1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/cleanup.h> 13 #include <linux/module.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/device.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/power_supply.h> 22 #include <linux/property.h> 23 #include <linux/thermal.h> 24 #include <linux/fixp-arith.h> 25 #include "power_supply.h" 26 #include "samsung-sdi-battery.h" 27 28 static const struct class power_supply_class = { 29 .name = "power_supply", 30 .dev_uevent = power_supply_uevent, 31 }; 32 33 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier); 34 35 static const struct device_type power_supply_dev_type = { 36 .name = "power_supply", 37 .groups = power_supply_attr_groups, 38 }; 39 40 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 41 42 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 43 struct power_supply *supply) 44 { 45 int i; 46 47 if (!supply->supplied_from && !supplier->supplied_to) 48 return false; 49 50 /* Support both supplied_to and supplied_from modes */ 51 if (supply->supplied_from) { 52 if (!supplier->desc->name) 53 return false; 54 for (i = 0; i < supply->num_supplies; i++) 55 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 56 return true; 57 } else { 58 if (!supply->desc->name) 59 return false; 60 for (i = 0; i < supplier->num_supplicants; i++) 61 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 62 return true; 63 } 64 65 return false; 66 } 67 68 static int __power_supply_changed_work(struct power_supply *pst, void *data) 69 { 70 struct power_supply *psy = data; 71 72 if (__power_supply_is_supplied_by(psy, pst)) 73 power_supply_external_power_changed(pst); 74 75 return 0; 76 } 77 78 static void power_supply_changed_work(struct work_struct *work) 79 { 80 int ret; 81 unsigned long flags; 82 struct power_supply *psy = container_of(work, struct power_supply, 83 changed_work); 84 85 dev_dbg(&psy->dev, "%s\n", __func__); 86 87 spin_lock_irqsave(&psy->changed_lock, flags); 88 89 if (unlikely(psy->update_groups)) { 90 psy->update_groups = false; 91 spin_unlock_irqrestore(&psy->changed_lock, flags); 92 ret = sysfs_update_groups(&psy->dev.kobj, power_supply_dev_type.groups); 93 if (ret) 94 dev_warn(&psy->dev, "failed to update sysfs groups: %pe\n", ERR_PTR(ret)); 95 spin_lock_irqsave(&psy->changed_lock, flags); 96 } 97 98 /* 99 * Check 'changed' here to avoid issues due to race between 100 * power_supply_changed() and this routine. In worst case 101 * power_supply_changed() can be called again just before we take above 102 * lock. During the first call of this routine we will mark 'changed' as 103 * false and it will stay false for the next call as well. 104 */ 105 if (likely(psy->changed)) { 106 psy->changed = false; 107 spin_unlock_irqrestore(&psy->changed_lock, flags); 108 power_supply_for_each_psy(psy, __power_supply_changed_work); 109 power_supply_update_leds(psy); 110 blocking_notifier_call_chain(&power_supply_notifier, 111 PSY_EVENT_PROP_CHANGED, psy); 112 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 113 spin_lock_irqsave(&psy->changed_lock, flags); 114 } 115 116 /* 117 * Hold the wakeup_source until all events are processed. 118 * power_supply_changed() might have called again and have set 'changed' 119 * to true. 120 */ 121 if (likely(!psy->changed)) 122 pm_relax(&psy->dev); 123 spin_unlock_irqrestore(&psy->changed_lock, flags); 124 } 125 126 struct psy_for_each_psy_cb_data { 127 int (*fn)(struct power_supply *psy, void *data); 128 void *data; 129 }; 130 131 static int psy_for_each_psy_cb(struct device *dev, void *data) 132 { 133 struct psy_for_each_psy_cb_data *cb_data = data; 134 struct power_supply *psy = dev_to_psy(dev); 135 136 return cb_data->fn(psy, cb_data->data); 137 } 138 139 int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data)) 140 { 141 struct psy_for_each_psy_cb_data cb_data = { 142 .fn = fn, 143 .data = data, 144 }; 145 146 return class_for_each_device(&power_supply_class, NULL, &cb_data, psy_for_each_psy_cb); 147 } 148 EXPORT_SYMBOL_GPL(power_supply_for_each_psy); 149 150 void power_supply_changed(struct power_supply *psy) 151 { 152 unsigned long flags; 153 154 dev_dbg(&psy->dev, "%s\n", __func__); 155 156 spin_lock_irqsave(&psy->changed_lock, flags); 157 psy->changed = true; 158 pm_stay_awake(&psy->dev); 159 spin_unlock_irqrestore(&psy->changed_lock, flags); 160 schedule_work(&psy->changed_work); 161 } 162 EXPORT_SYMBOL_GPL(power_supply_changed); 163 164 /* 165 * Notify that power supply was registered after parent finished the probing. 166 * 167 * Often power supply is registered from driver's probe function. However 168 * calling power_supply_changed() directly from power_supply_register() 169 * would lead to execution of get_property() function provided by the driver 170 * too early - before the probe ends. 171 * 172 * Avoid that by waiting on parent's mutex. 173 */ 174 static void power_supply_deferred_register_work(struct work_struct *work) 175 { 176 struct power_supply *psy = container_of(work, struct power_supply, 177 deferred_register_work.work); 178 179 if (psy->dev.parent) { 180 while (!device_trylock(psy->dev.parent)) { 181 if (psy->removing) 182 return; 183 msleep(10); 184 } 185 } 186 187 power_supply_changed(psy); 188 189 if (psy->dev.parent) 190 device_unlock(psy->dev.parent); 191 } 192 193 #ifdef CONFIG_OF 194 static int __power_supply_populate_supplied_from(struct power_supply *epsy, 195 void *data) 196 { 197 struct power_supply *psy = data; 198 struct fwnode_handle *np; 199 int i = 0; 200 201 do { 202 np = fwnode_find_reference(psy->dev.fwnode, "power-supplies", i++); 203 if (IS_ERR(np)) 204 break; 205 206 if (np == epsy->dev.fwnode) { 207 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 208 psy->desc->name, epsy->desc->name); 209 psy->supplied_from[i-1] = (char *)epsy->desc->name; 210 psy->num_supplies++; 211 fwnode_handle_put(np); 212 break; 213 } 214 fwnode_handle_put(np); 215 } while (true); 216 217 return 0; 218 } 219 220 static int power_supply_populate_supplied_from(struct power_supply *psy) 221 { 222 int error; 223 224 error = power_supply_for_each_psy(psy, __power_supply_populate_supplied_from); 225 226 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 227 228 return error; 229 } 230 231 static int __power_supply_find_supply_from_node(struct power_supply *epsy, 232 void *data) 233 { 234 struct fwnode_handle *fwnode = data; 235 236 /* returning non-zero breaks out of power_supply_for_each_psy loop */ 237 if (epsy->dev.fwnode == fwnode) 238 return 1; 239 240 return 0; 241 } 242 243 static int power_supply_find_supply_from_fwnode(struct fwnode_handle *supply_node) 244 { 245 int error; 246 247 /* 248 * power_supply_for_each_psy() either returns its own errors or values 249 * returned by __power_supply_find_supply_from_node(). 250 * 251 * __power_supply_find_supply_from_fwnode() will return 0 (no match) 252 * or 1 (match). 