
150 {
151 	struct power_supply *psy = container_of(work, struct power_supply,
152 						deferred_register_work.work);
153 
154 	if (psy->dev.parent) {
155 		while (!device_trylock(psy->dev.parent)) {
156 			if (psy->removing)
157 				return;
158 			msleep(10);
159 		}
160 	}
161 
162 	power_supply_changed(psy);
163 
164 	if (psy->dev.parent)
165 		device_unlock(psy->dev.parent);
166 }
167 
168 #ifdef CONFIG_OF
169 static int __power_supply_populate_supplied_from(struct device *dev,
170 						 void *data)
171 {
172 	struct power_supply *psy = data;
173 	struct power_supply *epsy = dev_get_drvdata(dev);
174 	struct device_node *np;
175 	int i = 0;
176 
177 	do {
178 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
179 		if (!np)
180 			break;
181 
182 		if (np == epsy->of_node) {
183 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
184 				psy->desc->name, epsy->desc->name);
185 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
186 			psy->num_supplies++;
187 			of_node_put(np);
188 			break;
189 		}
190 		of_node_put(np);
191 	} while (np);
192 
193 	return 0;
194 }
195 
196 static int power_supply_populate_supplied_from(struct power_supply *psy)
197 {
198 	int error;
199 
200 	error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
201 
202 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
203 
204 	return error;
205 }
206 
207 static int  __power_supply_find_supply_from_node(struct device *dev,
208 						 void *data)
209 {
210 	struct device_node *np = data;
211 	struct power_supply *epsy = dev_get_drvdata(dev);
212 
213 	/* returning non-zero breaks out of power_supply_for_each_device loop */
214 	if (epsy->of_node == np)
215 		return 1;
216 
217 	return 0;
218 }
219 
220 static int power_supply_find_supply_from_node(struct device_node *supply_node)
221 {
222 	int error;
223 
224 	/*
225 	 * power_supply_for_each_device() either returns its own errors or values
226 	 * returned by __power_supply_find_supply_from_node().
227 	 *
228 	 * __power_supply_find_supply_from_node() will return 0 (no match)
229 	 * or 1 (match).
230 	 *
231 	 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
232 	 * it returned 0, or error as returned by it.
233 	 */
234 	error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
235 
236 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
237 }
238 
239 static int power_supply_check_supplies(struct power_supply *psy)
240 {
241 	struct device_node *np;
242 	int cnt = 0;
243 
244 	/* If there is already a list honor it */
245 	if (psy->supplied_from && psy->num_supplies > 0)
246 		return 0;
247 
248 	/* No device node found, nothing to do */
249 	if (!psy->of_node)
250 		return 0;
251 
252 	do {
253 		int ret;
254 
255 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
256 		if (!np)
257 			break;
258 
259 		ret = power_supply_find_supply_from_node(np);
260 		of_node_put(np);
261 
262 		if (ret) {
263 			dev_dbg(&psy->dev, "Failed to find supply!\n");
264 			return ret;
265 		}
266 	} while (np);
267 
268 	/* Missing valid "power-supplies" entries */
269 	if (cnt == 1)
270 		return 0;
271 
272 	/* All supplies found, allocate char ** array for filling */
273 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
274 					  GFP_KERNEL);
275 	if (!psy->supplied_from)
276 		return -ENOMEM;
277 
278 	*psy->supplied_from = devm_kcalloc(&psy->dev,
279 					   cnt - 1, sizeof(**psy->supplied_from),
280 					   GFP_KERNEL);
281 	if (!*psy->supplied_from)
282 		return -ENOMEM;
283 
284 	return power_supply_populate_supplied_from(psy);
285 }
286 #else
287 static int power_supply_check_supplies(struct power_supply *psy)
288 {
289 	int nval, ret;
290 
291 	if (!psy->dev.parent)
292 		return 0;
293 
294 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
295 	if (nval <= 0)
296 		return 0;
297 
298 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
299 						sizeof(char *), GFP_KERNEL);
300 	if (!psy->supplied_from)
301 		return -ENOMEM;
302 
303 	ret = device_property_read_string_array(psy->dev.parent,
304 		"supplied-from", (const char **)psy->supplied_from, nval);
305 	if (ret < 0)
306 		return ret;
307 
308 	psy->num_supplies = nval;
309 
310 	return 0;
311 }
312 #endif
313 
314 struct psy_am_i_supplied_data {
315 	struct power_supply *psy;
316 	unsigned int count;
317 };
318 
319 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
320 {
321 	union power_supply_propval ret = {0,};
322 	struct power_supply *epsy = dev_get_drvdata(dev);
323 	struct psy_am_i_supplied_data *data = _data;
324 
325 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
326 		data->count++;
327 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
328 					&ret))
329 			return ret.intval;
330 	}
331 
332 	return 0;
333 }
334 
335 int power_supply_am_i_supplied(struct power_supply *psy)
336 {
337 	struct psy_am_i_supplied_data data = { psy, 0 };
338 	int error;
339 
340 	error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
341 
342 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
343 
344 	if (data.count == 0)
345 		return -ENODEV;
346 
347 	return error;
348 }
349 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
350 
351 static int __power_supply_is_system_supplied(struct device *dev, void *data)
352 {
353 	union power_supply_propval ret = {0,};
354 	struct power_supply *psy = dev_get_drvdata(dev);
355 	unsigned int *count = data;
356 
357 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
358 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
359 			return 0;
360 
361 	(*count)++;
362 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
363 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
364 					&ret))
365 			return ret.intval;
366 
367 	return 0;
368 }
369 
370 int power_supply_is_system_supplied(void)
371 {
372 	int error;
373 	unsigned int count = 0;
374 
375 	error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
376 
377 	/*
378 	 * If no system scope power class device was found at all, most probably we
379 	 * are running on a desktop system, so assume we are on mains power.