253 * 254 * We return 0 if power_supply_for_each_psy() returned 1, -EPROBE_DEFER if 255 * it returned 0, or error as returned by it. 256 */ 257 error = power_supply_for_each_psy(supply_node, __power_supply_find_supply_from_node); 258 259 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 260 } 261 262 static int power_supply_check_supplies(struct power_supply *psy) 263 { 264 struct fwnode_handle *np; 265 int cnt = 0; 266 267 /* If there is already a list honor it */ 268 if (psy->supplied_from && psy->num_supplies > 0) 269 return 0; 270 271 /* No device node found, nothing to do */ 272 if (!psy->dev.fwnode) 273 return 0; 274 275 do { 276 int ret; 277 278 np = fwnode_find_reference(psy->dev.fwnode, "power-supplies", cnt++); 279 if (IS_ERR(np)) 280 break; 281 282 ret = power_supply_find_supply_from_fwnode(np); 283 fwnode_handle_put(np); 284 285 if (ret) { 286 dev_dbg(&psy->dev, "Failed to find supply!\n"); 287 return ret; 288 } 289 } while (!IS_ERR(np)); 290 291 /* Missing valid "power-supplies" entries */ 292 if (cnt == 1) 293 return 0; 294 295 /* All supplies found, allocate char ** array for filling */ 296 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 297 GFP_KERNEL); 298 if (!psy->supplied_from) 299 return -ENOMEM; 300 301 *psy->supplied_from = devm_kcalloc(&psy->dev, 302 cnt - 1, sizeof(**psy->supplied_from), 303 GFP_KERNEL); 304 if (!*psy->supplied_from) 305 return -ENOMEM; 306 307 return power_supply_populate_supplied_from(psy); 308 } 309 #else 310 static int power_supply_check_supplies(struct power_supply *psy) 311 { 312 int nval, ret; 313 314 if (!psy->dev.parent) 315 return 0; 316 317 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 318 if (nval <= 0) 319 return 0; 320 321 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 322 sizeof(char *), GFP_KERNEL); 323 if (!psy->supplied_from) 324 return -ENOMEM; 325 326 ret = device_property_read_string_array(psy->dev.parent, 327 "supplied-from", (const char **)psy->supplied_from, nval); 328 if (ret < 0) 329 return ret; 330 331 psy->num_supplies = nval; 332 333 return 0; 334 } 335 #endif 336 337 struct psy_am_i_supplied_data { 338 struct power_supply *psy; 339 unsigned int count; 340 }; 341 342 static int __power_supply_am_i_supplied(struct power_supply *epsy, void *_data) 343 { 344 union power_supply_propval ret = {0,}; 345 struct psy_am_i_supplied_data *data = _data; 346 347 if (__power_supply_is_supplied_by(epsy, data->psy)) { 348 data->count++; 349 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 350 &ret)) 351 return ret.intval; 352 } 353 354 return 0; 355 } 356 357 int power_supply_am_i_supplied(struct power_supply *psy) 358 { 359 struct psy_am_i_supplied_data data = { psy, 0 }; 360 int error; 361 362 error = power_supply_for_each_psy(&data, __power_supply_am_i_supplied); 363 364 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 365 366 if (data.count == 0) 367 return -ENODEV; 368 369 return error; 370 } 371 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 372 373 static int __power_supply_is_system_supplied(struct power_supply *psy, void *data) 374 { 375 union power_supply_propval ret = {0,}; 376 unsigned int *count = data; 377 378 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 379 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 380 return 0; 381 382 (*count)++; 383 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 384 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 385 &ret)) 386 return ret.intval; 387 388 return 0; 389 } 390 391 int power_supply_is_system_supplied(void) 392 { 393 int error; 394 unsigned int count = 0; 395 396 error = power_supply_for_each_psy(&count, __power_supply_is_system_supplied); 397 398 /* 399 * If no system scope power class device was found at all, most probably we 400 * are running on a desktop system, so assume we are on mains power. 401 */ 402 if (count == 0) 403 return 1; 404 405 return error; 406 } 407 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 408 409 struct psy_get_supplier_prop_data { 410 struct power_supply *psy; 411 enum power_supply_property psp; 412 union power_supply_propval *val; 413 }; 414 415 static int __power_supply_get_supplier_property(struct power_supply *epsy, void *_data) 416 { 417 struct psy_get_supplier_prop_data *data = _data; 418 419 if (__power_supply_is_supplied_by(epsy, data->psy)) 420 if (!power_supply_get_property(epsy, data->psp, data->val)) 421 return 1; /* Success */ 422 423 return 0; /* Continue iterating */ 424 } 425 426 int power_supply_get_property_from_supplier(struct power_supply *psy, 427 enum power_supply_property psp, 428 union power_supply_propval *val) 429 { 430 struct psy_get_supplier_prop_data data = { 431 .psy = psy, 432 .psp = psp, 433 .val = val, 434 }; 435 int ret; 436 437 /* 438 * This function is not intended for use with a supply with multiple 439 * suppliers, we simply pick the first supply to report the psp. 440 */ 441 ret = power_supply_for_each_psy(&data, __power_supply_get_supplier_property); 442 if (ret < 0) 443 return ret; 444 if (ret == 0) 445 return -ENODEV; 446 447 return 0; 448 } 449 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 450 451 static int power_supply_match_device_by_name(struct device *dev, const void *data) 452 { 453 const char *name = data; 454 struct power_supply *psy = dev_to_psy(dev); 455 456 return strcmp(psy->desc->name, name) == 0; 457 } 458 459 /** 460 * power_supply_get_by_name() - Search for a power supply and returns its ref 461 * @name: Power supply name to fetch 462 * 463 * If power supply was found, it increases reference count for the 464 * internal power supply's device. The user should power_supply_put() 465 * after usage. 466 * 467 * Return: On success returns a reference to a power supply with 468 * matching name equals to @name, a NULL otherwise. 469 */ 470 struct power_supply *power_supply_get_by_name(const char *name) 471 { 472 struct power_supply *psy = NULL; 473 struct device *dev = class_find_device(&power_supply_class, NULL, name, 474 power_supply_match_device_by_name); 475 476 if (dev) { 477 psy = dev_to_psy(dev); 478 atomic_inc(&psy->use_cnt); 479 } 480 481 return psy; 482 } 483 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 484 485 /** 486 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 487 * @psy: Reference to put 488 * 489 * The reference to power supply should be put before unregistering 490 * the power supply. 491 */ 492 void power_supply_put(struct power_supply *psy) 493 { 494 atomic_dec(&psy->use_cnt); 495 put_device(&psy->dev); 496 } 497 EXPORT_SYMBOL_GPL(power_supply_put); 498 499 static int power_supply_match_device_fwnode(struct device *dev, const void *data) 500 { 501 return dev->parent && dev_fwnode(dev->parent) == data; 502 } 503 504 /** 505 * power_supply_get_by_reference() - Search for a power supply and returns its ref 506 * @fwnode: Pointer to fwnode holding phandle property 507 * @property: Name of property holding a power supply name 508 * 509 * If power supply was found, it increases reference count for the 510 * internal power supply's device. The user should power_supply_put() 511 * after usage. 