380 	 */
381 	if (count == 0)
382 		return 1;
383 
384 	return error;
385 }
386 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
387 
388 struct psy_get_supplier_prop_data {
389 	struct power_supply *psy;
390 	enum power_supply_property psp;
391 	union power_supply_propval *val;
392 };
393 
394 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
395 {
396 	struct power_supply *epsy = dev_get_drvdata(dev);
397 	struct psy_get_supplier_prop_data *data = _data;
398 
399 	if (__power_supply_is_supplied_by(epsy, data->psy))
400 		if (!power_supply_get_property(epsy, data->psp, data->val))
401 			return 1; /* Success */
402 
403 	return 0; /* Continue iterating */
404 }
405 
406 int power_supply_get_property_from_supplier(struct power_supply *psy,
407 					    enum power_supply_property psp,
408 					    union power_supply_propval *val)
409 {
410 	struct psy_get_supplier_prop_data data = {
411 		.psy = psy,
412 		.psp = psp,
413 		.val = val,
414 	};
415 	int ret;
416 
417 	/*
418 	 * This function is not intended for use with a supply with multiple
419 	 * suppliers, we simply pick the first supply to report the psp.
420 	 */
421 	ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
422 	if (ret < 0)
423 		return ret;
424 	if (ret == 0)
425 		return -ENODEV;
426 
427 	return 0;
428 }
429 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
430 
431 int power_supply_set_battery_charged(struct power_supply *psy)
432 {
433 	if (atomic_read(&psy->use_cnt) >= 0 &&
434 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
435 			psy->desc->set_charged) {
436 		psy->desc->set_charged(psy);
437 		return 0;
438 	}
439 
440 	return -EINVAL;
441 }
442 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
443 
444 static int power_supply_match_device_by_name(struct device *dev, const void *data)
445 {
446 	const char *name = data;
447 	struct power_supply *psy = dev_get_drvdata(dev);
448 
449 	return strcmp(psy->desc->name, name) == 0;
450 }
451 
452 /**
453  * power_supply_get_by_name() - Search for a power supply and returns its ref
454  * @name: Power supply name to fetch
455  *
456  * If power supply was found, it increases reference count for the
457  * internal power supply's device. The user should power_supply_put()
458  * after usage.
459  *
460  * Return: On success returns a reference to a power supply with
461  * matching name equals to @name, a NULL otherwise.
462  */
463 struct power_supply *power_supply_get_by_name(const char *name)
464 {
465 	struct power_supply *psy = NULL;
466 	struct device *dev = class_find_device(&power_supply_class, NULL, name,
467 					       power_supply_match_device_by_name);
468 
469 	if (dev) {
470 		psy = dev_get_drvdata(dev);
471 		atomic_inc(&psy->use_cnt);
472 	}
473 
474 	return psy;
475 }
476 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
477 
478 /**
479  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
480  * @psy: Reference to put
481  *
482  * The reference to power supply should be put before unregistering
483  * the power supply.
484  */
485 void power_supply_put(struct power_supply *psy)
486 {
487 	atomic_dec(&psy->use_cnt);
488 	put_device(&psy->dev);
489 }
490 EXPORT_SYMBOL_GPL(power_supply_put);
491 
492 #ifdef CONFIG_OF
493 static int power_supply_match_device_node(struct device *dev, const void *data)
494 {
495 	return dev->parent && dev->parent->of_node == data;
496 }
497 
498 /**
499  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
500  * @np: Pointer to device node holding phandle property
501  * @property: Name of property holding a power supply name
502  *
503  * If power supply was found, it increases reference count for the
504  * internal power supply's device. The user should power_supply_put()
505  * after usage.