512 * 513 * Return: On success returns a reference to a power supply with 514 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 515 */ 516 struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode, 517 const char *property) 518 { 519 struct fwnode_handle *power_supply_fwnode; 520 struct power_supply *psy = NULL; 521 struct device *dev; 522 523 power_supply_fwnode = fwnode_find_reference(fwnode, property, 0); 524 if (IS_ERR(power_supply_fwnode)) 525 return ERR_CAST(power_supply_fwnode); 526 527 dev = class_find_device(&power_supply_class, NULL, power_supply_fwnode, 528 power_supply_match_device_fwnode); 529 530 fwnode_handle_put(power_supply_fwnode); 531 532 if (dev) { 533 psy = dev_to_psy(dev); 534 atomic_inc(&psy->use_cnt); 535 } 536 537 return psy; 538 } 539 EXPORT_SYMBOL_GPL(power_supply_get_by_reference); 540 541 static void devm_power_supply_put(struct device *dev, void *res) 542 { 543 struct power_supply **psy = res; 544 545 power_supply_put(*psy); 546 } 547 548 /** 549 * devm_power_supply_get_by_reference() - Resource managed version of 550 * power_supply_get_by_reference() 551 * @dev: Pointer to device holding phandle property 552 * @property: Name of property holding a power supply phandle 553 * 554 * Return: On success returns a reference to a power supply with 555 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 556 */ 557 struct power_supply *devm_power_supply_get_by_reference(struct device *dev, 558 const char *property) 559 { 560 struct power_supply **ptr, *psy; 561 562 if (!dev_fwnode(dev)) 563 return ERR_PTR(-ENODEV); 564 565 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 566 if (!ptr) 567 return ERR_PTR(-ENOMEM); 568 569 psy = power_supply_get_by_reference(dev_fwnode(dev), property); 570 if (IS_ERR_OR_NULL(psy)) { 571 devres_free(ptr); 572 } else { 573 *ptr = psy; 574 devres_add(dev, ptr); 575 } 576 return psy; 577 } 578 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_reference); 579 580 int power_supply_get_battery_info(struct power_supply *psy, 581 struct power_supply_battery_info **info_out) 582 { 583 struct power_supply_resistance_temp_table *resist_table; 584 struct power_supply_battery_info *info; 585 struct fwnode_handle *srcnode, *fwnode; 586 const char *value; 587 int err, len, index, proplen; 588 u32 *propdata __free(kfree) = NULL; 589 u32 min_max[2]; 590 591 srcnode = dev_fwnode(&psy->dev); 592 if (!srcnode && psy->dev.parent) 593 srcnode = dev_fwnode(psy->dev.parent); 594 595 fwnode = fwnode_find_reference(srcnode, "monitored-battery", 0); 596 if (IS_ERR(fwnode)) 597 return PTR_ERR(fwnode); 598 599 err = fwnode_property_read_string(fwnode, "compatible", &value); 600 if (err) 601 goto out_put_node; 602 603 604 /* Try static batteries first */ 605 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 606 if (!err) 607 goto out_ret_pointer; 608 else if (err == -ENODEV) 609 /* 610 * Device does not have a static battery. 611 * Proceed to look for a simple battery. 612 */ 613 err = 0; 614 615 if (strcmp("simple-battery", value)) { 616 err = -ENODEV; 617 goto out_put_node; 618 } 619 620 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 621 if (!info) { 622 err = -ENOMEM; 623 goto out_put_node; 624 } 625 626 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 627 info->energy_full_design_uwh = -EINVAL; 628 info->charge_full_design_uah = -EINVAL; 629 info->voltage_min_design_uv = -EINVAL; 630 info->voltage_max_design_uv = -EINVAL; 631 info->precharge_current_ua = -EINVAL; 632 info->charge_term_current_ua = -EINVAL; 633 info->constant_charge_current_max_ua = -EINVAL; 634 info->constant_charge_voltage_max_uv = -EINVAL; 635 info->tricklecharge_current_ua = -EINVAL; 636 info->precharge_voltage_max_uv = -EINVAL; 637 info->charge_restart_voltage_uv = -EINVAL; 638 info->overvoltage_limit_uv = -EINVAL; 639 info->maintenance_charge = NULL; 640 info->alert_low_temp_charge_current_ua = -EINVAL; 641 info->alert_low_temp_charge_voltage_uv = -EINVAL; 642 info->alert_high_temp_charge_current_ua = -EINVAL; 643 info->alert_high_temp_charge_voltage_uv = -EINVAL; 644 info->temp_ambient_alert_min = INT_MIN; 645 info->temp_ambient_alert_max = INT_MAX; 646 info->temp_alert_min = INT_MIN; 647 info->temp_alert_max = INT_MAX; 648 info->temp_min = INT_MIN; 649 info->temp_max = INT_MAX; 650 info->factory_internal_resistance_uohm = -EINVAL; 651 info->resist_table = NULL; 652 info->bti_resistance_ohm = -EINVAL; 653 info->bti_resistance_tolerance = -EINVAL; 654 655 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 656 info->ocv_table[index] = NULL; 657 info->ocv_temp[index] = -EINVAL; 658 info->ocv_table_size[index] = -EINVAL; 659 } 660 661 /* The property and field names below must correspond to elements 662 * in enum power_supply_property. For reasoning, see 663 * Documentation/power/power_supply_class.rst. 664 */ 665 666 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 667 if (!strcmp("nickel-cadmium", value)) 668 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 669 else if (!strcmp("nickel-metal-hydride", value)) 670 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 671 else if (!strcmp("lithium-ion", value)) 672 /* Imprecise lithium-ion type */ 673 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 674 else if (!strcmp("lithium-ion-polymer", value)) 675 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 676 else if (!strcmp("lithium-ion-iron-phosphate", value)) 677 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 678 else if (!strcmp("lithium-ion-manganese-oxide", value)) 679 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 680 else 681 dev_warn(&psy->dev, "%s unknown battery type\n", value); 682 } 683 684 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 685 &info->energy_full_design_uwh); 686 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 687 &info->charge_full_design_uah); 688 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 689 &info->voltage_min_design_uv); 690 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 691 &info->voltage_max_design_uv); 692 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 693 &info->tricklecharge_current_ua); 694 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 695 &info->precharge_current_ua); 696 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 697 &info->precharge_voltage_max_uv); 698 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 699 &info->charge_term_current_ua); 700 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 701 &info->charge_restart_voltage_uv); 702 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 703 &info->overvoltage_limit_uv); 704 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 705 &info->constant_charge_current_max_ua); 706 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 707 &info->constant_charge_voltage_max_uv); 708 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 709 &info->factory_internal_resistance_uohm); 710 711 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 712 min_max, ARRAY_SIZE(min_max))) { 713 info->temp_ambient_alert_min = min_max[0]; 714 info->temp_ambient_alert_max = min_max[1]; 715 } 716 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 717 min_max, ARRAY_SIZE(min_max))) { 718 info->temp_alert_min = min_max[0]; 719 info->temp_alert_max = min_max[1]; 720 } 721 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 722 min_max, ARRAY_SIZE(min_max))) { 723 info->temp_min = min_max[0]; 724 info->temp_max = min_max[1]; 725 } 726 727 len = fwnode_property_count_u32(fwnode, "ocv-capacity-celsius"); 728 if (len < 0 && len != -EINVAL) { 729 err = len; 730 goto out_put_node; 731 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 732 dev_err(&psy->dev, "Too many temperature values\n"); 733 err = -EINVAL; 734 goto out_put_node; 735 } else if (len > 0) { 736 fwnode_property_read_u32_array(fwnode, "ocv-capacity-celsius", 737 info->ocv_temp, len); 738 } 739 740 for (index = 0; index < len; index++) { 741 struct power_supply_battery_ocv_table *table; 742 int i, tab_len; 743 744 char *propname __free(kfree) = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", 745 index); 746 if (!propname) { 747 power_supply_put_battery_info(psy, info); 748 err = -ENOMEM; 749 goto out_put_node; 750 } 751 proplen = fwnode_property_count_u32(fwnode, propname); 752 if (proplen < 0 || proplen % 2 != 0) { 753 dev_err(&psy->dev, "failed to get %s\n", propname); 754 power_supply_put_battery_info(psy, info); 755 err = -EINVAL; 756 goto out_put_node; 757 } 758 759 u32 *propdata __free(kfree) = kcalloc(proplen, sizeof(*propdata), GFP_KERNEL); 760 if (!propdata) { 761 power_supply_put_battery_info(psy, info); 762 err = -EINVAL; 763 goto out_put_node; 764 } 765 err = fwnode_property_read_u32_array(fwnode, propname, propdata, proplen); 766 if (err < 0) { 767 dev_err(&psy->dev, "failed to get %s\n", propname); 768 power_supply_put_battery_info(psy, info); 769 goto out_put_node; 770 } 771 772 tab_len = proplen / 2; 773 info->ocv_table_size[index] = tab_len; 774 775 info->ocv_table[index] = table = 776 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 777 if (!info->ocv_table[index]) { 778 power_supply_put_battery_info(psy, info); 779 err = -ENOMEM; 780 goto out_put_node; 781 } 782 783 for (i = 0; i < tab_len; i++) { 784 table[i].ocv = propdata[i*2]; 785 table[i].capacity = propdata[i*2+1]; 786 } 787 } 788 789 proplen = fwnode_property_count_u32(fwnode, "resistance-temp-table"); 790 if (proplen == 0 || proplen == -EINVAL) { 791 err = 0; 792 goto out_ret_pointer; 793 } else if (proplen < 0 || proplen % 2 != 0) { 794 power_supply_put_battery_info(psy, info); 795 err = (proplen < 0) ? proplen : -EINVAL; 796 goto out_put_node; 797 } 798 799 propdata = kcalloc(proplen, sizeof(*propdata), GFP_KERNEL); 800 if (!propdata) { 801 power_supply_put_battery_info(psy, info); 802 err = -ENOMEM; 803 goto out_put_node; 804 } 805 806 err = fwnode_property_read_u32_array(fwnode, "resistance-temp-table", 807 propdata, proplen); 808 if (err < 0) { 809 power_supply_put_battery_info(psy, info); 810 goto out_put_node; 811 } 812 813 info->resist_table_size = proplen / 2; 814 info->resist_table = resist_table = devm_kcalloc(&psy->dev, 815 info->resist_table_size, 816 sizeof(*resist_table), 817 GFP_KERNEL); 818 if (!info->resist_table) { 819 power_supply_put_battery_info(psy, info); 820 err = -ENOMEM; 821 goto out_put_node; 822 } 823 824 for (index = 0; index < info->resist_table_size; index++) { 825 resist_table[index].temp = propdata[index*2]; 826 resist_table[index].resistance = propdata[index*2+1]; 827 } 828 829 out_ret_pointer: 830 /* Finally return the whole thing */ 831 *info_out = info; 832 833 out_put_node: 834 fwnode_handle_put(fwnode); 835 return err; 836 } 837 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 838 839 void power_supply_put_battery_info(struct power_supply *psy, 840 struct power_supply_battery_info *info) 841 { 842 int i; 843 844 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 845 if (info->ocv_table[i]) 846 devm_kfree(&psy->dev, info->ocv_table[i]); 847 } 848 849 if (info->resist_table) 850 devm_kfree(&psy->dev, info->resist_table); 851 852 devm_kfree(&psy->dev, info); 853 } 854 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 855 856 const enum power_supply_property power_supply_battery_info_properties[] = { 857 POWER_SUPPLY_PROP_TECHNOLOGY, 858 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 859 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 860 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 861 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 862 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 863 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 864 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 865 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 866 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 867 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 868 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 869 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 870 POWER_SUPPLY_PROP_TEMP_MIN, 871 POWER_SUPPLY_PROP_TEMP_MAX, 872 }; 873 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 874 875 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 876 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 877 878 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 879 enum power_supply_property psp) 880 { 881 if (!info) 882 return false; 883 884 switch (psp) { 885 case POWER_SUPPLY_PROP_TECHNOLOGY: 886 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 887 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 888 return info->energy_full_design_uwh >= 0; 889 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 890 return info->charge_full_design_uah >= 0; 891 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 892 return info->voltage_min_design_uv >= 0; 893 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 894 return info->voltage_max_design_uv >= 0; 895 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 896 return info->precharge_current_ua >= 0; 897 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 898 return info->charge_term_current_ua >= 0; 899 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 900 return info->constant_charge_current_max_ua >= 0; 901 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 902 return info->constant_charge_voltage_max_uv >= 0; 903 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 904 return info->temp_ambient_alert_min > INT_MIN; 905 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 906 return info->temp_ambient_alert_max < INT_MAX; 907 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 908 return info->temp_alert_min > INT_MIN; 909 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 910 return info->temp_alert_max < INT_MAX; 911 case POWER_SUPPLY_PROP_TEMP_MIN: 912 return info->temp_min > INT_MIN; 913 case POWER_SUPPLY_PROP_TEMP_MAX: 914 return info->temp_max < INT_MAX; 915 default: 916 return false; 917 } 918 } 919 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 920 921 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 922 enum power_supply_property psp, 923 union power_supply_propval *val) 924 { 925 if (!info) 926 return -EINVAL; 927 928 if (!power_supply_battery_info_has_prop(info, psp)) 929 return -EINVAL; 930 931 switch (psp) { 932 case POWER_SUPPLY_PROP_TECHNOLOGY: 933 val->intval = info->technology; 934 return 0; 935 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 936 val->intval = info->energy_full_design_uwh; 937 return 0; 938 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 939 val->intval = info->charge_full_design_uah; 940 return 0; 941 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 942 val->intval = info->voltage_min_design_uv; 943 return 0; 944 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 945 val->intval = info->voltage_max_design_uv; 946 return 0; 947 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 948 val->intval = info->precharge_current_ua; 949 return 0; 950 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 951 val->intval = info->charge_term_current_ua; 952 return 0; 953 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 954 val->intval = info->constant_charge_current_max_ua; 955 return 0; 956 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 957 val->intval = info->constant_charge_voltage_max_uv; 958 return 0; 959 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 960 val->intval = info->temp_ambient_alert_min; 961 return 0; 962 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 963 val->intval = info->temp_ambient_alert_max; 964 return 0; 965 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 966 val->intval = info->temp_alert_min; 967 return 0; 968 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 969 val->intval = info->temp_alert_max; 970 return 0; 971 case POWER_SUPPLY_PROP_TEMP_MIN: 972 val->intval = info->temp_min; 973 return 0; 974 case POWER_SUPPLY_PROP_TEMP_MAX: 975 val->intval = info->temp_max; 976 return 0; 977 default: 978 return -EINVAL; 979 } 980 } 981 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 982 983 /** 984 * power_supply_temp2resist_simple() - find the battery internal resistance 985 * percent from temperature 986 * @table: Pointer to battery resistance temperature table 987 * @table_len: The table length 988 * @temp: Current temperature 989 * 990 * This helper function is used to look up battery internal resistance percent 991 * according to current temperature value from the resistance temperature table, 992 * and the table must be ordered descending. Then the actual battery internal 993 * resistance = the ideal battery internal resistance * percent / 100. 994 * 995 * Return: the battery internal resistance percent 996 */ 997 int power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table, 998 int table_len, int temp) 999 { 1000 int i, high, low; 1001 1002 for (i = 0; i < table_len; i++) 1003 if (temp > table[i].temp) 1004 break; 1005 1006 /* The library function will deal with high == low */ 1007 if (i == 0) 1008 high = low = i; 1009 else if (i == table_len) 1010 high = low = i - 1; 1011 else 1012 high = (low = i) - 1; 1013 1014 return fixp_linear_interpolate(table[low].temp, 1015 table[low].resistance, 1016 table[high].temp, 1017 table[high].resistance, 1018 temp); 1019 } 1020 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1021 1022 /** 1023 * power_supply_vbat2ri() - find the battery internal resistance 1024 * from the battery voltage 1025 * @info: The battery information container 1026 * @vbat_uv: The battery voltage in microvolt 1027 * @charging: If we are charging (true) or not (false) 1028 * 1029 * This helper function is used to look up battery internal resistance 1030 * according to current battery voltage. Depending on whether the battery 1031 * is currently charging or not, different resistance will be returned. 1032 * 1033 * Returns the internal resistance in microohm or negative error code. 1034 */ 1035 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1036 int vbat_uv, bool charging) 1037 { 1038 const struct power_supply_vbat_ri_table *vbat2ri; 1039 int table_len; 1040 int i, high, low; 1041 1042 /* 1043 * If we are charging, and the battery supplies a separate table 1044 * for this state, we use that in order to compensate for the 1045 * charging voltage. Otherwise we use the main table. 1046 */ 1047 if (charging && info->vbat2ri_charging) { 1048 vbat2ri = info->vbat2ri_charging; 1049 table_len = info->vbat2ri_charging_size; 1050 } else { 1051 vbat2ri = info->vbat2ri_discharging; 1052 table_len = info->vbat2ri_discharging_size; 1053 } 1054 1055 /* 1056 * If no tables are specified, or if we are above the highest voltage in 1057 * the voltage table, just return the factory specified internal resistance. 1058 */ 1059 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1060 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1061 return info->factory_internal_resistance_charging_uohm; 1062 else 1063 return info->factory_internal_resistance_uohm; 1064 } 1065 1066 /* Break loop at table_len - 1 because that is the highest index */ 1067 for (i = 0; i < table_len - 1; i++) 1068 if (vbat_uv > vbat2ri[i].vbat_uv) 1069 break; 1070 1071 /* The library function will deal with high == low */ 1072 if ((i == 0) || (i == (table_len - 1))) 1073 high = i; 1074 else 1075 high = i - 1; 1076 low = i; 1077 1078 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1079 vbat2ri[low].ri_uohm, 1080 vbat2ri[high].vbat_uv, 1081 vbat2ri[high].ri_uohm, 1082 vbat_uv); 1083 } 1084 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1085 1086 const struct power_supply_maintenance_charge_table * 1087 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1088 int index) 1089 { 1090 if (index >= info->maintenance_charge_size) 1091 return NULL; 1092 return &info->maintenance_charge[index]; 1093 } 1094 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1095 1096 /** 1097 * power_supply_ocv2cap_simple() - find the battery capacity 1098 * @table: Pointer to battery OCV lookup table 1099 * @table_len: OCV table length 1100 * @ocv: Current OCV value 1101 * 1102 * This helper function is used to look up battery capacity according to 1103 * current OCV value from one OCV table, and the OCV table must be ordered 1104 * descending. 1105 * 1106 * Return: the battery capacity. 