506  *
507  * Return: On success returns a reference to a power supply with
508  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
509  */
510 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
511 							const char *property)
512 {
513 	struct device_node *power_supply_np;
514 	struct power_supply *psy = NULL;
515 	struct device *dev;
516 
517 	power_supply_np = of_parse_phandle(np, property, 0);
518 	if (!power_supply_np)
519 		return ERR_PTR(-ENODEV);
520 
521 	dev = class_find_device(&power_supply_class, NULL, power_supply_np,
522 				power_supply_match_device_node);
523 
524 	of_node_put(power_supply_np);
525 
526 	if (dev) {
527 		psy = dev_get_drvdata(dev);
528 		atomic_inc(&psy->use_cnt);
529 	}
530 
531 	return psy;
532 }
533 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
534 
535 static void devm_power_supply_put(struct device *dev, void *res)
536 {
537 	struct power_supply **psy = res;
538 
539 	power_supply_put(*psy);
540 }
541 
542 /**
543  * devm_power_supply_get_by_phandle() - Resource managed version of
544  *  power_supply_get_by_phandle()
545  * @dev: Pointer to device holding phandle property
546  * @property: Name of property holding a power supply phandle
547  *
548  * Return: On success returns a reference to a power supply with
549  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
550  */
551 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
552 						      const char *property)
553 {
554 	struct power_supply **ptr, *psy;
555 
556 	if (!dev->of_node)
557 		return ERR_PTR(-ENODEV);
558 
559 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
560 	if (!ptr)
561 		return ERR_PTR(-ENOMEM);
562 
563 	psy = power_supply_get_by_phandle(dev->of_node, property);
564 	if (IS_ERR_OR_NULL(psy)) {
565 		devres_free(ptr);
566 	} else {
567 		*ptr = psy;
568 		devres_add(dev, ptr);
569 	}
570 	return psy;
571 }
572 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
573 #endif /* CONFIG_OF */
574 
575 int power_supply_get_battery_info(struct power_supply *psy,
576 				  struct power_supply_battery_info **info_out)
577 {
578 	struct power_supply_resistance_temp_table *resist_table;
579 	struct power_supply_battery_info *info;
580 	struct device_node *battery_np = NULL;
581 	struct fwnode_reference_args args;
582 	struct fwnode_handle *fwnode = NULL;
583 	const char *value;
584 	int err, len, index;
585 	const __be32 *list;
586 	u32 min_max[2];
587 
588 	if (psy->of_node) {
589 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
590 		if (!battery_np)
591 			return -ENODEV;
592 
593 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
594 	} else if (psy->dev.parent) {
595 		err = fwnode_property_get_reference_args(
596 					dev_fwnode(psy->dev.parent),
597 					"monitored-battery", NULL, 0, 0, &args);
598 		if (err)
599 			return err;
600 
601 		fwnode = args.fwnode;
602 	}
603 
604 	if (!fwnode)
605 		return -ENOENT;
606 
607 	err = fwnode_property_read_string(fwnode, "compatible", &value);
608 	if (err)
609 		goto out_put_node;
610 
611 
612 	/* Try static batteries first */
613 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
614 	if (!err)
615 		goto out_ret_pointer;
616 	else if (err == -ENODEV)
617 		/*
618 		 * Device does not have a static battery.
619 		 * Proceed to look for a simple battery.
620 		 */
621 		err = 0;
622 
623 	if (strcmp("simple-battery", value)) {
624 		err = -ENODEV;
625 		goto out_put_node;
626 	}
627 
628 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
629 	if (!info) {
630 		err = -ENOMEM;
631 		goto out_put_node;
632 	}
633 
634 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
635 	info->energy_full_design_uwh         = -EINVAL;
636 	info->charge_full_design_uah         = -EINVAL;
637 	info->voltage_min_design_uv          = -EINVAL;
638 	info->voltage_max_design_uv          = -EINVAL;
639 	info->precharge_current_ua           = -EINVAL;
640 	info->charge_term_current_ua         = -EINVAL;
641 	info->constant_charge_current_max_ua = -EINVAL;
642 	info->constant_charge_voltage_max_uv = -EINVAL;
643 	info->tricklecharge_current_ua       = -EINVAL;
644 	info->precharge_voltage_max_uv       = -EINVAL;
645 	info->charge_restart_voltage_uv      = -EINVAL;
646 	info->overvoltage_limit_uv           = -EINVAL;
647 	info->maintenance_charge             = NULL;
648 	info->alert_low_temp_charge_current_ua = -EINVAL;
649 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
650 	info->alert_high_temp_charge_current_ua = -EINVAL;
651 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
652 	info->temp_ambient_alert_min         = INT_MIN;
653 	info->temp_ambient_alert_max         = INT_MAX;
654 	info->temp_alert_min                 = INT_MIN;
655 	info->temp_alert_max                 = INT_MAX;
656 	info->temp_min                       = INT_MIN;
657 	info->temp_max                       = INT_MAX;
658 	info->factory_internal_resistance_uohm  = -EINVAL;
659 	info->resist_table                   = NULL;
660 	info->bti_resistance_ohm             = -EINVAL;
661 	info->bti_resistance_tolerance       = -EINVAL;
662 
663 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
664 		info->ocv_table[index]       = NULL;
665 		info->ocv_temp[index]        = -EINVAL;
666 		info->ocv_table_size[index]  = -EINVAL;
667 	}
668 
669 	/* The property and field names below must correspond to elements
670 	 * in enum power_supply_property. For reasoning, see
671 	 * Documentation/power/power_supply_class.rst.
672 	 */
673 
674 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
675 		if (!strcmp("nickel-cadmium", value))
676 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
677 		else if (!strcmp("nickel-metal-hydride", value))
678 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
679 		else if (!strcmp("lithium-ion", value))
680 			/* Imprecise lithium-ion type */
681 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
682 		else if (!strcmp("lithium-ion-polymer", value))
683 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
684 		else if (!strcmp("lithium-ion-iron-phosphate", value))
685 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
686 		else if (!strcmp("lithium-ion-manganese-oxide", value))
687 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
688 		else
689 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
690 	}
691 
692 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
693 			     &info->energy_full_design_uwh);
694 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
695 			     &info->charge_full_design_uah);
696 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
697 			     &info->voltage_min_design_uv);
698 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
699 			     &info->voltage_max_design_uv);
700 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
701 			     &info->tricklecharge_current_ua);
702 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
703 			     &info->precharge_current_ua);
704 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
705 			     &info->precharge_voltage_max_uv);
706 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
707 			     &info->charge_term_current_ua);
708 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
709 			     &info->charge_restart_voltage_uv);
710 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
711 			     &info->overvoltage_limit_uv);
712 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
713 			     &info->constant_charge_current_max_ua);
714 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
715 			     &info->constant_charge_voltage_max_uv);
716 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
717 			     &info->factory_internal_resistance_uohm);
718 
719 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
720 					    min_max, ARRAY_SIZE(min_max))) {
721 		info->temp_ambient_alert_min = min_max[0];
722 		info->temp_ambient_alert_max = min_max[1];
723 	}
724 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
725 					    min_max, ARRAY_SIZE(min_max))) {
726 		info->temp_alert_min = min_max[0];
727 		info->temp_alert_max = min_max[1];
728 	}
729 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
730 					    min_max, ARRAY_SIZE(min_max))) {
731 		info->temp_min = min_max[0];
732 		info->temp_max = min_max[1];
733 	}
734 
735 	/*
736 	 * The below code uses raw of-data parsing to parse
737 	 * /schemas/types.yaml#/definitions/uint32-matrix
738 	 * data, so for now this is only support with of.
739 	 */
740 	if (!battery_np)
741 		goto out_ret_pointer;
742 
743 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
744 	if (len < 0 && len != -EINVAL) {
745 		err = len;
746 		goto out_put_node;
747 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
748 		dev_err(&psy->dev, "Too many temperature values\n");
749 		err = -EINVAL;
750 		goto out_put_node;
751 	} else if (len > 0) {
752 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
753 					   info->ocv_temp, len);
754 	}
755 
756 	for (index = 0; index < len; index++) {
757 		struct power_supply_battery_ocv_table *table;
758 		int i, tab_len, size;
759 
760 		char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d",
761 							 index);
762 		if (!propname) {
763 			power_supply_put_battery_info(psy, info);
764 			err = -ENOMEM;
765 			goto out_put_node;
766 		}
767 		list = of_get_property(battery_np, propname, &size);
768 		if (!list || !size) {
769 			dev_err(&psy->dev, "failed to get %s\n", propname);
770 			power_supply_put_battery_info(psy, info);
771 			err = -EINVAL;
772 			goto out_put_node;
773 		}
774 
775 		tab_len = size / (2 * sizeof(__be32));
776 		info->ocv_table_size[index] = tab_len;
777 
778 		info->ocv_table[index] = table =
779 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
780 		if (!info->ocv_table[index]) {
781 			power_supply_put_battery_info(psy, info);
782 			err = -ENOMEM;
783 			goto out_put_node;
784 		}
785 
786 		for (i = 0; i < tab_len; i++) {
787 			table[i].ocv = be32_to_cpu(*list);
788 			list++;
789 			table[i].capacity = be32_to_cpu(*list);
790 			list++;
791 		}
792 	}
793 
794 	list = of_get_property(battery_np, "resistance-temp-table", &len);
795 	if (!list || !len)
796 		goto out_ret_pointer;
797 
798 	info->resist_table_size = len / (2 * sizeof(__be32));
799 	info->resist_table = resist_table = devm_kcalloc(&psy->dev,
800 							 info->resist_table_size,
801 							 sizeof(*resist_table),
802 							 GFP_KERNEL);
803 	if (!info->resist_table) {
804 		power_supply_put_battery_info(psy, info);
805 		err = -ENOMEM;
806 		goto out_put_node;
807 	}
808 
809 	for (index = 0; index < info->resist_table_size; index++) {
810 		resist_table[index].temp = be32_to_cpu(*list++);
811 		resist_table[index].resistance = be32_to_cpu(*list++);
812 	}
813 
814 out_ret_pointer:
815 	/* Finally return the whole thing */
816 	*info_out = info;
817 
818 out_put_node:
819 	fwnode_handle_put(fwnode);
820 	of_node_put(battery_np);
821 	return err;
822 }
823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
824 
825 void power_supply_put_battery_info(struct power_supply *psy,
826 				   struct power_supply_battery_info *info)
827 {
828 	int i;
829 
830 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
831 		if (info->ocv_table[i])
832 			devm_kfree(&psy->dev, info->ocv_table[i]);
833 	}
834 
835 	if (info->resist_table)
836 		devm_kfree(&psy->dev, info->resist_table);
837 
838 	devm_kfree(&psy->dev, info);
839 }
840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
841 
842 const enum power_supply_property power_supply_battery_info_properties[] = {
843 	POWER_SUPPLY_PROP_TECHNOLOGY,
844 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
845 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
846 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
847 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
848 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
849 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
850 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
851 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
852 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
853 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
854 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
855 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
856 	POWER_SUPPLY_PROP_TEMP_MIN,
857 	POWER_SUPPLY_PROP_TEMP_MAX,
858 };
859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
860 
861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
863 
864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
865 					enum power_supply_property psp)
866 {
867 	if (!info)
868 		return false;
869 
870 	switch (psp) {
871 	case POWER_SUPPLY_PROP_TECHNOLOGY:
872 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
873 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
874 		return info->energy_full_design_uwh >= 0;
875 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
876 		return info->charge_full_design_uah >= 0;
877 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
878 		return info->voltage_min_design_uv >= 0;
879 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
880 		return info->voltage_max_design_uv >= 0;
881 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
882 		return info->precharge_current_ua >= 0;
883 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
884 		return info->charge_term_current_ua >= 0;
885 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
886 		return info->constant_charge_current_max_ua >= 0;
887 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
888 		return info->constant_charge_voltage_max_uv >= 0;
889 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
890 		return info->temp_ambient_alert_min > INT_MIN;
891 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
892 		return info->temp_ambient_alert_max < INT_MAX;