1107 */ 1108 int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table, 1109 int table_len, int ocv) 1110 { 1111 int i, high, low; 1112 1113 for (i = 0; i < table_len; i++) 1114 if (ocv > table[i].ocv) 1115 break; 1116 1117 /* The library function will deal with high == low */ 1118 if (i == 0) 1119 high = low = i; 1120 else if (i == table_len) 1121 high = low = i - 1; 1122 else 1123 high = (low = i) - 1; 1124 1125 return fixp_linear_interpolate(table[low].ocv, 1126 table[low].capacity, 1127 table[high].ocv, 1128 table[high].capacity, 1129 ocv); 1130 } 1131 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1132 1133 const struct power_supply_battery_ocv_table * 1134 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1135 int temp, int *table_len) 1136 { 1137 int best_temp_diff = INT_MAX, temp_diff; 1138 u8 i, best_index = 0; 1139 1140 if (!info->ocv_table[0]) 1141 return NULL; 1142 1143 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1144 /* Out of capacity tables */ 1145 if (!info->ocv_table[i]) 1146 break; 1147 1148 temp_diff = abs(info->ocv_temp[i] - temp); 1149 1150 if (temp_diff < best_temp_diff) { 1151 best_temp_diff = temp_diff; 1152 best_index = i; 1153 } 1154 } 1155 1156 *table_len = info->ocv_table_size[best_index]; 1157 return info->ocv_table[best_index]; 1158 } 1159 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1160 1161 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1162 int ocv, int temp) 1163 { 1164 const struct power_supply_battery_ocv_table *table; 1165 int table_len; 1166 1167 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1168 if (!table) 1169 return -EINVAL; 1170 1171 return power_supply_ocv2cap_simple(table, table_len, ocv); 1172 } 1173 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1174 1175 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1176 int resistance) 1177 { 1178 int low, high; 1179 1180 /* Nothing like this can be checked */ 1181 if (info->bti_resistance_ohm <= 0) 1182 return false; 1183 1184 /* This will be extremely strict and unlikely to work */ 1185 if (info->bti_resistance_tolerance <= 0) 1186 return (info->bti_resistance_ohm == resistance); 1187 1188 low = info->bti_resistance_ohm - 1189 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1190 high = info->bti_resistance_ohm + 1191 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1192 1193 return ((resistance >= low) && (resistance <= high)); 1194 } 1195 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1196 1197 static bool psy_desc_has_property(const struct power_supply_desc *psy_desc, 1198 enum power_supply_property psp) 1199 { 1200 bool found = false; 1201 int i; 1202 1203 for (i = 0; i < psy_desc->num_properties; i++) { 1204 if (psy_desc->properties[i] == psp) { 1205 found = true; 1206 break; 1207 } 1208 } 1209 1210 return found; 1211 } 1212 1213 bool power_supply_ext_has_property(const struct power_supply_ext *psy_ext, 1214 enum power_supply_property psp) 1215 { 1216 int i; 1217 1218 for (i = 0; i < psy_ext->num_properties; i++) 1219 if (psy_ext->properties[i] == psp) 1220 return true; 1221 1222 return false; 1223 } 1224 1225 bool power_supply_has_property(struct power_supply *psy, 1226 enum power_supply_property psp) 1227 { 1228 struct power_supply_ext_registration *reg; 1229 1230 if (psy_desc_has_property(psy->desc, psp)) 1231 return true; 1232 1233 if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1234 return true; 1235 1236 power_supply_for_each_extension(reg, psy) { 1237 if (power_supply_ext_has_property(reg->ext, psp)) 1238 return true; 1239 } 1240 1241 return false; 1242 } 1243 1244 static int __power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, 1245 union power_supply_propval *val, bool use_extensions) 1246 { 1247 struct power_supply_ext_registration *reg; 1248 1249 if (atomic_read(&psy->use_cnt) <= 0) { 1250 if (!psy->initialized) 1251 return -EAGAIN; 1252 return -ENODEV; 1253 } 1254 1255 if (use_extensions) { 1256 scoped_guard(rwsem_read, &psy->extensions_sem) { 1257 power_supply_for_each_extension(reg, psy) { 1258 if (!power_supply_ext_has_property(reg->ext, psp)) 1259 continue; 1260 1261 return reg->ext->get_property(psy, reg->ext, reg->data, psp, val); 1262 } 1263 } 1264 } 1265 1266 if (psy_desc_has_property(psy->desc, psp)) 1267 return psy->desc->get_property(psy, psp, val); 1268 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1269 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1270 else 1271 return -EINVAL; 1272 } 1273 1274 int power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, 1275 union power_supply_propval *val) 1276 { 1277 return __power_supply_get_property(psy, psp, val, true); 1278 } 1279 EXPORT_SYMBOL_GPL(power_supply_get_property); 1280 1281 /** 1282 * power_supply_get_property_direct - Read a power supply property without checking for extensions 1283 * @psy: The power supply 1284 * @psp: The power supply property to read 1285 * @val: The resulting value of the power supply property 1286 * 1287 * Read a power supply property without taking into account any power supply extensions registered 1288 * on the given power supply. This is mostly useful for power supply extensions that want to access 1289 * their own power supply as using power_supply_get_property() directly will result in a potential 1290 * deadlock. 1291 * 1292 * Return: 0 on success or negative error code on failure. 1293 */ 1294 int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp, 1295 union power_supply_propval *val) 1296 { 1297 return __power_supply_get_property(psy, psp, val, false); 1298 } 1299 EXPORT_SYMBOL_GPL(power_supply_get_property_direct); 1300 1301 1302 static int __power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, 1303 const union power_supply_propval *val, bool use_extensions) 1304 { 1305 struct power_supply_ext_registration *reg; 1306 1307 if (atomic_read(&psy->use_cnt) <= 0) 1308 return -ENODEV; 1309 1310 if (use_extensions) { 1311 scoped_guard(rwsem_read, &psy->extensions_sem) { 1312 power_supply_for_each_extension(reg, psy) { 1313 if (!power_supply_ext_has_property(reg->ext, psp)) 1314 continue; 1315 1316 if (reg->ext->set_property) 1317 return reg->ext->set_property(psy, reg->ext, reg->data, 1318 psp, val); 1319 else 1320 return -ENODEV; 1321 } 1322 } 1323 } 1324 1325 if (!psy->desc->set_property) 1326 return -ENODEV; 1327 1328 return psy->desc->set_property(psy, psp, val); 1329 } 1330 1331 int power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, 1332 const union power_supply_propval *val) 1333 { 1334 return __power_supply_set_property(psy, psp, val, true); 1335 } 1336 EXPORT_SYMBOL_GPL(power_supply_set_property); 1337 1338 /** 1339 * power_supply_set_property_direct - Write a power supply property without checking for extensions 1340 * @psy: The power supply 1341 * @psp: The power supply property to write 1342 * @val: The value to write to the power supply property 1343 * 1344 * Write a power supply property without taking into account any power supply extensions registered 1345 * on the given power supply. This is mostly useful for power supply extensions that want to access 1346 * their own power supply as using power_supply_set_property() directly will result in a potential 1347 * deadlock. 