893 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
894 		return info->temp_alert_min > INT_MIN;
895 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
896 		return info->temp_alert_max < INT_MAX;
897 	case POWER_SUPPLY_PROP_TEMP_MIN:
898 		return info->temp_min > INT_MIN;
899 	case POWER_SUPPLY_PROP_TEMP_MAX:
900 		return info->temp_max < INT_MAX;
901 	default:
902 		return false;
903 	}
904 }
905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
906 
907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
908 				       enum power_supply_property psp,
909 				       union power_supply_propval *val)
910 {
911 	if (!info)
912 		return -EINVAL;
913 
914 	if (!power_supply_battery_info_has_prop(info, psp))
915 		return -EINVAL;
916 
917 	switch (psp) {
918 	case POWER_SUPPLY_PROP_TECHNOLOGY:
919 		val->intval = info->technology;
920 		return 0;
921 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
922 		val->intval = info->energy_full_design_uwh;
923 		return 0;
924 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
925 		val->intval = info->charge_full_design_uah;
926 		return 0;
927 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
928 		val->intval = info->voltage_min_design_uv;
929 		return 0;
930 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
931 		val->intval = info->voltage_max_design_uv;
932 		return 0;
933 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
934 		val->intval = info->precharge_current_ua;
935 		return 0;
936 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937 		val->intval = info->charge_term_current_ua;
938 		return 0;
939 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
940 		val->intval = info->constant_charge_current_max_ua;
941 		return 0;
942 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
943 		val->intval = info->constant_charge_voltage_max_uv;
944 		return 0;
945 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
946 		val->intval = info->temp_ambient_alert_min;
947 		return 0;
948 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
949 		val->intval = info->temp_ambient_alert_max;
950 		return 0;
951 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
952 		val->intval = info->temp_alert_min;
953 		return 0;
954 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
955 		val->intval = info->temp_alert_max;
956 		return 0;
957 	case POWER_SUPPLY_PROP_TEMP_MIN:
958 		val->intval = info->temp_min;
959 		return 0;
960 	case POWER_SUPPLY_PROP_TEMP_MAX:
961 		val->intval = info->temp_max;
962 		return 0;
963 	default:
964 		return -EINVAL;
965 	}
966 }
967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
968 
969 /**
970  * power_supply_temp2resist_simple() - find the battery internal resistance
971  * percent from temperature
972  * @table: Pointer to battery resistance temperature table
973  * @table_len: The table length
974  * @temp: Current temperature
975  *
976  * This helper function is used to look up battery internal resistance percent
977  * according to current temperature value from the resistance temperature table,
978  * and the table must be ordered descending. Then the actual battery internal
979  * resistance = the ideal battery internal resistance * percent / 100.
980  *
981  * Return: the battery internal resistance percent
982  */
983 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
984 				    int table_len, int temp)
985 {
986 	int i, high, low;
987 
988 	for (i = 0; i < table_len; i++)
989 		if (temp > table[i].temp)
990 			break;
991 
992 	/* The library function will deal with high == low */
993 	if (i == 0)
994 		high = low = i;
995 	else if (i == table_len)
996 		high = low = i - 1;
997 	else
998 		high = (low = i) - 1;
999 
1000 	return fixp_linear_interpolate(table[low].temp,
1001 				       table[low].resistance,
1002 				       table[high].temp,
1003 				       table[high].resistance,
1004 				       temp);
1005 }
1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1007 
1008 /**
1009  * power_supply_vbat2ri() - find the battery internal resistance
1010  * from the battery voltage
1011  * @info: The battery information container
1012  * @vbat_uv: The battery voltage in microvolt
1013  * @charging: If we are charging (true) or not (false)
1014  *
1015  * This helper function is used to look up battery internal resistance
1016  * according to current battery voltage. Depending on whether the battery
1017  * is currently charging or not, different resistance will be returned.
1018  *
1019  * Returns the internal resistance in microohm or negative error code.
1020  */
1021 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1022 			 int vbat_uv, bool charging)
1023 {
1024 	const struct power_supply_vbat_ri_table *vbat2ri;
1025 	int table_len;
1026 	int i, high, low;
1027 
1028 	/*
1029 	 * If we are charging, and the battery supplies a separate table
1030 	 * for this state, we use that in order to compensate for the
1031 	 * charging voltage. Otherwise we use the main table.
1032 	 */
1033 	if (charging && info->vbat2ri_charging) {
1034 		vbat2ri = info->vbat2ri_charging;
1035 		table_len = info->vbat2ri_charging_size;
1036 	} else {
1037 		vbat2ri = info->vbat2ri_discharging;
1038 		table_len = info->vbat2ri_discharging_size;
1039 	}
1040 
1041 	/*
1042 	 * If no tables are specified, or if we are above the highest voltage in
1043 	 * the voltage table, just return the factory specified internal resistance.
1044 	 */
1045 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1046 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1047 			return info->factory_internal_resistance_charging_uohm;
1048 		else
1049 			return info->factory_internal_resistance_uohm;
1050 	}
1051 
1052 	/* Break loop at table_len - 1 because that is the highest index */
1053 	for (i = 0; i < table_len - 1; i++)
1054 		if (vbat_uv > vbat2ri[i].vbat_uv)
1055 			break;
1056 
1057 	/* The library function will deal with high == low */
1058 	if ((i == 0) || (i == (table_len - 1)))
1059 		high = i;
1060 	else
1061 		high = i - 1;
1062 	low = i;
1063 
1064 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1065 				       vbat2ri[low].ri_uohm,
1066 				       vbat2ri[high].vbat_uv,
1067 				       vbat2ri[high].ri_uohm,
1068 				       vbat_uv);
1069 }
1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1071 
1072 const struct power_supply_maintenance_charge_table *
1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1074 					      int index)
1075 {
1076 	if (index >= info->maintenance_charge_size)
1077 		return NULL;
1078 	return &info->maintenance_charge[index];
1079 }
1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1081 
1082 /**
1083  * power_supply_ocv2cap_simple() - find the battery capacity
1084  * @table: Pointer to battery OCV lookup table
1085  * @table_len: OCV table length
1086  * @ocv: Current OCV value
1087  *
1088  * This helper function is used to look up battery capacity according to
1089  * current OCV value from one OCV table, and the OCV table must be ordered
1090  * descending.
1091  *
1092  * Return: the battery capacity.
1093  */
1094 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
1095 				int table_len, int ocv)
1096 {
1097 	int i, high, low;
1098 
1099 	for (i = 0; i < table_len; i++)
1100 		if (ocv > table[i].ocv)
1101 			break;
1102 
1103 	/* The library function will deal with high == low */
1104 	if (i == 0)
1105 		high = low = i;
1106 	else if (i == table_len)
1107 		high = low = i - 1;
1108 	else
1109 		high = (low = i) - 1;
1110 
1111 	return fixp_linear_interpolate(table[low].ocv,
1112 				       table[low].capacity,
1113 				       table[high].ocv,
1114 				       table[high].capacity,
1115 				       ocv);
1116 }
1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1118 
1119 const struct power_supply_battery_ocv_table *
1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1121 				int temp, int *table_len)
1122 {
1123 	int best_temp_diff = INT_MAX, temp_diff;
1124 	u8 i, best_index = 0;
1125 
1126 	if (!info->ocv_table[0])
1127 		return NULL;
1128 
1129 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1130 		/* Out of capacity tables */
1131 		if (!info->ocv_table[i])
1132 			break;
1133 
1134 		temp_diff = abs(info->ocv_temp[i] - temp);
1135 
1136 		if (temp_diff < best_temp_diff) {
1137 			best_temp_diff = temp_diff;
1138 			best_index = i;
1139 		}
1140 	}
1141 
1142 	*table_len = info->ocv_table_size[best_index];
1143 	return info->ocv_table[best_index];
1144 }
1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1146 
1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1148 				 int ocv, int temp)
1149 {
1150 	const struct power_supply_battery_ocv_table *table;
1151 	int table_len;
1152 
1153 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1154 	if (!table)
1155 		return -EINVAL;
1156 
1157 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1158 }
1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1160 
1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1162 				       int resistance)
1163 {
1164 	int low, high;
1165 
1166 	/* Nothing like this can be checked */
1167 	if (info->bti_resistance_ohm <= 0)
1168 		return false;
1169 
1170 	/* This will be extremely strict and unlikely to work */
1171 	if (info->bti_resistance_tolerance <= 0)
1172 		return (info->bti_resistance_ohm == resistance);
1173 
1174 	low = info->bti_resistance_ohm -
1175 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1176 	high = info->bti_resistance_ohm +
1177 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1178 
1179 	return ((resistance >= low) && (resistance <= high));
1180 }
1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1182 
1183 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1184 			     enum power_supply_property psp)
1185 {
1186 	bool found = false;
1187 	int i;
1188 
1189 	for (i = 0; i < psy_desc->num_properties; i++) {
1190 		if (psy_desc->properties[i] == psp) {
1191 			found = true;
1192 			break;
1193 		}
1194 	}
1195 
1196 	return found;
1197 }
1198 
1199 int power_supply_get_property(struct power_supply *psy,
1200 			    enum power_supply_property psp,
1201 			    union power_supply_propval *val)
1202 {
1203 	if (atomic_read(&psy->use_cnt) <= 0) {
1204 		if (!psy->initialized)
1205 			return -EAGAIN;
1206 		return -ENODEV;
1207 	}
1208 
1209 	if (psy_has_property(psy->desc, psp))
1210 		return psy->desc->get_property(psy, psp, val);
1211 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1212 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1213 	else
1214 		return -EINVAL;
1215 }
1216 EXPORT_SYMBOL_GPL(power_supply_get_property);
1217 
1218 int power_supply_set_property(struct power_supply *psy,
1219 			    enum power_supply_property psp,
1220 			    const union power_supply_propval *val)
1221 {
1222 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1223 		return -ENODEV;
1224 
1225 	return psy->desc->set_property(psy, psp, val);
1226 }
1227 EXPORT_SYMBOL_GPL(power_supply_set_property);
1228 
1229 int power_supply_property_is_writeable(struct power_supply *psy,
1230 					enum power_supply_property psp)
1231 {