1348 * 1349 * Return: 0 on success or negative error code on failure. 1350 */ 1351 int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp, 1352 const union power_supply_propval *val) 1353 { 1354 return __power_supply_set_property(psy, psp, val, false); 1355 } 1356 EXPORT_SYMBOL_GPL(power_supply_set_property_direct); 1357 1358 int power_supply_property_is_writeable(struct power_supply *psy, 1359 enum power_supply_property psp) 1360 { 1361 struct power_supply_ext_registration *reg; 1362 1363 power_supply_for_each_extension(reg, psy) { 1364 if (power_supply_ext_has_property(reg->ext, psp)) { 1365 if (reg->ext->property_is_writeable) 1366 return reg->ext->property_is_writeable(psy, reg->ext, 1367 reg->data, psp); 1368 else 1369 return 0; 1370 } 1371 } 1372 1373 if (!psy->desc->property_is_writeable) 1374 return 0; 1375 1376 return psy->desc->property_is_writeable(psy, psp); 1377 } 1378 1379 void power_supply_external_power_changed(struct power_supply *psy) 1380 { 1381 if (atomic_read(&psy->use_cnt) <= 0 || 1382 !psy->desc->external_power_changed) 1383 return; 1384 1385 psy->desc->external_power_changed(psy); 1386 } 1387 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1388 1389 int power_supply_powers(struct power_supply *psy, struct device *dev) 1390 { 1391 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1392 } 1393 EXPORT_SYMBOL_GPL(power_supply_powers); 1394 1395 static int power_supply_update_sysfs_and_hwmon(struct power_supply *psy) 1396 { 1397 unsigned long flags; 1398 1399 spin_lock_irqsave(&psy->changed_lock, flags); 1400 psy->update_groups = true; 1401 spin_unlock_irqrestore(&psy->changed_lock, flags); 1402 1403 power_supply_changed(psy); 1404 1405 power_supply_remove_hwmon_sysfs(psy); 1406 return power_supply_add_hwmon_sysfs(psy); 1407 } 1408 1409 int power_supply_register_extension(struct power_supply *psy, const struct power_supply_ext *ext, 1410 struct device *dev, void *data) 1411 { 1412 struct power_supply_ext_registration *reg; 1413 size_t i; 1414 int ret; 1415 1416 if (!psy || !dev || !ext || !ext->name || !ext->properties || !ext->num_properties) 1417 return -EINVAL; 1418 1419 guard(rwsem_write)(&psy->extensions_sem); 1420 1421 power_supply_for_each_extension(reg, psy) 1422 if (strcmp(ext->name, reg->ext->name) == 0) 1423 return -EEXIST; 1424 1425 for (i = 0; i < ext->num_properties; i++) 1426 if (power_supply_has_property(psy, ext->properties[i])) 1427 return -EEXIST; 1428 1429 reg = kmalloc(sizeof(*reg), GFP_KERNEL); 1430 if (!reg) 1431 return -ENOMEM; 1432 1433 reg->ext = ext; 1434 reg->dev = dev; 1435 reg->data = data; 1436 list_add(®->list_head, &psy->extensions); 1437 1438 ret = power_supply_sysfs_add_extension(psy, ext, dev); 1439 if (ret) 1440 goto sysfs_add_failed; 1441 1442 ret = power_supply_update_sysfs_and_hwmon(psy); 1443 if (ret) 1444 goto sysfs_hwmon_failed; 1445 1446 return 0; 1447 1448 sysfs_hwmon_failed: 1449 power_supply_sysfs_remove_extension(psy, ext); 1450 sysfs_add_failed: 1451 list_del(®->list_head); 1452 kfree(reg); 1453 return ret; 1454 } 1455 EXPORT_SYMBOL_GPL(power_supply_register_extension); 1456 1457 void power_supply_unregister_extension(struct power_supply *psy, const struct power_supply_ext *ext) 1458 { 1459 struct power_supply_ext_registration *reg; 1460 1461 guard(rwsem_write)(&psy->extensions_sem); 1462 1463 power_supply_for_each_extension(reg, psy) { 1464 if (reg->ext == ext) { 1465 list_del(®->list_head); 1466 power_supply_sysfs_remove_extension(psy, ext); 1467 kfree(reg); 1468 power_supply_update_sysfs_and_hwmon(psy); 1469 return; 1470 } 1471 } 1472 1473 dev_warn(&psy->dev, "Trying to unregister invalid extension"); 1474 } 1475 EXPORT_SYMBOL_GPL(power_supply_unregister_extension); 1476 1477 static void power_supply_dev_release(struct device *dev) 1478 { 1479 struct power_supply *psy = to_power_supply(dev); 1480 1481 dev_dbg(dev, "%s\n", __func__); 1482 kfree(psy); 1483 } 1484 1485 int power_supply_reg_notifier(struct notifier_block *nb) 1486 { 1487 return blocking_notifier_chain_register(&power_supply_notifier, nb); 1488 } 1489 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1490 1491 void power_supply_unreg_notifier(struct notifier_block *nb) 1492 { 1493 blocking_notifier_chain_unregister(&power_supply_notifier, nb); 1494 } 1495 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1496 1497 #ifdef CONFIG_THERMAL 1498 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1499 int *temp) 1500 { 1501 struct power_supply *psy; 1502 union power_supply_propval val; 1503 int ret; 1504 1505 WARN_ON(tzd == NULL); 1506 psy = thermal_zone_device_priv(tzd); 1507 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1508 if (ret) 1509 return ret; 1510 1511 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1512 *temp = val.intval * 100; 1513 1514 return ret; 1515 } 1516 1517 static const struct thermal_zone_device_ops psy_tzd_ops = { 1518 .get_temp = power_supply_read_temp, 1519 }; 1520 1521 static int psy_register_thermal(struct power_supply *psy) 1522 { 1523 int ret; 1524 1525 if (psy->desc->no_thermal) 1526 return 0; 1527 1528 /* Register battery zone device psy reports temperature */ 1529 if (psy_desc_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1530 /* Prefer our hwmon device and avoid duplicates */ 1531 struct thermal_zone_params tzp = { 1532 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1533 }; 1534 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1535 psy, &psy_tzd_ops, &tzp); 1536 if (IS_ERR(psy->tzd)) 1537 return PTR_ERR(psy->tzd); 1538 ret = thermal_zone_device_enable(psy->tzd); 1539 if (ret) 1540 thermal_zone_device_unregister(psy->tzd); 1541 return ret; 1542 } 1543 1544 return 0; 1545 } 1546 1547 static void psy_unregister_thermal(struct power_supply *psy) 1548 { 1549 if (IS_ERR_OR_NULL(psy->tzd)) 1550 return; 1551 thermal_zone_device_unregister(psy->tzd); 1552 } 1553 1554 #else 1555 static int psy_register_thermal(struct power_supply *psy) 1556 { 1557 return 0; 1558 } 1559 1560 static void psy_unregister_thermal(struct power_supply *psy) 1561 { 1562 } 1563 #endif 1564 1565 static struct power_supply *__must_check 1566 __power_supply_register(struct device *parent, 1567 const struct power_supply_desc *desc, 1568 const struct power_supply_config *cfg) 1569 { 1570 struct device *dev; 1571 struct power_supply *psy; 1572 int rc; 1573 1574 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1575 return ERR_PTR(-EINVAL); 1576 1577 if (!parent) 1578 pr_warn("%s: Expected proper parent device for '%s'\n", 1579 __func__, desc->name); 1580 1581 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1582 if (!psy) 1583 return ERR_PTR(-ENOMEM); 1584 1585 dev = &psy->dev; 1586 1587 device_initialize(dev); 1588 1589 dev->class = &power_supply_class; 1590 dev->type = &power_supply_dev_type; 1591 dev->parent = parent; 1592 dev->release = power_supply_dev_release; 1593 dev_set_drvdata(dev, psy); 1594 psy->desc = desc; 1595 if (cfg) { 1596 device_set_node(dev, cfg->fwnode); 1597 dev->groups = cfg->attr_grp; 1598 psy->drv_data = cfg->drv_data; 1599 psy->supplied_to = cfg->supplied_to; 1600 psy->num_supplicants = cfg->num_supplicants; 1601 } 1602 1603 rc = dev_set_name(dev, "%s", desc->name); 1604 if (rc) 1605 goto dev_set_name_failed; 1606 1607 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1608 INIT_DELAYED_WORK(&psy->deferred_register_work, 1609 power_supply_deferred_register_work); 1610 1611 rc = power_supply_check_supplies(psy); 1612 if (rc) { 1613 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1614 goto check_supplies_failed; 1615 } 1616 1617 /* 1618 * Expose constant battery info, if it is available. While there are 1619 * some chargers accessing constant battery data, we only want to 1620 * expose battery data to userspace for battery devices. 1621 */ 1622 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1623 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1624 if (rc && rc != -ENODEV && rc != -ENOENT) 1625 goto check_supplies_failed; 1626 } 1627 1628 spin_lock_init(&psy->changed_lock); 1629 init_rwsem(&psy->extensions_sem); 1630 INIT_LIST_HEAD(&psy->extensions); 1631 1632 rc = device_add(dev); 1633 if (rc) 1634 goto device_add_failed; 1635 1636 rc = device_init_wakeup(dev, cfg ? !cfg->no_wakeup_source : true); 1637 if (rc) 1638 goto wakeup_init_failed; 1639 1640 rc = psy_register_thermal(psy); 1641 if (rc) 1642 goto register_thermal_failed; 1643 1644 rc = power_supply_create_triggers(psy); 1645 if (rc) 1646 goto create_triggers_failed; 1647 1648 scoped_guard(rwsem_read, &psy->extensions_sem) { 1649 rc = power_supply_add_hwmon_sysfs(psy); 1650 if (rc) 1651 goto add_hwmon_sysfs_failed; 1652 } 1653 1654 /* 1655 * Update use_cnt after any uevents (most notably from device_add()). 1656 * We are here still during driver's probe but 1657 * the power_supply_uevent() calls back driver's get_property 1658 * method so: 1659 * 1. Driver did not assigned the returned struct power_supply, 1660 * 2. Driver could not finish initialization (anything in its probe 1661 * after calling power_supply_register()). 1662 */ 1663 atomic_inc(&psy->use_cnt); 1664 psy->initialized = true; 1665 1666 queue_delayed_work(system_power_efficient_wq, 1667 &psy->deferred_register_work, 1668 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1669 1670 return psy; 1671 1672 add_hwmon_sysfs_failed: 1673 power_supply_remove_triggers(psy); 1674 create_triggers_failed: 1675 psy_unregister_thermal(psy); 1676 register_thermal_failed: 1677 wakeup_init_failed: 1678 device_del(dev); 1679 device_add_failed: 1680 check_supplies_failed: 1681 dev_set_name_failed: 1682 put_device(dev); 1683 return ERR_PTR(rc); 1684 } 1685 1686 /** 1687 * power_supply_register() - Register new power supply 1688 * @parent: Device to be a parent of power supply's device, usually 1689 * the device which probe function calls this 1690 * @desc: Description of power supply, must be valid through whole 1691 * lifetime of this power supply 1692 * @cfg: Run-time specific configuration accessed during registering, 1693 * may be NULL 1694 * 1695 * Return: A pointer to newly allocated power_supply on success 1696 * or ERR_PTR otherwise. 1697 * Use power_supply_unregister() on returned power_supply pointer to release 1698 * resources. 1699 */ 1700 struct power_supply *__must_check power_supply_register(struct device *parent, 1701 const struct power_supply_desc *desc, 1702 const struct power_supply_config *cfg) 1703 { 1704 return __power_supply_register(parent, desc, cfg); 1705 } 1706 EXPORT_SYMBOL_GPL(power_supply_register); 1707 1708 static void devm_power_supply_release(struct device *dev, void *res) 1709 { 1710 struct power_supply **psy = res; 1711 1712 power_supply_unregister(*psy); 1713 } 1714 1715 /** 1716 * devm_power_supply_register() - Register managed power supply 1717 * @parent: Device to be a parent of power supply's device, usually 1718 * the device which probe function calls this 1719 * @desc: Description of power supply, must be valid through whole 1720 * lifetime of this power supply 1721 * @cfg: Run-time specific configuration accessed during registering, 1722 * may be NULL 1723 * 1724 * Return: A pointer to newly allocated power_supply on success 1725 * or ERR_PTR otherwise. 1726 * The returned power_supply pointer will be automatically unregistered 1727 * on driver detach. 1728 */ 1729 struct power_supply *__must_check 1730 devm_power_supply_register(struct device *parent, 1731 const struct power_supply_desc *desc, 1732 const struct power_supply_config *cfg) 1733 { 1734 struct power_supply **ptr, *psy; 1735 1736 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1737 1738 if (!ptr) 1739 return ERR_PTR(-ENOMEM); 1740 psy = __power_supply_register(parent, desc, cfg); 1741 if (IS_ERR(psy)) { 1742 devres_free(ptr); 1743 } else { 1744 *ptr = psy; 1745 devres_add(parent, ptr); 1746 } 1747 return psy; 1748 } 1749 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1750 1751 /** 1752 * power_supply_unregister() - Remove this power supply from system 1753 * @psy: Pointer to power supply to unregister 1754 * 1755 * Remove this power supply from the system. The resources of power supply 1756 * will be freed here or on last power_supply_put() call. 1757 */ 1758 void power_supply_unregister(struct power_supply *psy) 1759 { 1760 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1761 psy->removing = true; 1762 cancel_work_sync(&psy->changed_work); 1763 cancel_delayed_work_sync(&psy->deferred_register_work); 1764 sysfs_remove_link(&psy->dev.kobj, "powers"); 1765 power_supply_remove_hwmon_sysfs(psy); 1766 power_supply_remove_triggers(psy); 1767 psy_unregister_thermal(psy); 1768 device_init_wakeup(&psy->dev, false); 1769 device_unregister(&psy->dev); 1770 } 1771 EXPORT_SYMBOL_GPL(power_supply_unregister); 1772 1773 void *power_supply_get_drvdata(struct power_supply *psy) 1774 { 1775 return psy->drv_data; 1776 } 1777 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1778 1779 static int __init power_supply_class_init(void) 1780 { 1781 power_supply_init_attrs(); 1782 return class_register(&power_supply_class); 1783 } 1784 1785 static void __exit power_supply_class_exit(void) 1786 { 1787 class_unregister(&power_supply_class); 1788 } 1789 1790 subsys_initcall(power_supply_class_init); 1791 module_exit(power_supply_class_exit); 1792 1793 MODULE_DESCRIPTION("Universal power supply monitor class"); 1794 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>"); 1795 MODULE_AUTHOR("Szabolcs Gyurko"); 1796 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>"); 1797