1232 	return psy->desc->property_is_writeable && psy->desc->property_is_writeable(psy, psp);
1233 }
1234 
1235 void power_supply_external_power_changed(struct power_supply *psy)
1236 {
1237 	if (atomic_read(&psy->use_cnt) <= 0 ||
1238 			!psy->desc->external_power_changed)
1239 		return;
1240 
1241 	psy->desc->external_power_changed(psy);
1242 }
1243 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1244 
1245 int power_supply_powers(struct power_supply *psy, struct device *dev)
1246 {
1247 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1248 }
1249 EXPORT_SYMBOL_GPL(power_supply_powers);
1250 
1251 static void power_supply_dev_release(struct device *dev)
1252 {
1253 	struct power_supply *psy = to_power_supply(dev);
1254 
1255 	dev_dbg(dev, "%s\n", __func__);
1256 	kfree(psy);
1257 }
1258 
1259 int power_supply_reg_notifier(struct notifier_block *nb)
1260 {
1261 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1262 }
1263 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1264 
1265 void power_supply_unreg_notifier(struct notifier_block *nb)
1266 {
1267 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1268 }
1269 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1270 
1271 #ifdef CONFIG_THERMAL
1272 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1273 		int *temp)
1274 {
1275 	struct power_supply *psy;
1276 	union power_supply_propval val;
1277 	int ret;
1278 
1279 	WARN_ON(tzd == NULL);
1280 	psy = thermal_zone_device_priv(tzd);
1281 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1282 	if (ret)
1283 		return ret;
1284 
1285 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1286 	*temp = val.intval * 100;
1287 
1288 	return ret;
1289 }
1290 
1291 static const struct thermal_zone_device_ops psy_tzd_ops = {
1292 	.get_temp = power_supply_read_temp,
1293 };
1294 
1295 static int psy_register_thermal(struct power_supply *psy)
1296 {
1297 	int ret;
1298 
1299 	if (psy->desc->no_thermal)
1300 		return 0;
1301 
1302 	/* Register battery zone device psy reports temperature */
1303 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1304 		/* Prefer our hwmon device and avoid duplicates */
1305 		struct thermal_zone_params tzp = {
1306 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1307 		};
1308 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1309 				psy, &psy_tzd_ops, &tzp);
1310 		if (IS_ERR(psy->tzd))
1311 			return PTR_ERR(psy->tzd);
1312 		ret = thermal_zone_device_enable(psy->tzd);
1313 		if (ret)
1314 			thermal_zone_device_unregister(psy->tzd);
1315 		return ret;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static void psy_unregister_thermal(struct power_supply *psy)
1322 {
1323 	if (IS_ERR_OR_NULL(psy->tzd))
1324 		return;
1325 	thermal_zone_device_unregister(psy->tzd);
1326 }
1327 
1328 #else
1329 static int psy_register_thermal(struct power_supply *psy)
1330 {
1331 	return 0;
1332 }
1333 
1334 static void psy_unregister_thermal(struct power_supply *psy)
1335 {
1336 }
1337 #endif
1338 
1339 static struct power_supply *__must_check
1340 __power_supply_register(struct device *parent,
1341 				   const struct power_supply_desc *desc,
1342 				   const struct power_supply_config *cfg)
1343 {
1344 	struct device *dev;
1345 	struct power_supply *psy;
1346 	int rc;
1347 
1348 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1349 		return ERR_PTR(-EINVAL);
1350 
1351 	if (!parent)
1352 		pr_warn("%s: Expected proper parent device for '%s'\n",
1353 			__func__, desc->name);
1354 
1355 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1356 	if (!psy)
1357 		return ERR_PTR(-ENOMEM);
1358 
1359 	dev = &psy->dev;
1360 
1361 	device_initialize(dev);
1362 
1363 	dev->class = &power_supply_class;
1364 	dev->type = &power_supply_dev_type;
1365 	dev->parent = parent;
1366 	dev->release = power_supply_dev_release;
1367 	dev_set_drvdata(dev, psy);
1368 	psy->desc = desc;
1369 	if (cfg) {
1370 		dev->groups = cfg->attr_grp;
1371 		psy->drv_data = cfg->drv_data;
1372 		psy->of_node =
1373 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1374 		dev->of_node = psy->of_node;
1375 		psy->supplied_to = cfg->supplied_to;
1376 		psy->num_supplicants = cfg->num_supplicants;
1377 	}
1378 
1379 	rc = dev_set_name(dev, "%s", desc->name);
1380 	if (rc)
1381 		goto dev_set_name_failed;
1382 
1383 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1384 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1385 			  power_supply_deferred_register_work);
1386 
1387 	rc = power_supply_check_supplies(psy);
1388 	if (rc) {
1389 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1390 		goto check_supplies_failed;
1391 	}
1392 
1393 	/*
1394 	 * Expose constant battery info, if it is available. While there are
1395 	 * some chargers accessing constant battery data, we only want to
1396 	 * expose battery data to userspace for battery devices.
1397 	 */
1398 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1399 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1400 		if (rc && rc != -ENODEV && rc != -ENOENT)
1401 			goto check_supplies_failed;
1402 	}
1403 
1404 	spin_lock_init(&psy->changed_lock);
1405 	rc = device_add(dev);
1406 	if (rc)
1407 		goto device_add_failed;
1408 
1409 	rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true);
1410 	if (rc)
1411 		goto wakeup_init_failed;
1412 
1413 	rc = psy_register_thermal(psy);
1414 	if (rc)
1415 		goto register_thermal_failed;
1416 
1417 	rc = power_supply_create_triggers(psy);
1418 	if (rc)
1419 		goto create_triggers_failed;
1420 
1421 	rc = power_supply_add_hwmon_sysfs(psy);
1422 	if (rc)
1423 		goto add_hwmon_sysfs_failed;
1424 
1425 	/*
1426 	 * Update use_cnt after any uevents (most notably from device_add()).
1427 	 * We are here still during driver's probe but
1428 	 * the power_supply_uevent() calls back driver's get_property
1429 	 * method so:
1430 	 * 1. Driver did not assigned the returned struct power_supply,
1431 	 * 2. Driver could not finish initialization (anything in its probe
1432 	 *    after calling power_supply_register()).
1433 	 */
1434 	atomic_inc(&psy->use_cnt);
1435 	psy->initialized = true;
1436 
1437 	queue_delayed_work(system_power_efficient_wq,
1438 			   &psy->deferred_register_work,
1439 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1440 
1441 	return psy;
1442 
1443 add_hwmon_sysfs_failed:
1444 	power_supply_remove_triggers(psy);
1445 create_triggers_failed:
1446 	psy_unregister_thermal(psy);
1447 register_thermal_failed:
1448 wakeup_init_failed:
1449 	device_del(dev);
1450 device_add_failed:
1451 check_supplies_failed:
1452 dev_set_name_failed:
1453 	put_device(dev);
1454 	return ERR_PTR(rc);
1455 }
1456 
1457 /**
1458  * power_supply_register() - Register new power supply
1459  * @parent:	Device to be a parent of power supply's device, usually
1460  *		the device which probe function calls this
1461  * @desc:	Description of power supply, must be valid through whole
1462  *		lifetime of this power supply
1463  * @cfg:	Run-time specific configuration accessed during registering,
1464  *		may be NULL
1465  *
1466  * Return: A pointer to newly allocated power_supply on success
1467  * or ERR_PTR otherwise.
1468  * Use power_supply_unregister() on returned power_supply pointer to release
1469  * resources.
1470  */
1471 struct power_supply *__must_check power_supply_register(struct device *parent,
1472 		const struct power_supply_desc *desc,
1473 		const struct power_supply_config *cfg)
1474 {
1475 	return __power_supply_register(parent, desc, cfg);
1476 }
1477 EXPORT_SYMBOL_GPL(power_supply_register);
1478 
1479 static void devm_power_supply_release(struct device *dev, void *res)
1480 {
1481 	struct power_supply **psy = res;
1482 
1483 	power_supply_unregister(*psy);
1484 }
1485 
1486 /**
1487  * devm_power_supply_register() - Register managed power supply
1488  * @parent:	Device to be a parent of power supply's device, usually
1489  *		the device which probe function calls this
1490  * @desc:	Description of power supply, must be valid through whole
1491  *		lifetime of this power supply
1492  * @cfg:	Run-time specific configuration accessed during registering,
1493  *		may be NULL
1494  *
1495  * Return: A pointer to newly allocated power_supply on success
1496  * or ERR_PTR otherwise.
1497  * The returned power_supply pointer will be automatically unregistered
1498  * on driver detach.
1499  */
1500 struct power_supply *__must_check
1501 devm_power_supply_register(struct device *parent,
1502 		const struct power_supply_desc *desc,
1503 		const struct power_supply_config *cfg)
1504 {
1505 	struct power_supply **ptr, *psy;
1506 
1507 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1508 
1509 	if (!ptr)
1510 		return ERR_PTR(-ENOMEM);
1511 	psy = __power_supply_register(parent, desc, cfg);
1512 	if (IS_ERR(psy)) {
1513 		devres_free(ptr);
1514 	} else {
1515 		*ptr = psy;
1516 		devres_add(parent, ptr);
1517 	}
1518 	return psy;
1519 }
1520 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1521 
1522 /**
1523  * power_supply_unregister() - Remove this power supply from system
1524  * @psy:	Pointer to power supply to unregister
1525  *
1526  * Remove this power supply from the system. The resources of power supply
1527  * will be freed here or on last power_supply_put() call.
1528  */
1529 void power_supply_unregister(struct power_supply *psy)
1530 {
1531 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1532 	psy->removing = true;
1533 	cancel_work_sync(&psy->changed_work);
1534 	cancel_delayed_work_sync(&psy->deferred_register_work);
1535 	sysfs_remove_link(&psy->dev.kobj, "powers");
1536 	power_supply_remove_hwmon_sysfs(psy);
1537 	power_supply_remove_triggers(psy);
1538 	psy_unregister_thermal(psy);
1539 	device_init_wakeup(&psy->dev, false);
1540 	device_unregister(&psy->dev);
1541 }
1542 EXPORT_SYMBOL_GPL(power_supply_unregister);
1543 
1544 void *power_supply_get_drvdata(struct power_supply *psy)
1545 {
1546 	return psy->drv_data;
1547 }
1548 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1549 
1550 static int __init power_supply_class_init(void)
1551 {
1552 	power_supply_init_attrs();
1553 	return class_register(&power_supply_class);
1554 }
1555 
1556 static void __exit power_supply_class_exit(void)
1557 {
1558 	class_unregister(&power_supply_class);
1559 }
1560 
1561 subsys_initcall(power_supply_class_init);
1562 module_exit(power_supply_class_exit);
1563 
1564 MODULE_DESCRIPTION("Universal power supply monitor class");
1565 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1566 MODULE_AUTHOR("Szabolcs Gyurko");
1567 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1568